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Abstract.
In this paper we study a class of infinite horizon optimal control problems

with incentive constraints in the discrete time case. More specifically, we es-
tablish sufficient conditions under which the value function associated to such
problems satisfies the Dynamic Programming Principle.
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1 Introduction

In this paper we study a family of discrete time deterministic dynamic optimiza-
tion problems with an infinite horizon and an incentive compatibility constraint,
which, in the sequel, will be called incentive constrained problemsor ICP for
short. These problems (see Section 2 for the detailed formulation) are classical
infinite horizon optimal control problems with a constraint on the continuation
value of the plan. The continuation value at any current date t must be larger
than some prescribed function of the current state and of the current control.

ICP arise in many economic applications 1 (see e.g. [2], [3], [4], [5] for
the discrete time case, and [1], [7] for the continuous time case). ICP are not
easily manageable due to the specific nature of the incentive constraint. Indeed,
such a constraint concerns the future of the strategies, differently than the more
commonly used constraints, which appear in standard dynamic optimization
problems and concern the states of the system or the range of the admissible
controls. For this reason, in general, the Dynamic Programming (DP) approach
is not exploitable. Therefore, with standard terminology (see e.g. in [3], [6]), the
contract is said to be not recursive.

In [3] a method is proposed to deal with incentive constrained problems in
discrete time (deterministic or stochastic) when DP method may not be applied.
This method is based on the introduction of a new set of variables, the so-called
dual variables, that still allows to solve the problem in a recursive way. This
result seems to be very useful in the general case, though we see two possible
restraints:

• strong regularity and boundedness assumptions are needed on the data;

• the new problem to solve is more complex than the original one.

These two points call for a question: although DP approach cannot be
exploited in general, is it possible to determine a class of incentive constrained
problems such that the DP procedure turns out to be successful? For this class
there would be two advantages, related with the two limitations described above:

• weaker assumptions on the data;

• not increasing of the complexity of the original problem.

Towards this direction we are aware of two results in the recent literature
(see [4] and [1]) that show the applicability of DP approach to a class of ICP,
under the assumption that the incentive running objective is equal to the run-
ning objective of the maximizing agent. More precisely, [4] deals with a general
discrete time case, and [1] is concerned with the deterministic case in continuous
time.

In this paper, we aim to extend the domain of applicability of DP approach
to a larger class of ICP, though dealing only with the discrete deterministic
case. This is just our preliminary step to tackle the discrete stochastic case and
the continuous time cases. Our main result is that the Dynamic Programming
Principle (DPP), formally the equation

V (x) = sup
c∈Cg(x)

T∑
t=0

βtr (xt(x, c), ct) + βT V (xT (x, c)) , (1)

1We just recall that in ICP context we are in a normative perspective. A social planner
seeks an optimal policy among the ones which do not include the termination of the process.
The goal is the definition of a social contract, on account that agents can decide to go out of
the contract in the future. Such an event is prevented by including the incentive compatibility
constraint.
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where Cg(x) is an admissible set of controls associated to the initial point x, holds
true under a suitable comonotonicity assumption introduced and explained in
Section 2.

The paper has the following structure: in Section 2 we formulate the prob-
lem (see 3); in Section 3 we prove DPP (1) for ICP problems via two Lemmas,
which are related to some properties of the trajectories: stability under shift
(SS) (see Lemma 4) and stability under concatenation (SC) (see Lemma 6).

2 Incentive constrained problems in the discrete-
time deterministic case

We first give a general formulation

2.1 The general model

Let (xt)t∈N be a controlled discrete-time stationary dynamical system with
states in the real Euclidean space Rn. Given a map f : Rn × Rm → Rn, the
transition function of the dynamical system, a nonempty subset X0 of Rn, the
state constraint on the dynamical system, and a nonempty-valued correspon-
dence Γ : Rn → P(Rm), the technological constraint on the control, we assume
that (xt)t∈N is subject to the difference equation

{
xt+1 = f(xt, ct), t ∈ N,
x0 = x ∈ X0,

(2)

where x is the initial state of the dynamical system, and (ct)t∈N is a discrete-
time control process such that ct ∈ Γ(xt) and f(xt, ct) ∈ X0, for every t ∈ N.
Such a process (ct)t∈N is called an admissible control for the dynamical system
with initial state x. We denote by C(x) the set of all admissible control processes
with initial state x and we write xt(x, c) for the solution of (2) corresponding
to the choice of a specific control process c ≡ (ct)t∈N in C(x).

Since in this paper we are not concerned in dealing with the minimal
hypotheses that assure the existence of solutions of (2), we assume straightfor-
wardly that for every x ∈ X0 the set C(x) is nonempty.

Given a function r : Rn × Rm → R, the running objective, and β ∈ (0, 1),
the discount factor, for any x ∈ X0 and any c ∈ C(x), we introduce the objective
functional Jr : X0 × C(x) → R, given by

Jr (x; c) def=
+∞∑
t=0

βtr (xt (x, c) , ct) .

Then, the standard optimization problem for the functional Jr : X0×C(x) → R
is to compute the value function V0 : X0 → R̃, where R̃ ≡ R∪{−∞,+∞} stands
for the extended Euclidean real line, given by

V0(x) def= sup
c∈C(x)

Jr (x; c) ,

and, possibly, to determine an optimal control c∗ ∈ C(x) such that

V0(x) = Jr (x; c∗) ,

for every x ∈ X0.
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Now, given the functions g1 : Rn×Rm → R, the initial incentive constraint,
and g2 : Rn × Rm → R, the running incentive constraint, and given N ∈
N ∪ {+∞}, for any x ∈ X0, we introduce the set Cg(x) of all controls c ∈ C(x)
fulfilling the incentive constraint

g1 (xt (x, c) , ct) +
N∑

n=1

βng2 (xt+n (x, c) , ct+n) ≥ 0, ∀t ∈ N. (3)

We assume that the set X ≡ {x ∈ X0 | Cg(x) 6= ∅} is nonempty 2. The incentive
constraint problem for the functional Jr : X × Cg(x) → R is to compute the
value function V : X→ R̃ given by

V (x) def= sup
c∈Cg(x)

Jr (x; c) , (4)

and, possibly, to determine an optimal control c∗ ∈ Cg(x) such that

V (x) = Jr (x; c∗) ,

for every x ∈ X.
In the sequel, for simplicity, we set

+∞∑
t=0

βtg2 (xt (x, c) , ct) ≡ Jg2 (x; c) ,

and
N−h∑
t=0

βtg2 (xt (x, c) , ct) ≡ Jh
g2

(x; c) ,

for every N ∈ N, and h = 1, ..., N .

2.2 Main Assumptions and statement of DPP

To tackle the constrained optimization problem (4) via DP approach, we begin
by assuming that:

Assumption 1 For every x ∈ X we have V (x) ∈ R.

This is clearly a restriction and sometimes one would like to consider prob-
lems where V may be infinite. On the other hand, the latter case is not con-
sidered in most of the quoted papers treating ICP. We formulate this assump-
tion for sake of simplicity. Indeed, sometimes the finiteness of V arises from
compactness, some other times by boundedness, other times again by suitable
state-control constraints. In this general part, the treatment of all these different
topics would result in useless technical complications.

Having assumed the finiteness of the value function, we still need to intro-
duce the following hypothesis on the structure of the family of all admissible
controls, which will turn out to be crucial to exploit a DP approach to ICP.

Assumption 2 For any c ∈ Cg(x), any T > 0, and any ε > 0 there exists a
ε-optimal control at xT (x, c), denoted by cε, such that either

1.
Jg2(xT (x, c); cε) ≥ Jg2(xT (x, c); cT ),

in the case N = +∞; or
2We recall that in [1] the set X is one of the unknown to be found.
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2.
Jh

g2
(xT (x, c); cε) ≥ Jh

g2
(xT (x, c); cT ), h = 1, ..., N,

in the case N < +∞;

where cT is the control at xT (x, c) given by

cT
t

def
= cT+t, t ∈ N.

Assumption 2 calls for some comment.
First, we remember that cε is an ε-optimal control at xT (x, c) when

V (xT (x, c)) < Jr(xT (x, c); cε) + ε.

The possibility of finding an ε-optimal control is assured by the finiteness of
the value function. The relevance of Assumption 2 is then the requirement that
there exists at least one of such controls fulfilling also either 1 or 2.
Second, observe that, as required by 1 and 2, the control cT actually belongs to
Cg(xT (x, c)). This will be shown in subsequent Lemma 4.
Third, Assumption 2 may be seen as an hypothesis of comonotonicity of the
functionals Jg2(x; ·) (or Jh

g2
(x; ·)) with respect to Jr(x; ·). 3 Actually, if this is

the case, 1 and 2 clearly hold true. This has a plain economic explanation. Our
“comonotonicity” means that the running objectives r and g2 are compatible.
This compatibility means that the social planner and the agent maximizing
Jg2(x; ·) (or Jh

g2
(x; ·)) and Jr(x; ·) have the same structure of preferences along

optimal (or almost optimal) strategies. In this case, the incentive does not affect
the recursivity.

Finally, we note that Assumption 2 is satisfied in [4] and [1], where g2 = r.
We are now in a position to state DP approach to our ICP.

Theorem 3 For any x ∈ X, any c ∈ Cg(x), and any T ∈ N, write

Jr,T (x; c) ≡
T∑

t=0

βtr (xt (x, c) , ct) + βT V (xT (x, c)) ,

Then, under Assumptions 1 and 2, we have

V (x) = sup
c∈Cg(x)

Jr,T (x; c) .

The proof is obtained by considering the two inequalities shown in Propo-
sitions 5 and 7.

3 Dynamic Programming: statement and proof

The main idea beyond our result is the following (contained also “in nuce” in
[1, Section 3]).

The classical proof of the Dynamic Programming Principle (1) depends on
two key properties of the family of the sets of admissible strategies {Cg(x)}x∈X

3The functional Jg2 (x; ·) is comonotone with respect to Jr(x; ·) when for all controls c1, c2 ∈
Cg(x) the condition

Jr(x; c1) ≤ Jr(x; c2)

implies
Jg2 (x; c1) ≤ Jg2 (x; c2).

Clearly, the same holds for Jh
g2

(x; ·)
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The first one is the “stability under shift” (SS), while the second is the “stability
under concatenation” (SC).

Property (SS) states that c ∈ Cg(x) implies cT ∈ Cg(xT (x, c)). Starting
with an admissible control c at t = 0 from x0 = x, shifting it at T then cT

is admissible starting at t = 0 from x0 = xT (x, c). Even in cases more general
than ours, (SS) is true as it is shown in Lemma 4 and it yields the inequality ≤
in (1). This is proved in Subsection 3.1.

Property (SC) states that picking two admissible controls c ∈ Cg(x) and
ĉ ∈ Cg(xT (x, c)) then the control c̃ given by

c̃t
def
=

{
ct, if t < T
ĉt−T if t ≥ T

, (5)

belongs to Cg(x), hence the concatenated control c̃ is admissible starting at t = 0
from x0 = x. Unfortunately, even in simple cases (SC) is not true. Of course,
the failure of (SC) does not mean that DP principle is false since (SC) is a
sufficient condition. In Subsection 3.2 we show (see Lemma 6) that (SC) holds
if ĉ is “better” than c along the functional Jg2 . This is done by analyzing the
family {Cg(x)}x∈X. Given this fact, the inequality ≥ is an easy consequence of
Assumption 2.

In next two subsection we consider the two inequalities separately

V (x) ≤ sup
c∈Cg(x)

T∑
t=0

βtr (xt(x, c), ct) + βT V (xT (x, c)) , (6)

V (x) ≥ sup
c∈Cg(x)

T∑
t=0

βtr (xt(x, c), ct) + βT V (xT (x, c)) . (7)

3.1 The easy inequality

We begin by proving the above mentioned Property (SS).

Lemma 4 For any x ∈ X, any c ∈ Cg(x), and any T > 0, the control cT given
by

cT
t

def
= cT+t, t ∈ N

belongs to Cg (xT (x, c)).

Proof. Since the transition function f : Rn × Rm → Rn of the dynamical
system is stationary, for any x ∈ X, any c ∈ C(x), and any T > 0, we clearly
have

xT+t(x, c) = xt(xT (x, c), cT ) (8)

for every t ∈ N. Hence, cT ∈ C(xT (x, c)). Assuming in addition c ∈ Cg(x), we
have also

g1(xs(x, c), cs) +
N∑

n=1

βng2(xs+n(x, c), cs+n) ≥ 0,

for every s ∈ N. Thus, setting s ≡ t + T , it follows

g1(xT+t(x, c), cT+t) +
N∑

n=1

βng2(xT+t+n(x, c), cT+t+n) ≥ 0
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for every t ∈ N. Therefore, on account of (8) and of the definition of cT , we
obtain

g1(xt(xT (x, c), cT ), cT
t ) +

N∑
n=1

βng2(xt+n(xT (x, c), cT ), cT
t+n) ≥ 0,

which completes the proof.
¿From (SS) it easily follows

Proposition 5 For any x ∈ X, any c ∈ Cg(x), and any T ∈ N we have

V (x) ≤ sup
c∈Cg(x)

Jr,T (x; c). (9)

Proof. To prove (9), it is sufficient to observe that, for every ε > 0, there
exists cε ∈ Cg(x) such that

Jr(x; cε) + ε > V (x). (10)

On the other hand, on account of Lemma 4, for any T ∈ N, we can write

Jr(x; cε) =
T∑

t=0

βtr(xt(x; cε), cε
t ) + βT J(xT (x; cε); cε,T )

≤
T∑

t=0

βtr(xt(x; cε), cε
t ) + βT V (xT (x; cε))

= Jr,T (x; cε). (11)

Combining (10) and (11), it then follows

Jr,T (x; cε) + ε > V (x),

and the latter clearly implies the desired (9).

3.2 The hard inequality

Now, we prove Property (SC)

Lemma 6 For any x ∈ X, any c ∈ Cg(x) and any T > 0, let ĉ ∈ Cg(xT (x, c))
satisfying either the condition

Jg2 (xT (x, c); ĉ) ≥ Jg2

(
xT (x, c); cT

)
(12)

in the case N = +∞, or the condition

Jh
g2

(xT (x, c); ĉ) ≥ Jh
g2

(
xT (x, c); cT

)
, ∀h = 1, ..., N, (13)

in the case N < +∞. Then the control c̃ given by

c̃t
def
=

{
ct, if t < T
ĉt−T if t ≥ T

, (14)

belongs to Cg(x).
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Proof. For any x ∈ X, any c ∈ Cg(x) and any T > 0, by (14), we have

xt(x, c̃) =
{

xt(x, c), if t < T
xt−T (xT (x, c), ĉ), if t ≥ T

. (15)

Hence, c̃ ∈ C(x). Thus, to prove that c̃ ∈ Cg(x), we are left with the task of
showing that the incentive constraint (3) is satisfied for every t ≥ 0. To this
task, we start by dealing with the case N = +∞.

Actually, for 0 ≤ t < T , we can write

g1(xt(x, c̃), c̃t) +
+∞∑
n=1

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt(x, c̃), c̃t) +
T−t−1∑

n=1

βng2(xt+n(x, c̃), c̃t+n)

+
+∞∑

n=T−t

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt(x, c), ct) +
T−t−1∑

n=1

βng2(xt+n(x, c), ct+n)

+
+∞∑

n=T−t

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n).

Hence, adding and subtracting the term
+∞∑

n=T−t

βng2(xt+n(x, c), ct+n) =
+∞∑

n=T−t

βng2(xt−T+n(xT (x, c), cT ), cT
t−T+n),

we obtain

g1(xt(x, c̃), c̃t) +
+∞∑
n=1

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt(x, c), ct) +
+∞∑
n=1

βng2(xt+n(x, c), ct+n)

+
+∞∑

n=T−t

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n)

−
+∞∑

n=T−t

βng2(xt−T+n(xT (x, c), cT ), cT
t−T+n).

On the other hand, observe that c ∈ Cg(x) implies that

g1(xt(x, c), ct) +
+∞∑
n=1

βng2(xt+n(x, c), ct+n) ≥ 0.

Moreover, setting k ≡ n− (T − t), we have
+∞∑

n=T−t

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n) (16)

= βT−t
+∞∑

k=0

βkg2(xk(xT (x, c), ĉ), ĉk)

= βT−tJg2(xT (x, c); ĉ), (17)
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and
+∞∑

n=T−t

βng2(xt−T+n(xT (x, c), cT ), cT
t−T+n) (18)

= βT−t
+∞∑

k=0

βkg2(xk(xT (x, c), cT ), cT
k )

= βT−tJg2(xT (x, c); cT ). (19)

Therefore, combining (17) and (19) with (12), thanks to (14), it follows that,
for every 0 ≤ t < T ,

g1(xt(x, c̃), c̃t) +
+∞∑
n=1

βng2(xt+n(x, c̃), c̃t+n) ≥ 0.

Finally, to complete the proof in the case N = +∞, it is sufficient to
observe that, on account of (14) and (15), for every t ≥ T we have

g1(xt(x, c̃), c̃t) +
+∞∑
n=1

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt−T (xT (x, c), ĉ), ĉt−T ) +
+∞∑
n=1

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n)

and that

g1(xt−T (xT (x, c), ĉ), ĉt−T ) +
+∞∑
n=1

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n) ≥ 0

for ĉ ∈ Cg(xT (x, c)).
Now, with regard to the case N ∈ N, let us observe first that for every

0 ≤ t < T −N we clearly have

g1(xt(x, c̃), c̃t) +
N∑

n=1

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt(x, c), ct) +
N∑

n=1

βng2(xt+n(x, c), ct+n) ≥ 0.

Second, for every T −N ≤ t < T , namely T − t ≤ N ,

g1(xt(x, c̃), c̃t) +
N∑

n=1

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt(x, c̃), c̃t) +
T−t−1∑

n=1

βng2(xt+n(x, c̃T ), c̃T
t+n)

+
N∑

n=T−t

βng2(xt+n(x, c̃T ), c̃T
t+n)

= g1(xt(x, c), ct) +
T−t−1∑

n=1

βng2(xt+n(x, c), ct+n)

+
N∑

n=T−t

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n),
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Hence, adding and subtracting the term

N∑

n=T−t

βng2(xt+n(x, c), ct+n) =
N∑

n=T−t

βng2(xt−T+n(xT (x, c), cT ), cT
t−T+n)

we obtain

g1(xt(x, c̃), c̃t) +
N∑

n=1

βng2(xt+n(x, c̃), c̃t+n)

= g1(xt(x, c), ct) +
N∑

n=1

βng2(xt+n(x, c), ct+n)

N∑

n=T−t

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n)

−
N∑

n=T−t

βng2(xt−T+n(xT (x, c), cT ), cT
t−T+n).

On the other hand, observe that c ∈ Cg(x) implies that

g1(xt(x, c), ct) +
N∑

n=1

βng2(xt+n(x, c), ct+n) ≥ 0.

Moreover, setting k = n− T − t, we have

N∑

n=T−t

βng2(xt−T+n(xT (x, c), ĉ), ĉt−T+n)

= βT−t

N−(T−t)∑

k=0

βkg2(xk(xT (x, c), ĉ), ĉk)

= βT−tJT−t
g2

(xT (x, c); ĉ) (20)

and

N∑

n=T−t

βng2(xt−T+n(xT (x, c), cT ), cT
t−T+n)

= βT−t

N−(T−t)∑

k=0

βkg2(xk(xT (x, c), cT ), cT
k )

= βT−tJT−t
g2

(xT (x, c); cT ) (21)

Therefore, combining (20) and (21) with (13), and observing that T−N ≤ t < T
means T − t = 1, ..., N , thanks to (14), we obtain again

g1(xt(x, c̃T ), c̃T
t ) +

N∑
n=1

βng2(xt+n(x, c̃T ), c̃T
t+n) ≥ 0.

Finally, for t ≥ T we can argue exactly as in the case N = +∞. This completes
the proof.

We are now in a position to prove
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Proposition 7 Under Assumption 2, for any x ∈ X and any T ∈ N, we have

V (x) ≥ sup
c∈Cg(x)

Jr,T (x; c). (22)

Proof. Fix any control c ∈ Cg(x) and consider

Jr,T (x; c) =
T∑

t=0

βtr(xt(x, c), ct) + βT V (xT (x, c)).

Now, consider the corresponding control cT ∈ Cg(xT (x, c)) (see Lemma 4). If cT

turns out to be optimal at xT (x, c), we have

V (xT (x, c)) = sup
ĉ∈Cg(xT (x,c))

+∞∑
t=0

βtr(xt(xT (x, c), ĉ), ĉt)

=
+∞∑
t=0

βtr(xt(xT (x, c), cT ), cT
t ).

Thus,

βT V (xT (x, c)) =
+∞∑
t=0

βT+tr(xt(xT (x, c), cT ), cT
t )

=
+∞∑

t=T

βtr(xt−T (xT (x, c), cT ), cT
t−T ),

and

Jr,T (x; c) =
T∑

t=0

βtr(xt(x, c), ct) +
+∞∑

t=T

βtr(xt−T (xT (x, c), cT ), cT
t−T ).

Therefore, by (8), we can write

Jr,T (x; c) =
+∞∑
t=0

βtr(xt(x, c), ct) = Jr(x; c),

and the latter clearly implies

Jr,T (x; c) ≤ V (x),

On the other hand, if cT is not optimal at xT (x, c), then for any ε > 0 we can
find an ε-optimal control cε ∈ Cg(xT (x, c)) satisfying Assumption 2. Then, we
have

V (xT (x, c)) < Jr(xT (x, c); cε) + ε. (23)

Jr(xT (x, c); cT ) ≤ Jr(xT (x, c); cε). (24)
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This implies that

Jr,T (x; c)

=
T∑

t=0

βtr(xt(x, c), ct) + βT V (xT (x, c))

≤
T∑

t=0

βtr(xt(x, c), ct) + βT Jr(xT (x, c); cε) + βT ε

=
T∑

t=0

βtr(xt(x, c), ct) +
+∞∑
t=0

βT+tr(xt(xT (x, c), cε), cε
t ) + βT ε

=
T∑

t=0

βtr(xt(x, c), ct) +
+∞∑

t=T

βtr(xt−T (xT (x, c), cε), cε
t−T ) + βT ε (25)

Now, thanks to Lemma 6, the concatenation of c and cε, i.e. the control

c̃ε
t

def
=

{
ct, if t < T
cε
t−T if t ≥ T

,

belongs to Cg(x). Hence, by (8),

T∑
t=0

βtr(xt(x, c), ct) +
+∞∑

t=T

βtr(xt−T (xT (x, c), cε), cε
t−T ) = Jr (x; c̃ε) ,

Thus, substituting the latter into (25), we obtain

Jr,T (x; c) ≤ J (x; c̃ε) + βT ε ≤ V (x) + βT ε,

and for the arbitrariness of ε, it follows

JT (x; c) ≤ V (x).

Finally, the arbitrariness of c ∈ Cg(x) yields the desired (22).

4 Conclusions

We have provided sufficient conditions to apply a DP approach to ICP, which
are conditions (12) and (13) such that property (SC) holds true. They are basi-
cally comonotonicity conditions relating the objective functionals to the running
functional. As a future development of this paper we are studying how to apply
the direct approach presented here to stochastic optimal control problems with
incentive constraint, both in the discrete and in the continuous case.
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