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Estimates on degenerate jump-diffusion processes and
regularity of the related valuation equation

Abstract Many risk-neutral pricing problems proposed in the finance literature require

to be dealt with by solving the corresponding Partial Integro-Differential Equation. Unfor-

tunately, neither the standard Sobolev spaces theory, or the present literature on viscosity

solution theory is able to deal with some problems of interest in finance. A recent re-

sult presented by Costantini, Papi and D’Ippoliti accepted for pubblication on Finance and

Stochastics [17], shows that, under general conditions on the coefficients of the stochastic

integro-differential equation, whenever a Lyapunov-type condition is satisfied, the stochas-

tic process does not reach the boundary of the domain where is defined. Furthermore, in

the same work it has been proved that there exists a unique viscosity solution to the pricing

problem when we deal with the corresponding pricing problem for European-type deriva-

tives. The viscosity solution theory ensures just the continuity of the solution, when data

are continuous, but does not guarantees that such a solution has some additional regularity.

The aim of this work is to improve, for the pure differential case, the results existing in

literature dealing with the regularity of both the solutions X of the underlying stochastic

differential equations, and the solutions of the corresponding PDE. In particular we will

provide some estimates related to dependence with respect to the initial data for the process

X. Furthermore, dealing with the pricing problem, we improve our understanding on the

assumptions that ensure the viscosity solution to have additional regularity properties beside

the mere continuity.

A Lipschitz-type dependence result with respect to initial data, until a stopping time τ ,

is shown whenever the coefficients are locally Lipschitz continuous, and a Lyapunov-type

condition is satisfied. Such a result can be improved if a suitable weight function is put in

place.

A standard result in PDE theory ensures that, if the assumptions we assume in our work are

satisfied, then in each compact subset where the diffusion matrix is positive defined, there

exists a unique classical solution to the localized problem if initial data are continuous (see

e.g. [35] or [9]). We make use of such a result in order to prove that this classical solution

coincides, in the same subset, with the unique viscosity solution found in [17].

We give an application of such results, applying our evidences to the stochastic volatility

model proposed by Ekstr̈om and Tysk in [29]. In such a case all the hypotheses we are

currently assuming are satisfied, and the expression of the Lyapunov function can be ex-

plicitely provided for different final payoff. As a consequence, we are able to get the results

of the existence and uniqueness of a classical solution to the pricing problem presented in



[29] in an independent way. Furthermore it is possible to consider weakened assumptions

on the final payoff. On the other hand we try to consider a generalization of the model,

allowing the process exhibits sudden jumps provided that the jump measure satisfies some

suitable properties. In such a case, the expression for the Lyapunov function is provided as

well, hence we are able to state that the considered valuation problem admits one and only

one viscosity solution.
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Chapter 1

Introduction

It is well known that when we deal with the financial problems, several approaches may

be used. In principle, in order to give a description of the evolution of the markets and

the prices of the products that are traded in, a fundamental approach should represent an

useful approach. This means that the price of the products could be derived by economical

arguments, and then it could be obtained by matching demand and supply curves. On the

other hand, all the results critically depends on our expectations on the behaviour of the

players, and the set of available data. When the considered market is not liquid enough, or

we are in a holygopolistic regime, such an approach seems to be the best way to perform

some analysis on those markets, since the behaviour of a given player strongly influences the

dynamics of all the market. Such influences may be very different from the ones observed

in the past.

However, as far as now, all the financial markets around the world, and most of the com-

modity and energy markets are fully liberalized and very liquid, and the number of players

is very high. In such conditions it is quite impossible to give a correct description of the

behaviour of each player. Hence a parameterization of the dynamics becomes preferable,

and the stochastic theory can be used with success.

Since the work made by It̂o in [46] on the stochastic integration, several works have been

developed reguarding martingales, semimartingales, and Lévy generators in general. The

importance of the results obtained in these works is the reason for the success of the stochas-

tic theory on the description of the market theory. In particular, many problem of interest in

finance deal with the pricing of a given contract, once the model assumed for the evolution

of the products traded in the market is chosen. In particular, the existence of the so called

fair price of the contracts is of main interest, as well as the uniqueness of such prices. The

fair price of the contract is commonly considered to be the expected value of such con-

tracts, despite several difficulties may arise when some choises for the market have been

done. Furthermore the uniqueness of the price may be not ensured.
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Actually, two main ways are followed in pricing deriviatives. The most natural is to consider

the fair price of a contract as the expected value at expiry, actualized by a discount factor.

However, dealing with the stochastic differential equations directly may be very hard, since

the distribution of the prices in the future is usually unknown. Even numerical procedures

fail in some cases. On the other hand, it is well known that the problem of pricing a contract

may be addressed by dealing with the corresponding Partial Integro-Differential Equation

(PIDE) related to the considered market and the particular type of contract.

Unfortunately, in many cases of interest, the considered problem has degenerate diffusion

matrix, or the coefficients are fast growing at infinity, or may exhibit other features under

which the present literature is not developed enough in order to guarantee useful results

reguarding the existence, uniqueness and regularity of the solution to the PIDE.

This thesis is based on a joint research with Marco Papi, and starts from a forthcoming work

presented by Cristina Costantini, Marco Papi and Fernanda D’Ippoliti [17] that generalizes

the present results on the existence and uniqueness of the viscosity solution for many prob-

lems of interest in finance. Roughly speaking, such hypoteses require that the coefficients

of the stochastic differential equation with jumps are locally Lipschitz continuous, and a

Lyapunov-type condition is verified. Then, the aim of our work is to improve such results,

and some regularity of the stochastic processes is found. In particular, under the same hy-

poteses assumed in [17], that ensure the existence and uniqueness of the viscosity solution,

the stochastic process is found to be Lipschitz continuous with respect to initial data, when

a stopped problem is considered, or if the drift term is globally Lipschitz continuous. Fur-

thermore, starting from such results of regularity of the stochastic process, it is shown that

strong implications on the regularity of the viscosity solution are available. In particular,

in each compact set K where the final payoff is continuous and the diffusion matrix is lo-

cally positive defined, then the viscosity solution is not only continuous but inherits some

additional regularity. In particular we are able to prove that the viscosity solution is twice

differentiable with resepct to x and once with respect to t for each x ∈ K . Such results are

applied to our generalization of the model proposed by Ekstr̈om and Tysk in [29].

This work is organized as follows. Chapter 2 is devoted to give an introduction of the

market theory and the basic financial concepts. Following mainly [9], [3] and [51], we

provide the standard mathematical definitions of the market, the players acting in the market

and the main products that are traded. Then a description of the models mainly used in

financial world is given, highlighting the main features and drawbacks. At the end, the aim

is to introduce the arbitrage principle highlighting which are the implications in financial

mathematics.

Chapter 3 is devoted to indicate the state of the art in pricing problems and the main prob-
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lems of interest in finance. Our attention is mainly pointed towards such problems to which

the present literature cannot be applied.

Chapter 4 begins with a very short introduction to the semigroup theory expecially applied

to the martingale problem, highlighting the links between the semigroup approach and the

Markov processes. Then the main assumptions that hold for the rest of the work are shown,

and the results of well-posedness of the martingale problem (A, P0) for any initial distribu-

tion P0 provided in [17] is presented. Such a result is obtained under very general hypoteses

on the operator A. Then, in the last part of the chapter, under the same assumptions given

in [17], some estimates of continuity with respect to the initial data for the process X are

provided in the pure differential case. In particular we are able to give a Lipschitz-type

dependence of the process X with respect to x and t in a suitable sense. Furthermore, a

stronger result is provided as well whenever a suitable weight function is considered.

Chapter 5 introduces the problem of existence and uniqueness of the solution for a very

simple case of singular valuation equation. Then, the general pricing problem is considered.

The main results provided in [17] are then proposed. In particular it is shown that under

suitable assumptions there exists a unique viscosity solution the general problem. Then

applying the results in Chapter 4, it is possible to show that the viscosity solution u is not

only a mere continuous function but, in each compact subset where the final payoff φ is

continuous and the running cost f and the interest rate c are α-Ḧolder continuous, and the

diffusion matrix is uniformly positive defined, the viscosity solution is twice differentiable

with respect to x, and once with respect to t.

Chapter 6 is devoted to give an application of the results of regularity for the pure differential

case got in the previous chapters. In particular a focus on the model proposed by Ekstr̈om

and Tysk in [29] is given, and the main improvements with respect to the previous models

is presented. Then, we show that, under an additional assumption on the behaviour of the

coefficients near the boundary, the model proposed by Ekstr̈om and Tysk satisfies all the

assumptions previously hold, and admits a Lyapunov-type condition. Hence, all the results

got in the previous chapters can be applied. In particular the existence and uniqueness of

a classical solution is ensured for a larger class of final payoffs than the ones considered

in [29]. Furthermore, a generalization of the model is proposed, assuming the stochastic

process exhibits jump-diffusive dynamics. In this case, it is possible to find a viscosity

solution to the integro-differential problem when the final payoff does not blow up fastly at

infinity. Furthermore, in the case the pure diffusive problem is considered, then the existence

of a unique classical solution is ensured.
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1.1. COMMENTS AND NOTATION 4

1.1 Comments and notation

The following notation and convention will be used in the thesis, where not differently

specified.

The symbol (x, t) denotes a point in the space D × [0, T ] where D ⊆ Rd and T ∈ R+,

unless differently specified, and xi represents the ith element of the vector x.

The partial derivatives with respect to t and xi will be denoted by ∂t, and ∂i, or equiva-

lently ∂xi . When the derivative is applied to a function u(x, t) then the derivatives could be

equivalently indicated by ut or uxi .

The symbols ∇ and ∇2 denote respectively the gradient and the Hessian matrix, and are

applied to spacial coordinates. The gradient of a function ∇u is considered as a row vector

in Rd.

Given a matrix A, the symbols tr(A) and det(A) denote respectively the trace and the

determinant of the matrix, while the superscript � denotes the transpose.

For any set S ⊆ Rd we indicate by S its closure, and by Sc its complement in Rd. Instead

the function 1S denotes the indicator function, that is 1S(x) = 1 if x ∈ S, and 1S(x) = 0 if

x /∈ S.

For any open set S ⊆ Rd, C2,1(S × [0, T ]) denotes the set of real valued functions that

are twice differentiable with respect to x and once with respect to t and the derivatives are

continuous, while the symbol C(S×[0, T ]) denotes, as usual, the set of real valued functions

continuous with respect to their arguments. The symbol C∞(S × [0, T ]) denotes the set of

smooth real valued functions.

Given a metric space S, the calligraphic uppercase symbols (A,B, . . . ) denote a linear

operator, if not differently specified.

The symbol || · ||p denotes the standard p norm that is, if h is defined on a Banach space S,

then

||h(x)||p =

(∫
S
|h(x)|pdx

)1/p

.

When the usual norm in the Euclidean space, where p = 2, then the index p is omitted.

For D ∈ Rd we denote by Lp(D) the Banach space of measurable functions h defined on D

such that ||h||p < ∞, and Wn,p the Sobolev space of functions whose the first n derivatives

belong to Lp(D).

For any Borel set S ⊆ Rd, B(S) is the Borel σ-algebra of S, and M(S) denotes the space

of Borel measures on S, endowed with the weak convergence topology.
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1.1. COMMENTS AND NOTATION 5

For any metric space S, DS [0,∞) denotes the space of right continuous processes that

admits limit at left (cádlág), endowed with the Skorohod topology.

The symbol X denotes the solution to a given stochastic integro-differential equation, while

the symbols Xx and Xx
t denote respectively the solution to a stochastic integro-differential

equaiton starting from x and the solution to a stochastic integro-differential equaiton start-

ing from x observed at time t. The symbol {FX} denotes the filtration generated by the

stochastic process X. We use the notation Lp to indicate the space of the processes X that

are adapted to Ft whose paths are in Lp(0, T ) P−almost surely.
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Chapter 2

Preliminaries

2.1 Financial market in a mathematical framework

In last decades several works have been made in order to describe, in a rigorous mathema-

tical way, the behaviour of the markets, mainly financial and commodity ones. In particular

two main approaches have been developed, and both of them give a stochastic description

of the markets as a suitable probability space. This is the space of the possible scenarios,

endowed with a filtration that defines the set of the informations available at each time t.

Despite this line on contact, these two approaches are opposite one to each other. The first

approach is represented by market theory that, roughly speaking, explains the movements

of the markets describing the evolution of the products that are traded in that are assumed to

evolve following a given system of stochastic differential equations, possibly relating one

or more assets. The value of such products determine the market itself. In such a theory,

the actors are represented by the agents that are identified by their position in the market

and their amount of share of a given asset. The goal of such an approach is to find the

stochastic process that gives the best fit to the evolution of the market, and then to get as

many informations as possible about the future in terms of probability distributions.

The second approach is the so called economic theory. According to such a theory, the

attention is paid to the agents themselves and not just to their position in the market. In

particular, each agent is characterized by given preferences towards consumption and their

own total wealth. All these features are collected in the so called utility function that is

specific for each agent, or group of them. Then the evolution of the prices of the products

traded in the market and the position of each agent in the market are determined by the

interactions between each agent, given by their utility functions. Clearly, such an approach

better performs when the description of the preferences of the players, and their interactions

can be easily explained by a mathematical approach.

In order to give a description of the evolution of the financial and commodity markets,

6



2.1. FINANCIAL MARKET IN A MATHEMATICAL FRAMEWORK 7

it is clear that following an approach that takes into consideration fundamental arguments

should give, theorically, the right behaviour of the considered markets. Then the price of the

products traded in these markets could be derived by economical arguments, and the final

price could be then obtained by matching demand and supply curves. Such an approach

allows to perfome several analysis in details. However, it requires a very strong knowledge

of the considered market, both from an economical point of view, and, sometimes, even

from a technical point of view. For such reasons a parametrization of the process is often

preferable, and the stochastic process theory can be used successfully, expecially when

we are dealing with the problem of pricing derivatives. In particular, more the markets

are liberalized and liquid, more a stochastic approach can be succesfully applied. Such a

parametrization can be obtaind directly looking at the behaviour of the market. Hence, it is

easy to argue that the market theory approach is suitable when the number of agents is large,

instead the economic theory approach is particulary suitable in an holygopolystic markets,

such as some electricity markets. In the first case, indeed, given the complexity of the

problem, it is quite impossible to find the utility functions for each agent and to understand

the influences and interactions between the agents that may take place. This fact is true

expecially since the preferences of the players may change during the time. A stochastic

approach, instead, represents a kind of parametrization of the behaviour of each agent.

On the other hand, when the main players in a market are few, it is possible to overcome

this challenge and the economic theory approach seems to be more feasible. Furthermore,

in this case the behaviour of the market should be strongly determined by the choices of

the main agents, then it is important to take into account properly the preferences of such

a player. This fact can be easily achived following the economic theory, that is expecially

indicated in large investor theory in the case of financial markets, and in holygopolystic

markets in the case of commodity ones.

In the next sections we recall some standard results of the market theory, in order to intro-

duce the approach that will be usefull for our work. Furthermore some of the mostly used

models in the financial world are presented. The chapter is organized as follows. In the first

two sections we provide the standard definitions of the market in a mathematical frame-

work, the players acting in the market and the main products that are traded in. In Section

2.4 a description of the models mainly used in financial world are provided, highlighting

the main features and drawbacks. In the last section the arbitrage principle is introduced

and some standard results on the completeness of the markets and the pricing by hedging

are provided.
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2.2. AN OUTLOOK ON MARKET THEORY 8

2.2 An outlook on market theory

Now we rapidly introduce some fundamental aspects and definitions that are put in place in

market theory.

As argued before, the randomness of the markets can be substantially addressed to the fact

that the behaviour of the players acting in the market is not predictable. Then modeling

financial markets making use of the stochastic process theory seems to be the most natural

way. This fact is particularly true if the behaviour of one of them does not strongly affect

the choises of the other players and the dynamics of the prices.

Due to its randomness, from a mathematical finance point of view, a market can be described

as a probability space, that represents the set of the possible “worlds”, the informations that

are available at any time, and the measure of the probability that weights the occurences

for each “scenario”. Furthermore, the mathematical definition of the products that can be

traded in the market is also needed.

Definition 2.1. For any T > 0, a probability space (Ω,F ,P) endowed by a filtration

{Ft : t ∈ [0, T ]}, such that F0 = {∅,Ω} and FT = F , is a market place of duration T .

Such a definition allows us to use a probabilistic approach in order to describe the market.

Indeed in Definition 2.1 the element Ω is the “space of the trajectories” and represents the

set of all events that can occur. The term F is a σ-algebra of the parts of Ω, and (Ft)t≥0

is the filtration, that is a family of sub-σ-algebras of F and is increasing with respect to t.

From an intuitive point of view it represents the set of the events of which it is known their

occurence until the time t. It can be seen as the set of the informations that are available

at time t. At the end the term P is the probability measure of each part of Ω, then the

probability that a given set of events occurs.

In order to introduce the definition of the market, we define, from a mathematical point of

view, the main products available in each specific market. In particular we refer to stocks,

commodities, indexes, bonds, and so on. As we see, such products are assumed to evolve,

in general, following some known stochastic processes. It is possible to distinguish two

classes of products. The first one is represented by the riskless products

Definition 2.2. A bond is a riskless asset. The price S0 ∈ L∞ of the bond is assumed to

evolve following the equation

dS0
t = ctS

0
t dt, (2.1)

where cs is the instantaneous interest rate.

We observe that ct is in general a stochastic process. The value of the bond can be seen as the

price of a bond that will be surely refounded at exipiry. We remark that if the instantaneous
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2.3. FINANCIAL DERIVATIVES 9

interest rate ct in the equation (2.1) is a deterministic function of the time c(t), then the

process S0
t is deterministic too.

At the other hand, we can define a risky asset as a stochastic process St

Definition 2.3. A stock is a risky asset whose value St ∈ L2(0, T ) is assumed to evolve

following a given stochastic differential equation.

In such an environment, the word stock is used in order to indicate the value of any product

that can be traded in a market. In particular, for general purposes the following quantity is

defined

Definition 2.4. A stochastic process X(ω) ∈ Rd
+ such that for some p ≥ 1, X(ω) ∈

Lp(0, T ) is the price of an asset if it is adapted to the filtration F .

Clearly, such a definition includes both the case of riskless assets and the risky ones.

The bond defined in Definition 2.2 is usually used in order to actualize the price of the

returns X. Often it is referred to as the price of time. The actualized priceX̃k
t = Xk

t /S
0
t is

the future value of the asset Xk discounted for a riskless interest rate. In other words this is

the wealth that one agent has to invest at time t = 0 in a riskless asset, in order to receive

Xk
t at the instant t. Such a definition explains the expression price of time used before.

Then the definition of the market is given as

Definition 2.5. A couple composed by a market place and a vector X = (X0,X1, . . . ,Xn)

of assets is a market M(X).

Usually, the first term X0
t , stands for the money market account S0. The price of a stock is

allowed to be a process, evolving following any stochastic differential equations, provided

that Definition 2.3 is satisfied. In particular, different choices of the stochastic differential

equation followed by the process X is the difference between different market models.

Furthermore, once the model is chosen, the process Xt evolve following known laws in the

stochastic sense. Since different choises for the market model give different behaviour of

the assets’ prices, it is important to remark that such models have to be compliant with some

assumptions that are commonly accepted in the financial world. In particular, it is common

to accept the assumptions that all the the informations about the assets are reflected directly

in their actual values. This fact reflects the markovian property of the market.

2.3 Financial derivatives

As pointed in Definition 2.5 what differentiates a market model from another one, is the

choice of the stochastic process assumed for the evolution of the assets X(ω). In particular
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2.3. FINANCIAL DERIVATIVES 10

they define the market model we want to consider, and determine all the features of the

market. Before presenting the stochastic processes most used in financial and commodity

markets, we deal with some products that can be traded in traditional markets. Indeed,

in addition bonds and stocks defined in Definitions 2.2, 2.3 and in general in Definition

2.4, there is an important class of products available in the market. Their final value is

not determined directly by the transactions of such products rather than the price of other

underlying assets Xt evolving in the market. For such a reason, such kind of products are

called derivatives. When we speak about derivatives we usually refer to as assets. From a

mathematical point of view, such a definition is not properly used in the sense of Definition

2.4. Indeed, as we see, their value is completely determined knowing only their final value

at time T , but it is not needed to specify any stochastic process followed by the underlying

product. For this reason, it is not clear if they can be seen as a process, even if such contracts

a written on some risky underlying.

These products was born in financial and commodity markets in order to offer a kind of

hedge to the utilities against sudden movements of the market. As an istance we can imagine

that an airline company may purchase, at a fixed price, a supply of jet-fuel for the future.

In such a way the company can freeze the future expenditure avoiding sudden movements

in the markets cause additional losses for the company. The same statement is valid for

the supplier as well. However, during the years such products became more complex and

they started being used with speculation purposes. Some of such kind of products and their

properties are presented in [43]. Some of them are strictly specific for some market, such as

currency or interest ones, but, generally speaking, the derivatives are quite common in all

the markets.

From a mathematical point of view, a derivative can be defined as

Definition 2.6. Given T > 0 and a vector of assets Xt(ω) defined on a domain D, a

contigent claim or derivative on X is a couple (T, φ), where φ ∈ C(D)∩W1,∞
pol (D), φ ≥ 0

is the payoff.

It is possible to identify mainly three kind of derivatives. The most simple is the European

type derivative, that may only be exercised at expiry. In order to guarantee more flexibility

to the owner of the right, has been subsequentially proposed a kind of derivative that can

be exercised at any time before the expiry. Such kind of derivative is defined American.

A third family of derivative is represented by Asian one. This kind of derivative is very

common expecially in the commodity markets, where the price of the contract is determined

as an average, on one or more underlying products, of the prices along a fixed interval of

time.
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2.3. FINANCIAL DERIVATIVES 11

We have already introduced one of the question concerning derivatives, that is how is possi-

ble to find the fair value of one contract, given all the features assumed for the market, and

expecially if there exists such a value and if it is unique in the market. From an economical

point of view the answer obviously depends on the expectations that the traders have about

the market movements, and their adversion to the risk. On the other hand, we have to con-

sider that in order to enter a derivative contract a “fee” have to be paid. Such a value can

be seen as the price of the contract. Such a statement is clear if we think about an option

contract that gives to the owner just rights without any obligation. From a mathematical per-

spective, the existence and uniqueness of such a price depends on some technical aspects

that can be ascribed to the considered market model and the particular derivative. Hence, it

is not clear, in general, if there exists for any time t a unique price for the derivatives. On

the other hand, despite the market model can be chosen in order to give positive answers

to this question, however the stochastic process describing the market should be realistic

enough to reproduce as best as possible the behaviour of the prices of the underlying assets.

In order better to understand the concept of derivatives, let us make some examples, begin-

ning from the most simple one that can be represented by the forward contract.

Under a forward contract one agent agrees to sell to another agent some commodities, fi-

nancial assets, or assets in general, at a specified future date for a specified delivery price.

Such kind of contracts can be, for example, signed by an airline company and a jet-fuel

supplier, in the case the airline company wants to hedge herself by sudden rises on jet-fuel

prices. We remark that in such a case, the derivative is used to hedge the company and not

with purposes of speculation. We remark that one of the most important thing that the two

parties have to fix is the fair future price. In a mathematical framework, if X1
t is the only

product underlying the contract, T is the future date and F is the delivery price, then the

considered derivative is given by:

φfwd(X1
T ) = FT,t

with T the time to expiry.

More recently, some derivatives have become very popular since their flexibility, and the

progresses in mathematical finance. As an istance, such kind of instruments is given by

options on stocks, commodities, currencies, and so on and so forth. The most simple exam-

ple of such kind of contracts are very similar to forward ones. The main difference of the

options with respect to the forward is that the owner of these securities has the right, but not

the obligation to exercise the contract. The most famous options that can be traded in the

regulated and not-regulated market are call and put options. A call option on a stock S is a

contract which gives to the owner the right to buy at a fixed strike price K one unit of S at

a fixed future date T . Obviously the owner of the contract will exercise the right just if the
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2.3. FINANCIAL DERIVATIVES 12

strike price K is lower than the value of the stock in the market at time T . In such a case it

is easy to derive the payoff as

φcall(ST ) = (ST −K)+.

A put option, instead, gives to the owner the right but not the obligation to sell a stock at a

given price K, in a fixed date in the future. In such a case instead, the payoff is given by

φput(ST ) = (K − ST )+.

Consider for example the airline company entering a contract of a future supply of jet fuel.

She may decide to sign a forward contract or a call option, with the same strike price K . It

is clear that a very important issue is to find the fair price of these products, so that, if the

market is “efficient”, the company should be indifferent to enter the forward contract or the

call option. If it were not the case, it should be possible to get some profit without any risks,

and all traders in the market would follow a strategy such that the prices will move in order

to eliminate such opportunities of earning.

More exotic derivatives are also traded in regulated and Out of The Counter (OTC) markets,

such as options on options, barrier options, asian option, look-back option. All of

these kind of derivatives was born in order to hedge the owner of the rights against sudden

movements of the markets. For example asian options are used in order to mitigate the high

volatility of some underlyings. In these contracts, for example, the value of the payoff may

be not fixed at the beginning, but it can be determined as an average of the underlying. In

this case, if St is the price of a given underlying, we can define the process Zt as

Zt =

∫ t

0
Srdr.

Then the value of the payoff may be given by

φas(S,Z) = (ST − ZT )+.

Some other kind of asian option can be defined as well. See for example [65].

Another class of problems that takes place when we deal with derivatives comes from the

fact that the underlying products evolve during the time. As a consequence, more the time

flows, more the value of the derivative, if exists, can change with respect to the initial istant.

Then we may be interested in understanding if there exists a “strategy” such that, purchasing

and selling the products of the market we are able to fix the value of the contract, or to

minimize the risk associated to the contract. Reguarding this specific problem, additional
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2.3. FINANCIAL DERIVATIVES 13

difficoulties come when we deal with large investor economies, or holygopolistic markets.

In such cases, indeed, the hedging strategy of the investors may affect directly the price of

the derivatives, and then even the value of the risk-free interest rate.

In particular, the strategies followed during the time allow to identify the traders considering

their position in the market, given their portfolio, whose value is given by its total wealth.

Definition 2.7. Given a market M(Xt), a process ∆t with values in Rd+1 is defined dy-

namic strategy if ∆k
t ∈ Lqk(0, T ) and it is Ft-predictable.

The kth element of the process ∆t represents the number of shares of the kth asset hold by

the trader at time t. In particular the element ∆0
t represents the share of the riskless asset

hold by the trader.

Definition 2.8. A strategy is self-financing if its total wealth ∆t ·Xt satisfies the condition

∆t ·Xt = ∆0 ·X0 +

∫ t

0
∆s · dXs (2.2)

where the integral operator has to be intended in the Itô’s sense. If such a strategy has a

non negative total wealth for each t > 0, that is ∆t ·Xt ≥ 0, it is called admissible.

Such a definition formalizes the fact that the trader does not add or subtract any value to his

portfolio, but the evolution of its total wealth is determined only by the movements of the

assets that belong to the portfolio.

What carachterizes the behaviour of the traders is their expectation on the movements of

the market. From a mathematical perspective it is reflected in the specific stochastic process

assumed for the evolution of the prices.

We have already said that one of the problems of interest in finance is to understand if exists

a strategy that minimizes the risk associated to a contigent claim. From an economical

point of view, an hedging strategy is represented by a dynamical selling and purchasing of

the underlying, so that the value of the contract is constant untill the maturity, and the risk

associated to the loss of value of the contract is minimized. If such a strategy there exists

it represents a very useful mathematical tool even for pricing problems. Indeed, clearly,

following the hedging strategy, the total wealth of the portfolio automatically gives the fair

value of a given contigent claim at any time t.

Definition 2.9. Given an European contigent claim (T, φ), an admissible strategy ∆t is an

hedging strategy if

P(∆T ·XT = φ(XT )) = 1.
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For any time t ∈ [0, T ] the quantity defined as

Y ∗
t = inf

{
Yt = ∆t ·Xt : ∆t is a hedging strategy for (T, φ)

}
,

is named value by arbitrage.

We remark that, by the definition of the total wealth of a trader, the value Y∗
t is exactly the

total wealth of the portfolio of a trader.

On the other hand, several works have been proposed, dealing with both the pricing problem

and the hedging problem. In particular important results have been obtained reguarding the

existence and uniqueness of a pricing function u(Xt, t). However it is important to remark

that the existence and uniqueness of the solution to the pricing problem strongly depends

on the particular considered market model, and the specific hypotheses that are made on the

evolution of the assets.

2.4 General features of the markets and stochastic processes

During the years many stochastic processes have been proposed in order to describe the be-

haviour of financial products and commodities, such as interest rates, exchange rates, crude

oil price, gold price, and so on and so forth. All these products are very different one to each

other. Despite that, looking at the returns of the products traded in such markets it is pos-

sible to see that some features are common in all of them, at least as a first approximation.

Then, the stochastic models that have been developed are very similar among the different

markets.

As we have already mentioned, which differentiates a market theory from another one, is

the stochastic process assumed for the evolution of the products. However, all the models

have to respect some financial principles. Such principles are reflected directly on particular

assumptions, that have some implications on the models that can be chosen.

On the other hand, the stochastic model have to fit several features in order to better describe

the behaviour of the market. In particular it is important that the model used is able to

describe as best as possible the features of the observables in the market, among the most

important being fat tails, seasonality, sudden jumps in the prices, skew in volatility and so

on and so forth. Obviously, more the model used is complex, more it is able to match the

behaviour of the real market data. The drawback is that the analytical tractability is lost

when such a complexity increases, and standard results on existence and uniqueness of the

solutions for the considered problems may be lost.
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Affine models. The mathematical tractability of one model is reflected directly when we

try to evalue financial derivatives. In such a case it is obvously preferable to have closed-

form - or a semianalytical expression for such prices. This is one of the reasons for the

success of affine models. Indeed, in an affine model, if the “discount rate function” is affine

and the final payoff is of affine or exponential-affine form, the solution of the risk neutral

valuation equation for a European type derivative can be found by solving a system of

ordinary differential equations in the Fourier space K , and then inverting Fourier transform.

Furthermore, in some cases, the solution of such differential equations is explicitely known.

The class of Affine Term Structure Models, introduced by Duffie and Kan in [24], combines

some financial appealing properties

1. the sensitivities of the zero coupon yield curve to the stochastic factors are determi-

nistic

2. explicit parametric restrictions imply the existence of an affine process (see e.g. [20])

3. the pricing problem can be reduced to the solution of a system of ordinary differential

equations as discussed in [25].

The core of the affine term structure models is the framework of Duffie and Kan [24]. These

models have been employed in finance since decades, and they have found growing interest

due to their computational tractability. There is a vast literature on affine models of which

we mention just few research works [24], [20], [25].

In the case of Affine Models the process is assumed to evolve according to a pure diffusive

stochastic differential equation, where the coefficients µ(x) and σ(x), that are respectively

the drift and the diffusive matrix of the process Xt, can be written as

σ(x)σ�(x) = A+

d∑
i=1

xiBi, µ(x) = α+

d∑
i=1

xiβi. (2.3)

The terms A, Bi are d× d real matrices and α, βi ∈ Rd, for i = 1, . . . , d. As discussed in

[20], model parameters cannot be chosen arbitrarily, but there are admissibility restrictions

required for the existence of the process Xs. The authors prove the existence, for each value

of d, of d+ 1 disjoint admissible regions of the parameter space.

In each of these families, different restrictions are imposed on the parameters. Moreover,

affine models do not have a unique representation, that is, there exist different choices of

the model parameters that generate identical behavior of the process.

Although the affine models have a simple mathematical tractability, often they are not com-

plex enough to describe the behaviour of the products traded in the markets. Furthermore,

TESI DI DOTTORATO IN METODI MATEMATICI PER L’ECONOMIA, L’AZIENDA, LA FINANZA E LE

ASSICURAZIONI - XXII CICLO - MATTIOLI MAURO - UNIVERSITA‘ LUISS “GUIDO CARLI”



2.4. GENERAL FEATURES OF THE MARKETS AND STOCHASTIC PROCESSES 16

even if the model used to describe the evolution of the market is affine, it is possible to find

several problems, including many used in financial world, that cannot be formulated with

affine or exponential affine final payoff. An example of that is given by Asian option in

some stochastic volatility models.

Black-Scholes model On the other hand we may suppose that the stock prices evolve fol-

lowing the Black and Scholes model proposed for the first time in [15]. Such a model had a

huge fortune in the financial world, since it is handy from a mathematical point of view, and

allows to give several explicit results for almost all problems in terms of probability distribu-

tions and calculation of the moments, expecially when pricing of derivatives is considered.

Furthermore, such a model has been derived following some economical arguments (see for

instance [43]). In particular the value of the bond is driven by a known constant interest

rate r, transaction costs associated with hedging a portfolio are negleactable, it is possible

to perfome short selling, and the assets are infinitely divisible.

Each of these assumptions has important implications on the considered market. As an

instance it is possible to consider a stochastic process with continuous paths of the stock

price t 	→ St(ω) for almost all ω ∈ Ω at least a P-negleactable set. The absence of the

transaction costs, and the infinitely divisibility of the assets mean that a hedging strategy

in a sense that will be given later may be followed purchasing and selling continuously the

asset without any additional costs for the trader.

In particular, the price of the asset is assumed to evolve following the stochastic process

dSt = µSt dt+ σ St dWt (2.4)

where the coefficients µ and σ are constant, and Wt is a standard Brownian motion.

Despite that, such a model encounters relevant disagreements with the real world in terms

of the distribution of the hystorical returns and forecasts. Expecially, Mandelbrot observed

in [54] that the logarithmic of the returns of the price exhibit a long-tailed distribution. Such

a feature cannot be explained by any exponential Brownian motion as Black and Scholes

model. Furthermore it is not able to describe the mean-reverting trend exhibited for istance

by commodities, FX, interest rates or sudden jumps that are present, for instance, in the

power markets.

On the other hand, some problems arise in the results themselves. In fact, we remark that

the volatility σ is supposed constant in such a model. When we evaluate a derivative such

as a call option, the result obviously depends on the value of the volatility, the trend of

the assets, and other parameters that depend on the particular contract. If we try to invert

such a result, in order to express the volatility in terms of the other parameters, then we get a

nonconstant expression for the volatility anymore, but it depends on the parameters we have

TESI DI DOTTORATO IN METODI MATEMATICI PER L’ECONOMIA, L’AZIENDA, LA FINANZA E LE

ASSICURAZIONI - XXII CICLO - MATTIOLI MAURO - UNIVERSITA‘ LUISS “GUIDO CARLI”



2.4. GENERAL FEATURES OF THE MARKETS AND STOCHASTIC PROCESSES 17

mentioned, and exhibits a sort of smile. The volatility that we get once we have inverted the

value of the contracts, is the so called implied volatility. This paradox is known as smile of

the implied volatility.

In order to overcome such issues several works have been proposed, and the theory in the

field of stochastic processes have been developed. All the proposed models try to overcome

such disagreements considering more complex dynamics. As an instance, multiple sources

of uncertaninty such as sudden jumps, are considered in the evolution of the assets besides

to the Brownian motion Wt.

Log-normal models. With the expression log-normal models we mean a class of models

in which the process X is log-normally distributed. In such a kind of model, is included

the one proposed by Black and Scholes. We have to remark that this class of model is of

interest in commodity markets, where a mean-reverting effect is exhibited. In such a model,

the prices are assumed to evolve following

dXt = κ
(
θ − δ lnXt

)
Xtdt+ σXtdWt, (2.5)

where δ may assume only the values 0 or 1. We observe that if δ = 0 then it reduces to the

Black and Scholes model. Taking into account the logarithm of the prices Yt = lnXt, and

applying Itô’s lemma, then it is possible to show that the process Ys is distributed following

the gaussian law, and for δ = 1 we get

Ys ∼ N
[
e−κ(s−t)Yt +

(
θ − 1

2κ
σ2
)(

1− e−κ(s−t)
)
, σ2 1− e−2κ(s−t)

2κ

]
, (2.6)

with s > t, where N (µ,Σ) indicates a normal distribution with mean µ and variance Σ.

This fact allows us to use all the results valid for the well-known Black-Scholes model. We

notice that such a model is able to describe several important behaviour observed in the real

energy markets. Despite that, several features cannot be described by the this models such

as fat tails, jumps and, in the case of the power, spikes. For such a reason, since the work

of Black and Scholes, more complex models have been proposed in order to describe the

behaviour of the real markets.

We have to remark that some of the features discussed above can be included increasing

the complexity of the model in (2.5). This is the case when the parameters θ, κ and σ

are non-constant but depend on the time, or are even governed by stochastic processes

themselves. However, in such cases the model usually becomes too hard to be calibrated

and very instable.
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Local volatility and stochastic volatility models. It is well-known in financial literature

that, if we assume the volatility be constant then the considered problem is simplified from

a mathematical point of view of course. Unfortunately the behaviour of the market prices

cannot be described well by such models. On the other hand, considering the volatility of

the prices as a stochastic process as well allows us to gain more flexibility in describing

trajectories of the prices, but several additional issues have to be considered. We see in

the Chapter 6 that if the growth rate of the state space vector is not sublinear, then the

uniqueness of the solution to the stochastic problem (2.9), may not be hold.

Several reduced-form volatility models have been presented in last decades, such as in

[34, 40], that drops the Black-Scholes assumption of constant volatility. The main idea

is to assume that the prices evolve following a process such as Black-Scholes, or more com-

plicated model, such as mean-reverting ones, but the volatility σ is not constant anymore.

The simplest assumption is to consider a volatility term σ : [0 : ∞) → [0,∞) as a general

function of Xt, usually being

σ(Xt) = σ0X
α
t .

We notice that in the case α is grather than zero, then we have a positive correlation between

volatility and the prices, negative otherwise. In this way we could take into account also the

“inverse leverage effect” exhibited by the energy prices. Due to this effect, when prices rise

up the volatility rises up too, instead, when the prices are low, then the volatility decreases.

Such models are called “Constant Elasticity of Volatity Models”, and they are well-studied

for some values of α. These models may induce skews but not smiles in the volatility

surface, then such simplified models are not well-suited for describing natural gas and crude

oil prices, since they exibit both behaviours as showed in [30].

A particular form of the local volatility models has been given by Hobson and Rogers in

their work in [41]. In such a model the volatility of the asset is not a stochastic process as

the prices are, but is a function of the difference between the current price and the average

of the prices seen in the past. From a mathematical point of view, under the risk neutral

probability measure, the stock price is described by the following dynamics

dXt = rXtdt+ σ(ωt)XtdWt (2.7)

ωt = logXt −
∫ t

−∞

1

τ
e−(t−s)/τ log(er(t−s)Xs)ds

where the parameter τ > 0. It is clear that the contribution of Xt−s to the valuation of ωt
can be neglected when (t − s) >> τ . This means that the weight of the values far away

in the past, is lower than the actual ones. From an economical point of view this fact is

easily explained. Such dynamics may reflect some structural variations in the market that
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may cause a breakdown of calculation of the mean with respect to the past. A very clear

example comes directly from the recent economical global crisis when, after 2009 all the

historcal data observed until 2008 were not able to explain the behaviour of the marktes for

future maturity.

Clearly, in general, the Hobson-Rogers model is not an affine model. Furthermore, if σ2(ωt)

is an affine function of ωt, then the dynamics of the Hobson-Rogers model becomes a

special case of the Heston model.

It is possible to improve the Constant Elasticity of Volatility models allowing the volatility

of the prices to be itself a stochastic process Vt. The most general form that can be allowed

for a stochastic volatility model is given when the prices and the volatilities are assumed

evolve following such relations

dXt = µ(Xt, Vt)dt+ π(Xt, Vt)dW
1
t (2.8)

dVt = β(Xt, Vt)dt+ σ(Xt, Vt)dW
2
t

where W 1 and W 2 are two possibly correlated Brownian motions, with correlation ρ. How-

ever, we have to remark that the sotchastic volatility model such as (2.8) may be very hard

to be analytical managed. Furthermore, the existence and uniqueness of the solution (2.8),

or the pricing problem of a derivative written on an underlying evolving as (2.8) may not be

hold. Then a simplification have to be done.

Perhaps, the most popular stochastic volatility model in financial world is represented by

Heston model. Its popularity is due to the fact that it is quite handy and it is possible to

have a closed-form solution for some simple derivatives. Such a model can be obtained

starting from (2.8) where the prices are assumed to evolve as a Black-Scholes model and

the volatility is assumed to evolve following a Cox-Ingersoll-Ross (CIR) model (proposed

the first time in [18]), then

µ(Xt, Vt) = µXt, π(Xt, Vt) =
√
VtXt

β(Xt, Vt) = κ(θ − Vt) σ(Xt, Vt) = σ0
√
Vt.

Correlated interest rate factors. In the last years, Bernaschi et al. proposed in [14] a

n-factor term structure model for valuing public debt securities where each factor follows a

CIR type model, and the driving Brownian motions are correlated.

It is well known that an unidimensional CIR process is affine, however, when a correlation

matrix between the Brownian motions is considered as well, the d-dimensional factor pro-

cess is not affine anymore. Indeed the diffusion matrix have mixed terms that, in general,

contain the square root of the product of two interest rate processes. As an instance, in the
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case of a bidimensional process the diffusion matrix a(r1t , r
2
t ) takes the form

a(r1t , r
2
t ) =

(
σ2
1r

1
t ρσ1σ2

√
r1t r

2
t

ρσ1σ2
√

r1t r
2
t σ2

2r
2
t

)
.

It is clear that the model considered by Bernaschi et al. does not fit the class of affine model

of r1t and r2t if not for the special case where ρ = 0.

Jump-diffusion models These kind of models were firstly proposed by Mandelbrot [54].

After that, several models have been proposed, starting from the ones proposed by Samuel-

son in [60] and [61]. These models belong to a general class of stochastic processes that are

called Lévy models. Such models have been recently studied and an exstensive literature on

these processes is available, of which we mention just few works such as [26, 27, 36, 55].

However, for our purposes, we will focused on a particular class of the Lévy models, that is

the class of jump-diffusion models. This particular class obviously includes all the models

we have seen so far, and allows the assets and other latent variables, such as volatilities or

convenience yield, to exhibit sudden jumps.

Definition 2.10. Let Z = (Zt)t≥0 be an adapted process, with Z0 = 0 a.s. Then Zt is a

Lévy process if the following properties are satisfied

i) Z has increments independent on the past, that is Zt − Zs is independent of Fs for

all 0 ≤ s < t

ii) Z has stationary increments, that is Zt−Zs has the same distribution as Zt−s for all

0 ≤ s < t

iii) Zt is continuous in probability, that is limt→s Zt
P→ Zs.

Remark 2.1. It is clear that a pure diffusive process driven by a Brownian Motion meets

all the properties of Definition 2.10, then is a Lévy process.

Looking at the market movements of the price, sudden and rare breaks can be found, at

least in crises periods or economical booms. Such behaviours are due to the reactions of

the markets to sudden critical informations available in the market during the time. Clearly,

such conditions represents special situations and can be identified as rare events. Hence

such a behaviour can be described well by a class of particular Lévy processes. In particular

it can be modeled considering some point processes N that counts the occurrences of a rare

and random event occured untill t, as

Nt =
∑
n≥1

1[σn,∞)(t)Mn
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being σn a sequence of stopping times, representing the instant at which sudden situations

occur, and Mn are random variables. Associated to such a process a term that takes into

account how the news coming from the market act on the price of the asset is also needed.

Such a term can be deterministic or stochastic as well. Usually the process N is assumed to

be determined by a sum of independent Poisson processes, where each of them is assumed

to have sudden jumps of constant size occuring at rare and not predictable intervals. The in-

troduction of such terms allows us to take into account for sudden price movements caused,

for instance, by default of some huge istitution such as the case of the crisis of 2008, or

by governamental actions in financial markets or by situations of instability in the global

policy.

We observe that the introduction of the jump terms is reflected in the stochastic differential

equation assumed for the evolution of the asset price by the presence of a nonlocal term.

Let us consider an n-dimensional risky asset Xt, taking values in D ⊆ Rd. If x0 ∈ L2(D)

and we allow X to have sudden jumps, then it is possible to describe the evolution of the

Xt in its generality, by the following SDE

Xt = x0 +

∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs +

∫ t

0

∫
D
γ(z)m(ds, dz) (2.9)

where m(ds, dz) is the compensated jump martingale measure, under the risk-neutral pro-

bability measure we are considering of a Poisson process v adapted to F . The coefficients

µ and σ are respectively the drift vector and the diffusion matrix for the process Xt, and γ is

the matrix of the jumps. For precise definitions and properties of random measures we refer

to the works by Gihman-Skorohod in [37] and Jacod in [47]. We stress that it is possible to

allow µ, σ and γ depend on the time t as well.

Also in such a case, for any choice of the parameters in the equation (2.9), a different market

models is taken into account. However the presence of the jumps weakens the results of

existence and uniqueness of the solution for the pricing problem related to the market, and

the existence and uniqueness of the solution for the SDE (2.9). In particular, it is important

to remark that, when we deal with stochastic differential equations, the problem (2.9) may

admits two kinds of solutions Xt, that is a stochastic process verifying the equation (2.9).

Definition 2.11. The problem (2.9) admits a strong solution if, for each Standard Brown-

ian Motion (Ω,F , (Ft)t, (Wt)t,P), there exists X such that (Ω,F , (Ft)t, (Xt)t, (Wt)t,P)

satisfies (2.9).

Definition 2.12. The problem (2.9) admits a weak solution if (Ω,F , (Ft)t, (Wt)t,P) is

a Standard Brownian Motion and there exists X such that (Ω,F , (Ft)t, (Xt)t, (Wt)t,P)

satisfies (2.9).
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We observe that in the case of the weak solutions, the probability space on which the solu-

tion is defined is not defined a priori, and it may depend on the initial data.

The presence of the jump terms has impact on the existence of the solution for the equation

(2.9). In addition to the classical hypoteses on the Lipschitz continuity and sublinear growth

for the coefficients µ and σ, some hypoteses on the nonlocal term have to be made.

In particular the coefficients are required to be globally Lipschitz continuous with sublinear

growth, and the integral term is bounded. Such a result is given by Pham in [57], Section 2,

and by Bodo, Thompson and Unny in [16], Section 4. The precise statement of the result

can be given in the following

Theorem 2.1 (Strong existence, in Pham [57]). Let X be the solution of the equation (2.9).

Suppose that the coefficients µ, σ and γ and the measure m(dz) verify the following condi-

tions:

i) The measure m(dz) is positive σ-finite on Rd, eventually with a singularity in 0, such

that ∫
|z|>1

m(dz) < +∞,

ii) there exist K > 0, c0 ∈ R and ρ : Rn → R+, with
∫
Rd ρ

2(z)m(dz) < +∞,

iii) |µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ K|x− y| for each x, y in D,

iv) |γ(x, z) − γ(y, z)| ≤ ρ(z)|x − y| for each x, y in D,

then there exists a unique strong solution to the problem (2.9).

We observe that the Lipschitz condition (iii) and (iv) and the continuity of the coefficients

imply the sublinear growth rate for the coefficients.

2.5 Arbitrage principle and pricing derivatives

When we deal with the market theory, a fundamental hypotesis is commonly made. This

assumption comes directly from the rational behaviours of the actors in the market, and is

the assumption the the absence of arbitrage.

Definition 2.13. An arbitrage is a financial transaction such that

i) no capital is committed at any time t,

ii) gives rise to earning with probability Pe > 0 and to a loss with probability Pl = 0.
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From a mathematical point of view, the absence of arbitrage is perhaps the most important

principle we take into consideration. If such an assumption is met, then there are never

opportunities to make instantaneous risk-free profit. On the other hand, such a condition

seems to be reasonable in the markets which are sufficently liquid. Indeed, what happens in

the real world is that any presence of such opportunities takes place for a very short time,

since, when such opportuinities exist, all traders in the market will follow a strategy making

a risk-free profit. Such strategies move the prices of the products, and in a very short time

such opportunities will be eliminated.

Definition 2.14 (Absence of arbitrage). Given a market M(X), if for all self financing

strategies such that ∆s · Xs ≤ 0 for some s implies ∆t · Xt ≤ 0 for all t > s, then the

market M(X) is said to be without arbitrage opportunities.

From a mathematical point of view the absence of arbitrage means that there exists two

equivalent probability measures P and Q, that is each set P-neglectable is Q-neglectable as

well. Such an equivalence is given in the next theorem, whose proof can be found in [24].

Theorem 2.2. A market is without arbitrage opportuinities if and only if there exists a

probability measure Q equivalent to P under which the acualized assets’ prices are martin-

gales.

The probability Q is usually called risk neutral or equivalent martingale measure. The

latter definition has economical roots since the equivalent probability Q encloses the risk-

adversion of the traders, and all the valuations under such a probability are exactly the one

that would be given in a risk neutral world.

The absence of arbitrage opportunities, and then the existence of an equivalent probability

measure, is very useful when we are focused on the problem of pricing contigent claims.

In such a case, indeed, it is possible to get the fair price of the contract by following the so

called hedging strategy we have defined in Definition 2.9 (see e.g. Proposition 1.14 in [3]

or Proposition 1.2.7 in [51]).

Furthermore we can argue that the existence of a hedging strategy is referred to all the mar-

ket and not just to a single derivative. Such a problem is related to the so called completeness

of the market.

Definition 2.15. A market is complete if all derivatives admits a hedging strategy.

The assumption of the completeness of the market does not seem to answer to any econo-

mical or fundamental arguments. However, it represents a useful property of the considered

market model. On the other hand, the absence of arbitrage opportunities is a fundamental

assumption of the financial mathematics, and it is verified in the most markets. Thus a
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market model which drops such an assumption is not reasonable by the rational behaviour

of the agents.

Furthemore an important theorem shows that the completeness of the market is ensured

whenever the the market may be characterized by means of a unique equivalent martingale

measure. This fact is granted if the coefficients of the equation (2.9) verify some mathe-

matical requirements, that may be far from having direct “economical” consequences.

Theorem 2.3. If the market M is without arbitrage opportunities, then it is also complete

if and only if the equivalent martingale measure Q is unique.

Such a result is widely known in financial mathematics. The proof of such a Theorem can

be found, for instance, in [24].

However we remark that the completeness of the market may not hold true even in a very

simple case, if we consider a market where more than one asset may be traded. In such a

case, in fact, even if we assume that each asset is described by a pure diffusive equation, such

as a standard Black and Scholes evolution, the no arbitrage hypoteses may automatically

hold true, but, more assumptions are needed in order to guarantee the completeness of the

market. In such a simple case, for instance, an additional hypotesys on the rank of the

volatility matrix have to be done. Unfortunately, such an additional assumption does not

seem to have any financial motivations.

If we consider any model more complicated with respect to the standard Black and Scholes’

model, the uniqueness of the equivalent martingale measure can not hold well. This may

happen for example when we consider stochastic volatility models or jump diffusion ones

that introduce new sources of randomness with respect to ones considered in the standard

Black and Scholes model.

The next result shows that, under suitable assumptions, the arbitrage price Yt can be written

as a deterministic smooth function u depending on the process Xt and the time t.

Proposition 2.1 (Corollary 1.17 in [3], Corollary 1.2.10 in [51]). Let M(Xt) be the market

without arbitrage opportunities and (T, φ) a contigent claim. We assume that there exists

a hedging strategy ∆t for (T, φ) and a deterministic continuous function u(Xt, t) such that

u(Xt, t) = Yt = ∆t ·Xt for all t. If u has the following regularities properties:

u ∈ L∞(0, T ;W 2,∞
pol (D))

∂tu ∈ L∞(0, T ;L∞
pol(D)),

then Yt is exactly the arbitrage value of (T, φ).
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The proof can be found for instance in [3] or in [51]. The result comes from the It̂o’s

formula applied to the function u(Xt, t) whenever we consider the process Xt as a free

variable. Then, under the measure Q, the quantity Yt = u(Xt, t) is a martingale, and the

market M(X) ∪ M0(Y ) is without possibility of arbitrage. Then the thesis comes from

Proposition 1.14 in [3].

If the equation (2.9) is linear the ∆-hedging technique suggests u as the solution of a final

value problem. In the case the (2.9) is a pure diffuve process, by the It̂o’s calculus it can be

proven that u has to be the solution of a linear determinisitic partial differential equation, if

it is a jump diffusion process, then the function u has to verify a deterministic integro-partial

differential problem. Hence, the well-posedness of the pricing problem can be addressed

by studing existence and uniquenss of the solution to a given PIDE, where, the integro-

differential operator is determined once the market is chosen, and the final condition is

given by the specific considered contigent claim.

As a consequence of Proposition 2.1, once the existence of a hedging strategy is proven, the

arbitrage price of a contract can be determined for each time t, starting from such a hedging

strategy.

On the other hand, the existence of a hedging strategy can be shown once some assumptions

on the coefficients of (2.9) are put in place. Such coefficients are required to ensure the

existence of an equivalent martingale measure, hence the absence of arbitrage. We recall

the result of Theorem 10.9 in [9].

Proposition 2.2 (Theorem 10.9, in [9]). Consider the pure diffusive problem (2.9) where

the coefficients µ and σ are bounded and Lipschitz continuous. Suppose furthermore the

matrix σ(x)σ�(x) be elliptic. Let (T, φ) a European-type derivative such that E(φq) < ∞
for some q > 1. Then there exists ymin such that for each hedging portfolio Y for φ, it holds

Ys ≥ ymin. Furthermore there exists a hedging strategy ∆t such that Ys = ∆s ·Xs = ymin.

We observe that the assumptions on the coefficients are needed in order to guarantee the

absence of arbitrage.

Until now we have spoken about the stochastic differential problems, however in force

of Proposition 2.1 the pricing by arbitrage may be addressed by solving a determinisitic

differential problem, by means of virtual hedging and It̂o’s calculus. Furthermore, if the

market is complete, for any contigent claim, traded in the market, we get an unique and

well defined arbitrage value simply by applying such a technique. On the contrary, if the

completeness is not met, then the value by arbitrage is not uniquely defined.

In this case, indeed, the ∆-hedging approach is still valid, but it is not able to give us

the unique arbitrage value. In this case, the value by arbitrage is not uniquely defined,
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and the pricing by hedging provides a class of deterministic partial differential operators,

depending on a parameter which stands for the price of risk. Which is the arbitrage value of

a given function depends on the particular choice for the price of risk. From an economical

point of view, such a quantity corresponds to a particular choice of the hedging strategy

followed by the traders, that may want to minimize his risk, or maximize his expected

returns. From a mathematical point of view, different choices of price of risk correspond

to different choices of the equivalent martingale measure. Hence, different strategies may

be followed. However, also in this case it is possible to choose a particular price of risk

and study the corresponding equation, in order to not loose the powerful tool of differential

approach.

For the case of the Black and Scholes market, as a standard result it can be proven that it

is without arbitrage opportunities and it is complete as well. In particular, combining the

results given in Proposition 1.20 and 1.21 in [3] we can state

Proposition 2.3. The Black and Scholes’ market is without arbitrage opportunities. Fur-

thermore it is complete, and the arbitrage price of the European contigent claim (T, φ) is

given by the solution of the final value problem on (0,∞) × (0, T ):

∂tu+
1

2
σ2S2∂2

SSu+ rS∂Su− ru = 0 (2.10)

u(S, T ) = φ(S)

and the hedging strategy is given deterministically as a function of (St, t) by

∆0
t = e−rt

[
u(St, t)− St∂Su(St, t)

]
(2.11)

∆t = ∂Su(St, t)

The proof is given in [3]. The result of the absence of arbitrage is achieved providing

directly an equivalent probability measure Q under which the actualized stock prices are

martingale. In order to achieve such a result the Girsanov Theorem plays a crucial role.

The completeness of the market is achieved observing that, given a hedging strategy ∆, the

value of the portfolio is given by

Yt = ertS0
t∆

0
t +∆t · St.

Hence YT has to verify

YT = φ(ST ) +

∫ T

t
[rYu −∆uSu(µ− r)] du−

∫ T

t
∆uσdWu. (2.12)
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The thesis comes from the application of the It̂o’s lemma to the function u(Xt, t)

u(St, t) = φ(ST )−
∫ T

t
∂tu+

1

2
σ2∂2

SSu+ µS∂xudτ −
∫ T

t
σS∂SudWτ (2.13)

and identifying each term of the equations (2.12) and (2.13). Hence we get both the expres-

sion of the hedging strategy and the value by arbitrage of the derivative φ.
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Chapter 3

Recent approaches to the valuation

equation

We have seen in the previous chapter that given a particular market, the problem of pricing

a contigent claim can be addressed by finding the expected value of the final payoff, once

the stochastic process X, solution of the stochastic differential equation (2.9), is available.

Indeed, if such a solution exists, and the expected value of the final payoff is well-defined,

then, it represents the fair value of the contract. Furthermore, if there exists a hedging

strategy, the expectation of the final payoff can be found applying arbitrage arguments.

Another way that can be followed when one deals with the pricing of a contigent claim, is

represented by It̂o’s lemma. Indeed, when the evolution of the the state space X is given, in

its general form, by the stochastic differential equation (2.9), then it is possible to find the

arbitrage price by solving the Cauchy problem of a PIDE coming from the It̂o’s lemma, with

a given final value. The particular form of the integro-differential operator A will depend

on the particular choice of the market, and the final value will depend on the particular

considered contigent claim.

In last decades, several works have been made, focused on the solution of the PIDE. In

particular, the topic that has been mainly studied is the existence and uniqueness of the

solution of a given PIDE, and the regularity of such a solution. These results obvioulsy

depend on the particular form of the integro-differential operator, the particular Cauchy

problem considered, and in which sense such solutions are looked for. As an example,

when we are dealing with pure diffusive operators, and the diffusive matrix is uniformly

non singular in all the state space where the process is defined, then the solution could be

found making use of the Sobolev theory and standard theorems of Lévy generators. In such

conditions, may exists a solution in a strong sense, that is also regular (see for instance

[28] and the reference therein for a discussion on this topic). Unfortunately, many problems

in finance do not fit such conditions, and a solution in a weaker sense have to be found.

28
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A powerfull approach is represented by viscosity solution theory that allows to deal with

singular diffusive matrices, also in presence of non local term in the operator. The drawback

of such a theory is that only the continuity of the solution is granted when the initial data

are continuous.

This Chapter is organized as follows. The first section is devoted to indicate the main

problems of interest in finance that cannot be dealt with the present literature. In particular

the problems we are faced on are indicated, and we point our attention in understanding

which kind of problems cannot be dealt with the present literature. Furthermore, in the last

section we give the definitions that allow us to use the viscosity solution approach to solve

pricing problem, and is an outlook on the state of the art in pricing problems.

3.1 Approaches for the evaluation equation

As we have seen, when the market fits the class of the affine model and the final payoff is

affine or exponential-affine, then a solution can be found by solving a system of ordinary

differential equations in the Fourier space, and then inverting the solution coming back to

the state space. On the other hand some results can be obtained if the prices are assumed

to evolve following some special model that are quite handy from a mathematical point of

view. Some of the most popular are Geometric Brownian Motion, or the Heston model in

some simple cases. As we have already stated such models are not able to explain all the

features exhibited by the products traded in the market. Unfortunately, when we consider

the general case for European derivatives, the valuation problem have to be dealt with by

solving the corresponding Partial Integro-Differential Equation (PIDE), the general form of

which is given by

∂tu(x, t) +Au(x, t)− c(x)u(x, t) = f(x, t) (x, t) ∈ D × (0, T ) (3.1)

u(x, T ) = φ(x) x ∈ D

where D is a (possible unbounded) subset of R. The link between the solution of a problem

of the type (3.1) and the fair value of the corresponding derivative comes from the represen-

tation formula. The integro-differential operator A can be divided in two terms Ad and J ,

the former being a pure integral operator, the latter a pure diffusive operator. In the rest of

the work we assume the following expression for the operator A

Ag(x) = Adg(x) + J g(x)

= 〈∇g(x), µ(x)〉 + 1

2
tr
(∇2g(x)a(x)

)
+

∫
D
[g(z) − g(x)]m(x, dz). (3.2)
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where we have indicated by

Adg(x) = 〈∇g(x), µ(x)〉 + 1

2
tr
(∇2g(x)a(x)

)
(3.3)

J g(x) =

∫
D
[g(z)− g(x)]m(x, dz). (3.4)

The matrix a(x) = σ(x)σ(x)� is the diffusion matrix of the state process Xt, µ is the drift

under some risk-neutral probability measure, c is the discount rate function. Such quantities

are characteristic of the special model assumed for the process X. The terms φ and f ,

instead, are specific for the particular considered problem and represent respectivelly the

final payoff at time T , and a continuous yield or a running cost. The presence of sudden

jumps in the evolution of the process Xt is taken into account by the integral term J . The

measure m includes the jump intensity and the probability distribution of Xt after the jump

as well, under the considered risk-neutral probability measure.

We notice that, if the measure m(x, dz) = δ(x)dz, then the operator A reduces to the pure

diffusive case.

On the other hand, even if the state variables are assumed to evolve following an affine

process, but the final payoff cannot be expressed in an affine or exponential-affine form

we have to deal with the general problem given by (3.1). This is often the case when the

Arithmetic Asian option is considered.

An Arithmetic Asian option is a contingent claim in the sense of Definition 2.6 where the

average of the underlying on a fixed (or floating) time interval is used in order to determine

the final payoff. As an instance, in the case of a European Arithmetic Asian call option, the

final payoff may be given by

(
1

T

∫ T

0
Stdt−K

)
+

, or

(
1

T

∫ T

0
Stdt− ST

)
+

.

When we deal with the Arithmetic Asian option, it is possible to consider the integral term

as an independet variable, and solve the Cauchy problem of the form given by (3.1). The

new problem lies in a bidimensional space. Indeed, in such cases then we can introduce an

additional stochastic term Zt that solves the differential equation

dZt = Stdt (3.5)

and an analogue form with the logarithm of St, if we are dealing with Geometric Asian

options (see for example [58]). Then if we consider the process (St, Zt), the final payoff

TESI DI DOTTORATO IN METODI MATEMATICI PER L’ECONOMIA, L’AZIENDA, LA FINANZA E LE

ASSICURAZIONI - XXII CICLO - MATTIOLI MAURO - UNIVERSITA‘ LUISS “GUIDO CARLI”



3.1. APPROACHES FOR THE EVALUATION EQUATION 31

φ(St), given in the new bidimensional problem becomes, for a fixed time T ,

φ(St, Zt) =

(
ST − 1

T
ZT

)
+

. (3.6)

The particular form of the operator A obviously depends on the model of the market, how-

ever, given the expression of (3.5), the diffusion matrix a(St, Zt) is degenerate in a subspace

of D.

In the case the underlying product is assumed to follow a Black and Scholes process then

it is possible to reduce the number of the dimensions of the considered problem (see for

example section 3.3.4 in Zhu, Wu, Chern [65]). The idea that degenerate diffusions can be

reduced to lower-dimensional nondegenerate diffusions on a submanifold of the underlying

asset space was carried on by Barraquand and Pudet in [11]. Unfortunately, in general, the

dimensional reduction is possible only under suitable homogeneity properties, and this is

not the case when we assume that the underlyings evolve following a process, that is more

realistic with respect to Black and Scholes one, such as the Heston model.

We observe that when the reduction of the dimensions cannot be put in place, the Asian

option introduces a degenerate integro-partial differential problem for which the standard

theory of Sobolev space cannot be applied. The classical theory of Sobolev spaces ensures

large regularity to the solution. Unfortunately, this theory cannot be applied when the dif-

fusion matrix a(x) is not positive defined in all the state space D, as it happens in this

case.

As an instance, for the asian options, in the case the underlying product is assumed to

evolve following the Heston model, the state space is given by (St, Vt, Zt) and the integro-

differential operator A is purely diffusive Ad, and is determined by

Adu(t, s, v, z) = rs∂su+ κ(θ − v)∂vu+ s∂zu+
vs2

2
∂2
su+

σ2
0

2
v∂2

vg + ρsv∂2
svu. (3.7)

The diffusion matrix a(x) is then given by

a(x) =
1

2

⎛
⎜⎝

vs2 2ρsv 0

2ρsv σ2
0v 0

0 0 0

⎞
⎟⎠ .

This very simple example shows that, the standard theory of Sobolev spaces is not able to

deal with such kind of problems. We observe that this particular kind of derivative is one

of the most handy from a mathematical point of view, and is also one of the most common

products traded in the market, expecially in the commodity ones. Furthermore, given the

fact that the Black and Scholes model is not able to deal with the behaviour of the assets in
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the markets, in practical situations, the dimensional reduction is not available.

On the other hand, if we are interested just in valuing the derivatives, taking for granted the

existence and uniqueness of the solution, such kind of problem could be solved by using

Monte Carlo simulation technique, where the fair price of such a contract, is defined, in

the risk-neutral world, by the expected value of the contract. However, we have to remark

that pricing derivatives by Monte Carlo simulations has several drawbacks. Some of them

are practical, such as the fact that the time of the execution may become exponentially high

when the number of the underlying increases. On the other hand, some theoretical problems

can arise as well. Indeed, in order to guarantee high precision to the evaluation, the time

interval of the simulation have to be very small. In such a case, the discretization procedure,

does not always guarantee that the distribution obtained in the Monte Carlo simulation is

correct, as shown in [6] where the Heston model is considered. As a final consideration

we observe that when we deal with coefficients that are fast growing at infinity, as could be

the case in some stochastic volatility models, the uniqueness of the solution of the Cauchy

problem (3.1) may not be hold and the expectated value of the final payoff may be not

defined. In such conditions, the Monte Carlo simulation does not converge and the results

strongly depend on the number of simulations that have been put in place.

For these reasons, it is important to know a priori if the existence and uniqueness of the

solution of the pricing problem are granted. In this case, several numerical techniques are

available. Furthermore, it is well-known from numerical analysis that when the solution

u(x, t) is regular enough, then numerical procedures converge fastly to the analytical solu-

tion. Such a remark suggests that also the study of the regularity of the solution represents

one important topic to be improved.

In order to perfom such kind of analysis, a very powerful tool is represented by viscosity

solution theory. In this framework it is possible to look for the solutions to the integro-

differential problem (3.1) even in the space of continuous functions since they are allowed

to be not differentiable. This kind of solutions has to be intended in a weak sense, but such

a theory allow us to deal with singular diffusion matrices, such as the considered cases. Fur-

thermore the viscosity solution is well suited to be computed numerically as shown in [10]

(where a discretization procedure is shown) and in [31]. Unfortunately, as we have already

stated, the drawback of this theory is that the solution is ensured to be only continuous if

data are continuous but, for the general case, it is allowed to be not differentiable. How-

ever, when it is proven that the viscosity solution admits some kind of additional regularity,

and is smooth enough, then, the numerical procedures fastly increase their rate of conver-

gence towards the analytical solution. This is the reason why understanding the regularity

of such solutions is of crucial importance both from a speculative point of view and for

practictioners.
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On the other hand, it is possible to show that, if the pricing problem admits both a viscosity

solution, and a solution in a stronger sense, then they may coincide. This fact is shown as

an instance in [57], and in [22]. The former work deals with a special case of a degenerate

diffusive hypoelliptic Kolmogorov operator, the latter deals with a classical solution to the

evaluation problem where the integro-differential operator has positive defined diffusive

matrix and Lipschitz conditions on the coeffcients. Such results are true once the uniqueness

of the solutions is proven.

On the other hand, it could be possible to imagine that if the problem admits a unique

viscosity solution u(x, t) in a given domain D, and admits a unique v(x, t), solution in a

stronger sense in some domain K ⊂ D such that v(x, t) ≡ u(x, t) for each x ∈ ∂PK

then the solutions u(x, t) and v(x, t) have to coincide in K . Unfortunately, this fact is not

obvious, since the viscosity solution u(x, t) may not coincide with the viscosity solution

uK(x, t) for the problem restricted in K.

3.2 Recent developments on finance mathematics

The viscosity solution theory has been originally developed in the most celebrated work

[19] provided by Crandall, Ishii and Lions. In this work the authors deal with nonlinear

second order Partial Differential Equations, where no integral terms are considered. It is

clear that if it is possible to define, in some ways, the derivatives even for functions that are

merely continuous, the space of the solutions for a given problem enlarges, and then it is

possible that a problem that does not admit a solution in a classical sense, admits a solution

in the viscosty framework.

On the other hand, the main important feature in the viscosity solution theory is exactly the

possibility to define, in some ways, the derivatives in a weakr sense. In particular, the theory

of viscosity solutions has its main point in the definition of the so-called parabolic semijet

which allows the definition of the derivative in the viscose sense of a given function u even

if it is merely continuous. It is possible to give two equivalent definitions of the parabolic

semijet, one is local, taking into account the behaviour of the function near a given point,

the other is global. Following [17] we give

Definition 3.1. Given u upper semicontinuous function (USC(D × [0, T ])), the parabolic

super 2-jet of u at the point (x̄, t̄) ∈ D×(0, T ) is the set P2,+u(x̄, t̄) such that the following

condition is verified

P2,+u(x̄, t̄) = {(∂tg(x̄, t̄),∇g(x̄, t̄),∇2g(x̄, t̄)) : g ∈ C2,1(D,×[0, T ]), and

(u− g)(x, t) ≤ (u− g)(x̄, t̄) = 0, ∀(x, t) ∈ D × [0, T ]}. (3.8)

We will say that a function g as above is a test function for P2,+u at (x̄, t̄). For a function
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u lower semicontinuous (LSC(D × [0, T ])) the parabolic lower 2-jet is defined as the set

of points such that P2,−u = −P2,+(−u).

Remark 3.1. The definition 3.1 is equivalent to require that there exists a function g such

that u− g has a strict global maximum at (x̄,t̄), that is

(u− g)(x, t) < (u− g)(x̄, t̄) = 0 (3.9)

for each (x, t) ∈ D × [0, T ] and (x, t) �= (x̄, t̄).

Definition 3.2. We call a good test function for P2,+u at (x̄, t̄) (resp. P2,−u) at (x, t) any

function g ∈ C(Rd × [0, T )) such that u− g has a strict global maximum (resp. minimum)

at (x, t) and u(x, t) = g(x, t).

In particular, in the viscosity solution framework, the derivatives of the differential operator

are not applied to the function u(x, t) that is just continuous, but to the good test functions

g. The notion of the viscosity solution for pure differential operators Ad is then given as

Definition 3.3. A function u ∈ USC(D× [0, T ]) (resp. u ∈ LSC(D× [0, T ])) on D× [0, T ]

is a viscosity subsolution (resp. supersolution) of (3.1) if

i) for every (x, t) ∈ D×(0, T ) and any test function g for P2,+u at (x, t) (resp. P2,−u),

it holds

∂tg(x, t) +Adg(x, t) − c(x)u(x, t) ≥ f(x, t) (resp. ≤) (3.10)

ii) u(x, T ) ≤ φ(x), (resp. ≥) for all x in D.

A function that is both a viscosity subsolution and a viscosity supersolution of (3.1) is a

viscosity solution for the problem (3.1).

As in the case of integro-partial differential equations, it is possible to give a notion of

derivative in the viscose sense also in the case of ordinary differential equations, through

the introduction of the super-jet.

Definition 3.4. Given u ∈ USC([0, T ]), the super 1-jet of u at the point t̄ ∈ (0, T ) is the

set

P1,+u(t) = {g′(t) ∈ C1([0, T ]), (u − g)(t) ≤ (u− g)(t̄) = 0,∀t ∈ [0, T ]}. (3.11)

We will say that a function g above is a test function for P1,+u at t̄.

Also in this case we can assume that (u − g)(t) < (g − u)(̄t) = 0 for all t ∈ [0, T ] and

t �= t̄. This type of function is still called a good test function for P1,+u at t̄.
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Definition 3.5. Let Γ : I ⊂ R → R be a continuous function. An I-valued function

v ∈ USC([0, T ]) is a viscosity subsolution of

v′(t) + Γ(v(t)) = 0 (3.12)

for t ∈ (0, T ), if for every t ∈ (0, T ) and for any test function g for P1,+v at t, it holds,

g′(t) + Γ(v(t)) ≥ 0. (3.13)

The theory of viscosity solutions has been later extended to Partial Integro-Differential

Equations. In this case the notion of the parabolic semijet is still valid, since it takes into ac-

count the differential part of the operator A. The notion of the viscosity sub/super-solution

has to be modified instead. In particular the new nonlocal term has to be taken into account.

Then in the relation (3.10) the operator is the full integro-differential operator A = Ad+J
and the integral is applied to the function u(x, t). Then the solution u(x, t) is required to be

integrable with respect the measure m(x, dz).

For a complete tratment of these arguments we refer mainly to the work [19], [32], [44],

[45] and the improvements on this theory some of them being [2], [57], [13], [48], [49], [5],

[1], and the references therein.

Despite the viscosity solution theory enlarges the space of the solutions and allows to deal

with singular jump-diffusion problems, unfortunately, in the general case given by the prob-

lem (3.1), the modern literature is not always able to ensure the existence, uniqueness and

regularity of the solution of the problem (3.1). In particular, several problems arise when

some conditions are verified. In the most cases, such conditions are referred to the coeff-

cients of the operator rather than the specific final payoff, hence they are quite general for a

given class of models.

In particular some problems can occur when the diffusion matrix a(x) is singular on the

boundary, or is identically zero in some directions. As we have seen, the former condition

is verified in pricing Asian options when some stochastic volatility models are considered,

such as Heston model. The latter is the case of Asian options, of some path dependent

volatility models, like Hobson-Rogers model, or models where some components are pure

jump. We observe furthermore that at the boundary of the domain D, in the case of pricing

Asian options under Heston model, the rank of the diffusion matrix a(x) reduces and it

becomes identically zero in the subspace (s, v, z) = (0, 0, z).

Other problems comes when the drift µ and the matrix σ are fast growing near the boundary

or at infinity, or they are not Lipschitz continuous up to the boundary of the domain D,

such as the models with “square root” diffusion for some components, like CIR or Heston
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model. On the other hand, it is well-known that when the coefficients are uniformly Lips-

chitz continuous, the stochastic process X solution of the problem (2.9) is strongly regular

with respect to initial data and such a regularity could be directly inhered by the solution u

of the valuation problem (3.1). Unfortunately, when the coefficients loose their regularity

near the boundary this property is definetly lost.

We observe furthermore that, in some cases, the pricing problem is formulated on a state

space D which has a boundary, but no boundary conditions are specified. This is often the

case when D has a boundary, or when the problem defined on Rd is collapsed in a bounded

domain (we refer to [65] for an example on this technique). Reguarding this particular case,

we remark that several works have been made in the last years that conjecture that in most

cases of interest, boundary conditions are not really needed, and they are redundant from

a mathematical point of view (see for example [39] and [29]). For such a reason, as stated

in [29], it is common to speak about the behaviour near the boundary instead of boundary

conditions. On the other hand, we see in Chapter 4, that in some cases the boundary of the

domain D is prohibited to the process X, as shown in [17], and speaking about behaviour

near the boundary is not only appropriate but is correct from a rigorous mathematical point

of view. We observe that in [17] is proven that such a feature is met when the coefficients µ,

σ and the measure m verify very general hypoteses, and a suitable Lyapunov type condition

is hold true. This fact has very important implications on the existence and uniqueness of

the problem (3.1).

Although there are many results on viscosity solutions, the existing ones are often not suf-

ficient to deal with the above described features, even in the linear case. Obviously, the

problem of the regularity of the solution is neither dealt with the present literature.

In particular, Pham in [57] proves the existence and uniqueness of the viscosity solution to

the problem (3.1) when the integral term is included. In his work, it is assumed that the

coefficients are globally Lipschitz continuous, and have at most sublinear growth. Under

these assumptions the author is able to prove also some estimates on the dependence on the

initial data. Furthemore in this work it is proven that, roughly speaking, if the diffusion

matrix is uniform positive defined on D and the final payoff is Ḧolder continuous, then

the existence of a unique classical solution is granted and it coincides with the viscosity

one. Unfortunately such assumptions seem to be quite strong and are not verified in many

cases we have already seen. Alibaud in [1] proves existence and uniqueness of viscosity

solutions for PDE’s with nonlocal terms with bounded intensity for the jumps. Furthemore,

the coefficients are assumed to be uniformly continuous.

Other works are presented by Barucci, Polidoro and Vespri in [12], Di Francesco, Foschi

and Pascucci in [21] and Pascucci in [56] where a study of the evaluation equation with a
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special structure is provided. In particular, the operator considered in the valuation equation

by the authors is pure diffusive, and the diffusion matrix a(x) is uniformly positive defined

on a linear subspace of Rd with dimension m < d (see, for example, Assumption 3.2 in

Pascucci [56]). These works make use of the results coming from the hypoelliptic operators

theory. When the operator is hypoelliptic, if the sourcing term is smooth and the final value

is a continuous function, then each solution in the sense of distribution is a solution in the

classical sense as well. We recall that the Kolmogorov operator considered by authors is of

the form

A =
m∑

i,k=1

aik(x, t)∂
2
ik +

m∑
k=1

bk(x, t)∂k +
d∑

i,k=1

bik∂k + ∂t. (3.14)

The dependence on the time derivatives can be inverted if we consider a time-reverted prob-

lem.

A very important result for the class of Kolmogorov operators of the type (3.14), was

pointed out in 1976 by Hörmander in his work [42]. In such a paper, the author gives

sufficient conditions under which the operator A is hypoelliptic, whenever the coefficients

are smooth functions. Such conditions are almost sufficient too. In particular it has been

shown that if the rank of the Lie algebra generated by the vector fields ∂1, . . . , ∂d and Y

defined by

Y := 〈Bx,∇〉+ ∂t

is equal to d+ 1, where B is the constant matrix of the operator A, then the operator A has

sufficient regularizing effect, and the operator is hypoelliptic. In his work Ḧormander takes

into account all the commutator of the vector fields. Such a condition takes often the name

of the rank Kalman’s condition. The importance of this work is that, for the first time it is

pointed that the smoothing effect is granted not only by the diffusive components present in

the operator A, but also by all their commutators, and their commutators with Y .

It is well-known that the natural framework for the study of the operators satisfying the

Hörmander condition is the analysis of Lie group, since the works by Folland [33], Roth-

schild and Stein [59]. On the other hand all the results given by Lanconelli, Pascucci, Poli-

doro, are in the Lie group structure related to Kolmogorov operators. An explicit expression

of the group law is defined by

(ξ, τ) ◦ (x, t) = (x+ E(t)ξ, t+ τ)

where E(t) = exp(−tB) and B is the constant matrix of the operator A. In their works

the authors show all the results not in the usual norm, but in the norm that seems to be more

appropriate in the considered case. Such a norm takes into account the presence of the term
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B, in particular, for each α ∈ (0, 1) the following norms are defined

||u||Cα
B(Ω) = sup

Ω
|u|+ sup

(x,t)�=(ξ,τ) and (x,t),(ξ,τ)∈Ω

|u(x, t) − u(ξ, τ)|
||(ξ, τ)−1 ◦ (x, t)||α (3.15)

||u||C1,α
B (Ω) = ||u||Cα

B(Ω) +

m∑
k=1

||∂iu||Cα
B(Ω) (3.16)

||u||C2,α
B (Ω) = ||u||C1,α

B (Ω) +

m∑
i,k=1

||∂2
iku||Cα

B(Ω) + ||Y u||Cα
B(Ω). (3.17)

As pointed by the authors, any u ∈ Cα
B(Ω) is Hölder continuous in the usual sense since

||(ξ, τ)−1 ◦ (x, t)|| ≤ c|(x, t) − (ξ, τ)| 1
2r+1

where r is integer and depends on the matrix B. Then, the following space can be defined

for each p ≥ 1

Sp(Ω) = {u ∈ Lp(Ω) : ∂iu, ∂iku, Y u ∈ Lp, i, k = 1, . . . ,m}

and the related norm

||u||Sp(Ω) = ||u||Lp(Ω) +
m∑
k=1

||∂ku||Lp(Ω) +
m∑

i,k=1

||∂2
iku||Lp(Ω) + ||Y u||Lp(Ω).

Then, most of the results obtained by Baruci, Polidoro, Vespri, Lanconelli and Pascucci

takes into account the solutions u that are defined in the space Sp. This result implies a

further regularity for u and not just the continuity. On the other hand, the problem studied

in these works rules out many cases of interest for financial applications. In particular no

sudden jumps can be included.

Pascucci in [56] shows that no boundary conditions are needed when we are dealing with

a pricing problem where the differential operator is of the type (3.14). In this work the

author proves the existence and uniqueness of a strong solution to the ostacle problem in

the framework we have seen so far. We remark that the differential operator of many mod-

els used in mathematical finance can be expressed as (3.14). Unfortunately the additional

requirement of a uniformly positive defined diffusive matrix a(x) in a linear subspace is

not met in several models , such as Heston model where the diffusion matrix a(x) vanishes

near the boundary. Furthermore, the presence of the jumps is absolutely excluded in such a

framework.

The study of the existence and uniqueness in the case of the correlated interest rate model

proposed by Bernaschi in [14] is included in the work provided by Amadori in [5]. Indeed,
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in the pure diffusive case she assumes that the coefficients µ and σ are uniformly Lipschitz

continuous away from the boundary. On the other hand near the boundary they are allowed

to loose their global Lipschitz continuity, but they have to satisfy a limit condition that

ensures that the process is regular enough. In particular, in dimension 1 the coeffcients are

required to verify

0 <
1

2
σ2(x) ≤ x

1− cx
b

for some c > 0. As it is clear this condition generalizes the well known Feller condition.

On the other hand the case of the Heston model is not included in such a framework, and

even the case of the of the Asian options as pointed in [17].

In the framework of classical solutions Ekstr̈om and Tysk in [29] prove the existence and

unqueness of a classical solution to the pricing problem (3.1) when the price of the asset

is assumed to evolve following a Black-Scholes like model, and the volatility is allowed to

be a stochastic process. We observe that the problem considered by the authors is general

enough to include the Heston model. Unfortunately, some additional assumptions on the

final payoff are required. In their work, the authors provide some important considerations

dealing with existence and uniqueness of the solution when the process St and the volatility

Vt are positively correlated. In this work the authors addresses the issue of lakness of

boundary conditions by adding appropriate ones. However, if the stochastic process does

not reach the boundary of the domian, such conditions are not really needed, as stated by

authors themselves, that argue that if it is the case, it is more appropriate to speak about the

behaviour near the boundary rather than boundary conditions.

In the next chapters we overcome such results allowing the processes to have sudden jumps.

Furthermore, we suppose furthermore general conditions on the coefficients for the integro-

differential operator A.
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Chapter 4

Regularity of degenerate processes

During the years, several works have been presented in order to understand both the exi-

stence and regularity of the valuation equation of the type (3.1). Furthermore, a number

of efficient numerical methods has been proposed in order to find a numerical solution.

Most of these techniques are developed taking for granted the existence and regularity of a

suitable solution for the considered problem. Althought this fact, often, the PIDE related to

many models of interest in modern financial mathematics exhibit very stiff features, such

as singular diffusion matrices and coefficients that are only locally Lipschitz continuous up

to the boundary. Furthermore, in general, boundary conditions are not specified. In these

cases no results of existence and uniqueness of the solution to the problem (2.9) is ensured.

A forthcoming work provided by Costantini et al. on Finance and Stochastics (see [17])

proves the well-posedness of the martingale problem under very general assumptions on

the integro-differential operator A, provided that a Lyapunov-type condition is satisfied.

The Chapter is organized as follows. The first section is devoted to give a very brief intro-

duction to the semigroup theory, expecially applied to the martingale problem, highlighting

the links between the semigroup approach and the Markov processes. In the second section

we give the main assumptions that will hold true for the sequel. Furthermore we report one

of the main results provided in [17]. In particular, under general conditions on the operator

A and the existence of a Lyapunov-type condition, the well-posedness of the martingale

problem (A, P0) for any initial distribution P0 is shown. In the last section the assumptions

made in [17] are still valid, but we restrict ourselves to consider pure diffusive processes.

Under such conditions, some estimates of continuity with respect to the initial data for the

process X are provided.

All the results of this chapter can be applied, for instance, to Asian option pricing, that is a

very common instrument in the energy markets, pricing in path dependent volatility models

and in jump diffusion stochastic volatility models. We verify our Lyapunov type condition

40
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in several examples, among which the Arithmetric Asian option in the Heston model.

4.1 An outlook on semigroup approach to martingale problem

In this section we briefly recall some basic definitions and results provided in [28], in the

framework of the semigroup theory and the martingale problem approach. Such an approach

represents a very powerful tool when we deal with stochastic processes. Indeed, as shown

in [28] it is possible to find several properties of the processes and the quantities related to

them by studying a suitable problem driven by an integro-differential operator. Such results

are strongly used in [17]. In particular, since the operator semigroup theory provides a

primary tool for the study of Markov processes, such an approach allows us to deal with the

martingale problem for a given infinitesimal generator A, in a very powerful framework.

For a more detailed discussion to semigroup theory and its implication to the stochastic

processes and the main results on the existence of the martingale problem we refer to [28]

and the references therein.

Definition 4.1. A one-parameter family {T (t) : t ≥ 0} of bounded linear operators on a

Banach space E is called semigroup if the following properties are met:

i) T (0) = 1

ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0.

where 1 is the identity operator.

Definition 4.2. A semigroup {T (t)} on E is said to be strongly continuous if for every

f ∈ E we have

lim
t→0

T (t)f = f.

As an instance, if we consider a bounded linear operator on E whose representation is given

by the matrix B, if we define, for t ≥ 0

eBt =

∞∑
k=0

Bktk

k!
(4.1)

then a direct calculation shows that
{
eBt

}
verifies the properties of semigroup given in the

Definition 4.1. Furthermore, it is easy to show also that it is strongly continuous.

Definition 4.3. A semigroup {T (t) : t ≥ 0} is a contraction semigroup if ||T (t)|| ≤ 1.

Proposition 4.1. Let {T (t)} be a strongly continuous semigroup on E. Then there exist

two constants K ≥ 1 and η ≥ 0 such that

||T (t)|| ≤ Keηt (4.2)
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for t ≥ 0.

As a direct consequence of the Proposition 4.1 we get the following

Corollary 4.1. Let {T (t)} be a strongly continuous semigroup on E. Then, for each f ∈ E,

t 	→ T (t)f is a continuous function from [0,∞) into E.

A (possibly unbounded) linear operator A on E is linear mapping whose domain D(A) is

a subspace of E and whose range R(A) lies in E. The graph of A is given by

G(A) = {(f,Af) : f ∈ D(A)} ⊂ E × E. (4.3)

Note that E ×E is itself a Banach space with componentwise addition and scalar multipli-

cation and norm given by ||(f, g)|| = ||f ||+ ||g||.

Definition 4.4. A is said to be closed if G(A) is a closed subspace of E × E.

When we deal with semigroup theory, a very important quantity is represented by the in-

finitesimal generator of a semigroup {T (t)}. Roughly speaking, when T (t) acts on a func-

tion f , the infinitesimal generator is reponsible for the evolution along t of the quantity

T (t)f .

Definition 4.5. Given a semigroup {T (t)}, the infinitesimal generator of the semigroup

{T (t)} on E is the linear operator A defined by

Af = lim
t→0

1

t
{T (t)f − f} . (4.4)

The domain D(A) of A is the subspace of all f ∈ E for which the limit (4.4) does exist.

Looking at the infinitesimal generator the link between the semigroup theory and the Markov

processes is very clear. In particular, it is possible to give a relation between a suitable op-

erator and a Markov process. Hence, the infinitesimal generator determines, in some ways,

the evolution of the observable on that process. On the other hand, when we deal with the

valuation equation (3.1), the integro-differential operator A is the infinitesimal generator of

a suitable semigroup T (t).

On the other hand, in the case of Markov processes, when the process is time-homogeneous,

in force of the so-called Chapman-Kolmogorov property, it is possible to find very strong

link between making use of the transition function.

The reason why we are focusing on Markov processes is that almost all the models pro-

posed in the modern financial mathematics exhibit the Markov property, as we have seen
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in Chapter 2. This reflect the fact that all the informations needed for the evolutions of the

process are reflected in its actual values. Furthermore, they are well-understood and a huge

literature is available on this topic (see e.g. [35] and the references therein).

Definition 4.6. Let Xt be a stochastic process defined on a probability space (Ω,F ,P),

with values in E, and let FX
t = σ(X(s) : s ≤ t). Then X is a Markov process if

P
(
Xt+s ∈ Γ|FX

t

)
= P (Xt+s ∈ Γ|Xt) (4.5)

for all s, t ≥ 0 and Γ ∈ B(E).

We notice that the relation (4.5) obviously implies

E
[
f(Xt+s)|FX

t

]
= E [f(Xt+s)|Xt] (4.6)

for f ∈ B(E). Roughly speaking, the Markov property means that the probability density

function of the process does not depend on all the previous values reached by the process,

but it depends only on the value at the time of the observation.

We notice that the previous properties can be strongened. Considering any stopping time τ

at the place of a deterministic time t.

Definition 4.7. Let Xt, t ≥ 0, defined on the probability space (Ω,F ,P), be an E-valued

Markov process with respect to a filtration {Gt} such that X is {Gt}-progressive. Suppose

P(t, x,Γ) is a transition function for X, and let τ be a {Gt}-stopping time with τ < ∞
almost surely. Then X is a strong Markov process at τ if

P
(
Xτ+t ∈ Γ|GX

τ

)
= P(t,Xτ ,Γ) (4.7)

for all t ≥ 0 and Γ ∈ B(E), or equivalently

E
[
f(Xτ+t)|GX

τ

]
=

∫
f(y)P(t,Xτ , dy). (4.8)

The link between the semigroup theory and the stochastic Markov processes is then given

by the following

Definition 4.8. Let {T (t)} be a semigroup on a closed subspace L ⊂ B(E). An E-valued

Markov process X corresponds to {T (t)} if

E
[
f(Xt+s)|FX

t

]
= T (s)f(Xt) (4.9)

for all s, t ≥ 0 and f ∈ L.
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Then if, for any function f ∈ L, the expected value of f(Xt+s) can be written as the result

of an operator T (t) acting on f , once the natural filtration is known. Hence the stochastic

process and the semigroup family given by T (t) are related one to the other.

Remark 4.1. If {T (t)} is given by a transition function, then the relation (4.9), is equivalent

to (4.6).

A very special class of semigroup is given by the Feller semigroup.

Definition 4.9. Let E be a locally compact and separable metric space. A semigroup of

linear positive conservative contraction operator T (t) is a Feller semigroup if, for every

f ∈ C0(E) and x ∈ E it is hold true

T (t)f ∈ C0(E) (4.10)

lim
t→0

T (t)f(x) = f(x) (4.11)

Hence there exists a particular class of stochastic processes that the one generated by a

Feller semigroup.

Definition 4.10 (Feller process). A Feller process is a Markov process with a transition

function associated to a Feller semigroup.

Several results are shown in [28] dealing with Feller processes and the well-posedness of

the martingale problem. In particular we give the following

Definition 4.11 (Martingale solution). Let X be a measurable stochastic process with val-

ues on a given E, defined on a given probability space (Ω,FX
t ,P), then we say that X is

a solution of the martingale problem (A, P0) for a given generator A, and a given initial

distribution P0 if there exists a filtration {Ft} such that Xt is {Ft}-adapted and, for each

f ∈ D(A)

f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds (4.12)

is an FX
t -martingale.

On the other hand the definition of a stopped martingale problem can be given as well. In

particular, consider A and S ⊂ D and let X be a stochastic process with initial distribution

P0 in D and sample paths in DD[0,∞). Let τ be the stopping time defined as

τ = inf{t ≥ 0 : Xt /∈ S or Xt− /∈ S}. (4.13)

Then we can give the following
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Definition 4.12 (Stopped martingale solution). The process X is the solution to the stopped

martingale problem for (A, P0, S) if

f(Xt∧τ )− f(X0)−
∫ t∧τ

0
Af(Xs∧τ )ds (4.14)

is an FX
t -martingale.

Theorem 4.1 (Theorem 6.1, Chapter 4, [28]). Let (E, r) be complete and separable, and

let A ⊂ Ĉ(E) × B(E). If the DE [0,∞) martingale problem for A is well-posed, then, for

each ν ∈ P(E) and open U ⊂ E there exists a unique solution of the stopped martingale

problem for (A, ν, U).

Theorem 4.2 (Theorem 6.3, Chapter 4, [28]). Let (E, r) be complete and separable, and let

A ⊂ Ĉ(E) ×B(E). Let U1 ⊂ U2 ⊂ . . . be open subsets of E. Fix ν ∈ P(E), and suppose

that for each k = 1, 2, . . . there exists a unique solution Xk of the stopped martingale

problem for (A, ν, Uk) with sample paths in DE[0,∞). Setting

τk = inf{t ≥ 0 : Xk /∈ Uk, or Xk /∈ Uk},

suppose that for each t > 0 it is hold true

lim
k→∞

P {τk ≤ t} = 0,

then there exists a unique solution of the DE [0,∞) martingale problem for (A, ν).

4.2 The financial problem and main assumptions

We have seen that many works have been presented that improves our knowledge about the

existence of the solution for valuation equation when the classical theory of Sobolev spaces

cannot be applied. Unfortunately, all the techniques we have seen in the previous chapter

can be applied just on special cases and several cases of interest in finance cannot be dealt

with the present literature.

On the other hand, in [17] important improvements of the previous results are given, both

from the probabilistic side of the problem (2.9) and from the analytical point of view of

the problem (3.1). Due to its importance for our work, and for the mathematical finance in

general, we see in details such results in this and the next chapter, and use some of these

results in order to improve our knowledge about the regularity of the solutions.

The framework considered in [17] is very general and includes many cases of interest in

finance. Roughly speaking, the process Xt is allowed to have sudden jumps, with locally
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Lipschitz continuous drift and diffusion coefficients, provided that a Lyapunov type func-

tion is put in place. Under such conditions the well-posdness of the martingale problem

(A, P0) for any initial distribution P0 is provided, where A is the infinitesimal generator of

the problem (3.1). In particular for any P0 initial distribution there exists a unique strong

Markov process Xt that verifies the martingale problem (A, P0). Furthermore it has been

proven that the process Xt does not reach the boundary of the domain in a finite time al-

most surely. Such a result has important implications for the behaviour of Xt and expecially

for the evaluation equation (3.1). Indeed, if such hypoteses are verified, then no boundary

conditions are needed. Under such hypoteses the existence of a unique viscosity solution is

proven. We see such results in the next chapter.

Starting from such results, it is possible to give some estimations on the dependence with

respect to the initial data for the proces Xt. Moreover, the presence of the Lyapunov func-

tion gives an estimations on the probability that the process Xt approaches the boundary of

the domain.

The results provided in [17] can be applied in several pricing problems. The most re-

markable examples are represented by

• Path dependent volatility models.

• Jump-diffusion stochastic volatility models.

• Asian option pricing, even in stochastic volatility models.

As stated by the authors, if not for special cases, the actual literature is not able to deal with

the previous kind of problem in this generality.

For the rest of the work D is a starshaped open subset of Rd, and is allowed to be unbounded.

When the operator A in (3.2) is a pure differential operator, that is the case when the measure

m(x, dz) = δ(x)dz, then the following Assumption on the coefficients will be made:

Assumption 4.1. Consider σ : D → Rd×d and µ : D → Rd Lipschitz continuous functions

on compact subsets of D. The diffusion matrix a(x) is given by a(x) = σ(x)σ(x)�.

When the operator (3.2) is a full integro-differential operator, we will make in addition the

following

Assumption 4.2. The diffusion matrix a(x) = (aij(x))i,j=1,...,d with aij ∈ C2(D) and

m : D → M(D) is continuous and for each h continuous compact supported function in

D

sup
x∈D

∣∣∣∣
∫
D
h(z)m(x, dz)

∣∣∣∣ < ∞. (4.15)
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The hypothesis aij ∈ C2(D) for all i, j = 1, . . . , d implies Assumption 4.1 (see for instance

Proposition 8.25 in [9]). The additional Assumption 4.2 for the regularity of the diffusion

matrix is required in the case the process Xt is allowed to have sudden jumps.

As we have already remarked the presence of a Lyapunov-type function V (x) have to be

put in place. Applications of Lyapunov functions to stochastic processes can be found in

[38]. In our case, such a function have to verify the following structural

Assumption 4.3. There exists a nonnegative function V ∈ C2(D), such that, for all x ∈ D,

the following conditions are hold true

i)
∫
D V (z)m(x, dz) < ∞

ii) AV (x) ≤ C(1 + V (x))

iii) lim
x→x0

V (x) = +∞ for each x0 ∈ ∂D

iv) lim
|x|→∞

V (x) = +∞.

All the previous Assumptions are needed in order to guarantee that the martingale prob-

lem (A, P0) is well-posed, that is there exists one and only one solution for each initial

probability distribution P0.

As stated in [17], it should be clear that, in most cases, a suitable Lyapunov function veri-

fying the Assumption 4.3 can be built as the sum of a term that controls the process Xt near

the boundary, and a term that controls Xt at infinity, but in the general case, these two terms

cannot be considered separately. Indeed it may be possible that some components of Xt
approach the boundary while some other blow up.

We anticipate that the existence of such a Lyapunov function, verifying the Assumption 4.3,

ensures that the stochastic process Xt corresponding to the infinitesimal generator A in the

equation (3.2) does not blow up in a finite time and does not reach the boundary of D. This

is the case of several models in finance.

Furthermore, it will be clear that more the Lyapunov function V (x) blows up fastly, more

the probability that Xt approaches the boundary vanish rapidly.

The most popular examples in financial literature where the process does not reach the

boundary in a finite time are probably the Black and Scholes model and the CIR model. In

particular in the CIR model, the value x = 0 represents a barrier for the process Xt if some

hypotheses on the coefficients are fulfilled. In this model, indeed, if the coefficients κ, θ and

σ0 verify the well-known Feller condition, that is σ20 ≤ 2κθ, then the stochastic process is

constrained to be positive, and Xt cannot be equal to zero in a finite time. In this particular

example such a behaviour can be intuitively explained considering that if the volatility σ0 is
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low, and the long term level and the mean reverting force are high enough, then, when the

process approaches zero, the stochastic fluctuations become small and the mean-reverting

force pull the process toward the long term value. We see in Chapter 6 that such a condition

ensures the existence of a Lyapunov type condition.

In the general framework we are considering in our assumptions, the presence of such a

Lyapunov condition is sufficient in order to guarantee an analogous result.

We notice that, if Assumption 4.3 is satisfied then the condition (ii) avoids the process to

blow up in a finite time, and forces the death time to be infinity almost surely. This means

that no growth condition on the coefficients of the operator A in (3.2) is needed.

Example 4.1 (Remark 2.4 [17]). An explicit expression of V (x) can be found if the coef-

ficients µ, σ and the measure m verifies some hypotheses. In particular if µ, σ and the

jump rate m(x,D) have sublinear growth and the second moment of the jumps is uniformly

bounded, that is

m(x,D)−1

∫
D
|z − x|2m(x, dz) < ∞

for each x in D, then the process Xt can be controlled at infinity by the function x 	→ |x|2.

Such kind of function obviously verifies all the conditions in Assumption 4.3, except the limit

(iii). As we have already said, a suitable function have to be added so that the resulting

Lyapunov function V (x) is the sum of a barrier function, controlling the behavior near the

boundary and a function, controlling the behavior at infinity.

This is a very specific case. In general, such barrier functions cannot be found separately.

As we have already stated, indeed, it may be possible that some component of the process

Xt approach the boundary while some other blow up. Such a case is typical for stochastic

volatility models.

All the previous remarks are referred to the state space allowed to the stochastic process

Xt. However, the presence of the Lyapunov function V (x) has critical implications also

for the existence and uniqueness of the viscosity solution to the evaluation equation (3.1).

We see such results in Chapters 5 and 6. Furthermore, it determines the growth rate that

we can allow for the data (3.2). However, we have to remark that, when the coefficients of

the equation (2.9) have a high growth rate, the uniqueness of the solution to the valuation

equation (3.1) may be lost. What may happen in such a condition is that the expected value

of the discounted final payoff φ may be not finite. An example is given in [62] and [53] for

the case of stochastic volatility models. On the other hand, Ekstr̈om and Tysk in their work

[29] give two very important theorems that ensure the uniqueness of a classical solution

in the case of stochastic volatility models, when some suitable assumptions on the growth

rate of the final payoff is satisfied. We anticipate that in Chapter 6 of our work, we try to
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generalize their results, and, in the case the process Xt is allowed to have sudden jumps,

some results on the viscosity solution may given, if we are able to provide a suitable family

of Lyapunov funtions verifying Assumption 4.3. In particular we observe that a family of

a suitable Lyapunov function satisfying all Assumptions 4.1-4.3 can be provided whenever

the hypoteses of their theorems holds.

The next hypotesis is also assumed to be hold true in [17]. Such assumption is needed

in order to guarantee the existence and uniqueness of the viscosity solution to the valuation

equation, but it has no implication for the stochastic process Xt. Under the next Assumption

the growth rate allowed for the final payoff φ and the source term f is bounded by a family

of specific functions. In particular an inequality condition with the Lyapunov function V (x)

is required. Such a feature is set by the following

Assumption 4.4. The function f is continuous in D × (0, T ), and c, φ are continuous in

D and c is bounded from below. Furthermore there exists a strictly increasing function

ϕ : [0,∞) → [0,∞) such that

i) z 	→ zϕ(z) is convex,

ii) limz→∞ ϕ(z) = ∞

iii) (z1 + z2)φ(z1 + z2) ≤ C(z1ϕ(z1) + z2ϕ(z2)) for each z1, z2 ≥ 0.

As a consequence of i) and iii) we get ϕ(Tz) ≤ CTϕ(z) for each z ≥ 0. Furthermore, for

all (x, t) ∈ (D × (0, T )) the following conditions are hold true

|f(x, t)|ϕ(|f(x, t)|) ≤ CT (1 + V (x)) (4.16)

|φ(x)|ϕ(|φ(x)|) ≤ C(1 + V (x)) (4.17)

As it is clear, if the function V (x) has a high growth rate, then the final payoff is allowed to

blow up fastly. On the other hand, due to representation formula, this means that the process

Xt has finite higher moments.

Remark 4.2 (Remark 2.6 [17]). We observe that the functions ϕ(z) = zα with α > 0 and

ϕ(z) = log(z + α) with α > 1 are suitable functions that may verify the Assumption 4.4.

Example 4.2. If the coefficients µ(x), m(x,D) and a(x) verify the sublinear/subquadratic

growth assumptions previously discussed, then φ and f are allowed to have polynomial

growth rate up to order q < 2. This is obviously achieved since in such condition the term

of the Lyapunov function that controls the growth rate at infinity is given by |x|2. Then if we

take, ϕ(|φ(x)|) = |φ(x)|α, with α > 0, we have

|φ(x)|q+α ≤ CT

(
1 + |x|2)
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that implies q < 2, and the same for f(x, t).

In the rest of the thesis, we assume all the hypotheses Assumption 4.1-4.4 be hold true,

unless differently specified.

The next result is devoted to give sufficient conditions that guarantee the well-posedness of

the martingale problem (A, P0) for each initial distribution P0, that is there exists a unique

solution to the considered martingale problem. Furthermore, the solution Xt is a strong

Markov process, and if the initial distribution P0 = δ(x) of the process Xt is included in

the interior of the domain D, then the solution does not reach the boundary or blow up in a

finite time.

In what follows, it may be useful consider not just the original martingal problem, but a

localized problem. In particular, it is possible to consider a localized operator Aloc that

determines the evolution of a process X̃t.

For every z ∈ R+, we define the domain Dz as

Dz = {x ∈ D : V (x) < z} (4.18)

where V (x) is the Lyapunov function that verifies Assumptions 4.1-4.4. Since the value of

z can be arbitrarly chosen, then we can suppose without loss of generality that z is large

enough that the domain Dz is nonempty. Due to the definition of Dz and D, the domain Dz

is an open subset with closure included in D.

Now we consider the non-negative compact supported smooth function ξz(x) : Rd → R,

defined as

ξz(x) =

⎧⎪⎨
⎪⎩

1 x ∈ Dz

≤ 1 x /∈ (Dz)
c ∩Dz+1

0 x /∈ Dz+1.

Then, we consider the new coefficients µ̃(x), σ̃(x) and the measure m̃(x, dz) given by

µ̃(x) = ξz(x)µ(x) (4.19)

σ̃(x) =
√

ξz(x)σ(x) (4.20)

m̃(x, dw) = ξz(x)m(x, dw). (4.21)

Remark 4.3. The localized coefficients µ̃(x), σ̃(x) have sublinear growth rate. Further-

more µ̃(x), σ̃(x) and m̃(x, dw) coincide with µ(x), σ(x) and m(x, dw) for each x in Dz .
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Now we consider the localized martingale problem, where the processX̃ is solution of the

SDE (2.9) and is driven by the localized coefficients µ̃(x), σ̃(x) and m̃(x, dw). Then the

infinitesimal generator Ãloc is given by

Ãloc = Ãloc
d + J̃ loc (4.22)

where the localized operators Ãloc
d : C2

c (R
d) → Cc(Rd) and J̃ loc : C2

c (R
d) → Cc(Rd) are

defined, for each g(x) ∈ C2c (Rd) as

Ãloc
d,zg(x) = ξz(x)

[
〈∇g(x), µ(x)〉 + 1

2
tr
(∇2g(x)a(x)

)]

J̃ loc
z g(x) = ξz(x)

∫
D
[g(z) − g(x)]m(x, dz).

Roughly speaking, the localized operators Ãloc
d,z and J̃ loc

z are respectively the diffusion part

and the integral part of the operator A defined in (3.2) restricted to any domain Dz defined

in (4.18).

Considering a localized operator is a technique that is used in general to get some localized

properties of the stochastic process or several quantities related to it. In particular such a

technique is followed in [17] in order to prove the well-posedness of the martingale problem,

or in Baldi [9] where the technique is used in order to prove some properties of continuity of

the process X. This procedure will be used also in order to get our main results of regularity

in this chapter, and in the next one.

Theorem 4.3 (Theorem 2.8 [17]). Suppose Assumptions 4.1-4.4 be hold true. Let A be the

operator defined by (3.2). Then, for every probability distribution P0 on D, there exists one,

and only one stochastic process X, solution of the martingale problem for (A, P0) with

D(A) = C2
c (D).

Furthermore X is a homogeneous strong Markov process with paths in DD[0,∞).

Denoting by Xx the process with P0 = δ(x), where x ∈ D, it holds, for every T ≥ 0, and

{FXx

t }-stopping time τ

sup
0≤t≤T

E [V (Xx
t∧τ )] ≤ CT (1 + V (x)). (4.23)

Given the definition of V (x), the inequality (4.23) means that, if the starting point of Xx

is in the interior of the domain D, then the expected value of E [V (Xx
t∧τ )] is bounded for

each t ∧ τ , with any {FXx

t }-stopping time τ . Furthermore, since the Lyapunov function

V (x) blows up at the boundary, and at infinity, the inequality (4.23) yields that the proba-

bility that the stochastic process Xx reaches the boundary or blows up in a finite time is

P-negleactable.
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We want to give some comments on Theorem 4.3, pointing our attention to the main difficul-

ties the authors have overcome, due to the fact that only Assumptions 4.1-4.4 are assumed

to be satisfied. Furthemore, for the rest of our work, we need to highlight the main results

that the authors have given in the proof of the theorem.

We observe first of all that no assumptions are made on the rank of the diffusion matrix

a(x) that is allowed to be degenerate. Furthermore the coefficients are allowed to loose

their Lipschtiz continuity near the boundary and to be unbonded with fast growing rate at

infinity. As a consequence, as stated in [17], standard theorems on Lévy generators fail.

From an intuitive point of view, the presence of a positive-defined diffusion matrix and Lips-

chitz continuous coefficients, should have a regularizing effect to the final distribution of the

process Xt. Unfortunatelly this is not the case. On the other hand, such a regularizing effect

is definitely lost, in general, when sudden jumps are considered in the evolution of the pro-

cess. Indeed, it is shown in [17] that theorems on Lévy generators imply the well-posedness

only for the localized martingale problem (Ãloc
z , P0,Dz), for any initial distribution P0,

whenever the coefficients of the generator (3.2) are locally Lipschitz continuous, and the

jumps are not allowed. However, at the presence of the integral term, stronger assump-

tions have to be made, and the authors are forced to require the diffusion matrix be twice

differentiable.

The strategy of the proof given in [17] is to show, first of all, the well-posedness of the

martingale problem for any localized problem (Ãloc
z , P0,Dz) for any initial distribution

P0 on D. This is done making use of Lévy generators theorems in order to prove that

Assumptions 4.1-4.3 ensure that the localized operator Ãloc
z generates a Feller semigroup

and the solution Xt is a Feller process. In doing this, the fact that the domain D is starshaped

plays a crucial rule. We observe that this assumption does not affect the generality of the

results, at least for almost all cases of interest in finance.

The goal of the second step of the proof given in [17] is mainly to show that the well-

posedness of the localized martingale problem can be extended to the original problem

defined in D.

In this part of the proof, the existence of the Lyapunov function V (x) verifying Assumptions

4.1-4.4 is required. In particular, for each x ∈ D, we indicate by Xx
t the solution of the

stopped martingale problem for (Ãloc
z , δ(x),Dz). Then, given a sequence of increasing

domains Dz defined as in (4.18), the corresponding sequence of stopping time τxz defined

as

τxz = inf{t ≥ 0 : Xx
t /∈ Dz, or Xx

t− /∈ Dz}, (4.24)

represents the first exit time of the process Xx
t from the domains Dz .
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Then, making use of Gronwall’s lemma, under Assumption 4.3, in [17] it is shown the

following relation

E

[
V (Xx

T∧τxz ) + V (Xx
(T∧τxz )−)

]
≤ 2 (V (x) + C · T ) eC·T . (4.25)

We observe that the term V (Xx
(T∧τxz )−) is introduced by the nonlocal term of the operator.

In this case some additional algebra is needed in order to properly take into account the

domain Dz . As a consequence of the equation (4.25) it is possible to give an estimate on

the probability that the process Xt reaches the boundary in a finite time. In particular the

following inequality holds

P{τxz ≤ T} ≤ 2 (V (x) + C · T ) eC·T

z
. (4.26)

The equation (4.26) has two main consequences. The first one is immediate that is letting

z to infinity P{τxz ≤ T} → 0. Furthermore, we observe that when z goes to infinity, the

domain Dz converges to D. In other words, the probability that the stochastic process Xx

reaches the boundary of the domain D or blows up in a finite time is P-negleactable.

The second consequence is a direct application of Theorem 4.2, that is the martingale prob-

lem for (A, δ(x)) has one and only one solution in DD[0,∞).

Hence Assumptions 4.1-4.3 ensure that the martingale problem (A, P0) is well-posed and

then the existence of a weak solution to the SDE (2.9) is granted.

4.3 Continuous dependence results for the pure diffusive case

In the previous section we have seen that there exists a unique solution to the martingale

problem (A, P0) for every initial distribution P0. Furthermore, such a solution is a strong

Markov process, with paths in DD[0,∞) almost surely.

Unfortunately, such a result is not strong enough in order to guarantee that there exists a

strong solution to the stochastic differential equation (2.9). Indeed Theorem 4.3 ensures

only the existence of a weak solution. This means that for every initial distribution there

exists a probability space (Ω,FX
t ,P) on which the solution is defined, but such a probability

space is not a priori defined.

We indicate by Xx
s the stochastic process at time s, solution of the problem (2.9), starting

at x. Moreover in the rest of the present chapter, we will focus on the pure diffusive case

γ ≡ 0.
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Our objective is to establish some estimates concerning with the dependence of the solution

Xx on the initial datum x. Under the same assumptions given in [17], we are able to state a

Lipschitz-type regularity of the process {Xx
s }s with respect to x.

For each z > 0, consider a countable set S such that S ⊂ Dz where Dz is the domain

defined in (4.18). Clearly S ∩ ∂D = {∅}. Then we introduce the following notations:

τSz = inf

{
s ≥ 0 : sup

x∈S
V (Xx

s ) ≥ z

}
, (4.27)

∆X(s, x1, x2) = |Xx1
s −Xx2

s |, ∀ x1, x2 ∈ S, s ≥ 0. (4.28)

When S is the singleton {x}, we shall use the notation τxz . Clearly τxz concides with the

stopping time defined in (4.24), in the case no sudden jumps are considered.

Theorem 4.4. Suppose that Assumptions 4.1-4.3 are satisfied. Suppose furthermore that

there exists a strong solution to the SDE (2.9) with γ ≡ 0. Then it hold:

i) For every z > 0, T ≥ 0, p ≥ 1 and for every countable set S ⊂ Dz ,

sup

0 ≤ t ≤ T

E

[(
∆X(t ∧ τSz , x1, x2)

)p] ≤ eκzT |x1 − x2|p, (4.29)

for any x1, x2 ∈ S. Here the constant κz > 0 depends only on p and the Lipschitz

constants of µ and σ on the domain Dz .

ii) If there exists p∗ > 0 and a constant C̃ such that |x|p∗ ≤ C̃ (1 + V (x)). Then, for

each compact subset K ⊂ D and for every T > 0,

lim
h→0+

sup

x1,x2∈K,

|x1−x2|≤h

E

[
(∆X(T, x1, x2))

p∗
]
= 0. (4.30)

iii) If the coefficients µ(x) and σ(x) have at most linear growth rate with respect to x,

then for every T ≥ 0, p ≥ 1 and for each K ⊂ D compact,

sup

x ∈ K

0 ≤ t ≤ T

E [|Xx
t |p] ≤ CT,p(1 + |x|p). (4.31)

where the constant CT,p depends only on T and p.
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iv) For every z > 0, T ≥ 0, p ≥ 2 and for every x ∈ Dz , it holds

E

[∣∣∣Xx
t∧τxz −Xx

s∧τxz

∣∣∣p] ≤ Lz,p,T |t− s|p/2, (4.32)

for any 0 ≤ s ≥ t ≤ T . Here the positive constant Lz,p,T depends only on the

maximum of µ and σ on the domain Dz , p and T .

The first two points in the Theorem 4.4 are mainly meaningful. Such results yield that

for each countable subset of D, the expected value of the distance between two processes

starting from two near points x and y is bounded by a Lipschitz-type condition up to the

first exit time from the domain Dz . The limit in (4.30) yields a uniform-type continuity

result with respect to the initial datum. The assertion in (iii) is, in fact, a classical result

in the theory of stochastic processes, and it is proved, for istance, in Baldi [9] for the pure

diffusive case and in Pham [57] for the case of jumps. However, in the the literature of

stochastic processes, the results of regularity with respect to the initial datum take into

account global Lipschitz continuous coefficients. Weak conditions are available only in the

one-dimensional case, see for instance [63].

The direct consequence of Theorem 4.4 concerns with the case of global Lipschitz contin-

uous coefficients.

Corollary 4.2. Suppose that the hypotheses of Theorem 4.4 are fulfilled. Suppose further-

more that the coefficients µ(x) and σ(x) are Lipschitz continuous on D. Then, for every

p ≥ 1, T ≥ 0 it holds:

E [∆X(T, x1, x2)
p] ≤ |x− y|peκ∗T . (4.33)

where the constant κ∗ depends on p and the Lipschitz constants of µ and σ.

An analogous result for jump processes is proved by Pham [57] (see Lemma 3.1).

Proof of Theorem 4.4 (i) - The proof of Theorem 4.4 is mainly based on the techniques

used by T. Yamada and S. Watanabe in [63] to state the uniqueness of stochastic differential

equations in presence of merely uniformly continuous coefficients.

Fix a countable subset S of Dz , 0 ≤ s ≤ T and x1, x2 ∈ S. Let τSz be the stopping time

(4.27). Consider the sequence �n = 2/(n2 + n+ 2), n ≥ 0. Clearly the sequence {�n}n≥0

satisfies 1 = �0 > �1 > �2 > · · · > �n → 0, as n → +∞. We also observe, by a direct

calculation, that

∫ �n−1

�n

1

w2
dw = n. (4.34)
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Then consider a twice continuously differentiable function gn : [0,+∞) → [0,+∞) such

that g(0) = 0,

g′n(u) =

⎧⎪⎨
⎪⎩

0, 0 ≤ u ≤ �n

between 0 and 1, �n < u < �n−1

1, u > �n−1

(4.35)

g′′n(u) =

⎧⎪⎨
⎪⎩

0, 0 ≤ u ≤ �n

between 0 and 1
nu

−2, �n < u < �n−1

0, u ≥ �n−1

(4.36)

When we consider the extension to x ∈ Rd, we choose gn(|x|p), p ≥ 1, twice differentiable

such that gn(|x|p) ≤ gn+1(|x|p) → |x|p, as n → +∞, for any x ∈ Rd.

In the following, we denote:

Yλ = Xx1
λ −Xx2

λ ,

∆µλ = µ
(
Xx1

λ

)− µ
(
Xx2

λ

)
,

∆σλ = σ
(
Xx1

λ

)− σ
(
Xx2

λ

)
,

for 0 ≤ λ ≤ T . Applying Itô’s formula to λ 	→ g(|Yλ|p), we have

gn(|Yλ∧τSz |p) = gn(|x1 − x2|p) +
∫ λ∧τSz

0

{
p2

2
g′′n(|Ys|p)|Ys|2p−4

∣∣∣∆σ�
s Ys

∣∣∣2 ds
+

[
p g′n(|Ys|p)|Ys|p−2〈∆µs, Ys〉

]}
ds

+
p

2

∫ λ∧τSz

0
g′n(|Ys|p)|Ys|p−2

{
tr
(
∆σs∆σ�

s

)
+

p− 2

|Ys|2
∣∣∣∆σ�

s Ys

∣∣∣2} ds

+

∫ λ∧τSz

0
p g′n(|Ys|p)|Ys|p−2Y �

s ∆σs dWs

= gn(|x1 − x2|p) + I1 + I2 + I3. (4.37)
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where I1, I2 and I3 are the integral terms in (4.37) and are equivalent to

I1 =
p2

2

∫ λ∧τSz

0
g′′n(|Ys|p)|Ys|2p−4

∣∣∣∆σ�
s Ys

∣∣∣2 ds
+

∫ λ∧τSz

0

[
p g′n(|Ys|p)|Ys|p−2〈∆µs, Ys〉

]
ds (4.38)

I2 =
p

2

∫ λ∧τSz

0
g′n(|Ys|p)|Ys|p−2

{
tr
(
∆σs∆σ�

s

)
+

p− 2

|Ys|2
∣∣∣∆σ�

s Ys

∣∣∣2} ds (4.39)

I3 =

∫ λ∧τSz

0
p g′n(|Ys|p)|Ys|p−2Y �

s ∆σs dWs. (4.40)

We remark that when p = d = 1, then the integrand in I2 is identically zero that is the case

coming from unidimensional Ito’s Lemma.

We notice that the functions µ(x), σ(x) are locally Lipschitz continuous with respect to

x with constants Kµ and Kσ. Such constants depend on the considered domain Dz . We

indicate by Kz = max(Kµ,Kσ).

If s ≤ λ ∧ τSz , then s ≤ λ, which implies s = s ∧ τSz . Hence, we get

|I1| ≤ 2pKz

∫ λ∧τSz

0
|Ys∧τSz |pds+

p2

2n
K2

zλ, (4.41)

|I2| ≤ p

2
K2

z (d+ p− 2)+

∫ λ∧τSz

0
|Ys∧τSz |pds, (4.42)

where (x)+ denotes the positive part of x. Taking the expectation of the relation (4.37), by

the optimal stopping theorem (see Theorem 4.6. in [64]) we get E[I3] = 0. By applying the

monotone convergence theorem and taking the limit for n towards infinity, for all 0 ≤ t ≤ T

we obtain

E

[
gn(|Yt∧τSz |p)

] −→
n→+∞

f(t) ≡ E

[(
∆X(t ∧ τSz , x1, x2)

)p]
. (4.43)

Now we take the expectation in (4.37), and letting n → +∞, by using (4.41) and (4.42) we

get the inequality

f(t) ≤ |x1 − x2|p + κz

∫ t

0
f(u)du, (4.44)

for any t ∈ [0, T ]. Here κz denotes the constant coefficients pKz[2 + Kz
2 (d + p − 2)+].

Finally, the relation (4.29) follows directly by Gronwall’s inequality.

(ii) - Let κz be the costant defined in the equation (4.31). Let us fix K ⊂ D compact and

T > 0. The coefficients µ and σ are locally Lipschitz continuous, then for every n ∈ N
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we can always define an increasing sequence zn > 0 such that the following conditions are

satisfied:

lim
n→∞ zn = ∞, (4.45)

lim
n→∞

eκznT

np∗ = 0. (4.46)

Indeed Dzn is an increasing sequence of subsets converging to D, hence there exists n̄ such

that, for each n ≥ n̄ we have K ⊂ Dzn .

Suppose for contradiction that (4.30) does not hold. Therefore, we can find ε > 0 such that

for every n ∈ N, there exist x1,n, x2,n ∈ K satisfying,

|x1,n − x2,n| ≤ 1

n
, and E

[
(∆X(T, x1,n, x2,n))

p∗
]
> ε. (4.47)

Let us consider the set Sn = {x1,n, x2,n} with the stopping time τSn
zn as defined in (4.27).

Since {τSn
zn < T} ⊂ {τx1,n

zn ≤ T} ∪ {τx2,n
zn ≤ T}, for every λ > 0, the inequalities (4.26)

and (4.29) yield

P (∆X(T, x1,n, x2,n) > λ) ≤ P
(
∆X(T, x1,n, x2,n) > λ, τSn

zn ≥ t
)
+ P

(
τSn
zn < T

)
≤ 1

λp∗ E
[
(∆X(T ∧ τSn

zn , x1,n, x2,n))
p∗
]

+ P
(
τ
x1,n
zn ≤ T

)
+ P

(
τ
x2,n
zn ≤ T

)
(4.48)

and then

P (∆X(T, x1,n, x2,n) > λ) ≤ eκ
∗
zn

T

λp∗ np∗ + 1
zn

[V (x1,n) + V (x2,n) + 2CT ] eCT (4.49)

where C is the costant given in Assumption 4.3 which is, in particular, independent of

n. Thus, by letting n go to infinity, in force of the relations (4.45)-(4.46) and still using

Assumption 4.3, we have

lim
n→+∞P (∆X(T, x1,n, x2,n) > λ) = 0. (4.50)

Therefore the sequence of random variables {(∆X(T, x1,n, x2,n))
p∗}n converges to zero in

probability and, by the inequality |x|p∗ ≤ C̃(1 + V (x)), it is uniformly integrable. In fact,

it is bounded by the random variable C̃ ′ (1 + V (X
x1,n

t ) + V (X
x2,n

t )
)
, with C̃ ′ independent

of n. By the inequality (4.23), the expected value of V (X
xi,n

t ), for i = 1, 2, is bounded by

CT (1+maxx∈K V (x)), for any n. Thus, the expected value of (∆X(T, x1,n, x2,n))
p∗ goes

to zero, as n → ∞, in contrast with (4.47).
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(iii) - This result can be achieved by standard arguments. In particular it is sufficient to

apply Itô’s lemma and then the result comes from Gronwall’s inequality. Such a procedure

can be found in Proposition 8.15 in [9] for p ≥ 2, in [57] for uniformly Lipschitz continuous

coefficients and p ∈ [0, 2].

(iv) - We prove the estimate in the case p = 2. The general case can be proved with similar

arguments. Let T ≥ 0. Since the process Xx
t is solution of the SDE (2.9), for every

0 ≤ s ≤ t ≤ T , we have

∣∣∣Xx
t∧τxz −Xx

s∧τxz

∣∣∣2 ≤
∣∣∣∣∣
∫ t∧τxz

s∧τxz
µ(Xx

u )du+

∫ t∧τxz

s∧τxz
σ(Xx

u )dWu

∣∣∣∣∣
2

≤ 2 sup
y∈Dz

|µ(y)|2|t− s|2 + 2

∣∣∣∣∣
∫ t∧τxz

s∧τxz
σ(Xx

u)dWu

∣∣∣∣∣
2

. (4.51)

Taking the expected value in (4.51) and applying It̂o’s isometry for stopping times (see

Theorem 4.2 in [35]), we get

E

∣∣∣Xx
t∧τxz −Xx

s∧τxz

∣∣∣2 ≤ 2 sup
y∈Dz

[|µ(y)|2 + |σ(y)|2]max(|t− s|2, |t− s|)

≤ Lz,T |t− s|, (4.52)

where Lz,T = 2 supy∈Dz

[|µ(y)|2 + |σ(y)|2]max(2T, 1).

Remark 4.4. Applying Hölder inequality, it is possible to get the point (iv) of Theorem 4.4

for every p > 0.

Remark 4.5. If the assumption on the growth rate of the coefficients µ and σ of the point

iii) are verified, then the point ii) is verified for each p∗ ≥ 1. This is true since, in this case,

the sequence of variables {(∆X(T, x1,n, x2,n))
p∗}n can be bounded by 2 supx∈S |Xx

t |p
∗

that has finite expectation in force of the the Theorem 4.4-(iii).

Remark 4.6. Under the same hypotheses at the point i) of Theorem 4.4, it is possible to

prove the following inequality

E

[
sup

0≤t≤T

(
∆X(t ∧ τSz , x1, x2)

)p] ≤ eκzT |x1 − x2|p. (4.53)

This result is achieved following the same procedure used for the point i) in Theorem 4.4,

and by applying a Doob inequality to E

[
sup0≤t≤T∧τSz I3(t)

]
.
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4.4 Weighted continuity estimates for the process X

In the previous section, we have seen that if the coefficients are Lipschitz continuous, and for

the diffusive case (γ ≡ 0), then the distance between two processes starting from two points

near one to each other, is in some way Lipschitz continuous (Theorem 4.4 and Corollary

4.2). Such a result is similar to the one obtained for Ordinary Differential Equations, where

the local Lipschitz regularity of the coefficiens ensures the existence of a local solution,

providing a constraint on dependence on the initial data. We remark that, in the case of

Corollary 4.2, the maximum expected distance of the two solutions is independent on the

wideness of the considered domain and it depends on the time only.

On the other hand, the result (i) of Theorem 4.4 is in some way very close to the Corollary

4.2, but the coefficients are allowed to be only locally Lipschitz continuous. In such a case,

the result is weakened of course, and the regularity with respect to the initial data is hold

up to a given stopping time. Unfortunately, this result does not guarantee that the regularity

estimate is satisfied at any.

In this section we state a result that provides, under the same assumptions of Theorem 4.4-

(i), a uniform Lipschitz-type estimate for the expected value of a weighted distance between

two processes starting at different initial data. The weight process is based on the Lyapunov

function V (x).

Theorem 4.5. Suppose Assumptions 4.1-4.3 be hold true. Suppose furthermore that there

exists a strong solution to the problem (2.9), with γ ≡ 0. For each z > 0 let Lµ(z) and

Lσ(z) be the Lipschitz constants of µ(x) and σ(x) on Dz . Then, for each compact and

countable set S ⊂ D,

LS
t = p

[
sup
x∈S

Lµ (V (Xx
t )) +

1

2
L2
σ (V (Xx

t )) (d+ p− 2)+

]
, (4.54)

is an {FX
t }t-adapted process, and for every p ≥ 1, x1, x2 ∈ S, the process Xt satisfies

E

[
e−

∫ t
0 LS

τ dτ |∆X (t, x1, x2) |p
]
≤ |x1 − x2|p, ∀ t ≥ 0. (4.55)

Remark 4.7. If the coefficients µ and σ are globally Lipschitz continuous, then the process

LS
t is bounded for every subset S and the previous result reduces to Corollary 4.2.

Proof of Theorem 4.5. The functions Lµ(z), Lσ(z) are clearly nondecreasing functions of

z > 0 and V (x) is in particular continuous. Therefore the fact that LSt is {FX
t }t-adapted is

easily argued.

As in the proof of Theorem 4.4, let us consider the sequence �n = 2/(n2 + n + 2) which
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guarantees the relation

∫ �n−1

�n

z−2 = n, ∀ n ≥ 1. (4.56)

Let {gn}n be the sequence of functions defined as in (4.35) and (4.36), where the upper

bound of g′′n(w) is 1
nw

−2, for any w ≥ 0 and n ≥ 1.

Let S be a countable compact subset of D. We consider z̄ > 0 such that S ⊂ Dz , for any

z > z̄. For every t ≥ 0, set ξzt = e−
∫ t
0
LS
τ dτ−z−1t, then by the same calculations followed in

the proof of Theorem 4.4, for every 0 ≤ λ ≤ t ∧ τSz and for all x1, x2 ∈ S, we can apply

Itô’s formula leading to the equation

ξzλgn(|Yλ|p) = gn(|x1 − x2|p) +
∫ λ

0

{
p g′n(|Ys|p)|Ys|p−2〈∆µs, Ys〉

+
p

2
g′n(|Ys|p)|Ys|p−2

[
tr
(
∆σs∆σ�

s

)
+

p− 2

|Ys|2
∣∣∣∆σ�

s Ys

∣∣∣2]

− Ls∧τSz gn(|Ys|p)
}
ξzs ds

+
p2

2

∫ λ

0
g′′n(|Ys|p)|Ys|2p−4

∣∣∣∆σ�
s Ys

∣∣∣2 ξzs ds

+

∫ λ

0
p ξzs g′n(|Ys|p)|Ys|p−2Y �

s ∆σs dWs

= gn(|x1 − x2|p) + I1 + I2 + I3. (4.57)

As a direct consequence of the definition of the process Ls, for the integral term I1, we have

the estimate

|I1| ≤
∫ λ

0
Ls∧τSz [|Ys|p − gn(|Ys|p)] ξzs ds. (4.58)

For the second integral term in (4.57), we have the estimate

|I2| ≤ p2

2n

∫ λ

0
L2
σ

(
sup
x∈S

V (Xs∧τSz )
)

ξzs ds. (4.59)

Since for every z > z̄, Ls∧τSz ξzs and L2
σ

(
supx∈S V (Xs ∧ τSz )

)
ξzs are bounded processes

and almost surely gn(|Ys|p) converges increasingly to |Ys|p for n → ∞, we easily obtain

that E[|Ii|] → 0, as n → ∞, for i = 1, 2.

Thus, taking the expectation in (4.57) and then the limit with respect to n → ∞, as in
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Theorem 4.4, we get the inequality

E

[
e−

∫ t∧τSz
0 Lτdτ |Yt∧τSz |p

]
≤ |x1 − x2|p. (4.60)

Since the right-hand side of equation (4.60) is uniformly bounded with respect to z > z̄, we

can take the limit for z → ∞ obtaining hence the inequality (4.55).

4.5 Conclusions

In this chapter we have dealt with the well-posedness of the martingale problem, under very

general assumptions on the coefficients of the related SDE. Such assumptions are satisfied

by several models used in financial mathematics. Substantially, under local Lipschitz con-

tinuity assumptions and assuming the existence of a Lyapunov function, it is possible to

prove the well-posedness of the martingale problem (see [17]). Furthemore, the boundary

of the domain D cannot be reached in a finite time (or the process cannot blow up if the

domain D is unbounded) by the process X, then it is constrained to stay in the interior of

the domain. Then, starting from such results of existence and uniqueness of the solution,

we have provided some interesting properties of continuity with respect to the initial data.

In particular, in Theorem 4.4 we have proved a Lipschit-type continuity with respect to the

initial datum until a stopping time. Moreover, we have provided a result of uniform continu-

ity with respect to initial data for any time t, and a Ḧolder-type dependence of the expected

value of the process with respect to time t.

Such results are not available in literature under our assumptions, but, as we have already

stated, stronger hypoteses on the coefficients are usually admitted.

On the other hand, we have also provided a weighted continuity estimate. The weight

function is directly connected with the coefficients. In particular it depends on the rate at

which the coefficients µ and σ loose their Lipschitz continuity condition for the process

approaching the boundary. Furthermore, in the special case of global Lipschitz continuous

coefficients, our estimates turn to standard results.

On the other hand it is possible to argue that, if the probability that the process X reaches

the boundary vanishes rapidly, this could have a regularizing effect on the dependence on

the initial data. We are currently working to obtain some stronger results, in this direction.
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Chapter 5

Regularity for singular risk-neutral

valuation equation

In the previous chapter we have investigated the well-posedness of the martingale problem

for (A, P0). Furthermore the properties of the solution of the SDE (2.9) have been provided

when Assumptions 4.1-4.3 are satisfied. Furthermore, we have stated and proved come

properties of continuity for the stochastic process Xx
t with respect to the initial datum x and

time t.

In this chapter we deal with the existence, uniqueness and regularity of the solution to the

valuation equation (3.1), under the same assumptions made so far. In particular, we are able

to prove that the regularity of (x, t) 	→ Xx
t is reflected in the solution u(x, t) to the pricing

equation.

It is common among practictioners, when one deals with problems in financial mathematics

to develop numerical methods assuming existence, uniqueness and regularity of the solution

to the valuation equation (3.1). However, when only Assumptions 4.1-4.4 are satisfied, the

present literature is not able to grant the existence, uniqueness and regularity of the solution

to the pricing problem (3.1). In the work presented by Costantini et al. in [17], some light

has been put on this topic. Precisely, the authors proved that, when Assumptions 4.1-4.4 are

satisfied, then the existence and uniqueness of a viscosity solution to the valuation problem

(3.1) is granted. Unfortunalety, the viscosity solution theory ensures just continuity for the

solution, but no additional regularity is a priori given. The aim of this chapter is exactly to

give sufficient conditions in order to extend the results given in [17]. In particular, under

some additional assumptions on the regularity of the final payoff and the running cost, it is

possible to show that the viscosity solution gains some additional regularity.

This chapter is organized as follows. In the first section we rapidly introduce a very simple

model where standard arguments given in the literature cannot be applied. In particular,
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we adapt the procedure proposed by Di Francesco, Pascucci and Polidoro in [22], under

the framework of the space Sp and B-norm we have introduced in Chapter 3. We are able

to show that such a simple problem have a unique classical solution under a suitable B

norm. In the subsequent sections we consider the general problem (3.1). We give the main

results provided in [17], that is under Assumptions 4.1-4.4 the general problem has a unique

viscosity solution. These results are used to show that under additional structural condition

for the operator A, the viscosity solution is classical. In other words it is twice differentiable

with respect to x, and once with respect to t.

5.1 Classical solution for pricing problems in a toy-model

Before considering the general problem, we want to introduce the issue of the existence of

a regular solution to the valuation equation of the type (3.1), in a very simple case. In this

case, we consider a time-reverted problem, in order to be compliant with the notation used

in [22].

The problem we are considering is defined in a subset of R2×R, with constant coefficients.

In this section, the notation || · || stands for sup norm, if not explicitly specified.

Consider a point (x̄, ȳ) ∈ R2 and ∆ > 0. Let H = D × [0, T ] be a regular domain where

D ⊂ R2 is the ball centered in (x̄, ȳ) with radius ∆. We suppose without loss of generality

that x̄−∆ > 0. If it were not the case, we can always make a linear translation towards the

origin. We want to deal with the following Cauchy-Dirichlet problem defined in H:

ut(x, y, t) − uxx(x, y, t) + uy(x, y, t) = f(x, y, t) (5.1)

u(x, y, t) = φ(x, y, t) (x, y, t) ∈ ∂PH

where ∂PH is the parabolic boundary of H and the functions φ ∈ C(H) and f ∈ C∞(H).

We notice that the problem (5.1) obviously verify Assumptions 4.1-4.4, then all the results in

[17] can be applied. This ensure that the considered problem has a unique viscosity solution.

On the other hand, now we want to study if such a kind of problem admits a solution that

is more regular then the mere continuity. However, we have to consider that the diffusion

matrix a(x) is degenerate along one direction, and no Ḧormander conditions are available.

Hence, it is not clear if the considered operator has sufficient regularizing properies that

guarantee the existence of a regular solution. Despite these facts, it is possible to show that

the considered problem admits an unique classical solution in some way. Such a result is

precisely stated in the following
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Theorem 5.1. Let H be the considered domain and L be the operator defined in the Cauchy

problem (5.1). Then there exists a matrix B such that there exists a unique classical solution

u ∈ C2,α
B (H(T )) ∩ C(H(T )) of the problem (5.1).

We notice that the considered problem is very simple and have no application in modern

financial mathematics, however, such a problem well introduces the issues we want to show

in this chapter.

Before giving the proof of Theorem 5.1, we prove some partial results, that will be useful

for our purposes.

Theorem 5.2. Let L be a hypoelliptic differential operator defined on the compact set H

and let G be the Green’s function related to L with respect to the domain H . Let J ,D :

C∞(H) → C∞(H) be two linear operators such that, for each h ∈ C∞(H), they associate

the functions:

J h =

∫
H
G(x, y, t, ξ, η, τ)h(ξ, η, τ)dξdηdτ (5.2)

Dh =

∫
H
Gy(x, y, t, ξ, η, τ)h(ξ, η, τ)dξdηdτ, (5.3)

then the following statements hold

i) 0 < ||J || < ∞ and 0 < ||D|| < ∞

ii) There exists the operator J−1 : C∞(H) → C∞(H), such that for each v ∈ C∞(H)

it is hold true J−1J v = JJ−1v = v.

iii) Ker J ⊆ Ker D.

Remark 5.1. The existence of the Green’s function G for the considered problem is granted

by the results of Theorem 2.7 in [52].

We observe that existence of the Green’s function suggests that the solution to the problem

(5.1) is regular.

Remark 5.2. Given the properties of G it follows that the operators J and D are continu-

ous.

As a direct consequence of such a Remark we have the following

Corollary 5.1. There exists a finite λ > 0, such that for each h ∈ C∞(H) it is hold true

∣∣∣∣Dh
∣∣∣∣ ≤ λ

∣∣∣∣J h
∣∣∣∣. (5.4)
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Proof of Theorem 5.2 (i) - For simplicity of notation, in what follows, we denote by (z, t) =

(x, y, t) and (ζ, τ) = (ξ, η, τ) in H .

Since the function G is nonnegative, for each h ∈ C∞(H) where ||h|| = 1, we have the

following relations

∣∣∣∣J ∣∣∣∣ = sup
||h||=1

||J h|| = sup
||h||=1

∣∣∣∣∣∣ ∫
H
G(z, t, ζ, τ)h(ζ, τ) dζdτ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∫
H
G(z, t, ζ, τ) 1 dζdτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∫
H
G(z, t, ζ, τ)dζdτ

∣∣∣∣∣∣ = ||v||, (5.5)

where v is the solution of the Cauchy problem

Lv = −1 (5.6)

v = 0 (x, y, t) ∈ ∂PH.

Since the operator L is hypoelliptic and the sourcing term is smooth, then the solution v is

smooth in a bounded domain, and then is bounded as well. This means that v verifies:

||v|| < ∞.

Furthermore, in force of the properties of the Green’s function G we can write

∣∣∣∣J ∣∣∣∣ = ∣∣∣∣∣∣ ∫
H
G(z, t, ζ, τ)dζdτ

∣∣∣∣∣∣ > 0 (5.7)

and then

0 < ||J || < ∞. (5.8)

The proof for D is very close to the one we have provided for J , but an additional consider-

ation is needed. In particular in force of the fact that v is smooth, then ||D|| ≤ ||vy||. Hence

we can end the proof of the first item of the Theorem.

(ii) - We can give an explicit representation of the operator J−1. Indeed, let L be the

considered differential operator. We define J−1 in the following way:

J−1 = L. (5.9)

The thesis comes directly from the properties of the Green’s function. Indeed, let v ∈
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C∞(H), then we can write the following relations:

J −1J v = L
∫
H
G(z, t, ζ, τ)v(ζ, τ)dζdτ

=

∫
H
LG(z, t, ζ, τ)v(ζ, τ)dζdτ

=

∫
H
δ(z − ζ, t− τ)v(ζ, τ)dζdτ

= v (5.10)

and then we have the thesis.

(iii) - Consider h ∈ C∞(H) ∩ Ker J . We want to verify that h ∈ Ker D.

Let L be the considered differential operatorator, and let v be the solution of the Cauchy

problem:

Lv = −h

v = 0 (x, y, t) ∈ ∂PH

then, by the properties of the Green’s function G it is hold true v = J h. Furthermore, since

h ∈ Ker J by hypotesis, it is hold true v ≡ 0 in all H , up to the boundary. Then we can

write:

||Dh|| =
∣∣∣∣∣∣ ∫

H
Gy(z, t, ζ, τ)h(ζ, τ) dζdτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣∂y
∫
H
G(z, t, ζ, τ)h(ζ, τ) dζdτ

∣∣∣∣∣∣
=

∣∣∣∣∂yv∣∣∣∣. (5.11)

By the definition of v, for each (x, y, t) ∈ H , the relation ∂yv ≡ 0 has to be verified, indeed

by the regularity if v such a relation has to be hold true for each (x, y, t) ∈ H \ ∂H . A

priori we cannot consider directly the continuity of the derivative since up the boundary just

the continuity of the solution is ensured, then, we consider the differential ratio

v(x, y, t)− v(x, ỹ, t)

y − ỹ
(5.12)

with ỹ is any point in ∂H . We know that the differential ratio in (5.12) is well defined and

is identically zero. Then there exists lim sup for y → ỹ and it is hold true

lim sup
y→ȳ

∣∣∣v(x, y, t)− v(x, ȳ, t)

y − ȳ

∣∣∣ = 0. (5.13)
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Then we can write

||Dh|| = ∣∣∣∣∂yv∣∣∣∣ = 0 (5.14)

that implies the item (iii) and ends the proof of Theorem 5.2.

Now the proof of Corollary 5.1 is automatically given.

Proof of Corollary 5.1 If h ∈ Ker J there is nothing to prove. Then we suppose that

h ∈ C∞(H) ∩ (Ker J )c. By Theorem 5.2 and Remark 5.2 the following relations are hold

true:

∣∣∣∣Dh
∣∣∣∣ = ∣∣∣∣DJ−1J h

∣∣∣∣ ≤ ∣∣∣∣DJ−1
∣∣∣∣ · ∣∣∣∣J h

∣∣∣∣. (5.15)

Consider h∗ ∈ C∞(H) such that, for h ∈ C∞(H) we have

||DJ−1h∗|| = sup
||h=1||

||DJ−1h||. (5.16)

Hence we can write

||DJ −1h∗|| =

∣∣∣∣
∣∣∣∣∂y

∫
H
G(x, y, t, ξ, η, τ)Lh∗(ξ, η, τ)dξdηdτ

∣∣∣∣
∣∣∣∣

≤ λ, (5.17)

with 0 < λ < ∞ in force of the properties of the Green’s function. Then, we can write the

relation (5.15) as

∣∣∣∣Dh
∣∣∣∣ ≤ λ · ∣∣∣∣J h

∣∣∣∣. (5.18)

Before studying the regularity of the solution of the Cauchy problem (5.1) we make the

following:

Remark 5.3. Let L be the operator verifying the hypothesis of Theorem 5.2. Then Theorem

5.2 and Corollary 5.1 are hold true also for the operator Lλ defined as Lλ = L − λ, with

the same coefficient λ.

The proof comes directly by substitution of h by h · e−λt.

Proof of Theorem 5.1 The core of the proof is substantially the same given in [22]. We add

and subtract the term x
x0
uy(x, y, t) to the Cauchy problem (5.1). Rearranging the terms we

get:

ut − uxx +
x

x0
uy = f +

(
x

x0
− 1

)
uy (5.19)

u(x, y, t) = φ(x, y, t) (x, y, t) ∈ ∂PH

TESI DI DOTTORATO IN METODI MATEMATICI PER L’ECONOMIA, L’AZIENDA, LA FINANZA E LE

ASSICURAZIONI - XXII CICLO - MATTIOLI MAURO - UNIVERSITA‘ LUISS “GUIDO CARLI”



5.1. CLASSICAL SOLUTION FOR PRICING PROBLEMS IN A TOY-MODEL 69

where x0 is a costant coefficient, that depends on the considered domain, and is such that

x0 = x̄− (∆ + ε) where ε is chosen small enough that x/x0 > 0, for any x ∈ D.

For each n ≥ 1, we consider the sequence u(n) of the solution of the problem, defined as

u
(n)
t − u(n)xx +

x

x0
u(n)y = g(n−1) (5.20)

u(n)(x, y, t) = φ(x, y, t) (x, y, t) ∈ ∂PH

where g(n)(x, y, t, u
(n)
y ) = f +

(
x
x0

− 1
)
u
(n)
y , and u(0)(z) ∈ C∞(H) is defined as:

u(0)(x, y, t) = eγ(T−t) + ||φ||∞ − 1 (5.21)

with γ = ||φ||∞ + ||f ||∞.

Remark 5.4. A direct calculation shows that g(0) − L0u
(0) ≥ 0 if (x, y, t) ∈ H and

u(0) ≥ φ for (x, y, t) ∈ ∂PH , where L0 is the operator of the problem (5.20).

Remark 5.5. For each n ∈ N the solution u(n) ∈ C∞(H). Indeed the operator L0 defined

as L0 = ∂t − ∂xx + x
x0
∂y is hypoelliptic since all the coefficients are smooth anth the

Kalman’s condition is verified, then the Hörmander condition is hold true, and the sourcing

term is in C∞(H).

We observe that the existence of the solution to the Cauchy problem (5.20) is granted by the

results in [22]. By adapting the technique used by Pascucci, we can show that the sequence

u(n) converges towards a function in C2,αB (H), where B is the matrix given by

B =

(
0 0
1
x0

0

)
.

First of all we want to show by induction that the solutions
(
u(n)

)
n

is a decreasing sequence,

uniformly bounded and solve the Cauchy problem (5.20) (this is true by construction). Then

it is possible to show that, in the case we are considering now, the solutions seqence of

solutions {u(n)}n have the same properties of regularity of the sourcing term given at n−1.

Indeed the sourcing term of the problem n-th depends on the solution at step (n− 1).

We consider the following Cauchy problem:

u
(n)
t −u(n)xx +

x

x0
u(n)y −λu(n) = f+

( x

x0
− 1

)
u(n−1)
y −λu(n−1) (5.22)

u(n)(x, y, t) = φ(x, y, t) (x, y, t) ∈ ∂PH
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We suppose that for each n ∈ N the following inequalities are hold true:

−u(0) ≤ u(n+1) ≤ u(n) ≤ u(0) (5.23)

where u(0) is defined in (5.21). This fact implies that the sequence u(n) converges in H(T ).

We indicate by u such a limit.

Since u(n) is the solution of the Cauchy problem (5.22), and converges to u, we can follow

the same arguments used in [22] in order to state that the sequence u(n) admits a subse-

quence u(nj) that locally converges in C2,αB (K), where K is any compact subset of H(T ).

At the end, we can conclude this part of the proof by taking the limit for nj towards infinity,

and then we get

ut − uxx + uy = f (5.24)

whit final condition u|∂PH = φ.

In order to conclude this part of the theorem we have to prove the continuity of the solution

up to boundary. This fact is ensured by the existence of the barrier function on the boundary

of a regular domain. The precise procedure can be found, for example in [22] and [56]. In

particular, the existence of such a barrier function is granted by the considered operator L0
and the regularity of the domain (see Definition 5.3 and Remark 5.7 below) and is explicitly

provided in [52].

Now, if we show that the relation (5.23) holds true for every n ≥ 1 then we have proved

Theorem 5.1.

In force of Remark 5.4, the condition u(1) ≤ u(0) is obviously satisfied. Hence, let L0

and g(n) be respectively the operator and the sourcing term, defined in the Cauchy problem

(5.20). By the result of the problem (5.22) and Remark 5.4 we can write:

L0

(
u(1) − u(0)

)− λ
(
u(1) − u(0)

)
= g(0) − L0u

(0) ≥ 0. (5.25)

Since u(1) ≤ u(0) on ∂PH , by the maximum principle for cylindrical domains (see for

instance Proposition 2.2 in [52]), the condition u(1) ≤ u(0) is satisfied on all H(T ).

As shown in [22], we show the relation (5.23) by induction. Suppose the relation u(n) ≤
u(n−1) be hold true until n, we show that it is hold true also u(n+1) ≤ u(n). This fact is true

since u(n+1) and u(n) verify the same boundary conditions. Furthermore we have

L0

(
u(n+1) − u(n)

)− λ
(
u(n+1) − u(n)

)
=

[( x

x0
− 1

)(
u(n)y − u(n−1)

y

)]
− λ

(
u(n) − u(n−1)

)
.
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By Corollary 5.1 and by the definition of x0, we can get directly the relation

L0

(
u(n+1) − u(n)

)− λ
(
u(n+1) − u(n)

) ≥ −λ
x

x0

(
u(n) − u(n−1)

)
≥ 0. (5.26)

Hence, in force of the maximum principle for cylindrical domains we can state that u(n+1) ≤
u(n) on ∂PH . At the hand, since u(1) ≤ u(0) is satisfied as well, then the relation u(n) ≤
u(n−1) holds true for each n on all the domain H(T ).

As remarked in [22], the same arguments show that for each n it is hold true also −u(0) ≤
u(n), that ends the proof of Theorem 5.1.

Remark 5.6. We notice also that the way we have followed in order to prove the existence

of a classical solution to the problem (5.1) provide a recursive semianalytical expression of

the solution for the Cauchy problem (5.1).

5.2 Existence and uniqueness of the solution for the general va-

luation equation

In the previous section we have considered a simple model where the infinitesimal generator

is very similar to the ones considered in several works by Lanconelli, Pascucci, Polidoro.

Unfortunately, in their works, the authors consider operators with a specific form and, in

several cases of interest in financial applications their results cannot be directly applied. In

particular, when only Assumptions 4.1-4.4 are verified, the theory of hypoelliptic operators

and viscosity solution theory cannot be applied. On the other hand, by adapting the tech-

nique used by Lanconelli and Pascucci for the case of hyoelliptic operators, we can prove

the existence of a unique solution that is also regular in some sense. In the following sec-

tions we shall introduce the problem and main results related to the solution of the valuation

equation.

We have seen in the previous chapter that the presence of the Lyapunov function V (x)

ensures the well-posedness of the martingale problem (A, P0) for any initial distribution

P0. Furthermore, the presence of such a Lyapunov function avoid the process X to reach

the boundary of the domain, or blows up in a finite time. Such a result gives a precise

formalization to the common feeling that, for some specific behaviour of the coefficients,

there are some regions of the space D that are forbidden to the process X. On the other

hand the well-known Feller’s condition can be seen, in some ways, as a particular case of

this result. Expecially, we see in Chapter 6 that, in the case of the CIR model, the Feller’s

condition is enough to ensure a Lyapunov-type condition verifying Assumption 4.3.
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On the other hand the results provided in [17] deal with the well-posedness of the pricing

problem (3.1). In particular the authors prove that when Assumptions 4.1-4.4 are fulfilled,

then the pricing problem (3.1) admits one and only one viscosity solution. These results are

presented in the following two theorems.
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Theorem 5.3 (Theorem 2.9 in [17]). For every x ∈ D, let Xx be the process of Theorem

4.3 with initial condition P0 = δ(x). Then, for every t ∈ [0, T ]

E

[∣∣∣∣φ(Xx
T−t)e

− ∫ T−t
0 c(Xx

r )dr −
∫ T−t

0
f(Xx

s , t+ s)e−
∫ s
0 c(Xx

r )drds

∣∣∣∣
]
< ∞. (5.27)

For each (x, t) ∈ D × [0, T ], the function u(x, t) defined as

u(x, t) = E

[
φ(Xx

T−t)e
− ∫ T−t

0 c(Xx
r )dr −

∫ T−t

0
f(Xx

s , t+ s)e−
∫ s
0 c(Xx

r )drds

]
(5.28)

is continuous on D × [0, T ]. Furthermore it is a viscosity solution of the problem (3.1) and

satisfies the relation

|u(x, t)|ϕ(|u(x, t)|) ≤ CT (1 + V (x)) (5.29)

for every (x, t) ∈ D × [0, T ].

We remark that the relation (5.29) is a direct consequence of Assumption 4.4. Such a

condition is needed in order to guarantee the uniqueness of the viscosity solution. On the

other hand, it will be clear in Chapter 6 that in several models, such as in stochastic volatility

models, the existence and uniqueness may not hold true. This is the case, for instance, when

the coefficients of the SDE and the final payoff, or f , have high growth rate. Assumption

4.4 provides a bound on the growth rate allowed to the final payoff and f . As expected this

type of bound is also fulfilled by the solution u(x, t) through the inquality (5.29).

Theorem 5.4 (Theorem 2.10, in [17]). There exists only one viscosity solution to the prob-

lem (3.1) satisfying (5.29).

The relation (5.27) is a direct consequence of Assumption 4.4 on φ, f and c, and the result

of Theorem 4.3, relation (4.23). We notice that, by the same reason it is possible to prove

the boundedness of the terms in the inequality (5.28) separately. This result implies that the

function u(x, t) given in (5.28) is well defined.

The authors get proof of the continuity of the function u(x, t) and the fact that it is a vis-

cosity solution is achieved in two distinct steps. In particular, the continuity of the function

u(x, t) is shown taking a sequence {xk}k converging to x ∈ D, and by observing that the

process Xxk converges weakely to Xx (see for example Theorem 8.15, Chapter 4, in [28]).

Therefore, by setting

Y x
t = e−

∫ t
0
c(Xx

s )ds,
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since P(Xx
t �= Xx

t−) = 0 for every t ≥ 0 it is possible to state that for every {(xk, tk)} ⊆
D × [0, T ] converging to (x, t) ∈ D × [0, T ],

φ(Xxk
T−tk

)Y xk −
∫ T−tk

0
f(Xxk

s , s + t)Y xk
s ds

L→ φ(Xx
T−t)Y

x −
∫ T−t

0
f(Xx

s , s + t)Y x
s ds.

(5.30)

The assertion arises by observing that the random variables in the left-hand side of (5.30)

are uniformly integrable due to the relation (5.27), which allows us to take expectation in

(5.30). Then the expectation of the-left hand side of (5.30) converges to the expectation of

the right-hand side.

The proof that the function u defined in (5.29) is achieved by showing that it is both sub and

super-solution in the viscosity sense for the problem (3.1). In doing that, the fact that Xx is

a strong Markov process and verifies the martingale problem for (A, δ(x)) plays a crucial

role.

Therefore, Assumptions 4.1-4.4 are sufficient conditions in order to guarantee that there

exists a viscosity solution to the pricing problem (3.1). As usual in the viscosity solution

theory, the uniqueness of such a solution follows directly from the comparison principle

below.

Theorem 5.5 (Theorem 4.6, in [17]). Let u and u be respectively a viscosity sub-/super-

solution of (3.1) both satisfying (5.29). Then u(x, t) ≤ u(x, t) for all (x, t) ∈ D × [0, T ].

In this case the authors build a penalization function wβ(t, x, y) defined as

wβ(t, x, y) = u(x, t)− u(y, t)− β [1 + V (x) + V (y)] , (5.31)

where β > 0 is a costant arbitrarly chosen, x, y ∈ D, the functions u and u are respec-

tively sub/super-solution to the pricing problem (3.1) and V (x) is the Lyapunov function of

Assumption 4.3.

In force of the relation (5.29), for each β there exists a suitable compact subset Kβ such

that for each (x, y) ∈ Kβ and t ∈ [0, T ] it is verified wβ(t, x, y) ≤ 0.

Then, for t ∈ [0, T ], the auxiliary function

ϑβ(t) = lim
r→0+

sup{max(wβ(t, x, y), 0) : x, y ∈ D, |x− y| < r}, (5.32)

is defined. If we denote by ϑ∗β its upper semi-continuous envelope, the thesis is then proved

by the authors showing that for each t ∈ [0, T ] and β > 0, it holds

ϑ∗
β(t) = 0. (5.33)
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5.3 Classical solution to the pricing problem

In this section we see that the results we have got untill now can be used directly in order

to show that, under suitable conditions on the diffusion matrix a(x) = σ(x)σ(x)�, there

exists a unique classical solution of the pricing problem (3.1) in C2,1 in some open bounded

subset S included in D. This result is quite standard in the theory of the parabolic equations.

However, we are able to prove that such a solution coincides with the unique viscosity

solution found in Theorems 5.3 and Theorem 5.4 in the domain S. This result comes directly

from our knowledge on the existence and uniqueness of a global viscosity solution. In

particular, we are able to restrict ourslves to a bounded domain and to require the standard

properties of regularity be valid just locally.

In other words, under the same hypoteses of Theorem 5.3 and Theorem 5.4, strongening

the assumptions on the diffusion matrix a(x), and the functions c(x) and f(x, t) on some

bounded domain S, the viscosity solution is not a mere continuous function or Ḧolder con-

tinuous, but in S is twice differentiable with respect to x and once with respect to t.

In the first part of the section we recall a fundamental result on the parabolic partial dif-

ferential equations for pure diffusive operators Ad as defined in the relation (3.3). In the

second part of the section we give our main result dealing with the additional regularity for

the viscosity solution u(x, t).

In what follows we consider an open bounded ball S that is subset of D, such that the

closure of S is included in D. We remark that S has boundary C2. When we deal with

bounded domains, and the integro-differential is pure diffusive, then it is well known that

the continuity of the solution on the boundary is ensured if a suitable barrier function is

defined on the domain, whenever such a domain is regular enough, and the initial data are

continuous (see e.g. [56] and the technique used by [52], or the results in [9]). The regularity

required for such a domain depends on the form of the differential operator Ad.

Definition 5.1. Let S ⊂ Rn be a bounded and closed domain. Then S is regular if, for each

x0 ∈ ∂S, there exist un open boundary Ω of x0 and a function f : Ω → R, in C1(Ω) such

that ∇f(x) �= 0 in Ω and:

∂S ∩ Ω = {x ∈ Ω : f(x) = 0} (5.34)

int S ∩ Ω = {x ∈ Ω : f(x) < 0} (5.35)

Definition 5.2. Let S be a regular domain of Rn and x0 ∈ ∂S. Let us define ζ(x0) the

outer normal vector to S in x0 the versor defined as:

ζ(x0) =
∇f(x)

|∇f(x)|

∣∣∣∣∣
x0

(5.36)
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We notice that the adjective outer is motivated by the fact that, it is possible to show that,

the versor defined in (5.36) is directed out of the domain S.

Now we can define the properties of the domain where the existence of a barrier function to

L is ensured.

Definition 5.3. Let S be an open subset of D. The point x0 in ∂S is strongly Ad-regular if

there exists a Ad-non-charachteristic outer normal to S in x0, i.e. a vector ζ �= 0 such that

B|ζ|(x0 + ζ) ∩ S = {∅} and 〈a(x0, t)ζ, ζ〉 > 0 for every t ∈ [0, T ].

Remark 5.7. If the diffusion matrix a(x) is uniformly positive defined in the domain S, and

S is regular in the sense of the Definition 5.1, then for each x0 in ∂S is strongly Ad-regular.

The Remark 5.7 can be weakened to any domain S̃ such that the following hypotheses are

hold true

i) ∂S̃ is differentiable almost everywhere, at least in a finite countable subset X0 of ∂S̃,

ii) there exists S̃∗ such that ∂S̃∗ is differentiable and S̃ ⊂ S̃∗,

iii) for each x0 ∈ X0 it is valid x0 ∈ ∂S̃∗.

Such hypotheses include, obviously, the domain considered by Lanonelli and Pascucci in

[52] and Di Francesco, Pascucci, Polidoro in [22]. Instead, a very simple counter example

is given by a cross domain. In such a case, indeed, due to the intersection of the two axes of

the cross, it is not possible to fulfill at the same time both the points (ii) and (iii).

Proof of Remark 5.7 The proof of the Remark comes directly by standard arguments. First

of all we notice that since the diffusion matrix a(x) is uniformly positive define in S, then

the condition 〈a(x)ζ, ζ〉 > 0 for each ζ �= 0.

Now we have to show that for each x0 ∈ ∂S there exists a vector ζ �= 0 outer normal to

S in x0 such that B|ζ|(x0 + ζ) ∩ S = {∅}, with S is a regular domain in the sense of the

Definition 5.1.

Consider x0 ∈ ∂S and ζ(x0) the outer normal vector to S in x0. Let v be defined as

v = x0 + λζ(x0) with λ > 0. For λ arbitrarily small, the point v does not belong to S,

indeed, if λ is small enough v belongs to Ω of the definition 5.1. Furthermore we can write

d

dλ
f
(
x0 + λζ(x0)

)∣∣∣
λ=0

= 〈∇f(x0), ζ(x0)〉 =
∣∣∇f(x0)

∣∣ > 0. (5.37)

Due to the regularity of the function f , there exists ε > 0 such that d/dλf
(
x0+λζ(x0)

)
> 0

for each λ ∈ [0, ε). Furthermore, since f(x0) = 0 we have

f
(
x0 + λζ(x0)

)
> 0 ∀ ∈ (0, ε]. (5.38)
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Since the domain S is regular, for each x0 ∈ ∂S there exists a neighbour I of x0 such that,

for each x ∈ I ∩ ∂S, the relation (5.38) is hold true, for ε depends on the point.

Then, by the continuity of f , there exists a domain Ω̃ ⊃⊃ Ω such that f(x) > 0 vof each

x ∈ Ω̃ ∩ Ωc.

We indicate by ρ̄ = minρ d(∂Ω̃, ∂Ω) the minimum dinstance between ∂Ω̃ and ∂Ω. This

means that for each x0 ∈ ∂Ω there exists ρ > 0 such that f(x) > 0 for each x ∈ Bρ

(
x0 +

ρv(x0)
)
, that ends the proof.

Consider the operator Ad restricted to the domain S × [0, T ]. Then the coefficients a(x)

and µ(x) of Ad are Lipschitz continuous in S × [0, T ]. Now we make the additional

Assumption 5.1. Let S be a regular bounded open domain. Let A be a pure diffusive

operator with coefficients µ and a restricted to S × [0, T ]. Let a be the diffusion matrix of

the operator A such that for each x ∈ S and ζ ∈ Rd there exists λ > 0 such that

〈a(x)ζ, ζ〉 ≥ λ|ζ|2. (5.39)

Suppose c(x) and f(x, t) be Hölder continuous in S̄ × [0, T ].

Remark 5.8. It is trivial to show that every point x0 in the boundary of the considered ball

S is strongly Ad-regular in the sense of the Definition 5.3.

If all Assumption 4.1 and Assumption 5.1 are verified, then the following result is valid

Theorem 5.6 (Theorem 3.6 p. 138, [35]). Let φ and g be a continuous function respectively

on S, and ∂S × [0, T ] such that g(x, T ) = φ(x). Assume also that there exists a barrier

function at every point of S. Then there exists a unique solution v ∈ C2,1(S × [0, T )) ∩
C(S × [0, T ]) to the problem

(CP )

⎧⎪⎨
⎪⎩

∂tv +Adv − cv = f (x, t) ∈ S × [0, T )

v(x, T ) = φ(x) x ∈ S

v(x, t) = g(x, t) (x, t) ∈ ∂S × [0, T ].

Remark 5.9. In force of the Remark 5.7, each point of the domain ∂S is Ad-strongly regu-

lar, then the barrier function of Theorem 5.6 is explicitely provided in [52].

In what follows we suppose that for each set S such thatS̄ ⊂ D Assumption 4.1-Assumption

4.4, and Assumption 5.1 are hold true.

Remark 5.10. Under the considered Assumptions there exists a unique viscosity solution

u(x, t) to the pricing problem (3.1), where the operator A in the problem (3.1) is a pure

diffusive problem.
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We remark furthermore that the problem (3.1) in D the does not need the boundary condi-

tions.

Now we state the following

Theorem 5.7. Consider the domain S as previously defined and let A be a pure diffu-

sive operator. Suppose Assumptions 4.1-Assumption 4.4 and Assumption 5.1 are hold true.

Then, there exists a unique classical solution v ∈ C2,1(S × [0, T )) ∩ C(S × [0, T ]) to the

problem

(CDP )

⎧⎪⎨
⎪⎩

∂tv +Adv − cv = f (x, t) ∈ S × [0, T )

v(x, T ) = u(x, T ) x ∈ S

v(x, t) = u(x, t) (x, t) ∈ ∂S × [0, T ]

where u is defined in (5.28) and is the viscosity solution of the pricing problem (3.1).

An analogous Theorem is provided By Baldi in [9] (Theorem 9.5, p.193) that consider a

domain Q with ∂Q ∈ C2. Such Assumption is strong enough to ensure the existence of a

barrier function.

Proposition 5.1. Under the hypotheses of Theorem 5.7 the classical solution v to the pure

diffusive problem (CDP ) coincide with viscosity solution u to the problem (3.1).

Theorem 5.7 is telling us that there exists a unique classical solution v(x, t) to a problem

where the infinitesimal generator Ad is the diffusive part of the operator (3.2), the sourcing

term is the same of the problem (3.1), and the function v(x, t) coincides, at the parabolic

boundary, with the viscosity solution u(x, t) of the valuation equation (3.1).

Proposition 5.1, instead, says that such a classical solution v(x, t) coincides with u(x, t) in

all the considered cylindrical set S × [0, T ].

Proof of Theorem 5.7 The existence of a unique viscosity solution u(x, t) to the problem

(3.1) is ensured in force of Theorem 5.3 and Theorem 5.4.

All the hypotheses of Theorem 5.6 are fulfilled, indeed the existence of a barrier function is

ensured by the regularity of the considered domain, the coefficients are Lipschitz continuous

in S̄, the diffusion matrix a(x) is uniformly positive defined in S̄, and the terms c and f are

Hölder continuous by hypoteses. Then, applying Theorem 5.6, we have that there exists a

unique classical solution v(x, t) ∈ C2,1(S × [0, T )) ∩ C(S × [0, T ]) to the pricing problem

(CDP ) that coincides with the viscosity solution of the problem (3.1) at the boundary of

S × [0, T ].

If we show that the solution v(x, t) coincides with u(x, t) in all the domain S, then we have

got the result.
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Since the infinitesimal generators A and Ad for u and v does not coincide, it is not possible

to show that u coincides with v in S by using standard arguments, but we need some partial

results.

Proof of Proposition 5.1. Now we can prove that the solution v(x, t) of the Cauchy-

Dirichlet (CDP ) problem coincides with the solution u(x, t) to problem (3.1) in the cylin-

drical domain H = S × [0, T ]. Such a result is achived directly from the properties of the

solution u(x, t). We observe that, using the same approach, the same result is given in [23]

for a particular form of the integro-differential operator.

We know that there exists a unique viscosity solution u(x, t) to the pricing problem (3.1)

in the domain D and a unique classical solution to the problem (CDP ). For a fixed point

(x̄, t̄) ∈ (0, T ) ×D and δ > 0, consider the problem

(CDPv)

{
∂tv +Adv − cv = f (x, t) ∈ S × (t̄, t̄+ δ)

v = u (x, t) ∈ ∂P [S × (t̄, t̄+ δ)].

Since the quantity

u
(
X x̄

t∧τ , t̄+ t ∧ τ
)
e−

∫ t∧τ
0 c(Xx̄

s )ds −
∫ t∧τ

0
f(X x̄

s , s)e
− ∫ s

0 c(Xx̄
z )dzds

is an {FX
t }-martingale for every {FX

t }-stopping time τ , we consider the first exit time τ

of (X x̄
s−t̄)s≥t̄ from the domain S. Furthermore, since u and v coincide on the parabolic

boundary of S × (0, T ), and u is a martingale we can write

u(x̄, t̄) = E

[
v(X x̄

τ−t̄, τ)e
− ∫ τ

0 c(Xx̄
s )ds −

∫ τ

0
f(X x̄

s , s)e
− ∫ s

0 c(Xx̄
z )dzds

]
, (5.40)

and then, by applying It̂o’s lemma to the right side of the equation (5.40) we get

u(x̄, t̄) = E

[
v(X x̄

τ−t̄, τ)e
− ∫ τ

0 c(Xx̄
s )ds −

∫ τ

0
f(X x̄

s , s)e
− ∫ s

0 c(Xx̄
z )dzds

]
= v(x̄, t̄). (5.41)

Notice that the result we have got in Theorem 5.7 and in Proposition 5.1 is independent on

the center of the ball S and radius. This means that the properties we have found so far

are locally valid, and may be applied in each ball S of D. Iterating the arguments for each

Sn ⊂ D, we can state that the viscosity solution u of the problem (3.1) is also C2,1 in each

compact D0 = ∪nSn such that D0∩∂D = {∅}. In particular this is true since the existence

of a unique viscosity solution to the problem (3.1) is a global property of the problem. Then,
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once that the existence of such a solution is proven, additional properties of regularity are

local features of the solution.

This strategy allows us to define a solution u(x, t) that is a priori merely continuous and

solves the valuation problem in the viscosity sense. However, there may exist sub-domains

Sk ⊂ D for k = 1, 2, ... such that, the solution u(x, t) gains more regularity.

5.4 Conclusions

In this chapter we have considered a very simple model in order to introduce the problem of

the well-posedness of the pricing equation (3.1). However, we have seen that it is possible

to give some results on the existence and uniquenss of a regular solution. On the other hand,

a very general result provided by [17] is shown. In such a work under Assumptions 4.1-4.4

the existence of a unique viscosity solution is proved. Unfortunately the viscosity solution

theory ensures just that the solutions are continuous but no further regularity is granted a

priori.

However, we have proved that, if there exists a domain where the diffusive matrix is uni-

formly positive defined up to the boundary and the running cost and the interest rate are

Hölder continuous, then the viscosity solution is granted to be twice differentiable with

respect to x and once with respect to t.

We conjecture that this fact is a general property of the considered problem, given the par-

ticular expression of the viscosity solution u(x, t). Then whenever there exists a unique

viscosity solution, further regularity could be investigated just locally. This fact should al-

lows us to restrict ourselves to subdomain, and then we are not forced to require that some

of the assumptions are satisfied in all the considered domain.
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Chapter 6

Application to jump-diffusion

stochastic volatility models

In the previous chapters we have seen that many problem of interest for finance are quite

stiff to be dealt with a rigorous mathematical approach, and in some cases the present liter-

ature cannot be applied. We referer in particular to the cases where the stochastic process

is allowed to have sudden jumps. However, at the light of the recent developments, mainly

being the work by Costantini et al. [17], and at the light of the results got in this work, many

useful properties of the stochastic processes and the pricing problems are provided. Such

results have direct implication both from a theoretical point of view and from a practical

perspective. In particular we have seen that, under quite general assumptions on the coef-

ficients, and whenever a Lyapunov type condition is verified, then such processes do not

reach the boundary of the domain or, in the case of unbounded domains the processes are

not allowed to blow up in a finite time almost surely. Furthermore some estimates on the

dependence on the initial data have been provided. In particular, even if the processes are

driven by coefficients that are only locally Lipschitz continuous, then it is possible to prove

a kind of continuity with respect to the initial data.

Furthermore, dealing with the problem of pricing derivatives, following the results provided

in [17], we have seen that the valuation equation admits one and only one solution under

general conditions, and a representation formula for u(x, t) is also provided. However

we have proven that such a viscosity solution, that is granted to be only continuous for the

general case, can exhibit additional regularity in the subsets where the final payoff is regular

enough. In particular, the solution u(x, t) has been shown to be Ḧolder continuous in each

subset where the final payoff is Hölder continuous. At the end, in all compact domains

where the diffusion matrix is positive defined, the viscosity solution u(x, t) is proven to be

even twice differentiable with respect to x and once with respect to t.

In this chapter we try to apply the results got so far. In particular we will focus on the

81
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model proposed by Ekstr̈om and Tysk in [29]. In their work, the authors present some

interesting results dealing with stochastic volatility models, assuming general features for

the drift term µ(x) and the diffusive one σ(x). Then the well known Heston model is

a particular case of their model. In particular we are interested in applying the results

we have got in previous chapters, dealing with the pricing problem. In the study of the

existence and uniqueness of the solution in the viscosity sense, it is possible to generalize

their model, allowing the process X to have sudden jumps. Unfortunately, when we want

to study additional regularity to the solution, our results can be applied to pure diffusive

problems.

All the results we get in this chapter are substantially obtained assuming the coefficients

µ and σ verify all the hypoteses assumed in [29]. On the other hand, our approach allows

us to consider final payoffs φ that are more general with respect to ones considered by the

authors.

The Chapter is organized as follows. In the first section an introduction on the model pro-

posed in [29] is provided, pointing our attention on the form assumed for the stochastic

process and on the assumptions that are made on the coefficients. Then two very interesting

results on the existence and uniqueness of the solution provided by the authors are given. In

the second section, instead, the explicit form for the Lyapunov function is given. In partic-

ular, we verify that Assumptions 4.3 is provided, and all Assumptions 4.1-4.4 and 5.1 are

satisfied under the same hypoteses made in [29]. Hence, at the light of Theorems 5.3, 5.4

and Proposition 5.1 we can state some results of existence and uniqueness of the solutions in

a classical sense. Furthermore, Theorems 5.3 and 5.4 allow us to state and prove existence

and uniquenss of the viscosity solution in the case sudden jumps are included in the model.

Once all the assumptions of our theorems are verified, the existence and uniqueness of the

solution and additional regularity is automatically achieved.

We can anticipate an interesting consideration on the Lyapunov function. In particular,

whenever the evolution of the volatility term is assumed to evolve following a CIR model,

then in a very natural way the well-known Feller’s condition on the parameters κ, θ and σ0

is needed in order to avoid the process Vt reaches the boundary.

6.1 Classical solution for stochastic volatility models

In last year Ekström and Tysk proposed in [29] a model that belongs to the class of the

stochastic volatility models. In particular such a model is a Black and Scholes-type model,

since the price of the asset is assumed to evolve following a GBM diffusion process, and

the volatility is a stochastic process as well. As we have already remarked in the previous
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chapters, stochastic models in this generality may be not well defined. Furthermore, even

if there exists a solution to the problem (2.9), existence, uniqueness and regularity of the

solution to the problem (3.1) may be not granted. Then some simplifications on the coef-

ficients are needed. In particular, the authors assume the functions β(St, Vt) = β(Vt) and

σ(St, Vt) = σ(Vt) depend on Vt, as in the most of stochastic volatility models, but they

allow to freely choose the form of such functions, provided that some assumptions on their

regularity are verified. Such assumptions are obviously needed in order to guarantee the

existence and regularity of the solution to the pricing problem (3.1). As it should be clear

the model proposed in [29] generalizes the well-known Heston model.

In particular, in the model proposed by Ekstr̈om and Tysk in [29], the process (St, Vt) is

assumed to evolve as

(ET )

{
dSt =

√
VtStdW

1
t

dVt = β(Vt)dt+ σ(Vt)dW
2
t

where W 1
t and W 2

t are two starndard brownian motions with constant correlation ρ ∈
(−1, 1). In terms of deterministic differential approach, the corresponding infinitesimal

generator Ad is a pure diffusive operator of the form

Adg =
1

2
vs2

∂2

∂s2
g + ρσ(v)

√
vs

∂2

∂s∂v
g +

σ2(v)

2

∂2

∂v2
g + β(v)

∂

∂v
g. (6.1)

where g ∈ C2,2.

In their work, some specific assumptions are made on the coefficients β and σ, that are re-

quired to be regular enough, in order to guarantee the existence and uniqueness of a classical

solution to the pricing problem of the type (3.1), with infinitesimal operator given by Ad
defined in (6.1). Furthermore, when a European type derivative with final payoff φ is con-

sidered, then some assumptions are obviously needed also for φ. In particular the following

hypoteses are made.

Definition 6.1. We say the functions β, σ, and φ verify the Assumption ET if the following

hypoteses hold

i) β ∈ C1([0,∞)) with α-Hölder continuous derivatives and β(0) ≥ 0

ii) The volatility σ : [0,∞) → [0,∞) verifies σ(0) = 0 and σ(v) > 0 for all v > 0 and

the function σ(v)2 is continuously differentiable on [0,∞).

iii) The functions β and σ have at most linear growth of rate, that is

|β(v)| + σ(v) ≤ C(1 + v)
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iv) The payoff function φ is so that sφ′(s) and s2φ′′(s) are bounded.

The authors have shown in [29] that if β, σ and φ verify Assumption ET then, the price

u(x, t) of the European contigent claim with final payoff phi, defined as in (5.28) and with

c = f = 0 is a classical solution to the pricing equation (3.1), provided that some boundary

conditions are satisfied. Such a result is get in their Theorem 2.3 that can be formulated in

the following way

Theorem 6.1 (Theorem 2.3, [29]). Suppose Assumptions ET are satisfied. Consider the

function w(s, v, t) defined as

w(s, v, t) = E

[
φ(XT )

∣∣∣Ft

]
. (6.2)

Then, the function w is a classical solution to the pricing equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tw(s, v, t) +Adw(s, v, t) = 0 (s, v, t) ∈ (0,∞)2 × [0, T )

w(0, v, t) = φ(0) (v, t) ∈ [0,∞)× [0, T ]

∂tw(s, 0, t) + β(0)∂vw(s, 0, t) = 0 (s, t) ∈ (0,∞) × [0, T ]

w(s, v, T ) = φ(s) (s, v) ∈ (0,∞)2.

Such a result is interesting since many cases of interest are included where the evolution of

the type (ET) is considered. Unfortunately, the assumptions made on the final payoff seem

to be quite restrictive, as stated also by the authors. In their work, the autors conjecture

that the operator A may have sufficient regularizing properties if β(0) > 0. At the light of

our results, it seems that such an additional assumption is necessary and almost sufficient in

order to guarantee that the operator Ad has sufficient regularizing properties.

A very interesting result got by Ekstr̈om and Tysk deals with the uniqueness of the classical

solution whenever the hypoteses in their Theorem 2.3 are verified.

In particular, the author prove that, even if Assumptions (ET) are satisfied, the uniqueness of

the classical solution may be lost, and is granted just is the final payoff has at most strictly

sublinear growth rate. If it is not the case, then some additional assumptions are needed.

In particular, these assumptions deal with the correlation between the asset price and the

volatility, or the growth rate of the volatility process. We see in details such assumptions. If

such hypoteses are sutisfied, then the uniqueness of the classical solution can be achieved

also for linear payoffs.

Such results are well formalized in the following theorems.

Theorem 6.2 (Theorem 6.1, [29]). There is at most one classical solution to the pricing

equation, which is of strictly sublinear growth in x and polynomial in y.
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Such a result is strongened by Andersen in [7] in which a specific example is shown. How-

ever, Ekström and Tysk have shown that, if the correlation ρ ≤ 0 or the growth rate of the

volatility is less than half, then we can allow the payoff to be linear in x and polynomial in

y in order achieved the uniqueness of the classical solution to the pricing equation. Such a

result is well defined in their

Theorem 6.3 (Theorem 6.2, [29]). Assume that ρ ≤ 0 or that σ(v) ≤ C(1 + vγ) with

γ ≤ 1/2 for all v and some constant C . Then there is at most one classical solution to the

pricing equation in the class of functions that are at most linear in x and polynomial in y.

From an intuitive point of view, this result can be easily explained. In the case of volatility

models, the volatility of the process St is a stochastic process. If the volatility and the prices

are positively correlated, then more the prices rise, more their volatility blows up. Then it

is possible that the expected value of the process St could be not defined. If this condition

occurs, then the expectation of a payoff having a linear growth rate with respect to St, or

even higher, could not be defined. Hence a kind of boundness to the growth rate of the

volatility is required, or the prices have to be negatively correlated with the level of the

volatility.

For a detailed discussion of the results, and a useful background in the case of the model

proposed by Ekstr̈om and Tysk, we refer directly to their work [29] and the reference therein.

6.2 Solutions for jump-stochastic volatility model

In this section we want to understand how our results can be applied to the model proposed

by Ekström and Tysk and which results we can get if we consider less restrictive assump-

tions on the coefficients and the final payoff, or including sudden jumps both to the process

representing the prices of the asset and the volatility. It is obvious that when sudden jumps

are included Assumption 4.2 have to be verfied and the diffusion matrix σ2(v) is required

to be twice differentiable and not only be locally Lipschitz continuous. We observe since

now that, in the case of jump-stochastic volatility model, the results we have presented in

this work allow us the deal with the existence and uniqueness of viscosity solutions, but no

additional regularity is granted.

As it will be clear, even in a jump-diffusion stochastic volatility framework, whenever hy-

potheses (ET) on the coefficients and in Theorems 6.1 and 6.2 in [29] are fulfilled, under

suitable assumptions on the final payoff φ it is possible to find a Lyapunov function V that

verifies Assumptions 4.3 and 4.4.
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Remark 6.1. We observe that Proposition 8.24 in [9] implies that, whenever the hypoteses

provided by Ekström and Tysk are satisfied then Assumption 4.1 is satisfied as well.

Then, if we are able to prove that there exists V such that Assumptions 4.3 and 4.4 are

satisfied, then we can apply the results of Theorem 5.3 and Theorem 5.4 in order to state

that the pricing problem (3.1) admits one and only one viscosity solution.

On the other hand, in the case we consider just pure diffusive problems, we have shown in

the previous chapters that under the same assumptions on the coefficients of the stochastic

process Xt, some important results on the regularity of X with respect to initial data is

granted. Furthermore, such a regularity is inhered by the solution of the pricing problem

(3.1). In particular, in the case the running cost f and the final payoff φ have suitable

properties of regularity that are verified in the most contracts traded in the real markets,

the unique solution u is not only a solution in the sense of viscosity theory, but gains more

regularity than the mere continuity.

At the end, we observe that the diffusion matrix a = σ2 in [29] is positive defined in each

compact subset of D. Hence, as a direct result of Theorem 5.7 and Proposition 5.1, we get

that there exists a classical solution to (3.1) that coincides with the viscosity solution. On

the other hand, if Assumptions 4.1-4.4 are satisfied, as in this case, then the process does

not reach the boundary almost surely.

Hence, applying the results of Theorem 5.7 we can find, in an independent way, the same

results provided in Theorems 6.1 and 6.2 in [29], even in the case of more general hypoteses

on the final payoff φ.

Then, the presence of the jumps allows us to deal with just viscosity solutions, but, turning

back to the original model, it is possible to achieve a classical solution to the pricing problem

(3.1) considering assumptions on the final payoff that are weakened with respect to the ones

proposed in [29].

We see that in order to guarantee the existence of such a Lyapunov function, an additional

condition taking into account the behaviour of σ2 and β when v approaches to zero is

required. Hence, our aim in this section is to show the existence of a family of Lyapunov

functions taking for granted the assumptions provided in [29]. We speak about a family of

Lyapunov function since the specific form of such functions depends also on the particular

final payoff φ.

First of all we consider a generalization of the model proposed in [29], allowing the state

process Xt = (St, Vt) to have sudden jumps. In particular, when we deal with the pricing

problem (3.1) the additional nonlocal term has to be added to the pure differential operator.
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Assumption 6.1. Suppose that the measure m(s, v, dz, dw) satisfies the following condition

∫
R2
+

h(z, w)m(s, v, dz, dw) ≤ C (1 + h(s, v)) (6.3)

where h(s, v) = Pn,q(s, v) − ln(s)− ln(v), and Pn,q(s, v) has at most polynomial growth

rate at infinity, of degree n with respect to s and q with respect to v.

The new integro-differential operator is then

Ag =
1

2
vs2

∂2

∂s2
g + ρσ(v)

√
vs

∂2

∂s∂v
g +

σ2(v)

2

∂2

∂v2
g + β(v)

∂

∂v
g

+

∫
D
[g(z, w) − g(s, v)]m(s, v, dz, dw) (6.4)

where g is twice differentiable with respect to its arguments.

In what follows, due to the results in Theorems 6.1 and 6.2 in [29], we restrict ourselves to

consider payoffs φ that are at most sublinear in s and polynomial in v. We state now our

main result in this section

Proposition 6.1. Let A be the integro-differential operator defined as in (6.4). We make the

following assumptions, that are very closed to ones proposed in [29]

i) The functions β and σ are locally Lipschitz continuous and have sublinear growth

rate.

ii) The functions β and σ satisfy β(0) ≥ 0, σ(0) = 0, and σ(v) > 0 for v > 0.

If jumps are allowed, that is m(s, v, dz, dw) �= δ(s, v)dzdw, then the diffusion matrix

a(v) = σ(v)2 is twice differentiable, and Assupntion 6.1 is satisfied for some n ≥
1 + δ with δ > 0 and q ≥ 3.

iii) There exists a c0 < ∞ such that the condition
(
σ2(v)
2v2 − β(v)

v

)
≤ c0 is hold true.

iv) The payoff φ is continuous and has at most striclty sublinear growth rate r < 1 in s

and polynomial in v with degree p such that q > 1− r +max(2, p).

As an alternative of [iv)] we can consider the following hypotesis

iv′) The payoff φ is continuous and has at most linear growth rate in s and polynomial

in v with degree p, and the correlation ρ in the operator (6.4) is not positive, or the

coefficient σ verifies σ(v) ≤ C(1 + vγ) with γ ≤ 1/2.

Then there exists a Lyapunov function Vφ(s, v) dependent on the payoff φ such that all

Assumptions 4.1-4.4 are verified.
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Corollary 6.1. There exists a unique viscosity solution u to the pricing problem (3.1), where

the infinitesimal generator A is defined in (6.1).

Corollary 6.2. If the measure m(s, v, dz, dw) = δ(s, v)dzdw then there exists a unique

classical solution v to the pricing equation (CET )

(CET )

⎧⎪⎨
⎪⎩

∂tv +Adv − cv = 0 (x, t) ∈ S × [0, T )

v(x, T ) = u(x, T ) x ∈ S

v(x, t) = u(x, t) (x, t) ∈ ∂S × [0, T ]

that coincides with the viscosity solution u of the pricing problem (3.1).

We can observe that Assumptions (ET ) i) and ii) imply the Assumptions i) and ii) in Propo-

sition 6.1. Furthermore the condition on the final payoff φ given in (iv) and in (iv′) is

obviously less restrictive with respect to the one proposed in the Assumption (ET ).

In addition to the hypoteses (ET) we are forced to make the additional assumption iii) in

order to control the behaviour of the volatility near the boundary.

Remark 6.2. Whenever σ2(y) verifies Assumptions (ET ), our the assumption (iii) in Propo-

sition 6.1 is met if the following condition is satisfied

lim
y→0+

(
σ2
)′
(y)

y
≤ β(0). (6.5)

Such a remark suggests that in the case the condition β(0) > 0 is satisfied, then the operator

A may have enough regularizing effect.

On the other hand, in the case of Corollary 6.2, the hypoteses on the final payoff φ are

less restrictive with respect to the ones proposed by (ET ). Furthermore the additional

requirement on the behaviour of the solution near the boundary is not really needed.

Remark 6.3. Assumption (iii) in Proposition 6.1 can be weakened of course, considering

the following alternative
(
σ2(v)
2v2

− β(v)
v

)
≤ c0(1 + Vφ(s, v)).

It is interesting to observe that, in the case the volatility process follows a CIR model, then

the Assumption (iii) becomes

(
(σ0

√
v)

2

2v2
− κ (θ − v)

v

)
=

(
σ2
0

v
− κθ

v
+ κ

)
≤ c0

for each v ∈ [0,∞), that implies the well known Feller’s condition

σ2
0 ≤ 2κθ.
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Such a result can be infered also from the relation (6.5).

As it has been already remarked, the uniqueness of the classical solution is lost for general

payoff in the stochastic volatility models, and some particular hypoteses on the process are

also needed. Such hypoteses are reflected in Assumptions iv) and iv′) of Proposition 6.1.

We see that, in our approach, such assumptions are needed in order to ensure the existence

of the Lyapunov function, and then the existence of the viscosity solution, so that the theory

developed in the previous chapters remains still valid.

Proof of Proposition 6.1 We notice since now that Assumptions 4.1-4.2 are verified. Now

we want to show that Assumptions 4.3 and 4.4 are satisfied as well. As we have already

stated in Section 4.2 the Lyapunov function Vφ(x, y) determines the growth rate allowed

for the final payoff φ. At reverse, this means that given a payoff φ it is not always possible

to find a Lyapunov function V that verifies all Assumptions 4.1-4.4, even if the integro-

differential operator is good enough.

At the light of Theorems 6.1 and 6.2 in [29] this remark is easily understandable. We state

that the functions V1−(s, v) and V1(s, v) defined as

V1−(s, v) = vq + s+ v − ln(s)− ln(v) (6.6)

V1(s, v) = V1−(s, v) + s1+δv + s1+δ + svq (6.7)

with q = 1 − r + max(2, p) + ε and ε > 0, δ > 0 are two good Lyapunov functions

for the integro-differential operator A that verify Assumptions 4.3 and 4.4, whenever we

consider the payoffs φ1−(s) and φ1(s) that verify respectivelly the assumptions iv) and iv′)
in Proprosition 6.1.

It is clear, by the definition of V1∗(s, v) and the properties of the measure m that, for

(s, v) → ∂D the proposed Lyapunov functions V1∗(s, v) verify

lim
(s,v)→∂D

V1∗(s, v) = +∞, (6.8)

lim
|(s,v)|→+∞

V1∗(s, v) = +∞, (6.9)∫
D
V1∗(z, w)m(s, v, dz, dw) < +∞ (6.10)

where the last inequality follows from the assumptions on the measure m and Ḧolder in-

equality. Hence if we are able to verify the relation

AV (s, v) ≤ C (1 + V (s, v)) ,

we get that Assumption 4.3 is verified. At the end it is left to prove the equation (4.17) in
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Assumption 4.4.

We first consider the function V1−(s, v). It is easy to see that, applying the operator A to

the function V1−(s, v), by the hypotesis iii) in Proposition 6.1, we have

AV1−(s, v) =
q(q − 1)

2
σ2(v)vq−2 +

1

2
v +

(
σ2(v)

2v2
− β(v)

v

)
+ β(v)

(
1 + qvq−1

)
+

∫
D
V1−(z, w)m(s, v, dz, dw) −m(s, v,D)V1−(s, v)

≤ C1 (1 + vq + v + s+ V1−(s, v)) +

(
σ2(v)

2v2
− β(v)

v

)
≤ C1 (1 + V1−(s, v)) . (6.11)

where the inequalities come from the sublinear growth of β and σ, the relation (6.10), and

the hypotesis iii) of Proposition 6.1.

Now we have to show equation (4.17) in Assumtpion 4.4, that is

|φ1−(s, v)|ϕ(|φ1− (s, v)|) ≤ C(1 + V1−(s, v)) (6.12)

where the function ϕ is the function in Assumption 4.4.

Since the payoff φ1−(s, v) has at most strict sublinear growth r < 1 with respect to s, then

the function ϕ(z) = zα for α = 1 − r > 0 verify Assumption 4.4. Indeed, in such a case,

we have

|φ1−(s, v)|ϕ(|φ1− (s, v)|) = |φ1−(s, v)|1+α

≤ Cφ−
(
1 + |s|+ |v|p+1−r

)
≤ C (1 + V1−(s, v)) ,

where the last inequality comes from the definition of q. This means that V1− is a Lyapunov

function in the sense of [17]. Then all Assumptions 4.1-4.4 are verified, and by applying the

result of Theorems 5.3 and 5.4, we get that there exists a unique viscosity solution u(x, t)

to the pricing problem (3.1) when a generalization of the Ekstr̈om and Tysk operator is

considered and jump diffusive processes are allowed. Furhtermore, as a consequence of

Theorem 4.3, the stochastic process X associated to the infinitesimal generator A does not

reach the boundary of the domain [0,∞)2 in a finite time.

Remark 6.4. The considered pricing problem does not need the boundary condition.

Now we consider the payoff φ1(s) that verify the assumption iv′) and the Lyapunov function
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V1(s, v). In order to end the prove of Proposition 6.1 we have to show the relation

AV1(s, v) ≤ C (1 + V1(s, v)) ,

and the equation (4.17) in Assumption 4.4, as in the previous case. In such a linear case

we can perform exaclty the same calculation as in the relation (6.11) provided that the

assumption iv′) is hold true. Our results are in line with the ones got by Ekstr̈om and Tysk

in Theorem 6.2 [29] as in the sublinear case, since we can write

AV1(s, v) =
q(q − 1)

2
σ2(v)vq−2 (1 + s) +

1

2
v +

(
σ2(v)

2v2
− β(v)

v

)

+ β(v)
(
1 + qvq−1 (1 + s)

)
+ δ(1 + δ)

s1+δv

2
+ ρσ(v)

√
vs1+δ

+

∫
D
V1(z, w)m(s, v, dz, dw) −m(s, v,D)V1(s, v)

≤ C1

(
1 + vq + v + s1+δv + s+ V1(s, v)

)
+

(
σ2(v)

2v2
− β(v)

v

)
≤ C1 (1 + V1(s, v)) . (6.13)

At this point the last part of Proposition 6.1 is trivially achieved since we can consider the

function ϕ(z) = zδ. In such a case, in fact, since the payoff φ1(s, v) is sublinear in s, then

we have

|φ1(s, v)|ϕ(|φ(s, v)|) ≤ Cφ (1 + |s|+ |v|p)
(
|s|δ + |v|δ

)
≤ C (1 + V1(s, v)) (6.14)

where the last inequlity comes again from the definition of q.

Hence, Remark 6.1 can be proven as a direct application of Theorems 5.3 and 5.4 in the

previous Chapter.

Proof of Corollary 6.2 This is a direct application of Proposition 6.1 and Proposition 5.1.

Indeed in force of Proposition 6.1 the existence of a unique viscosity solution is granted.

Then the thesis comes by observing that the diffusion matrix a(s, v) verifies the hypoteses

in Theorem 5.7 and Proposition 5.1. This means that there exists a unique classical solution

to the pricing problem (CDP ) that coincindes with the viscosity solution (5.28).

Remark 6.5. We remark that the results of Proposition 6.1 are in line with the ones obtained

by Ekström and Tysk in Theorems 6.1 and 6.2 in [29].

Remark 6.6. We observe that even in the case the diffusive matrix σ(v) is assumed to be

not uniformly positive defined, then such a result of existence, uniqueness and regularity of
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the solutions could be applied. In this case a global unique viscosity solution is granted

by the results provided in [17]. Furthermore, some additional regularity could be found by

applying the results we have got in this work, whenever suitable assumptions are satisfied.

6.3 Conclusions

In this chapter we have introduced a very general model belonging to the class of stochastic

volatility models proposed by Ekstr̈om and Tysk in their work [29]. Their model can be

seen as a generalization of the most known Heston model, that is estensively used in the

financial markets. In their work, the authors are able to show under some assumptions

on the coefficients µ and σ, and the final payoff φ, there exists a classical solution to the

pricing problem (3.1). Furthermore, such a solution is unique whenever the final payoff

satisfies additional properties, namely it is required to not blow up fastly at infinity and

regular enough.

On the other hand, the results we have got in the previous chapters represent a very useful

tool in order to investigate the existence, uniqueness and regularity of the solution to the

pricing problem. In particular we have seen, in an independent way that, whenever their

assumptions on the coefficients and the final payoff are satisfied, we get the same results in

terms of classical solutions. Furthermore we are able to consider final payoffs that satisfy

less restrictive assumptions with respect to the ones allowed in [29]. Indeed it is possible to

consider final payoffs that are required to be just continuous and with sublinear growth rate,

and no boundary conditions are needed.

Furthermore, we are able to deal with processes that exhibit sudden jumps. In such a case

we are able to state and prove that, whenever the measure of the jumps satisfies suitable

hypoteses, the pricing problem driven by the considered stochastic process admits a unique

solution in the framework the viscosity solution theory.
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Chapter 7

Conclusions

We have seen that a powerful approach for the description of the markets is represented

by the commonly called market theory. In particular, we have seen how it is possible to

define in a mathematical framework the players acting in the market and the products that

are traded. This approach is expecially useful in force of the remarkable results available

from the stochastic theory, and can be succesfully applied to the most liberalized market

such as financial, most of commodity markets and so on and so forth. Unfortunately, the

solution of the Stochastic Differential Equations considered for some market model are

often not available, and the existence and uniqueness of the fair price of a given contract is

sometimes hidden to our knowledge.

On the other hand, it is well-known that it is possible to study the existence and uniqueness

of the fair price by solving the corresponding Partial Integro-Differential Equation. Un-

fortunately, the literature available dealing with Partial Integro-Differential problems may

be not able to deal with many problems, that are of interest in modern finance. This is

expecially true when the nonlocal term is present, and the operator is not purely differential.

In last years several works have been made in order to overcome some issues. All these

works deal with some specific assumptions on the form of the differential operator or on the

coefficients of the stochastic process. All these approaches allow to deal with some specific

problem in finance.

We have seen in Chapter 3 the assumptions that are actually required in order to ensure

the existence and uniqueness of the solution to the pricing problem (3.1). In some of them

additional results of the regularity of the solution is also provided. However, when the

coefficients of the SDE (2.9), or the final payoff does not fit such assumptions, the existence,

uniqueness and regularity of the solution may be not guranteed. In particular this is the case

when the diffusion matrix a(x) is singular in some subsets of the domain or the drift µ and

the matrix σ are not Lipschitz continuous up to the boundary of the domain D, or they are

fast growing near the boundary or at infinity. Furthemore, some issues can take place if
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the considered problem (3.1) has not conditions on ∂D, or they are not specified. This is

the case, as an instance, when numerical procedures are put in place in order to solve the

problem, and the considered domain is truncated. In these cases it may not be clear which

boundary conditions have be considered.

We observe that all the previous cases are met in several problems of interest among practi-

tioners in finance, in particular when some stochastic volatility models are considered and

for the case of Asian options. However, for these cases, results of existence and uniqueness

of the viscosity solution is provided in [17].

We observe that in last years, some works have been made that conjecture that in most case

of interest, boundary conditions are not really needed, and they are redundant from a strict

mathematical point of view (see e.g. [39] and [29]). Hence it is common to speak about the

behaviour near the boundary instead of boundary conditions.

On the other hand, we have seen in Chapter 4 a recent result showed in [17]. In particular it

ensures that, under very general conditions that include the cases we have just mentioned,

the boundary of the domain D is prohibited to the process X. In particular, such a feature

is met when the coefficients µ, σ and the measure m satisfy Assumptions 4.1-4.4. Fur-

thermore, in the same work the results of the well-posedness of the martingale problem

(A, P0) for any initial distribution P0 is given. The existence of a unique strong solution

to the stochastic differential equaiton with jumps (2.9) is often taken for granted. On the

other hand, when assumptions on the coefficients are weakened it is not clear even if there

exists a unique solution in a weak sense. Hence the result provided in [17] are useful for

our purposes. In particular, in Chapter 4 we have proven some estimates on the dependence

of the solution Xx
t with respect to the initial data for the purely differential case. In par-

ticular, as for the Ordinary Differential Equations, it is possible to prove that whenever the

coefficients are locally Lipschitz continuous, the solution X is Lipschitz continuous up to a

suitable stopping time τ . This stopping time represents the instant at which the process X

exits a fixed domain K contained in D.

A result of uniform continuity with respect to x in a suitable sense is also provided for any

time t. In particular, the existence of the Lyapunov-type condition plays a crucial role.

At the end, we have proven that the process X is Ḧolder continuous, in a proper sense,

with respect to the time t, for the stopping time τ that is the exit time from a given domain.

Furthermore, in Section 4.4 we have shown that, the Lipschitz-type dependence with re-

spect to x and Hölder-type dependence with respect to t is ensured for each time T > 0

if a suitable weight function is considered. The weight function is directly connected to

the coefficients µ and σ and it depends on the rate at which such coefficients loose their

regularity, that is when the stochastic process X approaches the boundary of the domain,
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where the Lipschitz continuity is definetely lost. Also in this case, if the coefficients µ and

σ are globally Lipschitz continuous, then such a result coincides with the standard ones for

Lipschitz continuous coefficients.

On the other hand, the regularity of the solution to the pricing problem (3.1) has been

also studied under weak assumtpions on the coefficients and final payoff. This topic is

studied in Chapter 5. We have discussed in Chapter 3 the reasons why the knowledge of

the existence, uniqueness and regularity of the solution for the pricing problem (3.1) is of

crucial importance. In particular, even if the existence and uniquenss of such a solution is

theorically known, it is generally not known explicitely and some numerical methods have

to be put in place. Furthermore, when the solution of the problem is smooth enough, then

the numerical procedures fastly increase their rate of convergence towards the analytical

solution.

Chapter 5 introduces the problem of existence and uniqueness of the solution for a very

simple case of singular valuation equation. Then, the general pricing problem is considered.

In particular, the results provided in [17] are proposed. Such results ensure that, under

Assumptions 4.1-4.4 the existence of a unique viscosity solution to the general problem

(3.1) is proven. Unfortunately the viscosity solution theory ensures just that the solutions are

continuous but no further regularity is granted a priori. However, such results are of crucial

importance for our work. In particular, applying the results we have proven in Chapter 4, it

is possible to show that the viscosity solution u(x, t) is not only a mere continuous function

but is also a classical solution in each compact subset K where the diffusion matrix is

uniformly positive defined, and the running cost and the interest rate are Ḧolder continuous,

the viscosity solution is twice differentiable with respect to x, and once with respect to t.

Chapter 6 is devoted to give an application of the results got in the previous chapters. In

particular a focus on the model proposed by Ekstr̈om and Tysk in [29] is given, and the

main improvements with respect to the previous models are presented. Then, we have

proven that, whenever some suitable final payoffs φ are considered, Assumptions 4.1-4.4

are satisfied by the model propesed in [29]. In particular an explicit expression for the

Lyapunov function V (x) is given. As a direct consequence, all the results we have got in

previous chapters can be applied, and the existence of a classical solution to the problem

(3.1) is given. In particular we observe that in our framework, the boundary of the domain

D is forbitten to the process X, hence the boundary conditions for the problem (3.1) are not

really needed. We observe furthermore that the form of the Lyapunov function V (x) is still

valid if we consider a generalization of the model, allowing the state process X to exhibit

sudden jumps. In this case, applying the results provided in [17], we are able to prove the

existence of a unique viscosity solution to the considered problem when the final payoff

does not blow up fastly at infinity.
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We observe that further work could be made in order to better understand under which

conditions the integro-differential operator has enough regularizing properties. In particular

our approach allows to consider just localized problems. Indeed, it is possible to argue that

the existence of a unique viscosity solution u(x, t) is a global property of the considered

problem. On the other hand, the regularity of the solution is a local property of u(x, t). In

particular, the function u(x, t) may exhibit some additional regularity in some subdomains

where the operator has enough regularizing properties, that are not sufficient to guarantee

the existence of a unique global regular solution u(x, t). On the other hand, the presence of

the nonlocal term may affect this approach, since the solution u(x, t) is then connected to

the whole domain D.

We consider furthermore that, the existence of the Lyapunov function could be used in

order to get some useful informations on the behaviour of the stochastic process near the

boundary. This additional knowledge could be enough to ensure that the stochastic process

X is regular with respect to initial data. In particular, if the probability that the process X

reaches the boundary of the domain vanishes fastly enough, it could be sufficient to ensure

that the terms coming from the regions that may affect the regularity of the process X are

neagleactable.

We have already said that, when some numerical methods are put in place in order to get a

numerical solution, a truncation of the domain have to be done. Often it is not clear which

“artificial” boundary conditions are suitable, then it could be interesting to understand if it

is possible to get some estimates on such boundary conditions starting from our knowledge

on the Lyapunov function. Hence, the Lyapunov function could give some indications on

the domain that can be truncated without affecting the precision of the numerical solution.
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