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Abstract

In this paper we propose and study a continuous time stochastic model of optimal allo-
cation for a defined contribution pension fund with a minimum guarantee. We adopt the
point of view of a fund manager maximizing the expected utility from the fund wealth over
an infinite horizon.

In our model the dynamics of wealth takes directly into account the flows of contributions
and benefits and the level of wealth is constrained to stay above a “solvency level”. The fund
manager can invest in a riskless asset and in a risky asset but borrowing and short selling
are prohibited.

We concentrate the analysis on the effect of the solvency constraint, analyzing in partic-
ular what happens when the fund wealth reaches the allowed minimum value represented by
the solvency level.

The model is naturally formulated as an optimal stochastic control problem with state
constraints and is treated by the dynamic programming approach. We show that the value
function of the problem is a regular solution of the associated Hamilton-Jacobi-Bellman
equation. Then we apply verification techniques to get the optimal allocation strategy in
feedback form and to study its properties. We finally give a special example with explicit
solution.
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1 Introduction

In this paper we propose and study a stochastic control model for the optimal management of
a defined contribution pension fund with a minimum guarantee. We adopt the point of view of
a fund manager that can invest in two assets (a risky and a riskless one, in a standard Black
and Scholes market) and maximizes an intertemporal utility function depending on the absolute
level of fund wealth over an infinite horizon. We note that most of the papers on pension funds
(as the ones cited in Subsection 1.1) maximize the utility from final wealth and in finite horizon.
Here we make a different choice to underline in a different way the point of view of the manager
(see Section 2.5 for explanations of this point).

Our problem is similar to optimal portfolio selection problems but it has some special features
due to the nature and the social target of the pension funds: the presence of contributions
and benefits, the presence of constraints on the investment strategies, the presence of solvency
constraints. The latter means that we require that the wealth of the running pension fund
remains above a prescribed level at any time that we call “solvency level” (see Section 2 for
further explanations).

We focus the analysis on the role of the solvency constraint which, to our knowledge, have
not been considered yet in the existing literature on pension funds management. We analyze
the effect of such constraint on the admissible and on the optimal strategies: in particular we
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show that, for sufficiently high solvency level, the optimal portfolio strategies do not become
trivial (i.e. the fund manager can still reinvest in the risky asset), even after that the solvency
level has been reached (see Subsection 1.2 and also Section 5 for explanations).

We clarify that a model taking into account all relevant features of the problem of the optimal
management of a pension fund would be very difficult and an analytical treatment would be
substantially impossible at the present stage. In the literature one can find models that take
account of all main features of the problem, but they are not studied from the theoretical point of
view due to their complexity and stochastic optimal control techniques have not been applied to
them (see, e.g., [Sbaraglia et al., 2003] and the references therein). So, to focus on the role of the
solvency constraints keeping the problem treatable, we introduce some simplifying hypotheses
on other features. We consider all demographic variables and the interest rate as constants and
we assume that no surplus is paid by the fund (see Section 2.3 for further details).

We are currently working on generalization of the model that incorporate such features in the
model (e.g. the introduction of the surplus is studied in the working paper [Federico, 2007b]).

1.1 The related literature on pension funds management and on the mini-
mum guarantee

Stochastic optimization approaches to defined contribution plans with the constraint that
the wealth must not be inferior to a minimum guarantee at a terminal date (so-
called European guarantee) have been introduced in [Boulier, Huang & Taillard, 2001] and
[Deelstra, Grasselli & Koehl, 2003]. In these models they assume that the terminal date cor-
responds to the retirement of a representative worker and they apply the traditional Merton ap-
proach maximizing the total expected discounted utility from final wealth exceeding the promised
guarantee. More recently in [El Karoui, Jeanblanc & Lacoste, 2005] the authors solve an optimal
allocation problem for an investor which maximizes utility from final wealth but is constrained
to stay above the guarantee at every intermediate date (so-called American guarantee).

Other works on defined contribution pension funds without minimum guarantee are,
e.g., [Cairns, Blake & Dowd, 2000], [Vigna & Haberman, 2001], [Haberman & Vigna, 2002] and
[Battocchio & Menoncin, 2004]. In all these models the traditional Merton approach maximiz-
ing the total expected discounted utility from final wealth is applied, the interest rates are
stochastic, the demographic risk and the solvency constraint are not considered.

Regarding demographic factors, we recall that in a constant interest rate framework the
mortality risk has been taken into consideration by [Battocchio, Menoncin & Scaillet, 2007].

1.2 The mathematical features of the problem

From the mathematical point of view our problem is a stochastic optimal control
problem with constraints on the control and on the state (deriving for the pres-
ence of investment and solvency constraints: see Section 3 for the precise state-
ment). Differently, to our knowledge, from other papers on optimal portfolio prob-
lems (see, e.g., [Karatzas, Lehoczky, Sethi & Shreve, 1986], [Sethi & Taksar, 1992],
[Sethi, Taksar & Presman 1992], [Zariphopoulou, 1994], [Cadenillas & Sethi, 1997],
[Choulli, Taksar & Zhou, 2003] and [El Karoui, Jeanblanc & Lacoste, 2005]), within our
model the boundary of the state space is not always an absorbing barrier: the optimal strategies
can touch the boundary and come back in the interior keeping the same state dynamics. To be
precise also in [Duffie, Fleming, Soner & Zariphopoulou, 1997] and in [Sethi & Taksar, 1992]
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the state process can come back in the interior after touching the boundary. In the first paper
this happens thanks to the presence of a stochastic income in the special case of HARA utility
functions (see also [Tebaldi & Schwartz, 2006] for a similar setting) while in the second one this
is obtained taking different state dynamics when the boundary is reached, so using a completely
different setting. This important modeling issue involves some nontrivial technical problems in
the study of optimal strategies (see Section 4, Subsections 4.3, 4.4).

To avoid technical complications we concentrate the analysis on a running pension fund
which has entered in a stationary regime (see Section 3, Hypothesis 3.3) so also the solvency
level becomes a constant l. The accumulation phase will be studied in a separate paper (see
[Federico, 2007a].The main reason to study separately the two cases is that in the stationary
case the solvency level and the HJB equation are time independent while this does not happens
in studying the accumulation phase: this makes the technical treatment of the two problems
quite different.

The core of the dynamic programming approach is the study of the associated Hamilton-
Jacobi-Bellman equation and its relationship with the control problem which is performed in
Section 4. We follow the path used in other papers on stochastic control problems of similar
kind:

• We first prove some basic properties of the value function (finiteness, concavity, monotonic-
ity, continuity: see Subsection 4.1);

• We then prove that the value function V is a viscosity solution of Hamilton-Jacobi-Bellman
equation (Theorem 4.14);

• Furthermore we prove that V ∈ C2 in the interior of the state space, so it is a classical
solution of the Hamilton-Jacobi-Bellman equation there (Theorem 4.17);

• Finally we apply such results to prove a verification theorem that gives the existence and
uniqueness of the optimal feedback map (Theorem 4.23).

Due to the specific feature of our problem (and this mainly comes from the nature of state
constraints) we cannot apply to it other results given in the literature. So we carefully prove
all the results we need. The results on finiteness, concavity, monotonicity, continuity are proved
adapting well known arguments from previous papers, sometimes with nontrivial arrangements.
The proof of Theorem 4.14 uses a straightforward adaptation of standard techniques. The proof
of Theorem 4.17 uses some ideas of [Choulli, Taksar & Zhou, 2003] with a substantial change
due to the fact that in such paper a uniformly elliptic equation is studied while our equation is
not uniformly elliptic.

The verification theorem deserves a deeper explanation. To avoid that the set of admissible
strategies is empty, we prove in Section 3.1 that the inequality rl ≥ A must be satisfied, where r
is the interest rate (so rl is the return from the constrained solvency level) and A is the balance
between contribution and benefit rate. We assume this along the paper. However the case of
rl = A is qualitatively different from the case of rl > A, especially concerning the behavior
of optimal strategies near l. This is also strictly related to the structure of the instantaneous
utility function U near l.

When rl = A the solvency level is the minimum possible to guarantee that admissible
strategies exist so it makes sense that utility from wealth x rapidly increase at x = l since the
solvency constraint coincides with a kind of “no bankruptcy” constraint. On the other hand
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if rl > A the solvency level is not the minimum possible and is strictly higher than the “no
bankruptcy” constraint, so it is less stringent to have rapidly increasing utility at x = l and also
it makes sense to have finite utility at l.

We develop the analysis of the optimal strategies in two cases which seem to us more relevant
from the economic point of view:

• rl = A and U ′ (l+) = +∞. The situation is more similar to what happens in standard
portfolio problems: starting the wealth at l, the only admissible and so optimal policy is to
keep it forever in the riskless asset (trivial strategy) so the wealth remains at the constant
level l. Starting at a wealth grater than l, the optimal wealth path always remains strictly
above l. Since this case is more standard we have chosen to study it only in a special case
where the value function (and so the optimal feedback map) can be found explicitly (see
Subsection 4.4)

• rl > A, and both U (l) and U ′ (l+) are finite. Starting the wealth at l, there are many
admissible strategies and along the optimal one the fund manager can reinvest in the
risky asset. Starting at a wealth grater than l, the boundary l is reached with positive
probability, and after touching l the manager can still reinvest in the risky asset. In this
case the value function cannot be given explicitly even in the case of power utility (see
Remark 4.24) and the verification theorem is non trivial. In Section 4.3 the verification
theorem (Theorem 4.23) is proved using an ad hoc approximation procedure and sharp
results on the behavior of the value function at l (Corollary 4.20).

1.3 Plan of the paper

The work is organized in 6 sections as follows.
In Section 2 we describe the model separating the presentation in five subsections to improve

its readability.
In Section 3 we set up the stochastic control problem and (in Subsection 3.1) we discuss the

structure of the set of admissible strategies depending on the solvency level l.
In Section 4 we develop the dynamic programming approach proving various results about

the properties of the value function (Subsection 4.1), the fact that it is a regular solution of the
Hamilton-Jacobi-Bellman equation (Subsection 4.2), the verification theorem, and the optimal
feedback policies for rl > A (Subsection 4.3). In Subsection 4.4 we consider the case rl = A and
solve analytically the Hamilton-Jacobi-Bellman equation for a specific utility function finding
the value function and the optimal policies.

In Section 5 we give an analysis of the optimal policies underlying the role of the solvency
level.

Section 6 concludes the paper.

2 The model

We consider a continuous-time model where the financial market is competitive,frictionless,
viable, default free and continuously open. We notice that the competitiveness assumption
imply that the investor is price taker. This is usual in literature regarding financial management
models of pension funds and it is realistic if the agent does not invest a big amount of money.
As a matter of fact, the volume of assets exchanged by pension funds is such that they could
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affect the price of assets (i.e. investor may be price maker) but we do not deal with this fact
here. The fund manager maximizes the intertemporal expected utility from the fund wealth over
an infinite horizon and faces the following trading constraints: borrowing and short positions
are not allowed and the pension fund wealth must be greater then a suitable positive value
at each time. We call this value (possibly time dependent) solvency level(in order to avoid
misunderstandings, it seems relevant to precise that with this concept we do not refer to the
so called solvency margin, i.e. the shareholders equity of an insurance company whose method
of calculation is normally imposed by the supervisory authority of a given country, but to a
meaning which is fully explained in Subsection 2.4). This constraint is imposed so that the
pension fund always affords to pay at least a given fraction of the due pension, and in particular
to avoid the bankruptcy.

To concentrate the analysis on the financial issues we assume that the population of fund
members is a stationary open collectivity: there can be new entries, nevertheless there will be
no changes during the time in the quantity as well as in the distribution per age class.

The time horizon of our model is infinite and independent from the work life of the fund
members since we adopt the point of view of the manager of a pension fund that always op-
erates, leaving out the date of retirement of the single participant.This fact, together with the
demographic stationarity hypothesis, drives us to neglect the so called lifestyle strategy, treated,
e.g., in [Vigna & Haberman, 2001, Haberman & Vigna, 2002], that suggests to invest the whole
fund wealth in risky assets when the worker is young and to gradually switch into riskless assets
when the date of retirement approaches. Also in [Battocchio & Menoncin, 2004] is found an
optimal decision policy coherent with the lifestyle strategy.

2.1 Dynamics of wealth

To set up the mathematical model we consider a complete probability space (Ω,F ,P) with a
filtration {FB

t }t≥0, where t ≥ 0 is the time variable. The space Ω is the set of all possible states
of nature, the set F is a σ-algebra and P is a probability measure (the observed one), defined
on the measurable space (Ω, F). The filtration {FB

t }t≥0, describing the information structure,
is generated by the trajectories of a one-dimensional standard Brownian motion B(t), t ≥ 0,
defined on the same probability space and completed with the addition of the null measure sets
of F . Moreover we assume that FB

+∞ = F . Sometimes we will use a starting point s ≥ 0. In
this case {FB

t }t≥s will be the complete filtration generated by Bs (t) = B (t)−B (s).
The financial market is composed of two kinds of assets: a riskless asset and a risky asset.

Hypothesis 2.1 The price of the riskless asset S0(t), t ≥ 0, evolves according to the equation

dS0(t) = rS0(t)dt,

where r > 0 is the instantaneous spot rate of return.

Hypothesis 2.2 The price of the risky asset S1(t), t ≥ 0, follows an Itô process and satisfies
the equation

dS1(t) = µS1(t)dt+ σS1(t)dB(t),

where µ > 0 is the instantaneous rate of expected return and σ > 0 is the instantaneous rate of
volatility.
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The drift µ verifies the relation µ = r + σλ, where λ is the instantaneous risk premium of
the market, i.e. the price that the market assigns to the randomness expressed by the standard
Brownian motion B. We assume that λ > 0, so µ > r.

In our framework the interest rate is assumed to be constant. This is a restric-
tion with respect to other works on the same subject as [Boulier, Huang & Taillard, 2001],
[Deelstra, Grasselli & Koehl, 2003], [Cairns, Blake & Dowd, 2000], [Vigna & Haberman, 2001,
Haberman & Vigna, 2002] and [Battocchio & Menoncin, 2004] where non solvency constraint
is considered. We aim to incorporate a stochastic interest rate model in a further work.

The state variable, represented by X(t), t ≥ 0, is the {FB
t }t≥0-adapted process that gives

the amount of the pension fund wealth at any time. We suppose that the pension fund starts
its activity at the date t = 0 and that at this time it owns a starting amount of wealth x0 ≥ 0.

The control variable, denoted by θ(t), t ≥ 0, is the {FB
t }t≥0-adapted process that represents

the proportion of fund wealth to invest in the risky asset. The positivity of the wealth (due to
the solvency constraints) and the borrowing and short selling constraints brings us to choose
θ (t) ∈ [0, 1] for every t). Therefore the dynamics of wealth is expressed, formally, by the
following state equationdX(t) =

θ(t)X(t)
S1(t)

dS1(t) +
[1− θ(t)]X(t)

S0(t)
dS0(t) + c(t)dt− b(t)dt, t ≥ 0,

X(0) = x0 ≥ 0,
(1)

where θ(t)X(t)
S1(t)

and [1−θ(t)]X(t)
S0(t)

are the quantities in portfolio of risky and riskless asset, respec-
tively; while the non-negative integrable function c(t), t ≥ 0, indicates the flow of contributions
and the non-negative function b(t), t ≥ 0, represents the flow of benefits.

As we said in the introduction, we assume that a solvency constraint must be respected (see
Subsection 2.4 for further explanations).

Hypothesis 2.3 The process X describing the fund wealth is subject to the following constraint

X(t) ≥ l(t), P-a.s., ∀t ≥ 0, (2)

where the positive function l(t), t ≥ 0 represents the solvency level.

By standard arguments the state equation (1) can be rewritten in the following way{
dX(t) =

{
[θ(t)σλ+ r]X(t) + c(t)− b(t)

}
dt+ θ(t)σX(t)dB(t), t ≥ 0,

X(0) = x0 ≥ l0 ≥ 0,
(3)

with the constraint that X(t) ≥ l(t) P-a.s., for any t ≥ 0, and l0 = l (0).

2.2 Contributions

In the population stationarity hypothesis, the flow of contributions c (·) can be considered exoge-
nous. We assume that the workers who enter in the pension fund are a homogeneous class,i.e. a
class of people that have the same characteristics (same age at the entry date, same professional
qualification, same level of skill, and so on) and their flow is constant in time. Moreover we
suppose that each participant adheres for a length of time represented by an exogenous constant
T > 0. Similarly there is a fixed number N of fund members after time T .We may say that each
unit of time (e.g., year) N

T new members enter in the fund and that (after time T ) exactly N
T

members exit of it. The flow of new members per unit of time is N
T .

7



Hypothesis 2.4 The payment flow of aggregate contributions occurs at any time according to
the following relation

c(t) =

{ t

T
αNw (t) if 0 ≤ t ≤ T,

αNw (t) if t > T,

where α ∈ (0, 1) represents the average contribution rate and w (t) ≥ 0, t ≥ 0, the average
per capita wage rate of the fund members. We will take w (·) equal to a constant w > 0 for
simplicity. The flow of contributions of new members per unit of time is constant and we call it
c̄ (·) ≡ 1

T αNw.

The above hypothesis is a bit restrictive because the stochastic wage is an important
and additional source of uncertainty for the fund manager. We observe that the introduc-
tion of an extra source of risk renders the market incomplete, as discussed and studied in
[Cairns, Blake & Dowd, 2000] in absence of guarantee and in a continuous and finite time hori-
zon. We leave the investigation of the full problem to future research. Here we consider the
constant w as a real wage, i.e. the nominal wage discounted from a constant inflation rate;
therefore we assume a point of view essentially in line with [Boulier, Huang & Taillard, 2001]
where the (nominal) wage is a deterministic function of the time and continuously increasing at
a constant inflation rate.

Notice also that, with some technical complications, the part of our model concerning the
contribution could be extended to the frameworks of [Deelstra, Grasselli & Koehl, 2003] and, in
absence of minimum guarantee, of [Battocchio & Menoncin, 2004], where the flow of contribu-
tions is stochastic but the corresponding sources of risk are hedgeable.

2.3 Benefits

In our financial setting is natural to consider the minimum guarantee rate of re-
turn regulated by the market (and so fixed exogenously); for an optimal design see
[Deelstra, Grasselli & Koehl, 2004]. Consequently the aggregate benefit function b (·) is exoge-
nous if it depends on the guarantee, while it is endogenous if it also depends on the wealth level.
In this work, as a first step, we assume that the payment of the surplus exceeding the guarantee
is not provided. Moreover in demographic stationarity the benefits are paid only after time
T > 0. Then we will work with the following assumption.

Hypothesis 2.5 The benefits are paid as a lump sum to each member at retirement. The
aggregate benefit flow is given by

b(t) =

{
0 if 0 ≤ t < T,

g(t) if t ≥ T,

where g (·) is the aggregate flow of money that the pension fund pays to its member at retirement
as minimum guarantee after time T .

Due to the above hypothesis the guarantee assumes a particular importance for the fund risk
management. The demographic stationarity hypothesis drives us to write it as follows.

Hypothesis 2.6 The flow of minimum guarantee is given by

g(t) =
∫ t

t−T
c̄ (u) eδ(t−u)du =

∫ t

t−T

1
T
αNweδ(t−u)du, t ≥ T,
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where δ > 0 is the guaranteed rate of return.

Having assumed that the riskless interest rate r is constant, we are clearly forced to assume
the following.

Hypothesis 2.7 We have
r ≥ δ.

The previous inequality could be justified thinking to the fact that workers are usually
forced by law to delegate the management of their contributions to a pension fund and are not
allowed to invest directly to the financial market. The process of investment delegation involves
management costs which are paid accepting a guaranteed rate of return δ lower than the risk
free rate r (see Section 2.5 for further explanations).

Hypotheses 2.4 and 2.6 imply that the benefits paid from the pension fund at any time are

b(t) =

0 if 0 ≤ t < T,

αNw
eδT − 1
δT

> αNw if t ≥ T.

This means that, for t > T , we always have b (t) > c (t) as expected. In fact, if the guaranteed
rate of return is positive and the stationary demographic hypothesis holds, then the aggregate
flow of money paid as guarantee must be greater than the aggregate flow of contributions.
Therefore in the presence of minimum guarantee and stationary demographic hypothesis, current
contributions do not allow to pay current benefits. Nevertheless we will see that, under a suitable
assumption on the solvency level, the fund manager can always pay the benefits.

Remark 2.8 A more realistic form of the benefits (that is part of our current work) is

b
(
t,X (·) |[t−T,t]

)
=

{
0 if 0 ≤ t < T,

g(t) + S
(
t,X (·) |[t−T,t]

)
if t ≥ T,

(4)

where S (·, ·) that we define surplus, is a function depending on the time t and on the fund
level within the interval of time [t− T, t]. With this form of the benefits the equation for
the wealth process X becomes a stochastic delay differential equation that can be treated with
the tool of stochastic optimal control in infinite dimension like the ones introduced in e.g.,
[Goldys & Gozzi, 2006, Gozzi & Marinelli, 2006, Fuhrman & Tessitore, 2004] (see the working
paper [Federico, 2007b] for a first study of this problem).

�

2.4 Solvency level

A solvency level may be imposed by law or by a supervisory authority to avoid improper behavior
of the fund manager and to guarantee that she/he is able to pay at least part of the due benefits
at each time t ≥ 0. Without imposing this constraint the fund manager is allowed to use
strategies that may bring her/him to mismatches with the social target of the pension fund. We
assume the following.

Hypothesis 2.9 The solvency level l(·) imposed in (2) is a nondecreasing continuous function
that is constant after time T .
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Remark 2.10 A possible form of the solvency level that satisfies the above hypothesis is

l(t) = l0 + ζ

∫ t

(t−T )∧0
c̄ (u) eδ(t−u)du = l0 + ζ

∫ t

(t−T )∧0

1
T
αNweδ(t−u)du, t ≥ 0, (5)

which means that

• at the beginning the pension fund should hold a given minimum startup level l0 ≥ 0;

• at any time t > 0 the solvency level is l0 plus a fraction ζ > 0 (a constant with the
dimension of time) of the annual contribution at time t (which is constant when t ≥ T )
capitalized at rate δ.

If we set ζ = 1 then the pension fund can always pay the current minimum guarantee (and so,
by Hypothesis 2.5, the current benefits) to the members that have just reached the right to receive
their pension. The case of ζ > 1 corresponds to a solvency level higher than the current benefits
that the fund manager must guarantee.

Straightly from (5), we get

l(t) = l0 + ζαNw
eδ(t∧T ) − 1

δT

Clearly the choice of the parameters l0 and ζ is very important: if they are too low the fund
manager could not be able to pay benefits, if they are too high the constraint on the choice of the
asset allocation becomes too binding. See on this also Remark 3.9. Of course other forms of the
solvency level are possible. �

2.5 Objective utility functional

To a large extent, the primary focus of a pension fund investment is the guarantee for the
subscribers to obtain the promised benefits and the effective management of pension funds is
severely restricted by regulatory authorities in order to enforce such a guarantee. For this reason
despite the formal similarities, it is important to remark that the optimal allocation problem
faced by a pension fund is radically different in its objectives from the problem faced by an
investor having direct access to the market. While the latter is willing to optimize her/his
welfare taking direct advantage from stock market opportunities, a pension fund subscription is
usually a process of investment delegation forced by the social security laws.

It is well known that the process of investment delegation involves costs for the contributors
and a potential divergence between the interests of the principal (the collectivity of subscribers)
and the agent (the manager of the fund). Within our model forced delegation is costly. The
cost paid by the contributors consist of a fixed and a variable component: the fixed part is paid
accepting a guaranteed rate of return δ lower than the risk free rate r (see Hypothesis 2.7).

In order to incentive the manager to undertake risky investments and reduce this fixed
cost, it is a common practice to introduce a variable component in the management fee
proportional to the absolute level of fund’s wealth (see, for example, [Starks, 1987] and
[Goetzmann, Ingersoll & Ross , 2003]).

Here we assume that the incentive contract constrains the fund manager to behave like a
risk averse agent maximizing utility coming from her/his fee, hence depending from the absolute
level of fund’s wealth. For this reason the intertemporal preferences of the fund manager are
represented by a utility functional J , which is the expected value of the time integral of a given
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instantaneous utility function U depending on the time and on the absolute level of fund’s wealth
X:

J = E
∫ +∞

0
U (t,X (t)) dt. (6)

Clearly more general types of utility functionals J may be used (risk sensitive functionals, and
so on) but this would go beyond the scope of this paper.

Observe that within this framework we assume that the participant to the pension fund has
no direct benefit from risky investment, but only an indirect benefit. In fact, assuming the
existence of a competitive market of pension funds’ management (e.g., by insurance companies),
if the manager is allowed to invest in the risky market the fixed delegation cost is expected
to be reduced. Note that the risk aversion profile described by the utility function U in (6)
will represent not only the fund manager’s personal risk aversion but also the additional risk
limitations usually imposed by regulatory authorities.

3 The stochastic control problem

Now we formulate and study our problem as a stochastic optimal control problem. First of all
we observe that the initial time t = 0 has been chosen as the first time of operation of the fund.
However it also makes sense to look to a pension fund that is already running after a given
amount of time s > 0 so to establish an optimal decision policy from s on. For this reason
we set an initial time s ≥ 0, a given amount of wealth x at time s, and consider the following
equation for the dynamics of the wealth (in accordance with (3) and with the hypotheses just
stated) {

dX(t) = {[θ(t)σλ+ r]X(t) + c (t)− b (t)} dt+ θ(t)σX(t)dBs(t), t ≥ s,

X (s) = x ≥ l (s) ,

subject to the state constraint X(t) ≥ l(t) P-a.s., for any t ≥ s. The function c (·) is given by
Hypothesis 2.4, b (·) is given by Hypotheses 2.5, and 2.6 and l (·) is given by Hypothesis 2.9.

The control strategy θ(·) is an {FB
t }t≥s-adapted process with values in [0, 1]. Control strate-

gies could also be considered in weak form as explained in [Yong & Zhou, 1999, Chapter 2, p.
64] but we will not do it here.

Remark 3.1 The state equation, for any {FB
t }t≥s-adapted process θ, has a unique strong

solution on the filtered probability space (Ω, F , {FB
t }t≥s, P) (see, e.g., Problem 6.15 in

[Karatzas & Shreve, 1991], pp. 360–361). We denote its value at time t by X (t; s, x, θ). We
have

X (t; s, x, θ) = Z (t)
[
x+

∫ t

s

c (u)− b (u)
Z (u)

du

]
,

where

Z (t) = exp
(∫ t

s
[θ(u)σλ+ r] du+

∫ t

s
θ(u)σdB (u)− 1

2

∫ t

s
θ2(u)σ2du

)
.

�

The set of admissible control strategies for initial time s ≥ 0 and initial point x is then

Θad(s, x) =
{
θ : [s,+∞)×Ω−→ [0, 1] adapted to {FB

t }t≥s | X (t; s, x, θ) ∈ [l (t) ,+∞), t ≥ s
}
.
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Remark 3.2 The set Θad(s, x) could be empty due to the presence of the state constraint. Later
(Lemma 3.8) we will show conditions that guarantee the nonemptiness of Θad(s, x). �

Note that assuming s ≥ T means that the fund is entered in a stationary demographic regime
which gives an autonomous state equation. The case of s < T consider also the accumulation
phase and is studied in [Federico, 2007a] partly using the results of the present paper. In this case
we a stochastic optimal control problem with finite horizon, which reminds reminds the problem
faced by [Boulier, Huang & Taillard, 2001] and by [Deelstra, Grasselli & Koehl, 2003], but with
some different features: constant interest rate, constraints over the strategies, and solvency
constraint. Here we will concentrate the analysis on the stationary case, so that hereafter we
assume the following.

Hypothesis 3.3 s ≥ T .

In this case, thanks to Hypotheses 2.4, 2.5 and 2.9, the state equation becomes{
dX(t) = {[θ(t)σλ+ r]X(t)−A} dt+ θ(t)σX(t)dB(t), t ≥ s,

X (s) = x ≥ l,
(7)

where we set

A = αNw

(
eδT − 1
δT

− 1
)
> 0 and l = l (T ) .

The total expected discounted utility coming from wealth is given as follows

J (s, x; θ (·)) = E
∫ +∞

s
e−ρtU (X (t; s, x, θ)) dt, (8)

where the fund manager’s utility function U satisfies the following.

Hypothesis 3.4

(i) U : [l,+∞) → R ∪ {−∞} belong to class C2 ((l,+∞) ; R) and U ′ > 0, U ′′ < 0.

(ii) For given C > 0 and β ∈ [0, 1) we have U (x) ≤ C
(
1 + xβ

)
, where

ρ > βr +
λ2

2
· β

1− β
. (9)

Remark 3.5 Let us give some comment on the above Hypothesis 3.4.

• First of all recall that l (s) = l for s ≥ T . So the utility function is defined where the wealth
process X(·) must live (apart from the extremum l where U may take value −∞). If we
take s < T then U need to be defined also for some x < l (maybe depending on time).

• We do not assume that Inada like conditions (i.e. limx→l+ U
′(x) = +∞ and

limx→+∞ U ′(x) = 0) hold for the utility function U . We will do it only in the special
case of Subsection 4.4.

• All utility functions of the form U (x) = (x−x0)γ

γ , for x0 ≤ l and γ ∈ (−∞, 0) ∪ (0, 1)
always satisfy Hypothesis 3.4-(i). In the case when x0 = l they also satisfy the Inada like
conditions mentioned above. This fact will be used later in Subsection 4.4 to give examples.
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• Hypothesis 3.4-(ii) guarantees the finiteness of the value function, as is proved in Propo-
sition 4.5. A more general condition could be given on the line of what is done, in a
different case, in [Karatzas, Lehoczky, Sethi & Shreve, 1986, Section 2]. As we will see in
Subsection 4.4 in the case of U (x) = (x−l)γ

γ , condition (9) may be sharp and even cases
with ρ ≤ 0 may be treated (when γ < 0). �

To solve our stochastic control problem we have to find the optimal pair (X∗, θ∗), i.e. the
solution of the following problem: for s ≥ T , x ≥ l,

maximize J (s, x; θ (·)) over θ (·) ∈ Θad (s, x) . (10)

Let us give the following.

Definition 3.6 An admissible control strategy θ∗(·) ∈ Θad(s, x) is called optimal for the initial
condition (s, x) if

+∞ > J(s, x; θ∗(·)) > −∞

and
J(s, x; θ∗(·)) ≥ J(s, x; θ(·)), ∀θ(·) ∈ Θad(s, x).

The corresponding state trajectory X∗(·) = X(·; s, x, θ∗) is the optimal trajectory and the pair
(X∗, θ∗) is known as optimal pair.

Definition 3.7 The control θε(·) is called ε-optimal for the initial condition (s, x) if it is ad-
missible and

+∞ > J (s, x; θε (·)) > sup
θ(·)∈Θ(s,x)

J (s, x; θ (·))− ε.

3.1 The set of admissible strategies

The set of admissible controls for initial time s ≥ T and initial point x ≥ l, is

Θad (s, x) =
{
θ : [s,+∞)×Ω−→ [0, 1] adapted to {FB

t }t≥s | X (t; s, x, θ) ∈ [l,+∞), t ≥ s
}
.

This set is independent of s in the following sense. Let s > T . Given any adapted control
strategy θ : [T,+∞)×Ω→ [0, 1], there exists a process ψ : [T,+∞)×C ([T,+∞) ; R) → R which
is progressively measurable and such that

θ (t) = ψ
(
t, BT (· ∧ t)

)
, ∀t ≥ T

(see [Yong & Zhou, 1999] Theorem 2.10, p. 18). Then, defining the control strategy θ̄ : [s,+∞)×
Ω → [0, 1] as

θ̄ (t) = ψ
(
t− s+ T,BT (· ∧ (t− s+ T ))

)
, ∀t ≥ s,

we have that θ̄ ∈ Θad (s, x) if and only if θ ∈ Θad (T, x). Indeed the random processesX (·;T, x, θ)
and X

(
·+ s− T ; s, x, θ̄

)
have the same law as they are weak solutions of the same equation,

thanks to the time homogeneity of the state equation (7). This establishes a one-to-one corre-
spondence between Θad (T, x) and Θad (s, x).

We now give a lemma on the nonemptiness of the set of admissible strategies.

13



Lemma 3.8 Given any x ≥ l the set of admissible strategies Θ(T, x) is nonempty if and only
if the control θ(·) ≡ 0 is admissible. This happens if and only if

x ≥ A

r
. (11)

In particular the set of admissible strategies Θ(T, x) is nonempty for every x ≥ l if and only if

l ≥ A

r
. (12)

Proof. Let x ≥ l. It is clear that if θ(·) ≡ 0 is admissible at (T, x) then Θ (T, x) is nonempty.
We prove the opposite. Assume that Θ (T, x) is nonempty; let θ(·) be an admissible strategy
and set X(t) = X(t, T, x, θ). By the Girsanov Theorem, under the probability (depending
on t, defined on Ft and equivalent to P) P̃ = exp

(
−λBT (t)− 1

2λ
2 (t− T )

)
· P, the process

B̃T (τ) = λ (τ − T ) +BT (τ) is a Brownian motion on [T, t] and we have

X (t) = x+
∫ t

T
rX (τ) dτ −

∫ t

T
Adτ +

∫ t

T
θ (t)σX (τ) dB̃T (τ) , t ≥ T. (13)

Now X (t) ≥ l P-a.s., and so also P̃-a.s.; taking the expectation Ẽ under P̃ we get Ẽ [X (t)] ≥ l.
But from (13) we have

Ẽ [X (t)] = x+
∫ t

T
rẼ [X (τ)] dτ −

∫ t

T
Adτ, t ≥ T. (14)

This implies that the deterministic function g (τ) = Ẽ [X (τ)] satisfies on [T, t] the same ordinary
differential equation as X (τ ;T, x, 0), so that also X(τ, T, x, 0) ≥ l on [T, t]. The first claim is
proved by the arbitrariness of t.

Now for θ(·) ≡ 0 the state equation (7) becomes the following deterministic equation{
dX(t) = (rX(t)−A) dt, t ≥ T,

X(T ) = x ≥ l.
(15)

It is then easy to see that X(t) ≥ l P-a.s., for any t ≥ T , if and only if

rx−A ≥ 0 ⇐⇒ x ≥ A

r
.

This gives the second statement. �

Remark 3.9 Lemma 3.8 substantially states that the good solvency level must be such that the
return rl from it is greater than A, i.e. the balance between contribution and benefit rate.In
other words the solvency level l must be above the present value A

r of the perpetual annuity,
which is obtained discounting at the instantaneous risk free rate r the balance between benefit
and contribution rate A, i.e. the present value of the total outcomes, over the whole time horizon.
This may remind what happens, in a different setting, in [Sethi, Taksar & Presman 1992] and
[Cadenillas & Sethi, 1997] where models with subsistence consumption are considered. In the
case of stochastic interest rates and demographic risk this would be a stochastic constraint.

We observe that, in the special case when the solvency level is given by (5), all quantities
are given by the market except for l0 and ζ which may be chosen by a supervisory authority. In
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other words the authority fix the liquidity l0 needed to start a pension fund and the percentage ζ
of the accrued contribution that must be stored to regulate wisely the pension fund. This choice
should always satisfy (12) and may vary depending on the goals of the authority itself. For
example high rl − A will force the fund manager to keep more prudential behaviours in order
to avoid default but would restrict her/his investment strategies and the value would be smaller
(see Remark 4.24). Also high l0 would decrease the number of new entries in the market, and
so on (see also Remark 2.10). �

Remark 3.10 When rl = A then Θ(T, l) is made only by the null strategy since by (14) any
admissible strategy must have mean value l. If rl > A then Θ(T, l) contains also other strategies
(e.g., θ (t) = G (X (t)), where G is given in (28)). �

From now on we will always assume that Θ (T, x) is nonempty over all [l,+∞), i.e. that (12)
holds. We will often divide the two cases rl = A and rl > A since they have different features.

4 Dynamic Programming

In order to proceed with the dynamic programming technique we have to study the so-called
value function associated with the problem. To do this we first prove that the objective functional
formally defined in (8) is actually well-defined; this is consequence of the Hypothesis 3.4.

Proposition 4.1 Let Hypothesis 3.4 hold. The functional J defined in (8) is well-defined, i.e.
for any s ≥ T , x ≥ l, θ ∈ Θad(s, x) we have

E
[∫ +∞

s
e−ρtU+(X(t))dt

]
< +∞.

Proof. See Appendix p. 26.

Thanks to Proposition 4.1, we can associate to the problem the value function defined , for
s ≥ T , x ≥ l, by

V (s, x) = sup
θ(·)∈Θad(s,x)

E
∫ +∞

s
e−ρtU (X (t; s, x, θ)) dt, x ∈ [l,+∞). (16)

and Bellman’s optimality principle is as follows (see, e.g., [Soner, 2004], Section 1.3, for a proof).

Theorem 4.2 The value function V satisfies the dynamic programming equation, i.e. for every
s ≥ T , x ≥ l and τ ≥ s stopping time, the following functional equation holds

V (s, x) = sup
θ(·)∈Θad(s,x)

E
[∫ τ

s
e−ρtU (X (t; s, x, θ)) dt+ V (τ,X (τ ; s, x, θ))

]
. (17)

Since we are in the stationary case, using the properties of the set of admissible strategies
(see the beginning of Subsection 3.1), we can prove the following.

Proposition 4.3 For every s ≥ T and x ≥ l we have

V (s, x) = e−ρ(s−T )V (T, x) . (18)
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Setting
VT (x) = eρTV (T, x) , (19)

we also obtain
VT (x) = sup

θ(·)∈Θad(T,x)
JT (x; θ (·)) (20)

with

JT (x; θ (·)) = E
∫ +∞

T
e−ρ(t−T )U (X (t;T, x, θ)) dt.

Moreover, for every stopping time t̂ ≥ T we have

VT (x) = sup
θ(·)∈Θad(T,x)

E

[∫ t̂

T
e−ρ(t−T )U (X (t;T, x, θ)) dt+ e−ρ(t̂−T)VT

(
X

(
t̂;T, x, θ

))]
. (21)

Proof. We give only a sketch, as the arguments are quite standard. Performing the change of
variable t′ = t− (s− T ) on the right side of (16), we get

V (s, x) = sup
θ(·)∈Θad(s,x)

E
∫ +∞

T
e−ρ(t′+s−T )U

(
X

(
t′ + s− T ; s, x, θ

))
dt′.

Since both the state equation and the set of admissible controls are autonomous for s ≥ T (see
the beginning of Subsection 3.1) then there is a one to one correspondence between Θad (s, x)
and Θad (T, x) such that, for any θ ∈ Θad (s, x) and calling θ̄ the corresponding strategy in
Θad (T, x), the trajectories X (·+ s− T ; s, x, θ) and X

(
· ;T, x, θ̄

)
have the same law. Hence

V (s, x) = sup
θ(·)∈Θad(T,x)

E
∫ +∞

T
e−ρ(t′+s−T )U

(
X

(
t′;T, x, θ

))
dt′ = e−ρ(s−T )V (T, x) .

Statement (20) simply follows by the definitions of VT and V . Statement (21) follows setting
s = T and τ = t̂ in the dynamic programming equation (17), and using (18) and (19). �

Remark 4.4 By arguing as in the proof above it is easy to see that

VT (x) = sup
θ(·)∈Θ̃ad(0,x)

E
∫ +∞

0
e−ρtU

(
X̃ (t; 0, x, θ)

)
dt,

where X̃ (t; 0, x, θ) is the solution of{
dX(t) = {[θ(t)σλ+ r]X(t)−A} dt+ θ(t)σX(t)dB(t), t ≥ 0,
X (0) = x ≥ l,

and

Θ̃ad (0, x) =
{
θ : [0,+∞)×Ω−→ [0, 1] adapted to {FB

t }t≥0 | X̃ (t; 0, x, θ) ∈ [l,+∞), t ≥ 0
}
.

So one could use this form of VT to study its properties. We decide to keep the form starting at
T to avoid too many changes of variables. �
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The HJB equation associated with VT is, formally (the meaning of the equation at l will be
specified later in Subsection 4.2),

ρv(x)−H0

(
x, v′(x), v′′(x)

)
= 0, x ∈ [l,+∞), (22)

where
H0

(
x, v′(x), v′′(x)

)
= sup

θ∈[0,1]
H0,cv

(
x, v′(x), v′′(x); θ

)
, x ∈ [l,+∞),

with
H0,cv (x, p,Q; θ) = U (x) + p ([θσλ+ r]x−A)+

1
2
θ2σ2x2Q.

We now concentrate our analysis on this last case. Note that calling Lθ the parabolic operator
defined, for f ∈ C2 ([l,+∞); R), by

[Lθf ] (x) =
1
2
θ2σ2x2f ′′ (x) + ([θσλ+ r]x−A) f ′(x), x ≥ l, (23)

we can write
H0,cv

(
x, v′(x), v′′(x); θ

)
= [Lθv] (x) + U (x) , x ≥ l.

To calculate the Hamiltonians we observe that the function

H1,cv (x, p,Q; θ) = pθσλx+
1
2
θ2σ2x2Q

when p ≥ 0, Q ≤ 0, p2 +Q2 > 0 has a unique maximum point over θ ∈ [0, 1] given by

θ∗ = − λp

σxQ
∧ 1

(where we mean that θ∗ = 1 for Q = 0) and

H1 (x, p,Q) = sup
θ∈[0,1]

H1,cv (x, p,Q; θ) =

{
−λ2p2

2Q if θ∗ < 1,

pσλx+ 1
2σ

2x2Q if θ∗ = 1.

When p = Q = 0 each θ ∈ [0, 1] is a maximum point and H1 (x, p,Q) = 0. Then the HJB
equation (22) can be written as

ρv(x)− U (x)− v′ (x) (rx−A)−H1

(
x, v′ (x) , v′′ (x)

)
= 0, x ∈ [l,+∞). (24)

4.1 Properties of the value function

In this section we discuss some basic properties (finiteness, concavity, monotonicity, continuity)
of the value function VT (x) = eρTV (T, x), where V (·, ·) is defined in (16). For simplicity in
what follows we will write VT (x) = V (x) omitting the subscript T ; similarly we will write B(t)
for BT (t). Throughout this section we will always assume that all previously stated Hypotheses
2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 3.3, 3.4 hold.

Proposition 4.5 Let rl ≥ A. Then V (·) > −∞ on (l,+∞). Moreover

(i) when rl = A: V (l) > −∞ if and only if U (l) > −∞;

(ii) when rl > A: V (l) > −∞ if and only if U is integrable in a right neighborhood of l.
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Finally there exists C > 0 such that V (x) ≤ C
(
1 + xβ

)
, for x ≥ l, where β is given by Hypothesis

3.4-(ii).

Proof. See Appendix p. 27.

Proposition 4.6 The value function V is concave.

Proof. See Appendix p. 28.

Proposition 4.7 The value function V is strictly increasing.

Proof. See Appendix p. 29.

Proposition 4.8 The value function V is continuous in (l,+∞) and Lipschitz continuous in
[a,+∞), for any a > l. Moreover if rl > A and V (l) > −∞ then V is uniformly continuous in
[l,+∞).

Proof. See Appendix p. 30.

Remark 4.9 The continuity of V in l when rl = A and V (l) > −∞ (i.e. when U(l) > −∞ by
Proposition 4.5 - (i)) can be proved by using a more refined argument. We do not do it here for
brevity (and also because this result in not essential for our purposes) but we will take this result
for granted from now on. In the special case of Section 4.4 we will see that V is given explicitly
and is continuous in l when V (l) > −∞. �

Remark 4.10 From the above proof it follows that, when U (l) is finite (and so also V (l)) and
rl > A, we have, for x > l,

V (x)− V (l)
x− l

≤
1
r ln rx−A

rl−A

x− l
e−ρTU (l) +

1−
(

rx−A
rl−A

)− ρ
r

x− l
V (x) +

o (x− l)
x− l

,

so recalling that V ′ (l+) must exist by the concavity of V it follows

V ′ (l+)
≤ ρ

rl −A

[
e−ρT

ρ
U (l) + V (l)

]
.

This means, in particular that V ′ (l+) is finite. On the other side when rl = A, U ′ (l+) = +∞
and U(l) > −∞ (hence V is finite and continuous at l, see Remark 4.9), then V ′ (l+) is infinite.

Indeed in this case V (l) = U(l)
ρ while V (x) ≥ JT (x; 0) ≥ U(x)

ρ , so V ′ (l+) ≥ U ′(l+)
ρ = +∞. See

Section 4.4 for an example. �
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4.2 The HJB equation: viscosity solutions and regularity

Let us consider HJB equation (22) on [l,+∞). This is a second order PDE which is de-
generate elliptic. The concept of viscosity solution we use here is the following (see, e.g.,
[Crandall, Ishii & Lions, 1992] for a survey on viscosity solution of second order PDE’s).

Definition 4.11 A continuous function v : (l,+∞) → R is a viscosity subsolution (respectively
supersolution) of equation (22) in (l,+∞) if, for any ψ ∈ C2 ((l,+∞); R) and for any maximum
point xM ∈ (l,+∞) (respectively minimum point xm ∈ (l,+∞)) of v − ψ, we have

ρv(xM )−H0

(
xM , ψ

′(xM ), ψ′′(xM )
)
≤ 0

(respectively ρv(xm)−H0

(
xm, ψ

′(xm), ψ′′(xm)
)
≥ 0).

A continuous function v : (l,+∞) → R is a viscosity solution of equation (22) in (l,+∞) if
it is both a viscosity subsolution and a viscosity supersolution in (l,+∞).

Definition 4.12 A continuous function v : [l,+∞) → R is a viscosity subsolution of equation
(22) on [l,+∞) if, for any ψ ∈ C2 ([l,+∞)) ; R) and for any maximum point xM ∈ [l,+∞) of
v − ψ, it follows

ρψ(xM )−H0

(
xM , ψ

′(xM ), ψ′′(xM )
)
≤ 0.

A continuous function v : [l,+∞) → R is called a constrained viscosity solution of equation
(22) if it is viscosity subsolution on [l,+∞) and a viscosity supersolution in (l,+∞).

Remark 4.13 The above definition of constrained viscosity solution comes from [Soner, 1986]
(in the deterministic case) and is the same used also by [Zariphopoulou, 1994] to treat a
similar HJB equation. Indeed other definitions of viscosity solutions can be used (see, e.g.,
[Ishii & Loreti, 2002]) that differs in the boundary conditions. The definition we use was intro-
duced for cases where it is possible to find a control that brings the state from the boundary to the
interior of the state space, as in the case rl > A (see also [Katsoulakis, 1994] on this subject).�

We can state and prove the following result.

Theorem 4.14 The value function V defined in (19) is a viscosity solution of HJB equation
(22) in (l,+∞). If U is finite in l then V is a constrained viscosity solution of HJB equation
(22) on [l,+∞).

Proof. See Appendix p. 31.

Remark 4.15 The above proof is similar to the one of [Choulli, Taksar & Zhou, 2003], The-
orem 1, pp. 1954–1958. We have provided it here since, as far as we know, our problem does
not fit exactly into the results contained in [Choulli, Taksar & Zhou, 2003] or in other papers.
In Theorem 3.1 of [Zariphopoulou, 1994], pp. 65–69, a different proof of the existence results is
given for an HJB equation similar to ours (featuring state constraints and unboudedness of the
data). �

Remark 4.16 We are not proving here a comparison theorem. This should be possible, e.g.,
arguing as in [Zariphopoulou, 1994] Theorem 4.1, p. 69–74, even if our HJB equation is different
(see also [Ishii & Loreti, 2002] for uniqueness results in presence of state constraints). We do
not do it here for brevity since the comparison result is not essential for our applications. �
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Moreover we can state and prove the smoothness of V .

Theorem 4.17 The value function V defined in (19) belong to the class C2 ((l,+∞) ; R)
(C ([l,+∞); R)∩ C2 ((l,+∞) ; R) if V (l) is finite).

Proof. See Appendix p. 34.

Remark 4.18 The proof above uses some arguments taken from the proof of Theorem
2, pp. 1958–1960, in [Choulli, Taksar & Zhou, 2003] even if it needs new ideas since
here we do not have uniform ellipticity of the second order term. In Theorem 5.1 of
[Zariphopoulou, 1994], pp. 78–82 (see also [Duffie, Fleming, Soner & Zariphopoulou, 1997] for
another result of this kind), a similar regularity result is proved for a similar HJB equation
with a different technique (restriction to bounded intervals where suitable approximating equa-
tions are proved to be uniformly elliptic). In any case the results of [Zariphopoulou, 1994,
Duffie, Fleming, Soner & Zariphopoulou, 1997] cannot be applied as they are to this case.

We also notice that the above proof indeed states the C2 interior regularity for every concave
viscosity solution of HJB equation (24) in (l,+∞). �

Remark 4.19 We can get more regularity of the value function. In particular observe that from
the HJB equation, for any x0 ∈ (l,+∞), if − λV ′(x0)

σx0V ′′(x0) < 1 then in a suitable neighborhood of x0

V ′′(x) = − λ2 [V ′ (x)]2

2 [ρV (x)− (rx−A)V ′ (x)− U(x)]
, (25)

so V ′′ is differentiable at x0. Similarly if λV ′(x0)
σx0V ′′(x0) > 1 (or even when V ′′ (x0) = 0) then in a

suitable neighborhood of x0

V ′′(x) =
2

σ2x2

[
ρV (x)− (rx+ σλx−A)V ′ (x)− U(x)

]
,

so V ′′ is differentiable at x0. �

Now we give a Corollary which will be very useful in proving the verification theorem for the
case rl > A stated in next subsection.

Corollary 4.20 The value function is strictly concave and satisfies

V ′ (x) > 0, V ′′ (x) < 0,

for x ∈ (l,+∞). Moreover if rl > A and U (l) > −∞ we have

V ′′ (x) −→ −∞ when x −→ l+, (26)

and if U ′ (l+) is finite

(x− l)
[
V ′′ (x)

]2 −→ λ2 [V ′ (l+)]2

2 (rl −A)
when x −→ l+. (27)

Proof. See Appendix p. 37.
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Remark 4.21 Equation (26) (and also (27)) is a consequence of the boundary condition, i.e.
of the subsolution inequality at the boundary (which depends on the structure of the second
order superdifferential at the boundary). In particular we can say that if rl > A and U (l) >
−∞ the value function V solves HJB equation (24) on [l,+∞) with the usual agreement that
H1 (l, V ′ (l+) ,−∞) = 0.

Similar results can be proved in the case when rl = A but we will not need them since in that
case we will only study a special case where explicit solutions are available (Subsection 4.4).

Finally the claim of Corollary 4.20 holds for every concave constrained viscosity solution of
equation (24) on [l,+∞) when rl > A and U(l), U ′(l) are finite. �

4.3 The verification theorem and the optimal policies when rl > A

We prove a verification theorem and the existence of optimal feedbacks when rl > A and U(l),
U ′(l+) are finite. We start by a lemma.

Lemma 4.22 Let rl > A and U (l) , U ′ (l) be finite. Set

G (x) =

{
− λV ′(x)

σxV ′′(x) ∧ 1 when x > l,

0 when x ≤ l.
(28)

For every x ≥ l, the closed loop equation{
dX(t) = ([σλG (X (t)) + r]X(t)−A) dt+ σX(t)G (X (t)) dB(t), t ≥ T,

X(T ) = x ≥ l,
(29)

has a unique strong solution XG (· ;T, x). Moreover for every t ≥ T we have XG (t;T, x) ≥ l
P−a.s..

Proof. See Appendix p. 38.

Theorem 4.23 Let rl > A and U (l) , U ′ (l) be finite. Then, for every x ≥ l, the control strategy
θ∗ (·) ∈ Θ(T, x) such that

θ∗ (t) = G (XG (t;T, x)) ,

where G is given by (28) and XG (·;T, x) is the unique strong solution of (29), is the unique
optimal strategy at (T, x).

Proof. We cannot proceed with the standard proof of the verification theorem in the regular
case (see on this, e.g., [Yong & Zhou, 1999], p. 268) since the function V is not C2 up to the
boundary. Thus we use an approximation procedure which is showed in Appendix p. 39.

Remark 4.24 If rl > A and U(x) = γ−1
(
x− A

r

)γ then, arguing as in the proof of Proposition
4.25, one can see that the function

v(x) = γ−1

(
ρ− γr − λ2γ

2(1− γ)

)−1 (
x− A

r

)γ

is a regular solution of HJB equation (24) in (l,+∞) when λ ≤ σ(1−γ). However this function v
is not a constrained viscosity solution since it does not satisfy (26) that comes from the boundary
condition (see on this Remark 4.21), and so v is not the value function.
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In next section we will see that we have v = V when rl = A. Therefore, from the arguments
of next section, it follows that when rl > A the function v is the value function if the state
constraint x ≥ l is replaced by x ≥ A

r , so we clearly have v ≥ V .
Finally we observe that the proof of the above Theorem 4.23 works if V is replaced by any

concave constrained viscosity solution of equation (24) in [l,+∞). So as a byproduct of it we
get that the value function is the unique concave constrained viscosity solution of equation (24)
in [l,+∞). �

4.4 An example when rl = A with explicit solution

In the case of rl = A and U ′(l+) = +∞ it is possible to prove a general verification theorem on
the line of Theorem 4.23. We do not do it here for brevity but we study a special case where,
differently from the case rl > A, the explicit form of the value function and of the optimal
couples is available. The utility function is given by

U(x) =
(x− l)γ

γ
, γ ∈ (−∞, 0) ∪ (0, 1) . (30)

This utility function is defined for any x ≥ l if γ ∈ (0, 1), and for any x > l if γ ∈ (−∞, 0);
therefore the set of admissible strategies is never empty thanks to Lemma 3.8. Moreover it
always satisfies Hypothesis 3.4. Notice that, considering the utility as a function of x − l, the
above specification represents constant relative risk aversion preferences. The case of logarithmic
utility may be treated in the same way but we do not do it for brevity.

Following [Merton, 1969] and [Merton, 1971], we look for a solution of HJB equation (24) of
the form

v (x) = C
(x− l)γ

γ
, γ ∈ (−∞, 0) ∪ (0, 1), (31)

for a suitable constant C. Substituting into HJB equation (24) we see that it must be

C =
(
ρ− γr − λ2γ

2 (1− γ)

)−1

, (32)

under the conditions

ρ > γr +
λ2γ

2(1− γ)
, and λ ≤ σ (1− γ) . (33)

The first condition is necessary in order to grant the finiteness of the value function. It is
guaranteed by (9) for γ ∈ (0, 1), and is always true for γ < 0. The second condition guarantees
that the maximum point in the Hamiltonian is ≤ 1, so the no borrowing constraint is never
active: this allows to keep H1 in the form which is suitable to find the explicit solution.Indeed,
when λ > σ(1 − γ) it is not difficult to see that V (x) < v(x) for any x > l using the fact
that v is the value function of a problem with larger control set whose optimal trajectory is not
admissible for our problem.

The main result of this section is the following.

Proposition 4.25 Let conditions (33) be verified and the utility function be given by (30) with
γ ∈ (−∞, 0) ∪ (0, 1). Then v given in (31), with C given by (32), is the value function, i.e.

V (x) = γ−1

[
ρ− γr − λ2γ

2 (1− γ)

]−1

(x− l)γ , x ≥ l (x > l when γ < 0).
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Proof. We need to prove that the solution of HJB equation (24) in this case is the value function.
To do this we argue as in the standard verification theorem. We know that the function v given
in (31) satisfies the following HJB equation for x > l

ρv(x)− (x− l)γ

γ
− v′(x) (rx−A)−H1

(
x, v′(x), v′′(x)

)
= 0. (34)

Let us take x > l and θ (·) ∈ Θad (T, x) with the associated state trajectory X(·). Assume
that, for every t ≥ T , X (t) > l P−a.s., and apply the Dynkin formula to the function (t, x) →
(e−ρ(t−T )v(x)) with the process X (·). For any t1 ≥ T , we obtain

E
[
e−ρ(t1−T )v(X(t1))− v(x)

]
= E

∫ t1

T
e−ρ(t−T )

(
−ρv(X(t)) + Lθ(t)v (X(t))

)
dt.

As t1 → +∞ we get, as in the proof of Theorem 4.23,

v(x) = E
∫ +∞

T
e−ρ(t−T )

(
ρv(X(t))− Lθ(t)v (X(t))

)
dt

that is, recalling (34),

v(x) = E
∫ +∞

T
e−ρ(t−T )

[
(X(t)− l)γ

γ
+ v′ (X(t)) + (rX(t)−A)

+H1

(
X(t), v′ (X(t)) , v′′ (X(t))

)
− Lθ(t)v (X(t))

]
dt,

and thus

v(x) = JT (x; θ(·)) + E
∫ +∞

T
e−ρ(t−T )

[
H1

(
X(t), v′ (X(t)) , v′′ (X(t))

)
−H1,cv

(
X(t), v′ (X(t)) , v′′ (X(t)) ; θ(t)

) ]
dt, (35)

which implies
v(x) ≥ JT (x; θ(·)) .

Assume now that the trajectory X (·) touches the boundary in finite time with positive proba-
bility (hence it remain there forever since rl = A). If γ < 0 then this trajectory has payoff −∞,
and so it cannot be optimal. Therefore in this case we can restrict to strategies that keep the
trajectory strictly above l. If γ ∈ (0, 1) we argue as follows. Define

τl = inf {t ≥ T : X (t) = l} ,

and arguing as above, for every ε > 0, we get

v(x) = E
[∫ τl−ε

T
e−ρ(t−T )U (X (t)) dt+ e−ρ(τl−ε−T )v (X (τl − ε))

]
+ E

∫ τl−ε

T
e−ρ(t−T )

[
H1

(
X(t), v′ (X(t)) , v′′ (X(t))

)
−H1,cv

(
X(t), v′ (X(t)) , v′′ (X(t)) ; θ(t)

) ]
dt.
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Letting ε → 0 we see that the term in the first line have a limit and so also the term in the
second line has a limit. Since the term in the second line is always positive we obtain

v(x) ≥ E
[∫ τl

T
e−ρ(t−T )U (X (t)) dt+ e−ρ(τl−T )v (X (τl))

]
. (36)

Now

v (X (τl)) = v (l) =
U (l)
ρ

=
∫ +∞

τl

e−ρ(t−τl)U (l) dt,

so, by (36), v(x) ≥ JT (x; θ(·)). This implies v(x) ≥ V (x). Taking the feedback map

G(x) =
λ

σ (1− γ)
x− l

x
, (37)

we see that the associated closed loop equation isdX (t) =
(

λ2

1− γ
+ r

)
(X (t)− l) dt+ λ

1−γ (X (t)− l) dB (t) ,

X(T ) = x.

(38)

Such equation is linear and it has a unique strong solution XG (·;T, x) for every x ≥ l. Moreover
XG (·;T, l) ≡ l P−a.s. while, for x > l, XG (·;T, x) > l P−a.s.. Choosing

θ∗(t) =
λ

σ (1− γ)
XG(t)− l

XG(t)
(39)

we see that it is optimal since the second term of the right hand side of (35) is zero, so also
v (x) = V (x), the claim. �

An immediate consequence of the above proof is the following result.

Corollary 4.26 The optimal risky asset investment strategy under conditions (33) for any x > l
is given by (39), where XG (·) is the unique strong solution of the closed loop equation (38).

5 Analysis of the optimal policies

We discuss now the properties of the optimal policies described in Subsections 4.3 and 4.4 in
the cases

• rl > A, U(l) and U ′(l) finite;

• rl = A, U ′(l) = +∞.

First of all observe that in both cases the optimal feedback map is given by the function G
of (28) which, when < 1, is (similarly to the Merton model) the product of the payoff for every
unit of risk λ

σ and of the quantity − V ′

x V ′′ , i.e. the Arrow-Pratt measure of risk tolerance of the
indirect utility function V (the value function).

24



This implies that the optimal feedback map is increasing with the payoff per unit of risk and
with the relative risk aversion of V , while the relation between the optimal policy and the level
of wealth is known only implicitly, unless we know the explicit expression of V .

In the case of rl > A, U(l) and U ′(l) finite, even taking a CRRA utility function the explicit
form of the value function is not available. As seen in Remark 4.24 the natural candidate solution
of HJB equation (24) does not satisfy the required boundary condition. This comes from the
presence of the state constraints x ≥ l and from the fact that the control θ ≡ 0 bring the state
from the boundary x = l in the interior of the state region.

So, even starting from initial wealth equal to the solvency level l, the set of admissible
strategies does not reduce to the trivial one (investment in the riskless asset forever) but allows
to the fund manager to reinvest in the risky asset. Moreover, starting from an initial wealth
x > l, the boundary is always reached with positive probability.

The possibility to exit from the boundary l (if the wealth process starts from or reaches it)
is given by the fact that the capital amount l invested in the riskless asset will generate a return
per unit of time rl. Hence the accrued return will produce disposable wealth to be invested in
the risky asset and the wealth process can exit from the trivial state X(·) ≡ l.

When rl = A, U ′(l) = +∞, and the utility function is in CRRA form (under constraints
on the parameters), an explicit form of V is available and it is exactly the natural candidate
solution of HJB equation (24). Indeed, here the situation at the boundary is different. The
control θ ≡ 0 leaves forever the state in the boundary x = l, so when the initial wealth x equals l
the unique admissible allocation strategy is given by investing all the wealth in the riskless asset
forever, and no risky investment is allowed. On the contrary, when initial wealth x is strictly
greater than l the fund wealth will never reach the solvency level.

Concerning the case rl = A treated in Subsection 4.4 the explicit form of the value function
allows us to make a further consideration. According to the common sense, the portfolio selection
rule (37) suggests to increase the fraction invested in the risky asset if the wealth level grows,
and diminish the share invested in it if the fund level decreases. Indeed, this kind of policy seems
to be reasonable with the social target of a pension fund, whose manager must be interested in
protecting the wealth level and in caring about the risk the portfolio strategies involve.

Finally, we observe that within our model (whether the case of rl > A, U(l) and U ′(l) finite,
or the case of rl = A and U ′(l) = +∞) we have similar results if we assume that the portfolio
strategy θ(·) belong to [0, θ0] with θ0 < 1, i.e. if the pension fund is forced not to invest the total
amount of its wealth in the risky asset. Sometimes this constraint is imposed by the supervisory
authority (see e.g. [Sbaraglia et al., 2003]).

6 Conclusions

We have formulated and studied a model for the optimal management of a defined contribu-
tion pension fund with a minimum guarantee formulated as a stochastic control problem. Our
emphasis has been put on the constraints faced by the fund manager: we model the inflows
and outflows generated by contributions and benefits under demographic stationarity, the re-
quirement of having a solvency level on the fund wealth, and the borrowing and short selling
constraints on the allocation strategies.
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We have developed the dynamic programming approach to characterize the optimal policies
when the solvency level is deterministic. We have proved that the value function is a smooth
solution of the associated HJB equation and then we have used this result to write the optimal
policies in feedback form.

In the case of rl > A we have seen, for generic utility functions with U (l) and U ′ (l) finite,
that the solvency level l can be reached with positive probability but the optimal portfolio
strategy does not become trivial, i.e. the fund manager can still reinvest, later, in the risky
asset. Also starting from x = l would give rise to nontrivial investment strategies.

In the specific case of rl = A we have seen, for a special class of utility functions with U ′ (l)
infinite, that the solvency level is never reached when the initial wealth is x > l. Moreover in
this setting an explicit solution is provided and discussed.

Future developments concern the study of the model described in Section 2 in a more realistic
framework: in particular when the interest rate and the wage rate are stochastic and when
benefits includes the surplus as represented in (4). Also the introduction of demographic risk
(relaxing the hypothesis of demographic stationarity) is currently under study.

Acknowledgements

We thank Marc Yor and Francesco Russo for a valuable discussion on one dimensional stochastic
differential equations; Eduardo Schwartz for a helpful discussion on the role of the solvency
constraint. Finally we thanks all participants to seminars and conferences where this work was
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A Appendix

Here we provide the most technical proofs.
Proof of Proposition 4.1. Let s ≥ T , x ≥ l, θ ∈ Θ(s, x) and set X (t) = X (t;T, x, θ); by

Hypothesis 3.4-(ii) we have

E
∫ +∞

s
e−ρtU+ (X (t)) dt ≤ C

∫ +∞

s
e−ρt

(
1 + E

[
X (t)β

])
dt. (40)

Let t ≥ s; applying the Girsanov Theorem under the probability P̃ as above, we have

X (t) = x+
∫ t

s
rX (τ) dτ −

∫ t

s
Adτ +

∫ t

s
θ (t)σX (τ) dB̃s (τ) ,

so by the Gronwall lemma applied to the function g(τ) = ẼX (τ), τ ∈ [s, t], we get ẼX (t) ≤
er(t−s)x; of course we can do this for any t ≥ s. Now

E
[
X (t)β

]
= Ẽ

[
X (t)β exp

(
λB̃s (t)− 1

2
λ2 (t− s)

)]
,
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and by the Holder inequality

Ẽ
[
X (t)β exp

(
λB̃s (t)− 1

2
λ2 (t− s)

)]
≤

(
Ẽ [X (t)]

)β
·
(

Ẽ
[
exp

(
λB̃s (t)− 1

2
λ2 (t− s)

)
1

1− β

])1−β

= xβe

�
βr+ β

1−β
·λ

2

2

�
(t−s)

.

The above inequalities imply that, for some C ′ > 0,

E
∫ +∞

s
e−ρ(t−s)U+ (X (t)) dt ≤ C ′

(
1 + xβ

)
,

which gives the claim thanks to (9). �

Proof of Proposition 4.5
Estimates from below for x > l. First of all we show that V > −∞ on (l,+∞). Indeed, since
the null strategy is always admissible we have, for every x ≥ l,

V (x) ≥ JT (x; 0) =
∫ +∞

T
e−ρ(t−T )U (X (t;T, x, 0)) dt.

But, recalling that X (t;T, x, 0) satisfies (15), we have

X (t;T, x, 0) = er(t−T )x−A
er(t−T ) − 1

r
= er(t−T )

[
x− A

r

]
+
A

r
.

Since (11) holds then x− A
r ≥ 0, so X (t;T, x, 0) ≥ x for every t ≥ T and

V (x) ≥ JT (x; 0) ≥
∫ +∞

T
e−ρ(t−T )U (x) dt =

U (x)
ρ

, (41)

which gives the claim.

Estimates from below for x = l, case (i). The above arguments also says that V (l) > −∞
when U (l) > −∞. Moreover, when rl = A the only admissible strategy at x = l is the null one
(Remark 3.10) that keeps the state in l at every time; so when U (l) = −∞ also V (l) = −∞.

Estimates from below for x = l, case (ii). Assume now that rl > A, so

V (l) ≥ JT (l; 0) =
∫ +∞

T
e−ρ(t−T )U

(
er(t−T )

[
l − A

r

]
+
A

r

)
dt. (42)

By setting z = er(t−T )
[
l − A

r

]
+A

r the above integral becomes equal to a given constant multiplied
by ∫ +∞

l

(
z − A

r

)− ρ
r
−1

U (z) dz

which is > −∞. Indeed, take any z0 > l, the integrability of U in a neighborhood of l says
that

∫ z0

l

(
z − A

r

)− ρ
r
−1
U (z) dz is finite, while for the term

∫ +∞
z0

(
z − A

r

)− ρ
r
−1
U (z) dz we have

two cases. Either U remains negative over all (l,+∞) and in this case the integral is > −∞
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thanks to the term
(
z − A

r

)− ρ
r
−1, or becomes positive after a certain point and in this case the

integral is immediately > −∞.
Take now U which is not integrable in a right neighborhood of l. To prove the claim it is

enough to show that, for every θ(·) ∈ Θ(T, l), setting X(t) = X(t;T, l, θ) we have

E
∫ T+1

T
e−ρ(t−T )U(X(t))dt = −∞.

By the state equation we have

X (t) = l +
∫ t

T
rX (τ) dτ +

∫ t

T
σλθ(τ)X (τ) dτ −

∫ t

T
Adτ +

∫ t

T
θ (t)σX (τ) dB (τ) ;

passing to the expectations and taking into account that θ(·) ∈ [0, 1], X(·) ≥ 0, and the com-
parison criterion for ODE, we get the estimate

E [X(t)] ≤ le(r+σλ)(t−T ).

So we finally get by Jensen inequality

E
∫ T+1

T
e−ρ(t−T )U(X(t))dt ≤

∫ T+1

T
e−ρ(t−T )U

(
le(r+σλ)(t−T )

)
dt.

Applying a change of variable like the one done in formula (42) we get the claim. �

Estimates from above. First, if limz→+∞ U (z) =: Ū < +∞ then, for every x ≥ l,

V (x) ≤
∫ +∞

T
e−ρ(t−T )Ūdt =

Ū

ρ
,

so in this case V is finite and bounded. If Ū = +∞, then the claim follows as in the proof of
Proposition 4.1, since the estimate in that proof does not depend on the control θ. �

Proof of Proposition 4.6
Take two initial values x1 and x2 such that x1, x2 ≥ l. Suppose, without loss of generality,

that x1 < x2, V (x1) > −∞, and set xη = ηx1 + (1− η)x2, η ∈ [0, 1]. We have to prove that

V (xη) ≥ ηV (x1) + (1− η)V (x2) P-a.s.. (43)

Let us suppose θ1(·) ∈ Θad(T, x1) and θ2(·) ∈ Θad(T, x2) be ε-optimal for x1 and for x2,
respectively. Set X1(·) = X(· ;T, x1, θ1) and X2(·) = X(· ;T, x2, θ2). We have

ηV (x1) + (1− η)V (x2) < η [JT (x1; θ1(·)) + ε] + (1− η) [JT (x2; θ2(·)) + ε]
= ε+ ηJT (x1; θ1(·)) + (1− η)JT (x2; θ2(·))

= ε+ ηE
∫ +∞

T
e−ρ(t−T )U (X1(t)) dt+ (1− η)E

∫ +∞

T
e−ρ(t−T )U (X2(t)) dt

= ε+ E
∫ +∞

T
e−ρ(t−T ) [ηU (X1(t)) + (1− η)U (X2(t))] dt.
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The concavity of U implies that

ηU (X1(t)) + (1− η)U (X2(t)) ≤ U (ηX1(t) + (1− η)X2(t)) , ∀t ≥ T.

Consequently if we set Xη(·) = ηX1(·) + (1− η)X2(·) then we get

ηV (x1) + (1− η)V (x2) < ε+ E
∫ +∞

T
e−ρ(t−T )U (Xη(t)) dt.

If there exists θη (·) ∈ Θ(T, xη) such that Xη(·) = X (·;T, xη, θη) then we would have

ε+ E
∫ +∞

T
e−ρ(t−T )U (Xη(t)) dt = ε+ JT (xη; θη(·)) ≤ ε+ V (xη),

i.e.
ηV (x1) + (1− η)V (x2) < ε+ V (xη)

and therefore, by the arbitrariness of ε, the claim (43) would be proved.
To find such a θη (·), let us write the equation satisfied by Xη. Recalling (7) it follows

dXη(t) = ηdX1(t) + (1− η)dX2(t)

= η
[(

(θ1(t)σλ+ r)X1(t)−A
)
dt+ θ1(t)σX1(t)dB(t)

]
+ (1− η)

[(
(θ2(t)σλ+ r)X2(t)−A

)
dt+ θ(t)σX2(t)dB(t)

]
=

{[
η
X1(t)
Xη(t)

θ1(t) + (1− η)
X2(t)
Xη(t)

θ2(t)
]
σλXη(t) + rXη(t)−A

}
dt

+
[
η
X1(t)
Xη(t)

θ1(t) + (1− η)
X2(t)
Xη(t)

θ2(t)
]
dB(t).

Then defining the control θη(t) = a (t) θ1(t) + d (t) θ2(t), where a (·) = ηX1(·)
Xη(·) and

d (·) = (1− η)X2(·)
Xη(·) , we have{
dXη(t) = {[θη(t)σλ+ r]Xη(t)−A} dt+ θη(t)σXη(t)dB(t), t ≥ T,

Xη(T ) = ηx1 + (1− η)x2 = xη, xη ≥ l,

so we get Xη(·) = X (·;T, xη, θη). The admissibility of θη is clear since:

(i) for every t ≥ T , we have θ1 (t) , θ2 (t) ∈ [0, 1] and a (t) + d (t) = 1, so by convexity of [0, 1]
we get θη (t) ∈ [0, 1];

(ii) by construction Xη(t) ≥ l P-a.s., for any t ≥ T .

The claim follows. �

Proof of Proposition 4.7
First we verify that the value function V is increasing showing that

l ≤ x1 < x2 =⇒ V (x1) ≤ V (x2) P-a.s.,
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Take any θ(·) ∈ Θad(T, x1). By Proposition 2.18 in [Karatzas & Shreve, 1991], p. 293, we have

X(· ;T, x1, θ) ≤ X(· ;T, x2, θ) P-a.s.,

so also θ(·) ∈ Θad(T, x2). Moreover, by the (strict) monotonicity of the utility function U we
have

x1 < x2 =⇒ U (X (· ;T, x1, θ)) ≤ U (X (· ;T, x2, θ)) P-a.s. =⇒ JT (x1; θ(·)) ≤ JT (x2; θ(·)) .

Since Θad (T, x1) ⊆ Θad (T, x2) the above implies V (x1) ≤ V (x2).
The strict monotonicity of the value function V is a direct consequence of monotonicity and

concavity (see, e.g., the proof in [Zariphopoulou, 1994], p. 63). Indeed, if V is not strictly
monotone then it must be constant on a half line [x̄,+∞). We show that this cannot be true.

By (41) we have, for every y ≥ l,

V (y) ≥ U (y)
ρ

.

So, if limz→+∞ U (z) = +∞ then limz→+∞ V (z) = +∞ and the claim follows.
Take now limz→+∞ U (z) =: Ū < +∞. In this case we must have

V (x̄) = lim
y→+∞

V (y) ≥ Ū

ρ
.

On the other hand, for every θ ∈ Θad (T, x̄), we get

JT (x̄; θ (·)) = E
∫ +∞

T
e−ρ(t−T )U (X (t;T, x̄, θ)) dt ≤

∫ +∞

T
e−ρ(t−T )U

(
e(λσ+r)(t−T )x̄

)
dt.

Fix T1 > T . Calling UT1 = U
(
e(λσ+r)(T1−T )x̄

)
, we have UT1 = Ū − ε, for some ε > 0. We can

write

JT (x̄; θ (·)) ≤
∫ T1

T
e−ρ(t−T )UT1dt+

∫ +∞

T1

e−ρ(t−T )Ūdt

=
UT1

ρ

[
1− e−ρ(T1−T )

]
+
Ū

ρ
e−ρ(T1−T ) ≤ Ū

ρ
− ε ≤ V (x̄)− ε.

This is a contradiction and so the claim follows. �

Proof of Proposition 4.8
The Lipschitz continuity of V on the interval [a,+∞), for any a > l, is a straightforward

consequence of concavity and strict monotonicity.
It remains to prove the continuity of V in l when rl > A and V (l) > −∞, i.e. when U is

integrable in a right neighborhood of l (Proposition 4.5 - (ii)). We have to show that

lim
x→l+

[V (x)− V (l)] = 0.

Since rl > A, the control strategy θ(·) ≡ 0 at the starting point l gives rise to a trajectory
which is strictly increasing.
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Let x > l. Applying the control θ(·) ≡ 0 to the state equation (7) with initial point X(T ) = l,
the corresponding trajectory is deterministic and it reaches the point x at time t̂ such that
X

(
t̂;T, l, 0

)
= x, i.e.

er(t̂−T)
[
l − A

r

]
+
A

r
= x ⇐⇒ t̂ = T +

1
r

ln
rx−A

rl −A
.

Now, by the dynamic programming principle we have

V (l) = sup
θ(·)∈Θad(T,l)

E

[∫ t̂

T
e−ρ(t−T )U (X (t;T, l, θ)) dt+ e−ρ(t̂−T)V

(
X

(
t̂;T, l, θ

))]
,

so

V (l) ≥
∫ t̂

T
e−ρ(t−T )U (X (t;T, l, 0)) dt+ e−ρ(t̂−T)V (x) ,

which gives

0 ≤ V (x)− V (l) ≤ −
∫ t̂

T
e−ρ(t−T )U (X (t;T, l, 0)) dt+

(
1− e−ρ(t̂−T)

)
V (x)

(notice that the first inequality is a consequence of the monotonicity of the value function given
in Proposition 4.7). Observing that

1− e−ρ(t̂−T) = 1−
(
rx−A

rl −A

)− ρ
r

and using the integrability of U we get the claim. �
Proof of Theorem 4.14
We have to show that V is both (i) viscosity supersolution in (l +∞), (ii) viscosity subso-

lution in (l +∞), (iii) viscosity subsolution in l when U is finite in l.
(i) Let us consider ψ ∈ C2 ((l,+∞) ; R) and a minimum point xm ∈ (l,+∞) for the function
V − ψ. We can assume without loss of generality that

V (xm) = ψ(xm) and V (x) ≥ ψ(x), ∀x ∈ (l,+∞). (44)

Let ε > 0 such that xm − ε > l. For θ (·) ∈ Θ(T, xm) we write for simplicity X (t) in place of
X (t;T, xm, θ). Consider the stopping time τε = inf {t ≥ T : |X (t)− xm| ≥ ε} and notice that
τε > 0 almost surely. By (44) we get, for any t ≥ T ,

e−ρtV (X (t))− V (xm) ≥ e−ρtψ (X (t))− ψ (xm) .

Let h > T . Calling τε,h = τε ∧ h, by the dynamic programming principle (21) we get

0 = sup
θ∈Θ(T,xm)

E
[∫ τε,h

T
e−ρ(t−T )U (X (t)) dt+ e−ρ(τε,h−T)V (X (τε,h))− V (xm)

]
≥ sup

θ∈Θ(T,xm)
E

[∫ τε,h

T
e−ρ(t−T )U (X (t)) dt+ e−ρ(τε,h−T)ψ (X (τε,h))− ψ (xm)

]
.

(45)

Applying the Dynkin formula to the function (t, x) → e−ρ(t−T )ψ (x) with the process X (t), we
get (Lθ is defined in (23))

E
[
e−ρ(τε,h−T)ψ (X (τε,h))

]
− ψ (xm) = E

∫ τε,h

T
e−ρ(t−T )

[
−ρψ (X (t)) +

(
Lθ(t)ψ

)
(X (t))

]
dt,
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and thus by (45) we have

0 ≥ sup
θ∈Θ(T,xm)

E
∫ τε,h

T
e−ρ(t−T )

[
−ρψ (X (t)) +

(
Lθ(t)ψ

)
(X (t)) + U (X (t))

]
dt

= sup
θ∈Θ(T,xm)

E
∫ τε,h

T
e−ρ(t−T )

[
−ρψ (X (t)) +H0,cv

(
X (t) , ψ′ (X (t)) , ψ′′ (X (t)) ; θ (t)

)]
dt.

Taking any constant control θ̄(·) ≡ θ̄ ∈ [0, 1] we get

0 ≥ E
∫ τε,h

T
e−ρ(t−T )

[
−ρψ (X (t)) +H0,cv

(
X (t) , ψ′ (X (t)) , ψ′′ (X (t)) ; θ̄

)]
dt.

Divide now by τε,h − T and let h→ T . By continuity of H0,cv we obtain

0 ≥ −ρψ (xm) +H0,cv

(
xm, ψ

′ (xm) , ψ′′ (xm) ; θ̄
)
.

By the arbitrariness of θ̄ the claim follows.

(ii) Let ψ ∈ C2 ((l,+∞); R) and let xM ∈ (l,+∞) be a maximum point of V − ψ in (l,+∞).
Let us assume without loss of generality that

V (xM ) = ψ(xM ) and V (x) ≤ ψ(x), ∀x ∈ (l,+∞) . (46)

We must prove that
ρψ(xM )−H0

(
xM , ψ

′(xM ), ψ′′(xM )
)
≤ 0.

Let us suppose by contradiction that this relation is false. Then a strictly positive number ν
exists such that

0 < ν < ρψ(xM )−H0

(
xM , ψ

′(xM ), ψ′′(xM )
)
.

Since the functions U and ψ are continuous, there exists ε ∈ (0, xM − l) such that, for any
x ∈ (xM − ε, xM + ε), we have

0 <
ν

2
< ρψ(x)−H0

(
x, ψ′(x), ψ′′(x)

)
. (47)

We consider any admissible control strategy θ for the initial point xM ; the associated state tra-
jectory is X(t) = X(t;T, xM , θ). Define the stopping time τ ′ε = inf {t ≥ T : |X (t)− xM | ≥ ε}
and note that, P-a.s., T < τ ′ε < +∞. Now we take (47) for x = X (t), we multiply it by e−ρ(t−T ),
we integrate it on [T, τ ′ε], and we calculate its expected value obtaining

0 <
ν

2
E

∫ τ ′ε

T
e−ρ(t−T )dt < E

∫ τ ′ε

T
e−ρ(t−T )

[
ρψ(X (t))− max

θ∈[0,1]

{(
Lθψ

)
(X (t))

}
− U (X (t))

]
dt,

from which follows

0 < E
∫ τ ′ε

T
e−ρ(t−T )U(X (t))dt+

ν

2
E

∫ τ ′ε

T
e−ρ(t−T )dt

< E
∫ τ ′ε

T
e−ρ(t−T )

[
ρψ(X (t))−

(
Lθ(t)ψ

)
(X (t))

]
dt.

(48)
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Similarly to what we have done in (i), we apply the Dynkin formula to the function (t, x) →
e−ρ(t−T )ψ (x) with the process X (t). We get

E
[
e−ρ(τ ′ε−T )ψ(X

(
τ ′ε

)
)
]
− ψ(xM ) = E

∫ τ ′ε

T
e−ρ(t−T )

[(
Lθ(t)ψ

)
(X (t))− ρψ(X (t))

]
dt, (49)

and from (48) and (46) it follows, rearranging the terms,

V (xM ) > E

[∫ τ ′ε

T
e−ρtU(X (t))dt+ e−ρ(τ ′ε−T )V

(
X

(
τ ′ε

))]
+
ν

2
E

∫ τ ′ε

T
e−ρ(t−T )dt. (50)

Observe that there exists a constant α > 0 independent of θ (·) such that

E
∫ τ ′ε

T
e−ρ(t−T )dt > α.

Indeed, for suitable K > 0, set

w (x) = K
(
|x− xM |2 − ε2

)
, x ≥ l.

Since w′ (x) = 2K (x− xM ) and w′′ (x) = 2K, for every θ ∈ [0, 1] we have(
Lθw

)
(x)− ρw (x) = K

[
2 (x− xM ) ([θσλ+ r]x−A) + θ2σ2x2 − ρ

(
|x− xM |2 − ε2

)]
.

Choosing

K =
1

sup|x−xM |<ε, θ∈[0,1]

{
2 (x− xM ) ([θσλ+ r]x−A) + θ2σ2x2 − ρ

(
|x− xM |2 − ε2

)} ,

we obtain, for |x− xM | < ε and θ ∈ [0, 1],(
Lθw

)
(x)− ρw (x) ≤ 1

Now, arguing as we did above to get (49), we have

E
[
e−ρ(τ ′ε−T )w

(
X

(
τ ′ε

))]
− w (xM )

= E
∫ τ ′ε

T
e−ρ(t−T )

[(
Lθ(t)w

)
(X (t))− ρw (X (t))

]
dt ≤ E

∫ τ ′ε

T
e−ρ(t−T )dt,

from which, since w (X (τ ′ε)) = 0 and w (xM ) = −Kε2, we obtain

E
∫ τ ′ε

T
e−ρ(t−T )dt ≥ Kε2.

Therefore by (50) we get

V (xM ) > E

[∫ τ ′ε

T
e−ρ(t−T )U(X (t))dt+ e−ρ(τ ′ε−T )V

(
X

(
τ ′ε

))]
+
ν

2
Kε2

33



contradicting

V (xM ) = sup
θ(·)∈Θ(T,xM )

E

[∫ τ ′ε

T
e−ρ(t−T )U(X (t))dt+ e−ρ(τ ′ε−T )V

(
X

(
τ ′ε

))]

which comes from the dynamic programming principle (21).
(iii) Let U be finite in l. If rl = A then V is continuous in l (Remark 4.9) and ρV (l) = U (l);
so the subsolution inequality is immediate from the fact that H1 (x, p,Q) is always nonnegative
for x ≥ l, p ≥ 0, Q ≤ 0.

Let now rl > A. Take ψ ∈ C2 ([l,+∞); R) such that l is a maximum point of V − ψ in
[l,+∞). Then we can argue exactly as in point (ii) to get the claim taking right neighborhoods
of l instead of whole neighborhoods. �

Lemma A.1 Suppose g is a concave function on R such that g (x) = g (x0) + a (x− x0) for
x ≤ x0 and g (x) = g (x0) + b (x− x0) for x ≥ x0, where a > b. Then for each sufficiently small
ε > 0 there exists a concave C2 (R; R) function f ≥ g such that f (x0) = g (x0), f ′ (x) = a for
x ≤ x0 − ε, f ′ (x) = b for x ≥ x0 + ε, f ′ (x0) = (a+b)

2 , and f ′′ (x0) ≤ −ε−1.

Proof. This is Lemma 2, p. 1958, of [Choulli, Taksar & Zhou, 2003]. �

Lemma A.2 Let I be a given interval in R, g ∈ C0 (I; R) and let x0 be an interior point of I.
Assume that there exists a sequence {xn}n∈N such that xn < x0, ∃g′ (xn) for every n ∈ N, and
g′ (xn) → −∞ as xn → x0. Then D+g (x0) = ∅, where D+g (x0) is the superdifferential of g at
x0.

Proof. If p ∈ D+g (x0) then, for every x in a given neighborhood of x0, we have

g (x)− g (x0) ≤ p (x− x0) + o (x− x0) ,

so
lim inf
x→x−0

g (x)− g (x0)
x− x0

≥ p. (51)

On the other hand, for every n ∈ N we have

g (xn)− g (x0) = −
[
g′ (xn) (x0 − xn) + o (x0 − xn)

]
,

so
lim

n→+∞

g (xn)− g (x0)
xn − x0

= lim
n→+∞

g′ (xn) = −∞

which contradicts (51). �

Proof of Theorem 4.17.
We first prove that V is differentiable. Since V is concave by the Alexandrov Theorem

we know that for a.e. x ∈ (l,+∞) there exists V ′ (x) and V ′′ (x). Let x0 ∈ (l,+∞) be such
that @V ′ (x0). Then by concavity the right and left derivatives V ′ (x+

0

)
and V ′ (x−0 )

exist and
V ′ (x−0 )

> V ′ (x+
0

)
. Moreover the subdifferential D−V (x0) is empty and the superdifferential

D+V (x0) is the interval
[
V ′ (x+

0

)
, V ′ (x−0 )]

.
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Now, using Lemma A.1 with

g(x) =
{
V (x0) + V ′(x+

0 )(x− x0) when x ≥ x0,
V (x0) + V ′(x−0 )(x− x0) when x < x0,

we get that for every ε there exists fε ∈ C2 (R; R) such that fε (x0) = V (x0), fε (x) ≥ g(x) ≥
V (x) for x ∈ (l,+∞), f ′ε (x) = V ′ (x+) for x ≥ x0 + ε, f ′ε (x) = V ′ (x−) for x ≤ x0 − ε,

f ′ε (x0) =
V ′(x−0 )+V ′(x+

0 )
2 , and f ′′ε (x0) ≤ ε−1. Since V is a viscosity solution of HJB equation

(22) (in the form (24)) then

ρV (x0) ≤ (rx0 −A) f ′ε (x0) + U (x0) +H1

(
x0, f

′
ε (x0) , f ′′ε (x0)

)
.

For ε sufficiently small the above implies

ρV (x0) < (rx0 −A)V ′ (x−0 )
+ U (x0) . (52)

On the other hand, let {xn}n∈N be a sequence such that, for every n ∈ N, xn < x0, ∃V ′ (xn),
V ′′ (xn) and V ′ (xn) → V ′ (x−0 )

, V ′′ (xn) → Q for some Q ∈ [−∞, 0] when xn → x0. Therefore
we have

ρV (xn) = (rxn −A)V ′ (xn) + U (xn) +H1

(
xn, V

′ (xn) , V ′′ (xn)
)
.

Passing to the limit for n→ +∞ we get, if Q > −∞

ρV (x0) = (rx0 −A)V ′ (x−0 )
+ U (x0) +H1

(
x0, V

′ (x−0 )
, Q

)
, (53)

if Q = −∞
ρV (x0) = (rx0 −A)V ′ (x−0 )

+ U (x0) . (54)

Both equalities (53) and (54) are not compatible with (52), so a contradiction arise and V must
be differentiable at x0. Continuous differentiability of V follows from its concavity.

We now prove the twice differentiability. Again by the Alexandrov Theorem, there exists a
set A ⊆ (l,+∞) such that the Lebesgue measure of Ac = (l,+∞) − A is zero and V is twice
differentiable at every point of A. Let x0 ∈ (l,+∞). Take any sequence {xn}n∈N ⊆ A such
that xn → x0. Then, by the continuous differentiability of V , we get that V (xn) → V (x0) and
V ′ (xn) → V ′ (x0) > 0 (V ′(x0) > 0 since V is concave and strictly increasing).

First of all we observe that each element of the sequence V ′′ (xn) belongs to (−∞, 0], so there
exists at least a subsequence converging either to −∞ or to a finite nonpositive limit.

Now we prove that the limit exists and does not depend on the sequence. Let {yn}n∈N and
{zn}n∈N two sequences in A such that yn → x0, zn → x0 and V ′′ (yn) → Q1, V ′′ (zn) → Q2 with
Q1, Q2 ∈ [−∞, 0], Q1 6= Q2. Therefore, by HJB equation (24), we have

ρV (yn) = (ryn −A)V ′ (yn) + U (yn) +H1

(
yn, V

′ (yn) , V ′′ (yn)
)
,

ρV (zn) = (rzn −A)V ′ (zn) + U (zn) +H1

(
zn, V

′ (zn) , V ′′ (zn)
)
,

so passing to the limit we get for i = 1, 2

ρV (x0) = (rx0 −A)V ′ (x0) + U (x0) +H1

(
x0, V

′ (x0) , Qi

)
with the formal agreement that H1 (x0, V

′ (x0) ,−∞) = 0. Since V ′(x0) > 0, in this way
H1 (x0, V

′ (x0) , Q) is injective as function of Q ∈ [−∞, 0] then we get the claim.
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Now we prove that such limit Q can never be −∞. Assume by contradiction that for a given
x0 ∈ (l,+∞) we have V ′′ (xn) → −∞, for every sequence {xn}n∈N ⊆ A such that xn → x0.
Take the function defined in (l,+∞)

g (x) =
1
ρ

[
U (x) + V ′ (x) (rx−A)

]
.

For every x ∈ (l,+∞) we have g (x) ≤ V (x). Indeed, arguing as above and calling Q the limit
of V ′′ (xn) for every xn → x, {xn} ⊆ A, we get

ρV (x) = (rx−A)V ′ (x) + U (x) +H1

(
x, V ′ (x) , Q

)
≥ (rx−A)V ′ (x) + U (x) ,

where the inequality is strict on all points of A and for points x such that Q > −∞. Moreover
g (x0) = V (x0) because in such case Q = −∞. Since V is differentiable at x0 we have

g (x) ≤ V (x) and g (x0) = V (x0) =⇒ V ′ (x0) ∈ D+g (x0) .

In particular this means that D+g (x0) 6= ∅. However, for every sequence {xn}n∈N ⊆ A such
that xn → x−0 , we have that ∃g′ (xn) and

g′ (xn) =
1
ρ

[
U ′ (xn) + V ′′ (xn) (rxn −A) + rV ′ (xn)

]
,

so that
lim

n→+∞
g′ (xn) = −∞.

This is a contradiction thanks to Lemma A.2.
With this argument we have proved that V ′′, which exists almost everywhere on (l,+∞),

can be extended to a continuous function h on the whole interval (l,+∞). Note that, differently
from [Choulli, Taksar & Zhou, 2003], we cannot conclude that V ′′ exists on (l,+∞) and V ′′ = h.
Indeed if V ′ was the Cantor’s function, we would get a contradiction of such a conclusion at this
stage. However we can say that, for any compact set [a, b] ⊂ (l,+∞), there exists δa,b > 0 such
that

H1(x, V ′(x), h(x)) ≥ δa,b, x ∈ [a, b].

Let us define the function

k(x) := ρV (x)− (rx−A)V ′(x)− U(x);

this function is equal to H1(x, V (x), V ′′(x)) on A and moreover it is continuous on [a, b], so that
we have also

k(x) ≥ δa,b, x ∈ [a, b]. (55)

Let us define also the function

f(x) :=


−λ

2V ′(x)2

2 k(x)
, if

2k(x)
σλxV ′(x)

− 1 ≤ 0,

2[k(x)− σλxV ′(x)]
σ2x2

, if − σλxV ′(x)
2[k(x)− σλxV ′(x)]

− 1 ≥ 0.
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This function is well-defined on [a, b], continuous (thanks to (55)) and negative. Let us consider
the equation

v′′(x) = f(x), x ∈ (a, b),

with boundary conditions
v(a) = V (a), v(b) = V (b). (56)

This equation admits a unique C2([a, b]; R) solution W satisfying the boundary conditions (56).
One could check that W is a viscosity solution of (22) satisfying the boundary conditions
(56). Actually, by the standard theory of viscosity solutions for elliptic equations (see, e.g.,
[Crandall, Ishii & Lions, 1992], Theorem 3.3), W is the unique viscosity solution of (22) satis-
fyng the boundary conditions (56). Since also V is a viscosity solution of (22) with boundary
conditions (56), we have V = W , so that V ∈ C2([a, b]; R). By the arbitrariness of the compact
set [a, b] the proof is complete. �

Proof of Corollary 4.20
The fact that V ′ (x) > 0 for x > l comes from concavity and strict monotonicity. Moreover

if V ′′ (x) = 0 in an interval [a, b] ⊆ (l,+∞) then on this interval V ′ is constant (say equal to
c > 0) and V (x) = cx+ d. Therefore for x ∈ [a, b] HJB equation (24) becomes

ρ (cx+ d) = [(r + λσ)x−A] c+ U (x) ,

which is impossible since U is strictly concave. Now let x0 > l such that V ′′ (x0) = 0. In this
case the maximum of H1,cv (x0, V

′ (x0) , V ′′ (x0) ; θ) is reached for θ = 1, and so we have taking
HJB equation (24) for x in sufficiently small neighborhood I (x0) of x0

ρV (x)− (rx−A)V ′ (x)− U (x) = σλxV ′ (x) +
1
2
σ2x2V ′′ (x) .

Call now, for x ∈ I (x0),

h (x) =
1
2
σ2x2V ′′ (x) = ρV (x)− (rx+ σλx−A)V ′ (x)− U (x) .

Clearly h has a local maximum at x0 and is twice differentiable at x0 thanks to Remark 4.19.
So it must be h′ (x0) = 0 and h′′ (x0) ≤ 0. Now

h′ (x) = (ρ− r − λσ)V ′ (x)− U ′ (x)− V ′′ (x) (rx+ σλx−A)
h′′ (x) = (ρ− 2r − 2λσ)V ′′ (x)− U ′′ (x)− V ′′′ (x) (rx+ σλx−A)

and therefore, using that V ′′ (x0) = 0, we obtain

h′ (x0) = (ρ− r − λσ)V ′ (x0)− U ′ (x0)
h′′ (x0) = −U ′′ (x0)− V ′′′ (x0) (rx0 + σλx0 −A) .

Since x0 is also a maximum for V ′′, it is clearly V ′′′ (x0) = 0 and consequently h′′ (x0) =
−U ′′ (x0) > 0 by Hypothesis 3.4-(i), a contradiction.

We now prove (26). Observe that, for x > l

ρV (x)− (rx−A)V ′ (x)− U (x) = H1

(
x, V ′ (x) , V ′′ (x)

)
.

Recall that by Remark 4.10 we have that V ′(l+) is finite. Take any sequence xn → l+ such that
V ′′ (xn) → Q ∈ [−∞, 0]. Then, passing to the limit for n→ +∞ in the HJB equation above, we
get

ρV (l)− (rl −A)V ′ (l+)
− U (l) = H1

(
l, V ′ (l+)

, Q
)
. (57)
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On the other hand by concavity we know that, for x ≥ l,

V (x) ≤ V (l) + V ′ (l+)
(x− l) .

Applying Lemma A.1 with (δ is a given positive number)

g(x) =
{
V (l) + V ′ (l+) (x− l) when x ≥ l,
V (l) + (V ′(l+) + δ)(x− l) when x < l,

we find fε defined on R such that fε (x) ≥ V (l) + V ′ (l+) (x− l) for x ≥ l, fε (l) = V (l),
f ′ε (x) = V ′ (l+) for x ≥ l + ε, f ′ε (l) ∈ [V ′ (l+) , V ′ (l+) + δ], f ′′ε (l) ≤ −ε−1. Then we have, for
x ≥ l

0 = V (l)− fε (l) ≥ V (x)− fε (x) ,

so that, being V a subsolution of HJB equation (24) at x = l,

ρV (l)− (rl −A) f ′ε (l)− U (l) ≤ H1

(
l, f ′ε (l) , f ′′ε (l)

)
.

This gives

ρV (l)− (rl −A)V ′ (l+)
− U (l) ≤ ε (rl −A) + ελ2

(
V ′ (l+)

+ ε
)2
,

and by the arbitrariness of ε

ρV (l)− (rl −A)V ′ (l+)
− U (l) ≤ 0. (58)

This means, using (57), that (58) holds with = and

H1

(
l, V ′ (l+)

, Q
)

= 0 =⇒ Q = −∞.

The claim follows by a standard argument on subsequences.
Finally we prove (27). First observe that, for x in a suitable right neighborhood of l, we

must have as a consequence of (26)
λV ′(x)
σxV ′′(x)

< 1,

so that by (25) we obtain

(x− l)
[
V ′′(x)

]2 = λ4
[
V ′ (x)

]4 · (x− l)
[ρV (x)− (rx−A)V ′ (x)− U(x)]2

To calculate the limit of the second factor we use the Bernoulli-De l’Hôpital rule. The ratio of
the derivatives is (using (25) to rewrite it)

1
2 [ρV (x)− (rx−A)V ′ (x)− U(x)] [(ρ− r)V ′ (x)− (rx−A)V ′′ (x)− U ′ (x)]

=
1

2λ2 [V ′ (x)]2
· −V ′′ (x)
(ρ− r)V ′ (x)− (rx−A)V ′′ (x)− U ′ (x)

.

Since U ′ (l+) is finite the limit of the second factor is clearly 1
rl−A , so the claim is proved. �

Proof of Lemma 4.22
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First of all we apply the Girsanov Theorem as, e.g., in the proof of Proposition 4.5. For
every t ≥ T , under the probability P̃, the evolution of X(·) in the interval [T, t] is given by{

dX (τ) = (rX (τ)−A) dt+G (X (τ))σX (τ) dB̃ (τ) ,
X(T ) = x.

Such equation has a weak solution under P̃. Indeed, G is continuous since V, V ′, V ′′ are con-
tinuous and since V ′′ (l+) = −∞ while V ′ (l+) < +∞. Moreover G is clearly bounded. Thus
applying Theorem 2.3, p. 159, and Theorem 2.4, p. 163, of [Ikeda & Watanabe, 1981] we get
the existence of a weak solution.

Now we want to apply Theorem 3.5 (ii), p. 390, of [Revuz & Yor, 1999] (see also Proposition
2.13, p. 291, of [Karatzas & Shreve, 1991]). Since the drift is Lipschitz it is enough to prove
that the diffusion coefficient is 1

2 -Holder continuous. This is guaranteed by (27) since, by a
straightforward calculations, G is locally Lipschitz out of a right neighborhood of l (that we call
I(l+)) while in I(l+) we have

G(x) =
λV ′(x)
σxV ′′(x)

=
2

λσxV ′(x)
H1(x, V ′(x), V ′′(x)) =

2
λσxV ′(x)

[
ρV (x)−(rx−A)V ′(x)−U(x)

]
.

Using that V ′(l+) is finite (thanks to remark 4.10) and that G(l) = 0 = ρV (l)− (rl−A)V ′(l+)−
U(l), we have in I(l+)

|G (x)−G (l)| ≤ K1 |x− l|+K2

∣∣V ′ (x)− V ′ (l+)∣∣ ≤ K3

∫ x

l
V ′′ (y) dy,

so by (27) we get
|G (x)−G (l)| ≤ K4 |x− l|

1
2 .

This proves pathwise uniqueness which implies by Yamada-Watanabe theory existence
and uniqueness of a strong solution (see, e.g., Section 5.3.D, pp. 308–311, of
[Karatzas & Shreve, 1991]). The claim for the original equation follows simply applying the
Girsanov transform.

To prove that XG(t) ≥ l P− a.s., it is enough to argue by contradiction using that G(x) = 0
when x ≤ l. �

Proof of Theorem 4.23
Given any ε > 0 we define a function Vε ∈ C2 (R) such that

• Vε (x) = V (x) in [l + ε,+∞);

• Vε (x) = a1 + b1x+ c1x
2 in

(
l+A

r
2 , l + ε

)
, where

c1 =
1
2
V ′′ (l + ε) ,

b1 = V ′ (l + ε)− V ′′ (l + ε) (l + ε) ,

a1 = V (l + ε)− V ′ (l + ε) (l + ε) +
1
2
V ′′ (l + ε) (l + ε)2 ;

• V ′
ε (x) ≥ 0 in R and V ′

ε (x) = 0 for x ≤ A
r . To define V ′

ε on
[

A
r ,

l+A
r

2

]
it is enough to take

a suitable third degree polynomial.
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Since, for x ∈ [l, l + ε]

Vε (x)− V (x) = V (l + ε)− V (x)− V ′ (l + ε) (l + ε− x) +
1
2
V ′′ (l + ε) (l + ε− x)2

V ′
ε (x)− V ′ (x) = V ′ (l + ε)− V ′ (x)− V ′′ (l + ε) (l + ε− x)

V ′′
ε (x)− V ′′ (x) = V ′′ (l + ε)− V ′′ (x) ,

using that εV ′′ (l + ε) → 0 as ε→ 0 (see (27)), we have

Vε −→ V, V ′
ε −→ V ′, uniformly in [l,+∞) , (59)

and
H1

(
x, V ′

ε (x) , V ′′
ε (x)

)
−→ H1

(
x, V ′ (x) , V ′′ (x)

)
, uniformly in [l,+∞) . (60)

We claim that Vε solves in R the HJB equation

ρVε (x)− (rx−A)V ′
ε (x)−H1

(
x, V ′

ε (x) , V ′′
ε (x)

)
= gε (x) (61)

where gε → U uniformly in [l,+∞) as ε→ 0 while gε (x) → −∞ for every x < l.
Indeed, (59), (60), and Remark 4.21 imply immediately that gε → U uniformly in [l,+∞).

Moreover it is clear by its definition that Vε (x) → −∞ for every x < l and that V ′
ε (x) = 0 for

every x < A
r . Since H1 (x, V ′

ε (x) , V ′′
ε (x)) ≥ 0 then we have

gε (x) ≤ ρVε (x) , ∀x < l,

and so the claim.
Take x ≥ l and θ : [T,+∞) × Ω → [0, 1] adapted to {FB

t }t≥T . Here we do not require
that X (t;T, x, θ) ≥ l. Consider the function (t, x) → e−ρ(t−T )Vε (x) and apply to it the Dynkin
formula for the process X (·) = X (·;T, x, θ). We have, for t1 ≥ T

E
[
e−ρ(t1−T )Vε (X (t1))− Vε (x)

]
= E

∫ t1

T
e−ρ(t1−T )

[
−ρVε (X (t)) + Lθ(t)Vε (X (t))

]
dt,

so by (61)

E
[
e−ρ(t1−T )Vε (X (t1))− Vε (x)

]
= E

∫ t1

T
e−ρ(t−T )

[
− gε (X (t))−H1

(
X (t) , V ′

ε (X (t)) , V ′′
ε (X (t))

)
− (rX (t)−A)V ′

ε (X (t)) + Lθ(t)Vε (X (t))
]
dt

which implies

Vε (x) = E
[∫ t1

T
e−ρ(t−T )gε (X (t)) dt+ eρ(t1−T )Vε (X (t1))

]
+ E

∫ t1

T
e−ρ(t−T )

[
H1

(
X (t) , V ′

ε (X (t)) , V ′′
ε (X (t))

)
−H1,cv

(
X (t) , V ′

ε (X (t)) , V ′′
ε (X (t)) ; θ (t)

) ]
dt.
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Sending t1 → +∞ we get e−ρ(t1−T )Vε (X (t1)) → 0 by using (9), the last statement of Proposition
4.5, and estimating E

[
X (t)β

]
as in its proof. Therefore

Vε (x) = E
∫ +∞

T
e−ρ(t−T )gε (X (t)) dt

+ E
∫ +∞

T
e−ρ(t−T )

[
H1

(
X (t) , V ′

ε (X (t)) , V ′′
ε (X (t))

)
−H1,cv

(
X (t) , V ′

ε (X (t)) , V ′′
ε (X (t)) ; θ (t)

) ]
dt. (62)

Now we take θ (·) ∈ Θ(T, x) and send ε→ 0+ in the above formula. We have by the proof above

Vε (x) −→ V (x) ,

E
∫ +∞

T
e−ρ(t−T )gε (X (t)) dt −→ JT (x; θ (·)) ,

E
∫ +∞

T
e−ρ(t−T )H1

(
X(t) ,V ′

ε (X(t)) ,V ′′
ε (X(t))

)
dt −→ E

∫ +∞

T
e−ρ(t−T )H1

(
X(t) ,V ′(X(t)) ,V ′′(X(t))

)
dt.

This means that also the limit

lim
ε→0+

E
∫ +∞

T
e−ρ(t−T )H1,cv

(
X (t) , V ′

ε (X (t)) , V ′′
ε (X (t)) ; θ (t)

)
dt

exists. Take now the closed loop strategy

θ∗ (t) = G (XG (t;T, x)) ,

where G is given by (28) and XG (·;T, x) is the unique strong solution of (29). If we prove that
(setting XG (t;T, x) = XG (t) for brevity and recalling that we have set H1 (l, V ′ (l+) ,−∞) = 0)

lim
ε→0+

E
∫ +∞

T
e−ρ(t−T )H1,cv

(
XG (t) , V ′

ε (XG (t)) , V ′′
ε (XG (t)) ; θ∗ (t)

)
dt

= E
∫ +∞

T
e−ρ(t−T )H1

(
XG (t) , V ′ (XG (t)) , V ′′ (XG (t))

)
dt (63)

then, passing to the limit in (62), we obtain

V (x) = J (T, x; θ∗ (·)) ,

and so the optimality of θ∗ (·). To prove (63) it is enough to observe that

H1,cv

(
x, V ′

ε (x) , V ′′
ε (x) ;G (x)

)
−→

−→ H1

(
x, V ′ (x) , V ′′ (x)

)
=

{
H1,cv (x, V ′ (x) , V ′′ (x) ;G (x)) if x > l,
0 if x = l,

(64)

uniformly as ε→ 0+. Indeed, the convergence for x = l is obvious. Moreover, for x ∈ (l,+∞),

H1,cv

(
x, V ′

ε (x) , V ′′
ε (x) ;G (x)

)
−H1,cv

(
x, V ′ (x) , V ′′ (x) ;G (x)

)
= G (x)λσx

[
V ′

ε (x)− V ′ (x)
]
+

1
2
G2 (x)σ2x2

[
V ′′

ε (x)− V ′′ (x)
]
.
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The first term goes to 0 uniformly as ε→ 0+ thanks to (59) while the second is, for ε sufficiently
small and x ∈ (l, l + ε) (for x ≥ l + ε it is zero),

1
2
λ2

(
V ′ (x)

)2 V ′′
ε (x)− V ′′ (x)

[V ′′ (x)]2
.

Since V ′′
ε (x)−V ′′(x)

[V ′′(x)]2
is negative and greater than [V ′′ (l + ε)]−1 the convergence (64) follows, and

so (63) and the optimality of θ∗ (·). The uniqueness follows from the strict concavity of U
arguing as in the proof of Proposition 4.6: one takes two different optimal strategies θ1 and θ2
with corresponding trajectories X1 and X2 and one proves that for any η ∈ [0, 1] there exists an
admissible strategy θη whose associated trajectory is ηX1+(1− η)X2. Then the strict concavity
of U implies that JT (x, θη (·)) > ηJT (x, θ1 (·)) + (1− η)JT (x, θ2 (·)) = V (x), a contradiction.�
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