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Abstract

In the first part of the paper we consider positive dependence properties of Archime-

dean copulae. Especially we characterize the Archimedean copulae that are multivari-

ate totally positive of order 2 (MTP2) and conditionally increasing in sequence. In the

second part we investigate conditions for binary sequences to admit an Archimedean

copula.
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1 Introduction

Archimedean copulae have recently received increasing attention for their computational

tractability and their flexibility to model dependencies between exchangeable random vari-

ables. They have been introduced by Kimberling (1974). Some basic contributions have been

given by Genest and MacKay (1986), Marshall and Olkin (1988), Ballerini (1994), and Oakes

(1994). More specific results about Archimedean copulae have been given, among others, by

Genest and Rivest (1993), who studied statistical inference, Bagdonavičius et al. (1999), who

provided characterizations, and Juri and Wüthrich (2002) proved convergence theorems for

tail events. Cuculescu and Theodorescu (2003) investigate unimodality of bivariate Archi-

medean copulas. In recent years these copulae have been used more and more as a tool for

modelling dependence in many diverse areas. Frees and Valdez (1998) demonstrated their

usefulness for problems in actuarial sciences. In the literature on financial mathematics they

have been considered in Embrechts et al. (2003) and Hennessy and Lapan (2002).

In this paper we will characterize several well known notions of positive dependence

in the case of Archimedean copulae. For the case of positive orthant dependence such a

result can be found in Joe (1997). Some results for the bivariate case can also be found in

Averous and Dortet-Bernadet (2000). Bassan and Spizzichino (2002) study dependence and

aging concepts for bivariate distributions in terms of an object that they call Archimedean

semi-copula.

In this paper we deal with the multivariate case. In particular we derive necessary and

sufficient conditions for the generator of an Archimedean copula to yield a random vector

which is MTP2 or conditionally increasing in sequence. For these two important notions of

positive dependence the reader is referred for instance to Barlow and Proschan (1975) and

Karlin and Rinott (1980).

Moreover, we will show that any infinitely exchangeable binary sequence of random vari-

ables admits a representation by an Archimedean copula. This demonstrates the flexibility

of Archimedean copulae for modelling dependence.

The rest of the paper is organized as follows. In Section 2 we first give the basic definitions

on copulae and notions of positive dependence, and then state the main results characterizing

these concepts of dependence for Archimedean copulae. In Section 3 we investigate the

relation between exchangeable binary sequences and Archimedean copulae.

3



2 Copulae and Positive dependence

The notion of copula has been introduced by Sklar (1959), and studied, among others, by

Kimeldorf and Sampson (1975), under the name of uniform representation, and by Deheuvels

(1978), under the name of dependence function. The copula is one of the most useful

tools for handling multivariate distributions with dependent components. Formally, given a

distribution function F with marginals F1, ..., Fd, there exists a function C : [0, 1]d → [0, 1]

such that, for all x := (x1, . . . , xd) ∈ Rd,

F (x) = C(F1(x1), F2(x2), . . . , Fd(xd)). (2.1)

The function C is unique on ×d
i=1 Ran(Fi), the product of the ranges of Fi, i = 1, . . . , d.

Therefore, if F is continuous, then C is unique and can be constructed as follows

C(u) = F [F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)], u = (u1, . . . , ud) ∈ [0, 1]d. (2.2)

Here the (generalized) inverse G−1 of a univariate distribution function G is defined as

G−1(u) = sup{x : G(x) ≤ u}, u ∈ [0, 1].

Otherwise C can be extended to [0, 1]d in such a way that it is (the restriction to [0, 1]d

of) a distribution function with uniform marginals on [0, 1]. Any such extension is called

copula of F . The construction of a particularly interesting extension is shown in detail in

Schweizer and Sklar (1983). Most of the multivariate dependence structure properties of F

are in the copula, which does not depend on the marginals, and is often easier to handle

than the original F . More details about copulae can be found in Joe (1997), Nelsen (1999),

and Roncalli (2001).

An interesting class of copulae was introduced by Kimberling (1974), and studied, among

others by Genest and MacKay (1986).

Definition 2.1. A function ψ : R+ → [0, 1] is called d-alternating if (−1)kψ(k) ≥ 0 for

k ∈ {1, . . . , d}. A function which is d-alternating for all d ∈ N is called completely monotone.

Definition 2.2. A copula Cψ is called Archimedean if it has the form

Cψ(x1, . . . , xd) = ψ

(
d∑
i=1

ψ−1(xi)

)
, (2.3)

where ψ : R+ → [0, 1] is a d-alternating function such that ψ(0) = 1, and limx→∞ ψ(x) = 0.

The function ψ is called generator of the copula.
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Notice that other authors call generator the function ψ−1 (see e.g. Nelsen (1999)).

Remark 2.3. We indicate by C⊥ the copula of a distribution with independent components:

C⊥(x1, . . . , xd) =
∏d

i=1 xi. It is easy to see that C⊥ is a particular case of Archimedean copula

with ψ(x) = exp(−x), x ≥ 0.

Remark 2.4. Let Y1, . . . , Yd be i.i.d non-negative random variables, independent of the

random variable Z. Then the vector

X = (Y
1/Z
1 , . . . , Y

1/Z
d )

has an Archimedean copula whose generator is given by the Laplace transform of Z, ψ(t) =

E exp(−tZ), t ≥ 0. This result is due to Marshall and Olkin (1988).

Whenever we consider a subset I ⊂ {1, . . . , d} of the coordinates of a random vector

X = (X1, . . . , Xd), we will write XI = (Xi, i ∈ I), and throughout the paper we will assume

the existence of regular conditional probabilities P (XI ∈ A|XJ = xJ) for all A ∈ R|I|, xJ ∈
R|J |, I, J ⊂ {1, . . . , d}. Assuming the existence of the corresponding derivatives, it holds for

an arbitrary random vector X with distribution function F that

P (Xi+1 ≤ t|X1 = x1, . . . , Xi = xi) =

∂i

∂x1...∂xi
F (x1, ..., xi, t, 1, ..., 1)

∂i

∂x1...∂xi
F (x1, ..., xi, 1, 1, ..., 1)

. (2.4)

When F = Cψ equation (2.4) implies

P (Xi ≤ t|XJ = xJ) =

∂

∂xJ
ψ

(∑
j∈J

ψ−1(xj) + ψ−1(t)

)
∂

∂xJ
ψ

(∑
j∈J

ψ−1(xj)

) . (2.5)

We recall now some well known concepts of positive dependence. To do that we need the

concept of supermodular function. A function f : Rd → R is supermodular, if

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y) for all x and y, (2.6)

where the lattice operators ∧ and ∨ are defined as

x ∧ y = (min{x1, y1}, . . . ,min{xd, yd}),
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and

x ∨ y = (max{x1, y1}, . . . ,max{xd, yd}).

A twice differentiable function is supermodular if and only if all mixed derivatives are non-

negative, i.e.
∂2

∂xi∂xj
f(x) ≥ 0 for all x and all 1 ≤ i < j ≤ n.

Definition 2.5. Given two copulae C,K, we say that C ≥LO K if

C(x1, . . . , xd) ≥ K(x1, . . . , xd), for all (x1, . . . , xd) ∈ [0, 1]d.

Definition 2.6. A copula C is

(a) PLOD (Positive Lower Orthant Dependent) if C ≥LO C⊥,

(b) CIS if X ∼ C and Xi is stochastically increasing in (X1, . . . , Xi−1) for all i ∈ {2, . . . , d},
i.e. if P (Xi > t|X1 = x1, . . . , Xi−1 = xi−1) is increasing in x1, . . . , xi−1 for all t.

(c) CI if X ∼ C and Xi is stochastically increasing in XJ for all i 6∈ J and all J ⊂ {1, . . . , d},

(d) MTP2 if C has a density which is log-supermodular, i.e. if

log
∂d

∂x1 · · · ∂xd
C(x1, . . . , xd) (2.7)

is supermodular.

For the concepts of PLOD and CIS we refer to Lehmann (1966) and Barlow and Proschan

(1975). The idea of MTP2 was studied by Karlin and Rinott (1980). CI was introduced by

Müller and Scarsini (2001).

The following result can be found in Joe (1997), page 109.

Theorem 2.7. The Archimedean copula Cψ is PLOD iff ψ ◦ exp(·) is superadditive.

The following theorem establishes conditions for CI and CIS of an Archimedean copula.

Theorem 2.8. For an Archimedean copula Cψ the following conditions are equivalent:

(a) Cψ is CIS,

(b) Cψ is CI,

(c) (−1)kψ(k)(·) is log-convex for k ∈ {1, . . . , d− 1},
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(d) (−1)d−1ψ(d−1)(·) is log-convex.

In the proof of Theorem 2.8 we need the following Lemma.

Lemma 2.9. If g : R+ → R+ is decreasing and log-convex, and f(x) =
∫∞
x
g(t) dt is finite,

then f is log-convex, too.

Proof. It is known that the set of log-convex functions is a convex cone closed under the

taking of limits (see Roberts and Varberg (1973), Theorem F, page 19). Moreover if g is

log-convex, then x 7→ g(x+ α) is log-convex for all α > 0. The result then follows from the

fact that

f(x) = lim
n→∞

(
1

n

∞∑
i=1

g

(
x+

i

n

))
.

Proof of Theorem 2.8. The equivalence of CI and CIS is due to exchangeability of the Ar-

chimedean copula. By (2.5), Cψ is CI iff

∂

∂xJ
ψ

(∑
j∈J

ψ−1(xj) + ψ−1(t)

)
∂

∂xJ
ψ

(∑
j∈J

ψ−1(xj)

)

is decreasing in xJ for all t ∈ [0, 1]. Since ψ is decreasing (and therefore ψ−1 is decreasing),

the above expression is decreasing in xJ if it is increasing in
∑

j∈J ψ
−1(xj) on (0,∞). So we

want
ψ(k)(y + z)

ψ(k)(y)

to be increasing in y for all z ∈ (0,∞), for k = |J |,. This holds iff

log
(
(−1)kψ(k)(y + z)

)
− log

(
(−1)kψ(k)(y)

)
is increasing in y for all z ∈ (0,∞), namely, log((−1)kψ(k)) is convex for k ∈ {1, . . . , d− 1}.

By Lemma 2.9 this is true iff (−1)d−1ψ(d−1) is log-convex, since

(−1)kψ(k)(x) =

∫ ∞

x

(−1)k+1ψ(k+1)(t) dt for k = 1, . . . , d− 2.
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Remark 2.10. In the bivariate case the condition for an arbitrary copula to be CI is concav-

ity in each direction, while the other is held fixed (see Nelsen (1999)). An easy calculation

shows that this is equivalent to log-convexity of −ψ′(·), namely, condition (d) of Theorem 2.8.

Theorem 2.11. The Archimedean copula Cψ is MTP2 iff (−1)dψ(d)(·) is log-convex.

Proof. Let Cψ be MTP2. For its density we get the expression

f(x) =
∂d

∂x1 · · · ∂xd
ψ

(
d∑
i=1

ψ−1(xi)

)
= ψ(d)

(
d∑
i=1

ψ−1(xi)

)
·

d∏
i=1

(ψ−1)′(xi).

Therefore ψ is MTP2 if and only if

log f(x) = log

(
(−1)dψ(d)

(
d∑
i=1

ψ−1(xi)

))
+

d∑
i=1

log
(
(−ψ−1)′(xi)

)
is supermodular, which is equivalent to

log

(
(−1)dψ(d)

(
d∑
i=1

ψ−1(xi)

))

being supermodular, that is its mixed derivatives must be non-negative. In case of the first

two coordinates this leads to the condition

(−1)d+2ψ(d+2)
(∑d

i=1 ψ
−1(xi)

)
(ψ−1)′(x1)(ψ

−1)′(x2)(−1)dψ(d)
(∑d

i=1 ψ
−1(xi)

)
(
ψ(d)

(∑d
i=1 ψ

−1(xi)
))2

−

(
(−1)d+1ψ(d+1)

(∑d
i=1 ψ

−1(xi)
))2

(ψ−1)′(x1)(ψ
−1)′(x2)(

ψ(d)
(∑d

i=1 ψ
−1(xi)

))2 ≥ 0

for all x1, . . . , xd, and to similar conditions in the other cases. Since (ψ−1)′(x1)(ψ
−1)′(x2) ≥ 0,

we need

(−1)d+2ψ(d+2)

(
d∑
i=1

ψ−1(xi)

)
(−1)dψ(d)

(
d∑
i=1

ψ−1(xi)

)
≥

(
(−1)d+1ψ(d+1)

(
d∑
i=1

ψ−1(xi)

))2

for all x1, . . . , xd, or equivalently,

ψ(d+2)(y)ψ(d)(y) ≥
(
ψ(d+1)(y)

)2
for all y, which corresponds to (−1)dψ(d) being log-convex.

8



Remark 2.12. The condition for MTP2 ((−1)dψ(d) log-convex) is strictly stronger than the

condition for CI ((−1)d−1ψ(d−1) log-convex). The following example shows a copula which is

CI, but not MTP2. Let Φ be the distribution function of a standard normal

Φ(x) =

∫ x

−∞

1√
2π

exp

{
−t

2

2

}
dt.

Let ψ : R+ → R be such that ψ′(x) = −c exp{−g(x)} with

g(x) =

2Φ(x)− 1, x ≤ a

αx+ β, x > a,

where c−1 =
∫∞

0
exp{−g(x)} dx, where a is a large constant, and α and β are such that g is

continuously differentiable in a, and therefore g : R+ → R is concave.

Then

ψ′′(x) = c exp{−g(x)}g′(x).

We see that log(−ψ′(x)) = log c− g(x) is convex, but

log(ψ′′(x)) = log c− g(x) + log(g′(x))

=

log c− (2Φ(x)− 1) + log 2− 1

2
log(2π)− x2

2
, x ≤ a,

log c− (αx+ β) + logα, x > a,

is clearly not convex for large enough a.

Therefore Cψ : [0, 1]2 → [0, 1] is CI, but not MTP2.

3 Binary random variables

In Section 2 we have shown how positive dependence concepts can be characterized for

Archimedean copulae. In this section we will try to determine how general is the assumption

of an Archimedean copula for binary random variables.

Theorem 3.1. For every infinite exchangeable binary sequence {Yn}n∈N there exists a gen-

erator ψ of an Archimedean copula such that ψ
(∑d

i=1 ψ
−1(xi)

)
is a copula of (Y1, . . . , Yd).

Proof. Given d ∈ N, we know by de Finetti’s theorem that there exists a random variable Θ

with distribution µΘ supported in [0, 1] such that

P (Yi = 1, i ∈ I; Yj = 0, j ∈ J) =

∫
θ|I|(1− θ)|J | µΘ(dθ).
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Consider a random vector (X1, . . . , Xd) of i.i.d. random variables, uniformly distributed

on [0, 1].

By Corollary 2.2 of Marshall and Olkin (1988) we know that, if Z is a random variable,

then the vector (X
1/Z
1 , . . . , X

1/Z
d ) has an Archimedean copula Cψ with

ψ(t) = E[exp{−tZ}]. (3.1)

Define

Z =
ln(1−Θ)

ln (1/2)
, Ỹi = 1

[X
1/Z
i ≥1/2]

, i ∈ N.

Then for any partition I, J of {1, . . . , d} we have

P (Ỹi = 1, i ∈ I; Ỹj = 0, j ∈ J) = P

(
X

1/Z
i ≥ 1

2
, i ∈ I; X1/Z

j <
1

2
, j ∈ J

)
= P (Xi ≥ 1−Θ, i ∈ I; Xj < 1−Θ, j ∈ J)

=

∫
P (Xi ≥ 1− θ, i ∈ I; Xj < 1− θ, j ∈ J) µΘ(dθ)

=

∫
θ|I|(1− θ)|J | µΘ(dθ).

Thus {Yn}n∈N and {Ỹn}n∈N are stochastically equal, and since Ỹi is a increasing function

of X
1/Z
i , the vector (Y1, . . . , Yd) therefore has a common copula with (X

1/Z
1 , . . . , X

1/Z
d ).

Remark 3.2. The above result fails for finite exchangeable sequences, as the following

example shows. Let X = (X1, X2, X3) be exchangeable and such that

P (X = (0, 0, 1)) = P (X = (0, 1, 0)) = P (X = (1, 0, 0)) =
1

3
. (3.2)

Therefore P (X1 = 1) = 1/3 and any copula C of (X1, X2, X3) is such that

C

(
2

3
,
2

3
, 1

)
=

1

3
, C

(
2

3
,
2

3
,
2

3

)
= 0. (3.3)

If there existed an Archimedean copula that satisfies (3.3), then there would exist a 3-

alternating function ψ such that ψ−1(1) = 0, and

ψ

(
ψ−1

(
2

3

)
+ ψ−1

(
2

3

)
+ ψ−1 (1)

)
=

1

3

ψ

(
ψ−1

(
2

3

)
+ ψ−1

(
2

3

)
+ ψ−1

(
2

3

))
= 0.
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This implies

2ψ−1

(
2

3

)
= ψ−1

(
1

3

)
3ψ−1

(
2

3

)
= ψ−1 (0) .

Hence ψ−1 is affine on [0, 1]. So ψ has a kink in ψ−1(0), and therefore it cannot be 3-

alternating.

The counterexample holds also for small perturbations of (3.2).

An exchangeable random vector (X1, . . . , Xd) is said k-extendible (k > d) if it is the

initial part of a k-dimensional exchangeable random vector.

It is clear that an exchangeable random vector with an Archimedean copula Cψ is k-

extendible iff ψ is k-alternating.

Theorem 3.1 shows that there always exists a completely monotone function ψ which is

the generator of the copula of an infinitely extendible binary exchangeable random vector.

Frey and McNeil (2001) have proved the reverse implication, namely, they have shown that

if (X1, . . . , Xd) have an Archimedean copula Cψ with ψ completely monotone, then the

indicators (Yi = 1[Xi≤t]) form an exchangeable Bernoulli sequence.

Remark 3.2 shows that k-extendibility is not enough to ensure the existence of a k-

alternating ψ with the same property.

Remark 3.3. It is possible for arbitrary dimension d to have an Archimedean copula of a

binary exchangeable random vector X such that P (X = 0) = 0. For instance take

C(x1, . . . , xd) =

(
d∑
i=1

(xi)
1

d−1 − (d− 1)

)d−1

+
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Bagdonavičius, V., Malov, S., and Nikulin, M. (1999) Characterizations and semi-

parametric regression estimation in Archimedean copulas. J. Appl. Statist. Sci. 8, 137–153.

Ballerini, R. (1994) Archimedean copulas, exchangeability, and max-stability. J. Appl.

Probab. 31, 383–390.

11



Barlow, R. E. and Proschan, F. (1975) Statistical Theory of Reliability and Life Testing.

Holt, Rinehart and Winston, Inc., New York.

Bassan, B. and Spizzichino, F. (2002) Relations among univariate aging, bivariate aging

and dependence for exchangeable lifetimes. Mimeo.

Cuculescu, I. and Theodorescu, R. (2003) Are copulas unimodal? J. Multivariate

Anal. 86, 48–71.
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convergence des types extrêmes. Publ. Inst. Statist. Univ. Paris 23, 1–37.
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