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The Importance of Industrial Policy in
Quality-Ladder Growth Models∗

Paolo E. Giordani and Luca Zamparelli

Abstract

We extend the class of quality-ladder growth models (Grossman and Helpman, 1991, Segerstrom,
1998 and others), to encompass an economy with asymmetric fundamentals. In contrast to the
standard framework, in our model industries may differ in terms of their innovative potential
(quality jumps and arrival rates) and consumers’ preferences. This extension allows us to bring
industrial policy back into the realm of the growth policy debate. We first show that it is always
possible to raise the long-run growth rate and the social welfare of the economy through a cost-
less tax/subsidy scheme reallocating resources towards the relatively more promising industries.
We then prove that, in certain economies, even a mere profit taxation policy increases economic
growth and social welfare above the laissez-faire.
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1 Introduction

Since their very appearance, vertical R&D-driven growth models have focused
on structurally symmetric economies, and on symmetric equilibria in R&D and
in the �nal (or intermediate) goods sector. Elaborating on the basic quality-
ladder growth framework - see, among others, Grossman and Helpman (1991),
Segerstrom (1998) -, we develop a model for an economy with asymmetric
fundamentals, that is, for an economy whose fundamentals may di¤er across
industries. In the research sector, heterogeneity is introduced both in the qual-
ity jumps, i.e. the improvement in utility following each innovation, and in the
arrival rates, i.e. the probabilities of innovating per unit of labor. Finally, the
unit contribution to the consumer�s utility of any �nal good is also assumed
to be industry-speci�c. We eliminate the �scale e¤ect� (Jones, 1995), which
penalized the �rst generation of these models, by incorporating the idea of
increasing complexity in the innovation process. In particular, we follow the
formalization proposed by Dinopoulos and Segerstrom (1999). As we will see,
the existence of di¤erent quality jumps and utility weights across industries
breaks down the symmetric structure of market demands and pro�ts. Further-
more, asymmetric arrival rates cause the pro�tability of engaging in R&D to
vary accordingly. This asymmetric structure of pro�tability is then re�ected
in an asymmetric con�guration of R&D e¤orts in stationary equilibrium. In
particular, for each industry the �better�the fundamentals (for example, the
higher the quality jump), the larger the equilibrium amount of R&D e¤orts.
We characterize the new balanced growth path and carry out the comparative
statics analysis.
The characterization of steady state equilibrium for �asymmetric economies�

opens up the possibility of reconsidering the role of industrial policy in en-
hancing economic performance. The symmetric structure of the economy in
standard quality-ladder models prevents the policy maker from implementing
industry-speci�c policies potentially capable of a¤ecting the economy�s per-
formance. Conversely, when technological and preference di¤erences across
industries are taken into account, a policy targeting speci�c industries has
signi�cant e¤ects on the rate of economic growth and on social welfare.
Market equilibrium in standard quality-ladder models is not Pareto-optimal.

The amount of resources devoted to R&D may be higher or lower than the
welfare-maximizing amount, depending on the speci�c values of the parame-
ters involved and on the model speci�cations. Our extension adds a new form
of sub-optimality for market equilibrium. Agents tend to invest too little in
�good�industries and too much in �bad�industries, where �good�and �bad�refer
to the technological and preference characteristics of the industries. The reason
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for this market failure is related to the forward-looking nature of the agents�
R&D investment decisions across industries. The amount of future investment
that agents expect in each industry adversely a¤ects their expected duration
of the monopolistic position acquired through innovation, and hence their cur-
rent investment decisions (a creative destruction e¤ect). In equilibrium, agents
tend to expect relatively high (low) levels of future R&D investments in rela-
tively �good�(�bad�) industries. Since from a social perspective the expected
duration of the monopoly does not play any role, agents allocate investments
sub-optimally across industries by investing too little in �good�industries and
too much in �bad� industries. The sub-optimal allocation of resources calls
for a sensible industrial policy capable of inducing a redistribution of these
resources from �bad�industries to �good�industries.
In particular, in a slightly simpli�ed version of our model - in which only

di¤erences in quality jumps across industries are assumed - we carry out
two policy exercises. In the �rst we compare the e¤ects on the steady state
growth rate of the economy and on social welfare of two di¤erent tax/subsidy
schemes on pro�ts. A �symmetric�rule, under which all industries are equally
taxed/subsidized, and an �asymmetric�rule, under which industries are taxed
or subsidized according to their speci�c quality jump (the higher the qual-
ity jump, the lower the tax or the higher the subsidy). Keeping equal the
amount of public revenue/expenditure under the two rules, our result is that
the steady state growth rate associated with the �asymmetric�rule is unam-
biguously higher than that associated with the �symmetric�rule. Moreover,
since the total amount of consumption in equilibrium turns out to be the same
under the two rules, the �asymmetric�rule is also welfare-enhancing with re-
spect to the �symmetric� rule. An important corollary of this result is that
a zero-cost industrial policy, which simply redistributes resources from �bad�
industries to �good�industries while leaving the public budget balanced, unam-
biguously increases both economic growth and welfare above the laissez-faire
equilibrium. Hence, whatever the optimal amount of R&D expenditure, an
industrial policy relatively favoring the more promising industries is worth
implementing.
In the second policy exercise we assume that the policy maker is only

allowed to tax but not to subsidize across industries. We prove that, if the
di¤erence between �good�and �bad�industries is �big enough�, even a mere tax-
ation policy - which only taxes �bad�industries without subsidizing the �good�
ones - is capable of enhancing both economic growth and social welfare. This
�paradox of growth�- that is, the fact that taxation on R&D returns fosters
growth - arises because taxation frees up resources from the �bad�industries,
which the market allocates partly to manufacture (so that �nal consumption
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unambiguously increases) and partly to the �good� industries. If the set of
�good� industries is su¢ ciently more productive than the set of �bad� indus-
tries which are being taxed, the gain in productivity for the economy more
than o¤sets the loss due to the decrease in the overall amount of resources
devoted to R&D (which parallels the increase in consumption). This result
is reminiscent of Segerstrom�s (2000) discussion of the long-run growth e¤ects
of R&D subsidies. In Section 3.2 we draw a comparison between his and our
model.
The policies mentioned above are all welfare-enhancing. The welfare-

maximizing solution is found in Section 4 where we show that, given the asym-
metric structure of the economy, it is socially optimal to concentrate the total
amount of R&D investment in the one most pro�table industry and leave the
other industries to stagnate forever. The corresponding optimal policy would
then be to turn o¤ (through taxation with tax rates equal to one) all indus-
tries but the best one and then, as usual in quality-ladder models, to tax or
subsidize the latter depending on the parameters of the model. It is worth
remarking however that, while in the model the preference and technological
characteristics are time-invariant and perfectly known by the policy maker, in
reality that is most probably not the case. We thus �nd this policy option too
risky to be implemented.
The paper is organized as follows. In Section 2 we develop the model,

analyze its steady state properties and draw the main comparative statics
results. In Section 3 we carry out the policy analysis. In Section 4 we develop
the welfare analysis, while in Section 5 we conclude with some remarks.

2 The Model

Let us assume a continuum of industries producing �nal goods indexed by
! 2 [0; 1]. In each industry �rms are distinguished by the quality index j of
the goods they supply, with the quality of their goods being increasing in the
integer j. At time t = 0 in each industry some �rm knows how to produce
a j = 0 quality product and no other �rm can o¤er a better one. In order
to develop higher quality versions of any product �rms engage in R&D races.
The winner of an R&D race becomes the sole producer of a good whose quality
is one step ahead of the previous quality leader.
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2.1 Households

We assume a �xed number of dynastic households (normalized to one) whose
members grow at constant rate n > 0. Each member shares the same in-
tertemporally additively separable utility log u(t) and is endowed with a unit
of labor she supplies inelastically. Therefore each household chooses its optimal
consumption path by maximizing the discounted utility

U �
1Z
0

L(0)e�(��n)t log u(t)dt (1)

where L(0) � 1 is the initial population and � > n is the common rate of
time preferences.
The instantaneous utility function is a logarithmic Cobb-Douglas. We let

the utility weights (�(!)) vary across industries, so as to represent a possible
heterogeneity of consumers preferences among the set of commodities. As the
�(!)�s represent the relative weights of the goods in the utility function, we
can normalize them in such a way that

R 1
0
�(!)d! = 1. If we de�ne �(!) as

the size of quality improvements (the so-called �quality jump�), assumed to be
industry-speci�c to allow for asymmetry in the technical evolution of each line,
jmax(!; t) as the highest quality reached by product ! at time t, and d(j; !; t)
as the consumption of product ! of quality j at time t, then the instantaneous
utility function can be written as

log u(t) �
1Z
0

�(!) log

jmax(!;t)X
j=0

�j(!)d(j; !; t)d!; (2)

and the static maximization problem can be represented as

max
d

1Z
0

�(!) log

jmax(!;t)X
j=0

�j(!)d(j; !; t)d! (3)

s:t: C(t) =

1Z
0

24jmax(!;t)X
j=0

p(j; !; t)d(j; !; t)

35 d!
where p(j; !; t) denotes the price of product ! of quality j at time t and

C(t) is the total expenditure at time t.
At each point in time consumers maximize static utility by spreading their

expenditure across industries proportionally to the utility contribution of each
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product line (�(!)). Since they perceive vertically di¤erentiated products in
a given industry ! as perfect substitutes once adjusted for quality di¤erences,
they will purchase in each product line those products with the lowest price per
unity of quality. As we will see in the next subsection, in each product line the
jmax(!; t) quality product is the unique good with the minimum price-quality
ratio. Hence, the individual static demand functions are

d(j; !; t) =

8>><>>:
�(!)C(t)

p(j; !; t)
for j = jmax(!; t)

0 otherwise

: (4)

Substituting (4) into (2) and (2) into (1), we state the intertemporal max-
imum problem as

max
C
U =

1Z
0

e�(��n)t[logC(t) +

1Z
0

�(!)[log�(!) + log [�(!)]j
max(!;t)

� log p(j; !; t)]d!]dt

s:t:

1Z
0

e�
R t
0 [r(s)�n]dsC(t)dt � W (0)

where r(s) is the instantaneous interest rate at time s and W (0) is the
present value of the stream of incomes plus the value of initial wealth at time
t = 0. The solution to this problem obeys the di¤erential equation

_C(t)

C(t)
= r(t)� �: (5)

2.2 Manufacture

Each good is produced by employing labor through a constant returns to scale
technology. In order to produce one unit of any good �rms hire lm units of
labor regardless of quality.
In each industry the jmax(!; t) quality product can only be manufactured

by the �rm owning the blueprint. As usual, since �rms engage in Bertrand
competition, the quality leader monopolizes its relative market until a suc-
cessive innovation is introduced in its product line. Indeed, having a quality
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advantage over its competitors, it can charge a price higher than its unit cost,
with the quality-adjusted price being still "-lower than those of its followers.
Moreover, because of the �Arrow e¤ect�, the quality leader does not engage in
R&D races (see Grossman and Helpman 1991, p. 47). Hence, it is always one
step ahead of its immediate follower, and the limit price that still monopolizes
the market is �(!)w(t)lm where w(t) is the wage rate set equal to 11. Given the
individual demand functions d(j; !; t); the market demand of good ! at time
t is D(!; t) = d(j; !; t)L(t) = �(!)C(t)L(t)=p [jmax(!; t); !; t]. Its unit elastic
structure makes the quality leader exactly set the limit price (see Grossman
and Helpman 1991, p. 46). Then

p [jmax(!; t); !; t] = �(!)lm:

We can now calculate the pro�t �ow in each industry as

�(!; t) = p [jmax(!; t); !; t]D(!; t)� lmD(!; t) =
�(!)� 1
�(!)

�(!)C(t)L(t):

2.3 R&D Races

The research sector is characterized by the e¤orts of R&D �rms to develop
better versions of the existing products in order to displace the current mo-
nopolists. We assume free entry and perfect competition in each R&D race.
Firms employ labor and produce, through a constant returns technology, a
Poisson arrival rate of innovation in the product line they target. In this sec-
tor we depart from the standard framework by allowing for di¤erent arrival
rates across industries. With this adjustment we intend to formally introduce
into the analysis the possibility that some industries are more promising than
others in terms of their chances of discovering a new commodity. Any �rm
hiring lu units of labor in industry ! at time t acquires the instantaneous prob-
ability of innovating of A(!)lu=X(!; t), where X(!; t) is the R&D di¢ culty
index.
Since independent Poisson processes are additive, the speci�cation of the

innovation process implies that the industry-wide instantaneous probability of
innovation (or research intensity) is

A(!)LI(!; t)

X(!; t)
� i(!; t) (6)

1Here labor is the numeraire.
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where LI(!; t) =
P

u lu(!; t). The R&D di¢ culty index X(!; t) describes
the evolution of technology. It is assumed to increase over time in order to rule
out the �scale e¤ect�(Jones, 1995), that is, to allow for constant growth rates
even with a growing population. In what follows we will assume it to evolve
in accordance with the speci�cation suggested by Dinopoulos and Segerstrom
(1999)2. This formulation has been developed to formalize the increasing dif-
�culty of introducing new products in more crowded markets

X(!; t) = kL(t) (PEG)

where k is a positive constant.
Whenever a �rm succeeds in innovating, it acquires the uncertain pro�t

�ow that accrues to a monopolist, that is, the stock market valuation of the
�rm. Let us denote it by v(!; t). Thus, the problem faced by an R&D �rm is
that of choosing the amount of labor input in order to maximize its expected
pro�ts

max
lu

�
v(!; t)A(!)

X(!; t)
lu � lu

�
which provides a �nite, positive solution for lu only when the arbitrage

equation

v(!; t)A(!)

X(!; t)
= 1

is satis�ed. Notice that in this case, though �nite, the size of the R&D �rm
is indeterminate because of the constant returns research technology.
Households own the monopolistic �rms through an e¢ cient stock market.

In equilibrium the stock market valuation of these �rms yields an expected
rate of return equal to the riskless interest rate r(t). This equality must hold
because the presence of a perfectly e¢ cient �nancial market allows risk-averse
households to completely diversify their portfolio across industries and, hence,
to care only about deterministic mean returns. The representative shareholder
receives a dividend of �(!; t)dt over a time interval of length dt, and the value
of the monopoly appreciates by

�
v(!; t)dt if no �rm innovates in the unit of

time dt. However, if an innovation occurs, which happens with probability

2This speci�cation is known under the acronym PEG, which stands for �permanent ef-
fects on growth�of policy measures such as subsidies and taxes. It has been independently
developed by Smulders and van de Klundert (1995), Young (1998), Dinopoulos and Thomp-
son (1998), Peretto (1998) and Howitt (1999). We adopt the formalization suggested by
Dinopoulos and Segerstrom (1999).
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i(!; t)dt, the shareholder su¤ers a loss of v(!; t). Therefore, the expected rate
of return from holding a share of a monopolistic �rm per unit of time is

�(!; t) +
�
v(!; t)

v(!; t)
� i(!; t);

which needs be equal to the interest rate r(t). From that equality we can
derive the �rm�s market valuation as

v(!; t) =
�(!; t)

r(t) + i(!; t)�
�
v(!; t)

v(!; t)

so that the R&D equilibrium condition is

�(!; t)A(!)

X(!; t)

"
r(t) + i(!; t)�

�
v(!; t)

v(!; t)

# = 1: (7)

2.4 The Labor Market

Since in each industry the market demand D(!; t) = �(!)C(t)L(t)=�(!)lm
requiresD(!; t)lm units of labor in order to be produced, the total employment
in the manufacturing sector is

1Z
0

�(!)C(t)L(t)

�(!)
d!:

Then, the labor market-clearing condition implies

L(t) =

1Z
0

�(!)C(t)L(t)

�(!)
d! +

1Z
0

LI(!; t)d! (8)

where
R 1
0
LI(!; t)d! is the total employment in the research sector.

2.5 Balanced Growth Path

We now focus on the balanced state growth path where the endogenous vari-
ables all grow at constant rates. The steady state requires that the distrib-
ution of resources between manufacturing and research be constant. In turn,
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_C(t)=C(t) = 0, and from the Euler equation we have r(t) = �: Moreover,
from the de�nition of v(!; t) it follows that its steady state growth rate is
�
v(!; t)=v(!; t) = n: The arbitrage equation (7) then becomes

�(!; t)A(!)

X(!; t) [�+ i(!; t)� n] = 1:

The rational expectations equilibrium requires that expectations on re-
search intensities be equal to their actual values. Moreover, as our model
assumes increasing complexity, the steady state analysis makes these intensi-
ties constant over time. From (7) we determine the following expression for
them

i(!; t) =
�(!; t)A(!)

X(!; t)
� �+ n = �(!)� 1

�(!)k
�(!)A(!)C � �+ n = i(!):

Notice that the probabilities of innovation i (!) in steady state are a¢ ne
transformations of industry-speci�c pro�ts and research technologies. If we
de�ne the sectoral population-adjusted research employment as lI(!; t) �
LI(!; t)=L(t), from the de�nition of the research intensity it follows that
lI(!) = i(!)X(!; t)=L(t)A(!). Then, by plugging the expression for i(!)
given above, we obtain

lI(!) =
�(!)� 1
�(!)

�(!)C � k(�� n)
A(!)

: (9)

The population-adjusted steady-state resource condition is given by

1 =

1Z
0

�(!)C

�(!)
d! +

1Z
0

lI(!)d!: (10)

The two equations (9) and (10) de�ne the steady state values of per-capita
expenditure C and of the population-adjusted research employment in each
industry lI(!). Using (9) to substitute for lI(!) into (10), we obtain the
steady state value for C

C� = 1 + k(�� n)
1Z
0

1

A(!)
d!: (11)

Plugging the expression above into (9) we then determine the steady state
value for lI(!)
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l�I(!) =
�(!)� 1
�(!)

�(!)

0@1 + k(�� n) 1Z
0

1

A(!)
d!

1A� k(�� n)
A(!)

:

As expected, the research e¤orts in the steady state equilibrium are now
industry-speci�c. Comparative statics analysis con�rms the standard results
obtained in symmetric quality-ladder models. In each industry the population-
adjusted research e¤ort is an increasing function of the quality jump, the utility
weight and the arrival rate. The total amount of research is negatively cor-
related with the rate of time preferences and positively correlated with the
population growth rate3. Finally, given that i(!) � A(!)L(t)lI(!)=X(!; t),
we can immediately �nd the steady-state values for the research intensites as

i�(!) =
A(!)

k

�(!)� 1
�(!)

�(!)

0@1 + k(�� n) 1Z
0

1

A(!)
d!

1A� (�� n):
Since the growth rate of individual utility can be thought of as the measure

of the economy�s growth rate, we now solve for its steady state value. Sub-
stituting for p(j; !; t) = �(!)lm and C(t) = C, the steady state value of the
utility is

log u(t) = logC +

1Z
0

�(!)
h
log�(!) + log [�(!)]j

max(!;t) � log [�(!)lm]
i
d! =

logC +

1Z
0

�(!) log�(!)d! +

1Z
0

�(!) log [�(!)]j
max(!;t) d!

�
1Z
0

�(!) log [�(!)lm] d!:

Given that
3See Appendix A for a brief derivation of these results.
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1Z
0

�(!) log [�(!)]j
max(!;t) d! =

tZ
0

1Z
0

[i(!; �)�(!) log �(!)d!] d� =

t

1Z
0

i(!)�(!) log �(!)d!

(where
R t
0
i(!; �)d� represents the expected number of successes in industry

! up to time t), di¤erentiating log u(t) with respect to time yields

_u

u
=

1Z
0

i(!)�(!) log �(!)d!:

To sum up, the steady state equilibrium is characterized by a set of con-
stant prices p(j; !; t) = �(!)lm; w(t) = 1; r(t) = �; and constant per capita
quantities. In particular, total expenditure is

C� = 1 + k(�� n)
Z 1

0

1

A(!)
d!;

sectoral production is

d(j; !; t) = �(!)C�

�(!)lm
;

while sectoral investment in R&D is

l�I(!) =
�(!)�1
�(!)

�(!)

�
1 + k(�� n)

Z 1

0

1
A(!)

d!

�
� k(��n)

A(!)
:

Utility is the only per capita variable growing in steady state. Since growth
in utility is a linear function of research intensities, in the next section we
investigate how industrial policy can a¤ect the economy�s growth and welfare
by in�uencing the distribution of investments in R&D.

3 The Role of Industrial Policy in Enhancing
Economic Performance and Social Welfare

Market equilibrium of quality-ladder growth models is not optimal. The ex-
istence of the well-known distortionary e¤ects, namely the �consumer surplus
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e¤ect�, the �intertemporal spillover� and the �businness stealing e¤ect�, (see
Grossman and Helpman 1991, p. 52) makes it necessary to introduce ei-
ther a tax or subsidy (depending on the values of the parameters and on the
model speci�cations) to induce the welfare-maximizing R&D expenditure4.
The asymmetric structure of our economy brings an additional failure of the
market forces in delivering the social welfare optimum. The total amount of
resources devoted to R&D (whether optimal or not) is ine¢ ciently distributed
across industries. The source of this industry-speci�c sub-optimality is still
associated with the �intertemporal spillover�. As is well known, the forward-
looking nature of the market equilibrium makes the arrival of the next inno-
vation in every industry exercise a negative e¤ect on the market value of the
incumbent - because of its �creative destruction� e¤ect. As a result, in our
asymmetric economy higher R&D e¤orts in the relatively more pro�table in-
dustries generate higher creative destruction in those industries, thus lowering
their expected returns. However, from a social perspective the expected dura-
tion of the monopolistic position acquired by an innovation is irrelevant, and
the arrival of the successive innovation enhances consumer welfare unambigu-
ously. Hence, pursuing industries with higher utility more intensively improves
overall welfare. Our asymmetric policies go in this direction by switching the
incentive to invest from the least to the most pro�table industries.
The argument is developed along two lines. In the next subsection we show

that, under the same public budget constraint, a selective policy intervention -
which favors the relatively better industries - is always unambiguously better
than a uniform one for both economic growth and the agents�welfare in the
steady state. As a particular case of this reasoning we also compare the laissez-
faire solution with a costless asymmetric policy rule which, by taxing some
industries and subsidizing others, is such that the whole tax revenue (or subsidy
expenditure) is zero. This asymmetric rule increases the growth rate and the
overall welfare of the economy above laissez-faire. In Subsection 3.2 we �nd
that, under certain conditions, the same result may be obtained even through
a pure taxation policy such that a subset of relatively bad industries are taxed
and no subsidies are awarded.
For reasons of tractability let us consider a slightly simpli�ed version of the

model developed in the last section. In this version the heterogeneity in both
the utility weights (�(!)) and the technology parameters (A(!)) is removed,

4Particular attention has been devoted to the relation between the optimal subsidy and
the size of innovation. Grossman and Helpman (1991) found it to be n-shaped; in Segerstom
(1998) the optimal subsidy is a monotonic negative function of the innovation size, while
Li�s (2003) model implies the optimal subsidy to be positive for �low�and �high� levels of
innovation size but not for intermediate ones.
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while the quality jumps �(!) are still left as industry-speci�c5. In other words,
we are considering an economy where some industries might be more attractive
for R&D investments in terms of the monopoly pro�ts they can generate once
the innovation is brought into the market.

3.1 The Tax/Subsidy Scheme

Let us introduce pro�t taxation/subsidy. Taxes (subsidies) are assumed to
be transferred (withdrawn) to (from) the representative household, so that
its intertemporal budget constraint remains una¤ected. We will derive our
result by comparing two distinct policy rules. The �rst rule imposes that each
industry be equally taxed (subsidized), while the second requires that the tax
(subsidy) rate be inversely (directly) related to its quality jump, that is, the
higher the quality jump the lower the tax (the higher the subsidy). Let �(!)
be the industry-speci�c tax (subsidy) rate, then the two rules can formally be
expressed as (a) �(!) = � = (1�s), (b) �(!) = (1�m�(!)). When s;m�(!) 2
(0; 1], then �(!) 2 R+ and represents a tax rate. When s;m�(!) 2 [1;+1),
�(!) 2 R� and represents a subsidy rate. Our goal is to compare the di¤erent
e¤ects on the economy�s growth rate (and welfare) of these two rules under
the constraint that the total amount of government revenue/expenditure be
the same. This public budget constraint can be expressed as

1Z
0

�s(!; t)(1� s)d! �
1Z
0

�(!)� 1
�(!)

CsL(t)(1� s)d! =

1Z
0

�as(!; t)(1�m�(!))d! �
1Z
0

�(!)� 1
�(!)

CasL(t)(1�m�(!))d! (12)

where �s, Cs denote pro�ts and expenditure under the symmetric policy
rule, while �as, Cas denote pro�ts and expenditure under the asymmetric pol-
icy rule.
We can now determine the steady state values for the expenditure and the

research e¤ort in both cases6. In the presence of pro�t tax/subsidy, the agents
evaluate the opportunity of investment in R&D on the basis of the after-tax

5Our result is actually robust against the choice of which variable to leave as industry-
speci�c.

6In what follows we will not run through all the steps as we did in the last Section: this
model is a special case of the one already illustrated, except for the introduction of the two
tax/subsidy rules on pro�ts.
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(or after-subsidy) pro�t �ow they can gain in the case of successful innovation.
Hence, the new steady state arbitrage equation under the asymmetric rule
becomes

A
�(!)� 1
�(!)

Casm�(!)

k

�
�+

A

k
lasI (!)� n

� = 1:
Once again notice that m�(!) < 1 represents a tax, while m�(!) > 1

represents a subsidy. Solving for lasI (!) we obtain

lasI (!) = (�(!)� 1)Casm�
k

A
(�� n)

and plugging it into the new resource condition

1 = Cas
1Z
0

1

�(!)
d! +

1Z
0

lasI (!)d!

we can derive the steady state expenditure under the asymmetric policy
rule

Cas =
1 +

k

A
(�� n)

1R
0

1

�(!)
d! +m

1R
0

(�(!)� 1)d!
:

Analogously, given that the after-tax (subsidy) steady state arbitrage equa-
tion under the symmetric rule is

A
�(!)� 1
�(!)

Css

k

�
�+

A

k
lsI(!)� n

� = 1;
and using the resource condition as before, we can solve for Cs and obtain

Cs =
1 +

k

A
(�� n)

1R
0

1

�(!)
d! + s

1R
0

�(!)� 1
�(!)

d!

:
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Cas and Cs are functions of, among others, the two parameters m and s
respectively, which measure the direction and the intensity of the government
intervention. So far we have not established any relation between them, so that
Cas and Cs are in fact incomparable. However, we know that the constraint
on total tax revenue (12) must be satis�ed. We now show that, when this
constraint is imposed, the relation between s and m is such that the overall
expenditure is exactly the same under the two di¤erent taxation schemes (that
is, Cas = Cs). Plugging the expression for Casand Cs just derived into (12)
we can solve for s as a function of m and obtain

s = m

1R
0

(�(!)� 1)d!

1R
0

�(!)� 1
�(!)

d!

: (13)

Substituting for s into the equilibrium value of Cs, it can then be imme-
diately veri�ed that Cs = Cas � C. This result is not surprising. Since the
government revenue/expenditure is constrained to be the same under both tax
regimes, the decision on whether to invest in research or to employ resources
in the manufacturing sector is not a¤ected.
The labor market-clearing condition, on the other hand, requires that the

sum of per capita expenditure and of per capita aggregate research be constant.
Hence, the total amount of research is also exactly the same under the two
policy rules. We can �nally �nd the steady state industry-speci�c research
intensities under the two di¤erent policy rules (we plug (13) into the expression
for is(!) in order to render the two quantities directly comparable)

ias(!) =
A

X(!)
LI(!) =

A

k
[�(!)� 1]

1 +
k

A
(�� n)

1R
0

1

�(!)
d! +m

1R
0

(�(!)� 1)d!
m� (�� n)

is(!) =
A

X(!)
LI(!) =

A

k

�(!)� 1
�(!)

1 +
k

A
(�� n)

1R
0

1

�(!)
d! +m

1R
0

(�(!)� 1)d!
m �

�

1R
0

(�(!)� 1) d!

1R
0

�(!)� 1
�(!)

d!

� (�� n);
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and show that the growth rate is higher under the asymmetric policy rule.
In this simpli�ed version of the model the growth rate is

_u

u
=

1Z
0

i(!) log �(!)d!:

This depends on the research intensities and, in particular, on the e¤ect of
the policy rule on the research intensities. Our reasoning now goes as follows.
First notice that, since the overall R&D e¤ort is constant, the total research

intensity (
R 1
0
i(!)d! = (A=k)

R 1
0
lI(!)d!) is constant as well. Let us now de�ne

�i(�(!)) � ias(!)� is(!). It is easy to show that

�i(�(!)) ? 0, �(!) ?

1R
0

(�(!)� 1)d!

1R
0

�(!)� 1
�(!)

d!

:

The asymmetric policy a¤ects the distribution of the intensities by reallo-
cating resources towards industries with relatively higher quality jumps. Since
the growth rate of the economy is the sum of the log of the quality jumps each
weighted with the research intensity of its industry, the steady state growth
rate associated with the asymmetric policy is unambiguously higher than the
one associated with a symmetric policy. The underlying intuition is that het-
erogeneity in the quality jumps determines an asymmetric structure of pro�ts
and, then, of research intensities across industries. The asymmetric rule am-
pli�es this e¤ect by polarizing the distribution of the R&D resources towards
the industries characterized by higher quality jumps. Notice also that an in-
crease in the steady state growth rate, coupled with an unchanged level of
total expenditure C, leads to an unambiguous increase in social welfare7.
This result contains an important corollary. If we are to suggest a certain

policy (namely, an asymmetric one), we may �nd it reasonable to compare
it with its �natural�reference point, the laissez-faire policy. This comparison
is exactly what we obtain when we set s = 1 in the policy analysis we have
developed above. That condition, together with (12), implies

7Cozzi and Impullitti (2005) develop an asymmetric quality-ladder model similar to ours.
Their focus is however on the e¤ects of �scal policy on the skill premium. They �nd that
a change in the composition of public expenditure in favor of the most pro�table sectors
would imply a rise in the skill premium.
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m̂ =

1R
0

�(!)� 1
�(!)

d!

1R
0

(�(!)� 1)d!
:

While s = 1 identi�es the �laissez-faire policy�, m̂�(!) describes an asym-
metric �zero-sum policy�, that is, a policy which can only redistribute resources
from one industry to another, leaving the public budget exactly balanced. In-
terestingly, a comparison of the research intensities across the two policy rules
shows8 that it is always possible to improve upon the laissez-faire equilibrium
through a costless system of tax/subsidy which reallocates resources towards
the relatively more promising indutries. By continuity, it is then possible to
implement a tax/subsidy scheme which enhances economic performance as
well as social welfare and, at the same time, guarantees a strictly positive tax
revenue for the government. In the next subsection we go even further by
showing that, in some economies, the same result may be achieved even when
the policy maker is only allowed to tax, but not to subsidize, across industries.

3.2 The Pure Taxation Scheme

In the simpli�ed framework developed above - in which only the quality jumps
are industry-speci�c - we now introduce a particular ordering of industries
such that �(�) is an increasing function of the industry index !, that is, an
ordering from the least to the most innovative industry as ! goes from 0 to 1.
Let us partition the set of industries into two subsets, [0; �!] and (�!; 1]. The
suggested policy rule consists of taxing uniformly9 the �rst subset of (relatively
less innovative) industries, while leaving the second subset of (relatively more
innovative) industries una¤ected. Under the adopted notation the industry-
speci�c tax rate is �(!) = (1�s) 2 (0; 1) 8! 2 [0; �!] and �(!) = 0 8! 2 (�!; 1].
The new set of arbitrage equations is now given by

A
�(!)� 1
�(!)

CT s

k

�
�+

A

k
lTI (!)� n

� = 1 8! 2 [0; �!];

8As a particular case of the one above, the procedure to obtain the result is straightfor-
ward after substituting for m̂ into the expressions for the equilibrium research intensities
is(!), ias(!).

9For simplicity we consider a uniform policy instead of an asymmetric one. The latter
would indeed enlarge the set of economies for which our proposition holds.
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A
�(!)� 1
�(!)

CT

k

�
�+

A

k
lTI (!)� n

� = 1 8! 2 (�!; 1]:

Solving for lTI (!) and plugging it into the usual resource condition we �nd
the equilibrium value for expenditure to be

CT =
1 +

k

A
(�� n)�

�!R
0

1

�(!)
d! � �!

�
(1� s) + 1

:

Since s < 1 implies
�R !
0
1=�(!)d! � �!

�
(1� s) + 1 < 1, the taxation policy

raises expenditure above the laissez-faire. Hence, given the resource constraint,
it lowers the total amount of resources employed in R&D below the laissez-
faire. Furthermore, this policy has an additional e¤ect on the industry-speci�c
research intensities which in equilibrium are given by

iT (!) =
�(!)� 1
�(!)

A

k
+ �� n�

�!R
0

1

�(!)
d! � �!

�
(1� s) + 1

s� (�� n) 8! 2 [0; �!]; (14)

iT (!) =
�(!)� 1
�(!)

A

k
+ �� n�

�!R
0

1

�(!)
d! � �!

�
(1� s) + 1

� (�� n) 8! 2 (�!; 1]: (15)

The research intensities in the subset (�!; 1] are positively a¤ected by the tax
policy. The reason is that higher expenditure raises pro�ts in manufacturing,
and hence raises the incentive to invest in the industries which are not directly
a¤ected by the taxation. Given the resource constraint, the increase in the
resources devoted to consumption and to the more innovative industries is
exactly balanced by the reduction of investment in the taxed industries. Then
our policy rule has two opposite e¤ects on the growth rate of utility. On the one
hand, it reduces the total resources devoted to the research sector (a negative
e¤ect). On the other hand, by reducing the pro�tability of investing in the
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less innovative industries, it favors a partial reallocation of research investment
towards those industries with a higher contribution to household utility (a
positive e¤ect). There exist economies where the second e¤ect more than
o¤sets the �rst e¤ect and, hence, for which a pure taxation policy increases
the long-run growth rate.
Let ( _u=u)T =

R 1
0
iT (!) log �(!)d! and ( _u=u)LF =

R 1
0
iLF (!) log �(!)d! re-

spectively be the growth rates under the tax policy and under laissez-faire
(where iLF (!) can be obtained from iT (!) by posing s = 1). Given (14) and
(15), and since s < 1

(
_u

u
)T > (

_u

u
)LF ()

�!Z
0

�(!)�1
�(!)

log �(!)d! <

1Z
0

�(!)�1
�(!)

log �(!)d! �
�!Z
0

�(!)�1
�(!)

d!: (16)

Given that

Z 1

0

�(!)�1
�(!)

log �(!)d! =

Z �!

0

�(!)�1
�(!)

log �(!)d! +

Z 1

�!

�(!)�1
�(!)

log �(!)d! >Z �!

0

�(!)�1
�(!)

log �(!)d!;

and that
R �!
0
(�(!)� 1) =�(!)d! < 1, the inequality may or may not hold.

As expected, whether it holds or not depends 1. on the fundamentals of the
economy (that is, on �how much better�are industries in (�!; 1] with respect
to those in [0; �!] in terms of quality jumps �(!)), and 2. on �! (that is, on
�how many�industries are taxed). The inequality above is more likely to be
satis�ed the higher the di¤erence in the quality jumps between the two subsets
of industries, and/or the smaller the mass of taxed industries. Therefore, in
a generic economy it is not always the case that a mere taxation policy is
capable of yielding both an improvement in the growth rate and higher social
welfare. However, with a su¢ ciently polarized structure of the quality jumps,
there exists a threshold value for �! of taxable industries such that this result
can be achieved by taxing up to [0; �!]. Interestingly, notice that whether this
result holds or not does not depend on the intensity of taxation (that is, on
s).
As an illustrative example let us �nd a simple family of economies for which

taxation fosters long-run growth. Let us consider a set of economies indexed
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by i in which, given the industry interval [0; 1], for reasons of tractability we
assume that the fraction of industries [0; �!i] is characterized by identical quality
jumps �L, while the fraction of industries (�!i; 1] is characterized by identical
quality jumps �H > �L (L stands for �low�, H for �high�). Each economy i
is then distinguishable from the others via the industry �!i separating the set
of less innovative industries from the set of more innovative industries. The
policy suggested in each economy is that of taxing the set of less innovative
industries. We now �nd the set of economies for which taxing the fraction
[0; �!i] of industries raises the growth rate of the economy. Given the new
con�guration, (16) becomes

(
_u

u
)Ti > (

_u

u
)LF ()

�!i
�L�1
�L

log �L <
h
�!i
�L�1
�L

log �L + (1� �!i)�
H�1
�H

log �H
i
�!i
�L�1
�L
;

from which we obtain

0 < �!i <
�H�1
�H

log �H � log �L
�H�1
�H

log �H � �L�1
�L

log �L
� �!; (17)

which essentially tells us that, in order for the long-run growth rate of the
economy to be positively a¤ected by the tax policy, the economy must be such
that the mass of the less innovative industries to be taxed cannot be higher
than �!. Notice that, in writing (17) as the solution to the inequality above,
we have implicitely assumed that the following condition on the parameters of
the model holds (which guarantees that �!i > 0)10:

�H�1
�H

log �H � log �L > 0

Once again, with a su¢ ciently polarized structure of quality jumps, that
is, if �H is �su¢ ciently higher�than �L, a pure taxation directed towards the
industries characterized by �L has a positive e¤ect both on the steady-state

10If
�
�H � 1

�
=�H log �H � log �L < 0, the solution to the inequality would be

�H�1
�H

log �H � log �L
�H�1
�H

log �H � �L�1
�L

log �L
< �!i < 0:

Since �!i < 0 is not economically meaningful, fostering growth through a pure taxation
policy is impossible. Incidentally notice that the other condition, �!i < 1, is instead always
satis�ed.
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growth rate of the economy and, given the increase in consumption, on social
welfare.
As we discussed above, in R&D-driven growth models the market equilib-

rium is not e¢ cient as the amount of resources devoted to R&D may be too
high or too low with respect to the optimal level. As a result, the optimal
policy may require either a subsidy or a tax on R&D investment. However, in
these models the e¤ect of tax/subsidy activity is ambiguous on social welfare
but is usually clear on the long-run growth rate of the economy. A subsidy
indeed raises the growth rate while a tax lowers it. Segerstrom (2000) shows
that, under certain conditions, this result can be reversed. Our result goes
in the same direction but is driven by a di¤erent mechanism. Segerstrom
(2000) elaborates on Howitt (1999), who constructs a model with both verti-
cal and horizontal innovation, in which the scale e¤ect is eliminated while the
e¤ect of R&D subsidies on long-run growth is preserved (as opposed to Jones,
1995). While Howitt (1999) restricts the analysis to an R&D technology where
returns from vertical innovation are higher than those from horizontal inno-
vation, Segerstrom (2000) generalizes this model by relaxing this assumption.
Moreover, he allows for complexity in research activities to grow at di¤erent
speeds. In steady state, given the population growth constraint, a uniform sub-
sidy to both vertical and horizontal research raises (lowers) the quality growth
rate by reducing (increasing) the variety growth rate when returns to R&D
are higher (lower) in the vertical sector than in the horizontal one. Depending
on how strongly the leading-edge quality increases the complexity of research,
either of the results will increase the overall growth rate of the economy. For
example, if complexity grows relatively fast and the returns from R&D are
higher in the vertical sector, a uniform subsidy to R&D lowers the growth
rate. The paradox of growth in turn depends on the pace of increasing com-
plexity in research, and on the technology assumed in the vertical and in the
horizontal R&D sectors. Our model only considers vertical innovation. It is
the asymmetric con�guration of technological parameters (the quality jumps)
across industries which is responsible for the paradox of growth. Taxation of
the less innovative sectors frees resources which will be partly reallocated to
the more innovative ones, thus possibly increasing the growth rate despite the
reduction in total research investment.

4 Welfare Analysis

We can now go back to the original model developed in Section 2 and derive
the optimal steady state growth rate and, in turn, the subsidy/tax scheme
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which maximizes steady state welfare. From Subsection 2.5 remember that
the value of the instantaneous utility in steady state is given by

log u(t) = logC +

1Z
0

�(!) log�(!)d! +

1Z
0

�(!) log [�(!)]j
max(!;t) d!

�
1Z
0

�(!) log [�(!)lm] d!

and that

1Z
0

�(!) log [�(!)]j
max(!;t) d! = t

1Z
0

i(!)�(!) log �(!)d!:

Our goal is to �nd the allocation of resources which maximizes steady state
welfare, i.e.

max
i(!)

U �
1Z
0

e�(��n)t log u(t)dt

s.t. 1 = C

1Z
0

�(!)

�(!)
d! + k

1Z
0

i(!)

A(!)
d!

where the resource constraint is expressed in per capita terms and we use
the de�nition i(!) � A(!)lI(!)=k. Solving the integrals we �nd

U � 1

�� n

24logC � 1Z
0

�(!) log [�(!)lm] d! +

1Z
0

�(!) log�(!)d!

35
+

1

(�� n)2

1Z
0

i(!)�(!) log �(!)d!:

From the resource constraint we now substitute for C into U to get
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U � 1

�� n [log

0BBB@ 1
1R
0

�(!)
�(!)

d!

� k
1R
0

�(!)
�(!)

d!

1Z
0

i(!)

A(!)
d!

1CCCA�
1Z
0

log [�(!)lm] d!

+

1Z
0

�(!) log�(!)d!] +
1

(�� n)2

1Z
0

i(!)�(!) log �(!)d!:

Let us now consider the derivative of U with respect to the research inten-
sity in a given industry !

@U

@i(!)
=

� k

(��n)A(!)
1R
0

�(!)
�(!)

d!

1
1R
0

�(!)
�(!)

d!

� k
1R
0

�(!)
�(!)

d!

1R
0

i(!)
A(!)

d!

+
1

(�� n)2�(!) log �(!):

Notice that the partial derivative of the total utility does not depend on the
speci�c intensity i(!), and is an increasing function inA(!); �(!); �(!). Hence,
there will exist one industry (denote it by ~!) characterized by �(~!); �(~!) and
A(~!) such that the partial derivative of total utility with respect to it is always
the highest in the economy. This means that, whatever the distribution of
resources between consumption and research, it is always the case that welfare
can be improved by reallocating research investment towards industry ~!. In
turn, optimality requires i(~!) =

R 1
0
i(!)d!11. At this point it is simple to solve

for the optimal level of research intensity i�(~!): In our economy there is now
a single research sector, which implies the following total utility

11A positive mass of R&D expenditure cannot be concentrated in a zero measure in-
dustry. However, the result holds as the limit of a discrete case where ~! has non-zero
measure. Let I be the total amount of resources employed in R&D industries. Indus-
tries are indexed over the interval [0; 1] by !i, with !i = i=N; i = 0; 1; :::N: Then,
I =

PN
i=0 i(!i)(!i+1 � !i) =

PN
i=0 i(!i) (1=N) ; where i(!i) is the frequency of the dis-

tribution of research across industries. Since the partial derivative of the total welfare is
always bigger for ~! independently of the frequency of research in that industry, then it has
to be that i(!i) = 0 8!i 6= ~!; so that I =

PN
i=0 i(!i) (1=N) = i(~!) (1=N) : If we couple this

with the fact that from the de�nition of the integral: lim
N!1

PN
i=0 i(!i) (1=N) =

R 1
0
i(!i)d!,

then lim
N!1

i(~!) (1=N) =
R 1
0
i(!i)d!: In the limit, the frequency distribution of research across

industries converges to a Dirac delta density centered in ~!.
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U � 1

�� n

0@logC � 1Z
0

log [�(!)lm] d! +

1Z
0

�(!) log�(!)d!

1A
+

1

(�� n)2 i(~!)�(~!) log �(~!)

while the new resource constraint is

1 = C

1Z
0

�(!)

�(!)
d! + k

i(~!)

A(~!)
: (18)

By substituting for C given in the resource constraint into U , and taking
the �rst order condition we can solve for i(~!) and obtain

i�(~!) =
A(~!)

k
� (�� n)
�(~!) log �(~!)

:

Given the optimal amount and distribution of research, we can now move
on to discuss the subsidy/tax scheme capable of making the market provide
the optimal allocation. First we need to turn o¤ research in all industries
di¤erent from ~!: This can be easily accomplished by imposing the tax rate
�(!) = 1 8! 6= ~!. Then we have to look for the value �(~!) = 1 � s(~!) such
that the market equilibrium intensity is exactly equal to i�(~!). Solving for the
market equilibrium i(~!), we obtain12

i(~!) =

A(~!)
k

�(~!)�1
�(~!)

�(~!)s(~!)� (�� n)
1R
0

�(!)
�(!)

d!

�(~!)�1
�(~!)

�(~!)s(~!) +
1R
0

�(!)
�(!)

d!

:

Therefore the optimal subsidy/tax ��(~!) has to be such that s�(~!) solves

A(~!)
k

�(~!)�1
�(~!)

�(~!)s�(~!)� (�� n)
1R
0

�(!)
�(!)

d!

�(~!)�1
�(~!)

�(~!)s�(~!) +
1R
0

�(!)
�(!)

d!

=
A(~!)

k
� (�� n)
�(~!) log �(~!)

:

12The value i(~!) is found by imposing the arbitrage condition for industry ~! and the new
resource constraint (18).
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Needless to say, the welfare analysis for the simpli�ed version used for the
policy analysis in Section 3 is a particular case of the one above, obtained by
posing A(!) = A and �(!) = �. In particular, the social optimum in this case
requires that the unique industry where R&D is carried out be exactly the one
with the highest quality jump.

5 Concluding Remarks

In the previous pages we have generalized a standard quality-ladder model with
increasing complexity in order to encompass a typical trait of real economies,
which is the presence of industries characterized by di¤erent - preference and
technological - fundamentals. We have assumed an R&D sector character-
ized by industry-speci�c quality jumps (�(!)) and arrival rates (A(!)). While
the �rst assumption makes the mark-up charged by each monopolist (and then
pro�ts) vary across industries, the second alters the per-industry pro�tability of
engaging in R&D. Furthermore, as in the standard case, the consumer�s utility
is represented by a logarithmic Cobb-Douglas function. However, asymmetric
utility contributions (�(!)) of each good are now assumed. The asymmetry
in the fundamentals causes prices, market demands and pro�ts to vary across
industries. Accordingly, in the stationary equilibrium, an asymmetric compo-
sition of actual and expected R&D e¤orts is necessary to make engaging in
R&D in each industry equally pro�table. This extension does not alter the
comparative statics results obtained in the standard symmetric models.
Our model is also aimed at bringing industrial policy back into the realm

of the growth policy debate. We have shown that a policy favoring - either
directly or indirectly - industries with higher innovative capacity fosters eco-
nomic growth and welfare. However, our policy conclusion needs a couple of
quali�cations.
First, the actual implementation of the policy recommended requires that

the policy-maker be both able and willing to �pick winners�. Our assumption
on the ability to recognize winners, at least in an economy where the structure
of the quality jumps is time invariant, is indeed not unrealistic. Given the
relation between quality jumps and mark-ups, the sectoral distribution of the
�(!)�s can be easily ascertained. For instance empirical estimates of sectoral
markups for U.S. manufacturing can be found in Hall (1988) and more recently
in Roeger (1995) and Martin, Scarpetta and Pilat (1996). Cozzi and Impullitti
(2005) have calibrated sectoral quality jumps by using these estimates. The
sectoral distribution of the �(!)�s is even easier to know, as �(!) represents
the market share of industry !. Finally A(!) stands for the expected number
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of innovations per unit of time and per unit of labor. By dividing in each
period the number of innovations occurred by the number of researchers in
industry !, we can easily obtain an estimate of A(!). Willingness to pick
winners can instead be threatened by the presence of lobbies. A policy based
on the selection of speci�c industries bears the inevitable risk that the selection
criteria be not inspired by economic e¢ ciency and social welfare but rather
by the special interests of particular �rms capable of redirecting the policy
maker�s intervention in their favor.
Second, our model is characterized by full employment in every instant

of time. An asymmetric policy intervention strengthens the market selection
process of the best industries, inducing an instantaneous and zero-cost real-
location of resources (and, hence, of workers) from one industry to another.
In the real world such a process can indeed not only take time, but also be
socially painful. There may then be calls for social protection in favor of the
(R&D) workers in the declining industries, and more generally for policies
aimed at smoothing the shift of workers from those industries to the develop-
ing ones. The costs of such interventions should then be taken into account
when evaluating the opportunity of implementing the policies recommended.
With these caveats in mind we have shown that market forces do not pro-

vide su¢ cient incentives to make agents exploit completely the di¤erences in
technological and/or preference fundamentals across industries, and that the
policy-maker can (and should) intervene, through a sensible industrial policy,
to cure over-investment in poor industries and under-investment in promising
ones. We have proven that a zero-cost tax/subsidy policy and, under certain
circumstances, even a mere tax policy unambiguously raise growth and welfare
above the laissez-faire equilibrium.

A Comparative Statics

Since the zero measure of each industry makes the contribution of the variation
of a !-speci�c � to �C negligible, then d �C=d� = 0. Analogously d �C=d� = 0.
Then, for any given !

dlI
d�

=
1

�2
�

1� s
�C > 0

dlI
d�

=
�(!)� 1
�(!)(1� s)

�C > 0

If we de�ne
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�lI �
1Z
0

lI(!)d! = 1� �C

1Z
0

�(!)

�(!)
d!

then

d�lI
d�
= �d

�C

d�

1Z
0

�(!)

�(!)
d! and

d�lI
dn

= �d
�C

dn

1Z
0

�(!)

�(!)
d!

Therefore, since

d �C

d�
=

k
1R
0

1

A(!)
d!

1R
0

�(!)(�(!)� s))
�(!)(1� s) d!

> 0 and
d �C

dn
= �

k
1R
0

1

A(!)
d!

1R
0

�(!)(�(!)� s))
�(!)(1� s) d!

< 0

we can �nally state

dLI
d�

< 0 and
dLI
dn

> 0:
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