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Titolo: Calcolo stocastico via regolarizzazione in dimensione infinita e motivazioni finanziarie.

Riassunto: Questa tesi di dottorato sviluppa certi aspetti del calcolo stocastico via regolarizzazione

per dei processi a valori in uno spazio di Banach generale B. Viene introdotto un concetto orginale di

χ−variazione quadratica, dove χ è un sottospazio del duale de prodotto tensoriale B ⊗B, munito della

topologia proiettiva. Una attenzione particolare é dedicata al caso in cui B é lo spazio della funzioni

continue su l’intervallo [−τ, 0], τ > 0. Viene dimostrata una classe di risultati di stabilità attraverso funzioni

di classe C1 di processi che ammettono una χ-variazione quadratica e viene dimostrata una formula di Itô

per tali processi. I processi continui reali a variazione quadratica finita Y (ad esempio processi di Dirichelt

o anche Dirichlet debole) giocano un ruolo significativo. Viene definito un processo associato chiamato

processo finestra e indicato con Yt(·) definito da Yt(y) = Yt+y per y ∈ [−τ, 0]. Y (·) è un processo a valori

nello spazio di Banach C[−τ, 0]. Se Y è un processo reale con varazione quadratica uguale a [Y ]t = t e

h = F (YT (·)) dove F è una funzione di classe C2(H) Fréchet e H = L2([−T, 0]), è possibile rappresentare

h come somma di un numero reale H0 più un integrale forward di tipo
∫ T

0
ξd−Y dove ξ è un processo di

cui diamo la forma esplicita. Questo generalizza la formula di Clark-Ocone valida quando Y è un moto

Browniano standard W . Una delle motivazioni viene dalla teoria di copertura di opzioni che dipendono da

tutta la traiettoria del sottostante o quando il prezzo dell’azione sottostante non è una semimartingala.

Titre: Calcul stochastique via régularisation en dimension infinie avec motivations financières.

Résumé: Ce document de thèse développe certains aspects du calcul stochastique via régularisation

pour des processus à valeurs dans un espace de Banach général B. Il introduit un concept original de

χ-variation quadratique, où χ est un sous-espace du dual d’un produit tensioriel B⊗B, muni de la topologie

projective. Une attention particulière est dévouée au cas où B est l’espace des fonctions continues sur

[−τ, 0], τ > 0. Une classe de résultats de stabilité de classe C1 pour des processus ayant une χ-variation

quadratique est établie ainsi que des formules d’Itô pour de tels processus. Un rôle significatif est joué par

les processus réels à variation quadratique finie Y (par exemple un processus de Dirichlet, faible Dirichlet).

Le processus naturel à valeurs dans C[−τ, 0] est le dénommé processus fenêtre Yt(·) où Yt(y) = Yt+y. Si

Y est un processus dont la variation quadratique vaut [Y ]t = t et h = F (YT (·)) où F est une fonction de

classe C2(H) Fréchet where H = L2([−T, 0], il est possible de représenter h comme un nombre réel H0 plus

une intégrale progressive du type
∫ T

0
ξd−Y o ξ est un processus donné explicitement. A certains égards,

ceci généralise la formule de Clark-Ocone valide lorsque Y est un mouvement brownien standard W . Une

des motivations vient de la théorie de la couverture d’options lorsque le prix de l’actif soujacent n’est pas

une semimartingale.
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Title: Infinite dimensional calculus via regularization with financial motivations.

Abstract: This paper develops some aspects of stochastic calculus via regularization to Banach valued

processes. An original concept of χ-quadratic variation is introduced, where χ is a subspace of the dual of

a tensor product B ⊗B where B is the value space of the process. Particular interest is devoted to the

case when B is the space of real continuous functions defined on [−τ, 0], τ > 0. Itô formulae and stability

of finite χ-quadratic variation processes are established. Attention is devoted to a finite real quadratic

variation (for instance Dirichlet, weak Dirichlet) process X. The C([−τ, 0])-valued process Y (·) defined by

Yt(y) = Yt+y where y ∈ [−τ, 0] is called window process. Let T > 0. If Y is a finite quadratic variation

process such that [Y ]t = t and h = F (YT (·)) where F is a C2(H) Fréchet function with H = L2([−T, 0]), it

is possible to represent h as a sum of a real number H0 plus a forward integral of type
∫ T

0
ξd−Y where ξ

will be explicitly given. This decomposition generalizes the Clark-Ocone formula which is true when Y is

the standard Brownian motion W . The main motivation comes hedging theory of path dependent options

without semimartingales in mathematical finance.

[2010 Math Subject Classification: ] 60G15, 60G22, 60H05, 60H07, 60H30, 91G80, 91G99

[JEL Classification Codes: ] G10, G11, G12, G13

This thesis is based on a joint research with Francesco Russo.
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Chapter 1

Introduction

Classical stochastic calculus and integration come back at least to Itô [27] and it has been developed

successfully by a huge number of authors. The most classical Itô’s integrator is Brownian motion but

the theory naturally extends to martingales and semimartingales. Stochastic integration with respect to

semimartingales is now quite established and performing. For that topic, there are also many monographs,

among them [30], [37] for continuous integrators and [29] and [36] for jump processes. In order to describe

models coming especially from physics and biology, useful tools are infinite dimensional stochastic differential

equation for which the classical stochastic integrals needed to be generalized. Those integrals involve

Banach valued stochastic processes. At our knowledge the seminal book is [33], which generalizes stochastic

integrals and Itô formulae, in a general framework, to a class of integrators called π-processes. Let B

be a Banach space and X a B-valued continuous process. Let Y be an elementary B∗-valued process

i.e. it is a finite sum of functions of the type c1]a,b], where a < b and c is a non-anticipating B∗-valued

random variable. The integral
∫ T

0
〈c1]a,b], dX〉 can be obviously defined by 〈c,Xb − Xa〉. The integral∫ T

0
〈Y, dX〉 can be deduced by linearity. If X is a so-called π-process and Y is an elementary process

then the following inequality holds E
[∫ T

0
〈Y, dX〉

]2
≤ E

[∫ T
0
‖Y ‖2dα

]
, where α is a suitable measure on

predictable sets. In other words for a π-process X it is possible to write a generalization of the isometry

property of real valued Itô integrals. If the Banach values space B is a Hilbert space then the concept

of π-process generalizes the notion of square integrable martingale and bounded variation process. The

infinite dimensional stochastic integration theory has known a big success in applications to different classes

of (stochastic) partial differential equations. It concerned especially the case when B is a separable Hilbert

space. The most frequent tools are the Da Prato-Zabczyk integral (see [11]) and Walsh integral ([52]).

A recent book completing the Metivier-Pellaumail approach is the [16]. A significant theory of infinite

dimensional stochastic integration was developed when B is an M-type 2 Banach spaces, see [13, 12] and

continued by several authors as e.g. [5], [1]. Interesting issues in this direction concern the case when B

7
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is a UMD space; one recent paper in this direction is [50]. A space which is neither a M-type 2 space

nor a UMD space is C([−τ, 0]) with τ > 0, i.e. the Banach space of real continuous functions defined on

[−τ, 0]. This is the typical space in which stochastic integration is challenging. This context is natural when

studying stochastic differential equations with functional dependence (as for instance delay equations). Due

to the difficulty of stochastic integration and calculus in that space, most of the authors fit the problem in

some ad hoc Hilbert space, see for instance [7]. A step in the investigation of stochastic integration for

C([−τ, 0])-valued and associated processes was done by [51].

The literature of stochastic integrals via regularizations and calculus concerns essentially real valued

(and in some cases Rn-valued) processes. This topic was studied first in [40] and [41, 42]. A recent survey

on the subject is [44]. Important investigations in the case of jump integrators were performed by [14].

Given an integrand process Y = (Yt)t∈[0,T ] and an integrator X = (Xt)t∈[0,T ], a significant notion is the

forward integral of Y with respect to X, denoted by
∫ T

0
Y d−X. When X is a (continuous) semimartingale

and Y is a cadlag adapted process, that integral coincides with Itô’s integral
∫ T

0
Y dX. Stochastic calculus

via regularization is a theory which allows, in many specific cases to manipulate those integrals when Y is

anticipating or X is not a semimartingale. If X = W is a Brownian motion and Y is a (possibly anticipating)

process with some Malliavin differentiability, then
∫ T

0
Y d−W equals Skorohod integral

∫ T
0
Y δW plus of a

trace term. A version of this calculus when B has infinite dimension was not yet developed. The aim of

the present work is to set up the basis of such a calculus with values on Banach spaces in the (simplified)

case when integrals are real valued. The central object is a forward integral of the type
∫ T

0
〈Y, d−X〉, when

Y (resp. X) is a B∗-valued (resp. B-valued) process. We show that when B = X is a Hilbert space, Y is a

non-anticipating square integrable process and X is a Wiener process,
∫ T

0
〈Y, d−X〉 coincides with the Da

Prato-Zabczyk integral.

One important object in calculus via regularization is the notion of the covariation [X,Y ] of two real

processes X and Y . If X = Y , [X,X] is called the so-called quadratic variation of X. If X is Rn-valued

process with components X1, . . . , Xn, the generalization of the notion of quadratic variation [X,X] is

provided by the matrix ([Xi, Xj ])i,j=1,...,n. If such a matrix indeed exists, one also says that X admits all

its mutual covariations.

In this paper we introduce a sophisticated notion of quadratic variation which generalizes the former one.

This is called χ-quadratic variation in reference to a subspace χ of the dual of B⊗̂πB. When B is finite

dimensional, if X admits all its mutual brackets, then X has a χ-quadratic variation with χ = (B⊗̂πB)∗. A

Banach valued locally semi summable process X in the sense of [16], has again a χ-quadratic variation with

χ = (B⊗̂πB)∗. We establish a general Itô’s formula; we also show that if X has a χ-quadratic variation

and F : B → R is of class C1 Fréchet with some supplementary properties on DF than F (X) is a real

finite quadratic variation process.

A specific attention is devoted to the case when B = C([−τ, 0]) and X is a window process associated to a
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real continuous process. Given τ > 0 and a (Ft)-classical real Brownian motion W = (Wt)t∈[0,T ], we will

call window Brownian motion the C([−τ, 0])-valued process W (·) =
(
Wt(·)

)
t∈[0,T ]

= {Wt(u) := Wt+u;u ∈
[−τ, 0], t ∈ [0, T ]}. C([−τ, 0]) is typical a non-reflexive Banach space. We obtain generalized Doob-Meyer

decomposition for C1-functionals of window Dirichlet processes. Motivated by financial applications, we

finally establish a Clark-Ocone type decomposition for a class of random variables h depending on the

paths of a finite quadratic variation process Y such that [Y ]t = t. This chapter is motivated by the hedging

problem of path-dependent options in mathematical finance. If the noise is modeled by (the derivative

of a) Brownian motion W , the classical martingale representation theorem and classical Clark-Ocone

formula is a useful tool for finding a portfolio hedging strategy. One of our results consists in expressing a

random variable h = H(Y (·)), where H has some Fréchet regularity, as h = H0 +
∫ T

0
ξsd
−Ys where H0 is

a real number and ξ is an non-anticipating process which are explicitly given. Previous formula extends

Clark-Ocone formula to the case when Y is no longer a Brownian motion but it has the same quadratic

variation. This generalizes some results included in [47, 3, 9] concerning the hedging of vanilla or Asiatic

type options.

The paper is organised as follows. After this introduction, chapter 2 contains preliminary notations

with some remarks on classical Dirichlet processes and Malliavin calculus and basic notions on tensor

products analysis. In chapter 3, we define the integral via regularization for infinite dimension Banach

valued processes and we establish link with notion of Da Prato-Zabczyk’s stochastic integral. chapter 4

will be devoted to the definition of χ-quadratic variation and some related results and in chapter 5, we will

evaluate the χ-quadratic variation for different classes of processes. In chapter 6, we give the definition of

χ-covariation and we establish C1 stability properties and some basic facts about weak Dirichlet processes

and to the Fukushima-Dirichlet decomposition of process F (t,Dt(·)) with a sufficient condition to guarantee

that the resulting process is a true Dirichlet process. In chapter 7 we verify a C2-Fréchet type Itô’s formula.

The final chapter 8 is devoted to the Clark-Ocone type formula.
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Chapter 2

Preliminaries

2.1 General notations

In this chapter we recall some definitions and notations concerning the whole paper. Let A and B be

two general sets such that A ⊂ B, 1A : B → {0, 1} will denote the indicator function of the set A, i.e.

1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. Let R be a sentence that may be true or not, in this case

1R = 1 if R is fulfilled and 1R = 0 if R is not fulfilled. It holds 1A(x) = 1{x∈A}. If m,n are positive

natural numbers, we will denote by Mm×n(R) the space of real valued matrix of dimension m× n. When

m = n, this is the space of squared real valued matrix n×n, denoted simply by Mn(R). If n = 1, Mm×1(R)

will be identified with Rm, analogously if n = 1.

Throughout this paper we will denote by (Ω,F , P ) a fixed filtered probability space where F = (Ft)t≥0

stands for a given filtration (Ft; 0 ≤ t ≤ T ) fulfilling the usual conditions. Let a < b be two real numbers,

C([a, b]) will denote the Banach linear space of real continuous functions equipped with the uniform norm

and C0([a, b]) will denote the space of real continuous functions f on [a, b] such that f(a) = 0. The letters

B,E, F,G (respectively H) will denote Banach (respectively Hilbert) spaces over the scalar field R. Given

two norms ‖ · ‖1 and ‖ · ‖2 on E, we say that ‖ · ‖1 ≤ ‖ · ‖2 if for every x ∈ E there is a positive constant c

such that ‖x‖1 ≤ c ‖x‖2. We say that ‖ · ‖1 and ‖ · ‖2 are equivalent if they define the same topology, i.e. if

there exist positive real numbers c and C such that c ‖x‖2 ≤ ‖x‖1 ≤ C ‖x‖2 for all x ∈ E.

The space of bounded linear mappings from E to F will be denoted by L(E;F ) and the topological dual

space of B by B∗. If φ is a linear functional on B, we shall denote the value of φ at an element b ∈ B
either by φ(b) or 〈φ, b〉. Throughout the paper the symbols 〈·, ·〉 will denote always some type of duality

that will change depending on the context. Let K be a compact space, M(K) will denote the dual space

C(K)∗, i.e. the so-called set of finite signed measures on K. We will say that two positive (or signed or

complex) measures µ and ν defined on a measurable space (Ω,Σ) are singular if there exist two disjoint

11



12 CHAPTER 2. PRELIMINARIES

sets A and B in Σ whose union is Ω such that µ is zero on all measurable subsets of B while ν is zero on all

measurable subsets of A. This will be denoted by µ⊥ν. Given a Banach space B and its topological bidual

space B∗∗ the application J : B → B∗∗ will denote the natural injection between a Banach space and its

bidual. J is an isometry with respect to the topology defined by the norm in B and J(B) is weak star

dense in B∗∗. For more informations about Banach spaces topologies, see [4, 54]. Let E,F,G be Banach

spaces, we shall denote the space of G-valued bounded bilinear forms on the product E×F by B(E×F ;G)

with the norm given by ‖φ‖ = sup{‖φ(e, f)‖G : ‖e‖E ≤ 1; ‖f‖F ≤ 1}. The letters X,Y, Z will denote

Banach valued continuous processes indexed to time variable t ∈ [0, T ] with T > 0 (or t ∈ R). A stochastic

process X will be also denoted by (Xt)t∈[0,T ] or {Xt; t ∈ [0, T ]}. A B-valued stochastic process X is a

map X : ω × [0, T ]→ B which will be always supposed to be measurable w.r.t. the product sigma-algebra.

All the processes indexed by [0, T ] (respectively R+) will be naturally prolongated by continuity setting

Xt = X0 for t ≤ 0 and Xt = XT for t ≥ T (respectively Xt = X0 for t ≤ 0). A sequence of continuous

B-valued processes (Xn)n∈N will be said to converge ucp (uniformly convergence in probability) to a

process X if sup0≤t≤T ‖Xn − X‖B converges to zero in probability when n → ∞. The space C([0, T ])

will denote the linear space of continuous real processes equipped with the ucp topology and the metric

d(X,Y ) = E
[
supt∈[0,T ] |Xt − Yt| ∧ 1

]
. The space C([0, T ]) is not a Banach space but equipped with this

metric is a Fréchet space (or F -space shortly) see Definition II.1.10 in [17]. For more details about F -spaces

and their properties see chapter II.1 in [17].

We recall Lemma 3.1 from [43]. The mentioned lemma states that a sequence of continuous increasing

processes converging at each time in probability to a continuous process, converges ucp.

Lemma 2.1. Let (Zε)ε>0 be a family of continuous processes. We suppose

1) ∀ε > 0, t→ Zεt is increasing.

2) There is a continuous process (Zt)t>0 such that Zεt → Zt in probability when ε goes to zero.

Then Zε converges to Z ucp.

We go on with our notations.

If X is a real continuous process indexed by [0, T ] and 0 < τ ≤ T , we will call X window process the

C([−τ, 0])-valued process denoted by (Xt(·))t∈[0,T ] defined setting

(Xt(·))t∈[0,T ] = (Xt(u) := Xt+u;u ∈ [−τ, 0])t∈[0,T ] .

The symbols X(·) or {Xt(·); t ∈ [0, T ]} will denote always the (Xt(·))t∈[0,T ] window process.

2.2 The forward integral for real valued processes

We will follow here a framework of calculus via regularizations started in [41]. At the moment many

authors have contributed to this and we suggest the reader consult the recent fairly survey paper [44] on
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it. We first recall basic concepts and some one dimensional results about calculus via regularization. For

simplicity, all the processes considered, except if stated otherwise, will be continuous processes. For two

real valued processes X and Y we define the forward integral and the covariation as follows∫ t

0

Xrd
−Yr = lim

ε→0

∫ t

0

Xr
Yr+ε − Yr

ε
dr (2.1)

[X,Y ]t = lim
ε→0

1
ε

∫ t

0

(Xr+ε −Xr)(Yr+ε − Yr)dr (2.2)

if those quantities exist in the sense of ucp with respect to t. This ensures that the forward integral defined

in (2.1) and the covariation process defined in (2.2) are continuous processes. It can be seen that the

covariation is a bilinear and symmetric operator. If (X1, . . . , Xn) is a vector of continuous processes we

say that it has all its mutual covariations (brackets) if [Xi, Xj ] exists for any 1 ≤ i, j ≤ n. If X1, . . . , Xn

have all their mutual covariations then by polarization (i.e. writing a bilinear form as a sum/difference of

quadratic forms) we know that [Xi, Xj ] are locally bounded variation processes for 1 ≤ i, j ≤ n.

Lemma 2.2. Let (X1, . . . , Xn) be a vector of continuous processes such that

1
ε

∫ t

0

(Xi
s+ε −Xi

s)(X
j
s+ε −Xj

s )ds (2.3)

converges in probability for every 1 ≤ i, j ≤ n to some continuous process. Then [Xi, Xj ] exists for every

1 ≤ i, j ≤ n.

Proof. Let i, j be fixed. By bilinearity we can write

1
ε

∫ t

0

[
(Xi

s+ε +Xj
s+ε)− (Xi

s +Xj
s )
]2
ds

which converges in probability for every t. By Lemma 2.1, it converges ucp. Again by bilinearity, it follows

the result.

Definition 2.3. If [X,X] exists, even denoted by [X], then X is said to be a finite quadratic variation

process, [X] is called the quadratic variation of X. We convene that

[X]t = 0 for t < 0. (2.4)

If [X] = 0, then X is said to be a zero quadratic variation process.

A bounded variation process is a zero quadratic variation process. If S1, S2 are (Ft)-semimartingale

then [S1, S2] coincides with the classical bracket 〈S1, S2〉.

Remark 2.4. 1. Let S be an (Ft)-continuous semimartingale (resp. Brownian motion), (Yt) be an

adapted cadlag (resp. such that
∫ T

0
Y 2
r dr <∞). Then

∫ ·
0
Yrd
−Sr exists and equals the classical Itô

integral
∫ ·

0
YrdSr, see chapter 3.5 in [44].
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2. Let X (respectively Y ) be a finite (respectively zero) quadratic variation process. Then (X,Y ) has

all its mutual covariations and [X,Y ] = 0.

Definition 2.5. Let X and Y two real continuous processes. We call covariation structure of X the

field (u, v) 7→ [Xu+·, Xv+·] whenever it exists for all u, v ∈ R. We call covariation structure of X and

Y the field (u, v) 7→ [Xu+·, Yv+·] whenever it exists for all u, v ∈ R.

An important fact about the covariation structure of semimartingale is the following.

Proposition 2.6. Let X and Y be two (Ft)-continuous semimartingales. Then X admits a covariation

structure such that [Xu+·, Yv+·] = 0 for u 6= v.

2.3 Notations about processes

We introduce now some continuous processes that will appear in the paper.

W (respectively BH and BH,K) will denote a real (Ft) Brownian motion (resp. a fractional Brownian

motion of Hurst parameter H ∈ (0, 1] and a bifractional Brownian motion of parameters H ∈ (0, 1) and

K ∈ (0, 1]). The bifractional Brownian motion was introduced by Houdré and Villa in [25] and investigated

by Russo and Tudor in [39]. In particular, [39] shows that the bifractional Brownian motion behaves

similarly to a fractional Brownian motion with Hurst parameter HK and developed a related stochastic

calculus. Other properties were established by [31] and [22].

X will be a real (Ft)-semimartingale if X admits a decomposition X = M +V where M is a F -local square

integrable integral, V is a locally bounded variation process and V0 = 0.

D will be a real continuous (Ft)-Dirichlet process if D admits a decomposition D = M +A where M is

an (Ft)-local martingale and A is a zero quadratic variation process. The decomposition is unique if we

require for instance A0 = 0, see for instance [45]. A Dirichlet process is in particular a finite quadratic

variation process. An (Ft)-semimartingale is also an (Ft)-Dirichlet process, a locally bounded variation

process is in fact a zero quadratic variation process.

The concept of Dirichlet process can be weakened. We will make use of an extension of such processes,

called weak Dirichlet processes, introduced in parallel in [20] and implicitly in [21]. Recent developments

concerning the subject appear in [8, 10, 48]. Weak Dirichlet processes are not Dirichlet processes but they

preserve a sort of orthogonal decomposition.

D will be a (Ft)-weak Dirichlet process if D admits a decomposition D = M + A where M is an (Ft)
local martingale and A is a process such that [A,N ] = 0 for any continuous (Ft) local martingale N .

For convenience, we will always suppose A0 = 0. A will be said to be an (Ft)-martingale orthogonal

process. The decomposition is unique, see for instance Remark 3.5 in [24]. [10] made the following

observation. If the underlying filtration (Ft) is the natural filtration associated with a Brownian motion

W then the condition “A is a process such that [A,N ] = 0 for any continuous (Ft) local martingale N ”
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can be replaced with “A is a process with [A,W ] = 0”, see for instance [10]. An (Ft)-Dirichlet process is

also an (Ft)-weak Dirichlet process, a zero quadratic variation process is in fact also an (Ft)-martingale

orthogonal process. An (Ft)-weak Dirichlet process is not necessarily a finite quadratic variation process,

but there are (Ft)-weak Dirichlet processes with finite quadratic variation that are not Dirichlet processes,

see for instance [21]. In this paper we will see a general example of weak Dirichlet with finite quadratic

variation which is not a Dirichlet process in Theorem 6.26.

If W (resp. BH , BH,K , X,D,N) are a Brownian motion (resp. a fractional Brownian motion of Hurst

parameter H ∈ (0, 1], a bifractional Brownian motion of parameters H ∈ (0, 1) and K ∈ (0, 1], a

semimartingale, a Dirichlet, a weak Dirichlet) real process, then W (·) (resp. BHt (·), BH,Kt (·), X(·), N(·)
and D(·) will be called window Brownian motion (resp. window fractional Brownian motion of Hurst

parameter H ∈ (0, 1], window bifractional Brownian motion of parameters H ∈ (0, 1) and K ∈ (0, 1],

window semimartingale, window Dirichlet or window weak Dirichlet). The window processes will constitute

the main example of Banach valued process in the paper; in that case the state space is C([−τ, 0]).

2.4 Direct sum of Banach spaces

We recall the definition of direct sum of Banach spaces given in [17]. The vector space E is said to

be the direct sum of vector spaces E1 and E2, symbolically E = E1 ⊕ E2, if Ei are subspaces of E with

property that every e ∈ E has a unique decomposition e = e1 + e2, ei ∈ Ei. The map Pi : E → Ei

given by Pi(e) = ei is the projection of E onto Ei. This map will be denoted by PEi if necessary. If

Ei are topological linear spaces over the same field of scalars, E is a topological linear space, equipped

with the product topology. If Ei are Banach spaces, E is a Banach space under either of the norms:

(1) ‖e1 + e2‖E := max{‖e1‖E1 , ‖e2‖E2}, (2) ‖e1 + e2‖E = (‖e1‖pE1
+ ‖e2‖pE2

)1/p, with 1 ≤ p < +∞.

These norms are equivalent to the product topology and there is a real positive constant C such that

‖ei‖Ei ≤ C‖e1 + e2‖E , for i = 1, 2 and all e1 ∈ E1 and e2 ∈ E2. If the norm is given by (1) or (2) with

p = 1 the constant is 1. If the norm is given by (2) with 1 < p <∞ the constant will be 21−1/p, it suffices

to observe that the real function f(x) = |x|1/p is concave if p > 1.

Given T ∈ (E1 ⊕ E2)∗, we have a unique decomposition of T = T1 + T2 with T1 ∈ E∗1 and T2 ∈ E∗2 . We

define T1 by T1(e) = T (e) for all e ∈ E1 and T2 by T ∗2 (e) = T (e) for all e ∈ E2. One may verify easily that

(a) T (e) = T (e1 + e2) = T1(e1) + T2(e2); (b) Ti are linear; (c) Ti are continuous. To prove (c) we use the

fact that given a sequence (eni )n in Ei it holds ‖eni ‖Ei = ‖eni ‖E for any norm in E.

It may be seen that in the case of Banach spaces, if the norms are chosen appropriately, we have

E∗1 ⊕ E∗2 = (E1 ⊕ E2)∗. Whenever the direct sum of normed linear spaces is used as a normed space, the

norm will be explicitly mentioned. If, however, each of the spaces Ei is a Hilbert space then it will be

always understood, sometimes without explicit mention, that E is the uniquely determined Hilbert space

with scalar product 〈e, f〉E = 〈e1 + e2, f1 + f2〉E =
∑2
i=1〈ei, fi〉i, where 〈·, ·〉i is the scalar product in Ei.
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Thus the norm in a direct sum of Hilbert spaces is always given by (2) with p = 2 and, if necessary, will be

called Hilbertian direct sum and will be denoted by E1 ⊕h E2. We remark that in a direct sum of Hilbert

spaces it holds 〈e, f〉E = 0 for all e ∈ E1 and f ∈ E2. The extension to any finite number of summands is

immediate. If E1 and E2 are closed normed subspace of E, it holds Span{E1, E2} = E1 ⊕ E2.

2.5 Tensor product of Banach spaces

In this chapter we recall basic concepts and results about tensor product of two Banach spaces E and

F . For details and a more complete description of these arguments, the readers may refer to the appendix

and [46, 15], the case with E and F Hilbert spaces is well developed in [34]. Let E and F be Banach

spaces, the vector space E ⊗ F will denote the algebraic tensor product. The typical description of an

element u ∈ E ⊗ F is u =
∑n
i=1 λi ei ⊗ fi where n is a natural number, λi ∈ R, ei ∈ E and fi ∈ F . We

observe that we can consider the mapping (e, f) 7→ e⊗ f as a sort of multiplication on E × F with values

in the vector space E ⊗ F . This product is itself bilinear, so in particular the representation of u is not

unique. The general element u can always be rewritten in the form u =
∑n
i=1 xi ⊗ yi where xi ∈ E, yi ∈ F .

We say that a norm, α, on E ⊗ F is a reasonable crossnorm if α(e ⊗ f) ≤ ‖e‖E ‖f‖F for every e ∈ E
and f ∈ F and if for every φ ∈ E∗ and ψ ∈ F ∗, the linear functional φ ⊗ ψ on E ⊗ F is bounded and

‖φ⊗ ψ‖ := {sup |φ⊗ ψ(u)|; u ∈ E ⊗ F ;α(u) ≤ 1} ≤ ‖φ‖E∗ ‖ψ‖F∗ . We can define two different norms in

the vector space E ⊗ F , the so-called called projective norm, denoted by π and defined by

π(u) = inf

{
n∑
i=1

‖xi‖ ‖yi‖ : u =
n∑
i=1

xi ⊗ yi

}
(2.5)

and the so-called injective norm, denoted by ε, defined by

ε(u) = sup

{∣∣∣∣∣
n∑
i=1

φ(xi)ψ(yi)

∣∣∣∣∣ : φ ∈ E∗, ‖φ‖ ≤ 1;ψ ∈ F ∗, ‖ψ‖ ≤ 1

}
(2.6)

Those norms are reasonable and it holds that α is a reasonable crossnorm if and only if

ε(u) ≤ α(u) ≤ π(u) (2.7)

for every u ∈ E ⊗ F , i.e. the projective one is the largest one and ε is the smallest one. Moreover for every

reasonable crossnorm in E⊗F we have α(e⊗f) = ‖e‖ ‖f‖ and ‖φ⊗ψ‖ = ‖φ‖ ‖ψ‖. We will work principally

with the projective norm π, the injective norm ε and a particular reasonable norm denoted by h, so-called

Hilbert tensor norm. The Hilbert norm is a reasonable crossnorm in the sense that , whenever E and F are

Hilbert spaces then h derives from a scalar product 〈·, ·〉h verifying 〈e1⊗f1, e2⊗f2〉E⊗F = 〈e1, e2〉E〈f1, f2〉F .

Given a reasonable crossnorm α, we denote by E ⊗α F the tensor product vector space E ⊗ F endowed

with the norm α. Unless the spaces E and F are finite dimensional, this space is not complete. We denote
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its completion by E⊗̂αF . The Banach space E⊗̂αF will be referred to as the α tensor product of the

Banach spaces E, F . If E and F are Hilbert spaces the Hilbertian tensor product is a Hilbert space. We

recall an important statement in the case of Hilbert spaces from chapter 6 in [34]. Let (Ω1,F1, µ1) and

(Ω2,F2, µ2) be two measure spaces, then L2(Ω1,F1, µ1)⊗̂hL2(Ω2,F2, µ2) ∼= L2(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2).

The symbols E⊗̂2
α, e⊗2 and e⊗2

α will denote respectively the Banach space E⊗̂αE, the elementary element

e ⊗ e of the algebraic tensor product E ⊗ F and e ⊗ e in the Banach space E⊗̂αE. An important role

in the paper it will be played by topological duals of tensor product spaces denoted, as usual for a dual

space of a Banach space, by (E⊗̂αF )∗ equipped with operator norm denoted by α∗. If T ∈ (E⊗̂αF )∗,

α∗(T ) = supα(u)≤1 |T (u)|. By (2.7) we deduce following relation between tensor dual norms

ε∗(u) ≥ α∗(u) ≥ π∗(u). (2.8)

We spend some words on two special cases.

We have an isometric isomorphism between the Banach space of G-valued bounded bilinear forms on the

product E × F , denoted by B(E × F ;G), and the Banach space of G-valued bounded linear operators on

E⊗̂πF .

Proposition 2.7. Let B̃ : E × F → G be a continuous bilinear mapping, it exists a unique bounded

linear operator B : E⊗̂F → G satisfying B(e ⊗ f) = B̃(e, f) for every e ∈ E, f ∈ F . We observe

moreover that it exists a canonical identification between B(E × F ;G) and L(E;L(F ;G)) which identifies

B̃ with B̄ : E → L(F ;G) by B̃(e, f) = B̄(e)(f). Thus we have a canonical identification L(E⊗̂πF ;G) =

B(E × F ;G) = L(E;L(F ;G)). If we take G to be the scalar field R, we obtain an isometric isomorphism

between the dual space of the projective tensor product equipped with the norm π∗ with the space of

bounded bilinear forms equipped with the usual norm:

(E⊗̂πF )∗ = B(E × F ) = L(E;F ∗) (2.9)

With this identification, the action of a bounded bilinear form B as a bounded linear functional on E⊗̂πF
is given by

〈
n∑
i=1

xi ⊗ yi, B〉 =
n∑
i=1

B̃(xi, yi) =
n∑
i=1

B̄(xi)(yi) (2.10)

It holds π∗(B) = ‖B̃‖.

There is a chain relation of densely and continuous inclusions between the following Banach tensor

products

E⊗̂πF ⊂ E⊗̂αF ⊂ E⊗̂εF (2.11)

then for their dual spaces it follows that,

(E⊗̂εF )∗ ⊂ (E⊗̂αF )∗ ⊂ (E⊗̂πF )∗ (2.12)
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continuously. This inclusion it fails to be a densely inclusion even if E and F are Hilbert spaces, in

Proposition 5.35 we will give a probabilistic proof of this fact.

Remark 2.8. If E and F are Hilbert spaces, we can identify the Hilbert space E⊗̂hF with its dual

(E⊗̂hF )∗ via the Riesz-Fréchet’s representation Theorem and we still have E⊗̂πF ⊂ E⊗̂hF continuously

and densely. The Banach space E⊗̂πF is not a reflexive space because it contains a copy of `1 (the proof can

be found in [46], chapter 4.2), in particular it fails to be a Hilbert space even if E and F are Hilbert spaces.

Then we can not use the Remark 1, after Theorem V.5 in [4] and the inclusion (E⊗̂hF )∗ ⊂ (E⊗̂πF )∗ is

still only continuous and not dense. We have the triple inclusion but only continuously

E⊗̂πF ⊂ E⊗̂hF = (E⊗̂hF )∗ ⊂ (E⊗̂πF )∗

We recall another important identification that will be used throughout the paper in a significantly

way, this identification can be applied to obtain a representation of a space of continuous functions of two

variables as an injective tensor product of two spaces of continuous functions. Let K1, K2 be compact

spaces, therefore we have

C(K1)⊗̂εC(K2) = C(K1;C(K2)) = C(K1 ×K2) (2.13)

In particular we haveM(K1×K2) = (C(K1)⊗̂εC(K2))∗ ⊂ (C(K1)⊗̂πC(K2))∗. Let η1, η2 be two elements

in C([−τ, 0]) (respectively L2([−τ, 0])), the element η1 ⊗ η2 in the algebraic tensor product C([−τ, 0])⊗2

(respectively L2([−τ ], 0)⊗2) will be identified with the element η in C([−τ, 0]2) (respectively L2([−τ, 0]2))

defined by η(x, y) = η1(x)η2(y) for all x, y in [−τ, 0]. Then let µ be a measure on M([−τ, 0]2), the

pair duality 〈µ, η1 ⊗ η2〉 has to be understood as the pair duality 〈µ, η〉 =
∫

[−τ,0]2
η(x, y)µ(dx, dy) =∫

[−τ,0]2
η1(x)η2(y)µ(dx, dy).

We recall an interesting result involving Hilbertian tensor product and Hilbertian direct sum.

Remark 2.9. Let X and Y be Hilbert separables spaces such that Y = Y1 ⊕h Y2 with the Hilbertian

direct norm. Then X⊗̂hY = (X⊗̂hY1)⊕h (X⊗̂hY2).

Proof. To prove the result we show that there is a isometric isomorphism between the two spaces. First of all

we observe that if we consider the orthonormal basis for every Hilbert space, i.e. (en)n∈N for X, (fm)m∈M1

for Y1 and (fm)m∈M2 for Y2 then the Hilbert space X⊗̂hY will have the basis (en ⊗ fm)n∈N,m∈M1∪M2 ,

then the space is a tensor product of a direct sum. Moreover this is an isometry. Being a Hilbertian tensor

product it suffices to verify the isometry for elementary tensor product x ⊗ y in X⊗̂hY , where x ∈ X,

y ∈ Y with unique decomposition y = y1 + y2, yi ∈ Yi for i = 1, 2. The Hilbertian norm of the element

x⊗ y equals

‖x⊗ y‖2 = ‖x‖2‖y‖2 = ‖x‖2(‖y1‖2 + ‖y2‖2) = ‖x‖2‖y1‖2 + ‖x‖2‖y2‖2 = ‖x⊕ y1‖2 + ‖x⊕ y2‖2
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2.6 Subsets notation

Spaces M([−τ, 0]) and M([−τ, 0]2) and their subsets will play a central role. We will introduce some

notations that will be used in the paper. Let −τ = aN < aN−1 < . . . a1 < a0 = 0 be N + 1 fixed points

in [−τ, 0]. Symbols a and A will refer respectively to the vector (aN , aN−1, . . . , a1, 0) and to the matrix

(Ai,j)0≤i,j≤N = (ai, aj). Vector a will identify N + 1 points on [−τ, 0] and matrix A will identify (N + 1)2

points on [−τ, 0]2.

• Symbol Di([−τ, 0]), Di shortly, will denote the one dimension set of Dirac’s measure concentrated on

ai ∈ [−τ, 0] , i.e.

Di([−τ, 0]) := {µ ∈M([−τ, 0]); s.t.µ(dx) = λ δai(dx) with λ ∈ R} (2.14)

and we define the scalar product between µ1 = λ1δai and µ2 = λ2δai by 〈µ1, µ2〉 = λ1λ2. Di equipped

with this scalar product is a Hilbert space. In particular for a0 = 0, the space D0 will be the space of

Dirac’s measure concentrated on 0.

• Symbol Di,j([−τ, 0]2), Di,j shortly, will denote the one dimensional set of Dirac’s measure concentrated

on (ai, aj) ∈ [−τ, 0]2, i.e.

Di,j([−τ, 0]2) := {µ ∈M([−τ, 0]2); s.t.µ(dx, dy) = λ δai(dx)δaj (dy) with λ ∈ R} ∼= Di⊗̂hDj (2.15)

Let µ1 = λ1 δai(dx)δaj (dy) and µ2 = λ2 δai(dx)δaj (dy), Di j is a Hilbert space equipped with the

scalar product defined by 〈µ1, µ2〉 = λ1λ2. The identification with Di⊗̂hDj is a trivial exercise. If

aj = ai = 0, the space D0,0 will be the space of Dirac’s measures concentrated on (0, 0).

• Symbol Da([−τ, 0]), Da shortly, will denote the N + 1 dimension set of weighted Dirac’s measures

concentrated on (N + 1) fixed points in [−τ, 0] identified by a.

Da([−τ, 0]) := {µ ∈M([−τ, 0]) s.t. µ(dx) =
N∑
i=0

λiδai(dx); λi ∈ R, i = 0, . . . , N} ∼=
N⊕
i=0

Di (2.16)

Let µ1 =
∑N
i=0 λ

1
i δai(dx) and µ2 =

∑N
i=0 λ

2
i δai(dx), Da is a Hilbert space with respect to the scalar

product 〈µ1, µ2〉 =
∑N
i=0 λ

1
iλ

2
i . It is obvious the isomorphism with

⊕N
i=0Di, where the (N + 1) direct

sum is equipped with the Hilbertian norm. Da is a subspace of the Banach space M([−τ, 0]).
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• Symbol DA([−τ, 0]2), DA shortly, will denote the (N + 1)2 dimensional set of measures concentrated

on (ai, aj)0≤i,j≤N ∈ [−τ, 0]2, i.e.

DA([−τ, 0]2) := {µ ∈M([−τ, 0]2); s.t.µ(dx, dy) = λi,j δai(dx)δaj (dy) with λi,j ∈ R, i, j = 0, . . . , N}

(2.17)

Let µ1 = λ1
i,j δai(dx)δaj (dy) and µ2 = λ2

i,j δai(dx)δaj (dy), DA is a Hilbert space equipped with

the scalar product defined by 〈µ1, µ2〉 =
∑

0≤i,j≤N λ
1
i,jλ

2
i,j . Moreover we have the following useful

identifications

DA ∼= Da⊗̂hDa = Da⊗̂
2
h =

(
N⊕
i=0

Di

)
⊗̂2
h
∼=

N⊕
i,j=0

Di⊗̂hDj =
N⊕

i,j=0

Di,j (2.18)

In fact there is an isometric isomorphism between DA and Da⊗̂hDa. Let µ = λi,j δai(dx)δaj (dy) ∈ DA
there is a unique element µ̃ ∈ Da⊗̂hDa identified by µ̃ =

∑N
i,j=0 λi,jδai ⊗ δaj . The contrary

follows in analogous way. The isometry is trivial by equality between scalar products. Let

µ1,2,3,4 =
∑N
i=0 λ

1,2,3,4
i δai(dx), four elements in Da, the Hilbertian tensor product Da⊗̂hDa is

equipped with the scalar product 〈µ1⊗µ2, µ3⊗µ4〉 = 〈µ1, µ3〉〈µ2, µ4〉 =
(∑N

i=0 λ
1
iλ

3
i

)(∑N
i=0 λ

2
iλ

4
i

)
=∑

0≤i,j≤N λ
1
iλ

3
iλ

2
jλ

4
j . Other two identifications in (2.18) derives by (2.16), Remark 2.9 end (2.15).

Dirac’s measures concentrated in vector a (in matrix A respectively) are mutually singular with

respect to the Lebesgue measure on [−τ, 0] (on [−τ, 0]2 respectively), this shows the direct sum

representation for Da and DA. We will appreciate the importance of a direct sum representation

with Proposition 4.19. As a proper subspace of DA([−τ, 0]2) we could consider the case with only the

points on the diagonal of [−τ, 0]2.

• Symbol Dd([−τ, 0]2), Dd shortly, will denote the N + 1 dimension set of weighted Dirac’s measures

concentrated on (N + 1) fixed points (ai, ai)i=0,...,N on the diagonal of [−τ, 0]2, i.e.

Dd([−τ, 0]2) := {µ ∈M([−τ, 0]2) s.t. µ(dx) =
N∑
i=0

λiδai(dx)δai(dy); λi ∈ R, i = 0, . . . , N} ∼=
N⊕
i=0

Di,i

(2.19)

This a Hilbert space.

Remark 2.10. There are naturally identification Di ∼= Di,j ∼= R, Da ∼= Dd ∼= RN+1 and DA ∼=
M(N+1)(R) ∼= RN+1 ⊗ RN+1. All those spaces are finite dimensional separable Hilbert spaces.

We give others examples of infinite dimensional subsets of measure.
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• L2([−τ, 0]) is a Hilbert subspace of M([−τ, 0]), as well as L2([−τ, 0]2) ∼= L2([−τ, 0])⊗̂2
h is a Hilbert

subspace of M([−τ, 0]2), both equipped with the norm derived from the usual scalar product.

• Di([−τ, 0]) ⊕ L2([−τ, 0]) is a Hilbert subspace of M([−τ, 0]). This is a direct sum in the space of

measure M([−τ, 0]). In fact for every measure µ ∈M([−τ, 0]) the Lebesgue decomposition identify

uniquely a measure µac absolutely continuous w.r.t. Lebesgue measure and a measure µs singular

w.r.t. Lebesgue measure such that µ = µac + µs. If moreover µ ∈ L2([−τ, 0]) ∪ Di([−τ, 0]), the

decomposition identifies uniquely the part in µac ∈ L2([−τ, 0]) and µs ∈ Di([−τ, 0]) and the sum is

direct. As generalization of this case we have

• Da([−τ, 0]) ⊕ L2([−τ, 0]) ∼=
⊕N

i=0Di([−τ, 0]) ⊕ L2([−τ, 0]), this is a Hilbert separable subspace of

M([−τ, 0]).

• Di([−τ, 0])⊗̂hL2([−τ, 0]) is a Hilbert subspace of M([−τ, 0]2). The Hilbert structure of the tensor

product derives as usual from the Hilbert structure in every Hilbert space.

• Symbol Diag([−τ, 0]2), Diag shortly, will denote the subset of M([−τ, 0]2) defined as follows

Diag([−τ, 0]2) :=
{
µ ∈M([−τ, 0]2) s.t. µ(dx, dy) = g(x)δy(dx)dy; g ∈ L∞([−τ, 0])

}
(2.20)

Diag([−τ, 0]2), equipped with the norm ‖µ‖Diag([−τ,0]2) = ‖g‖∞, is a Banach space. Let f be a

function in C([−τ, 0]2), the pair duality between f and µ(dx, dy) = g(x)δy(dx)dy ∈ Diag equals

〈f, µ〉 =
∫

[−τ,0]2
f(x, y)µ(dx, dy) =

∫
[−τ,0]2

f(x, y)g(x)δy(dx)dy =
∫ 0

−τ
f(x, x)g(x)dx (2.21)

2.7 Fréchet derivative

The importance of tensor product and their duals comes first of all from Proposition 2.7. We recall

some notions about differential calculus in Banach spaces, for more details reader can refer to [6].

Let B and G be Banach spaces and U ⊂ B be an open subspace of B. A function F : U −→ G is called

Fréchet differentiable at x ∈ U if it exists an linear bounded application Ax : B −→ G such that

lim
h→0

‖F (x+ h)− F (x)−Ax(h)‖G
‖h‖B

= 0

If this limit exists we write DF (x) = Ax the derivative of F at x. We define for a function F which is

Fréchet differentiable for any x ∈ U the application DF : U −→ L(B;G) such that x 7→ DF (x). If DF is

continuous F is said to be C1(B;G) or once Fréchet differentiable. Analogously this function DF may as

well have a derivative, the second order derivative of F which will be a map D2F : U −→ L(B;L(B;G)) ∼=
B(B×B;G) ∼= L(B⊗̂πB;G). If D2F is continuous F is said to be C2(B;G) or twice Fréchet differentiable.

In particular if we consider a function F : [0, T ]×B −→ R, F is C1,2([0, T ]×B), or C1,2, means that F is
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once continuously differentiable with respect to time and it is twice continuously Fréchet differentiable

with respect to the Banach space B. If B = C([−τ, 0]), the different derivatives are such that

∂tF : [0, T ]× C([−τ, 0]) −→ R

DF : [0, T ]× C([−τ, 0]) −→ C([−τ, 0])∗ ∼=M([−τ, 0])

D2F : [0, T ]× C([−τ, 0]) −→ L (C([−τ, 0]);C([−τ, 0])∗) ∼= B(C([−τ, 0])× C([−τ, 0])) ∼=
(
C([−τ, 0])⊗̂πC([−τ, 0])

)∗
For all η, h, h1 and h2 in C([−τ, 0]) and t ∈ [0, T ] we will denote with DdxF (t, η) the measure such that

M([−τ,0])〈DF (t, η), h〉C([−τ,0]) = DF (t, η)(h) =
∫

[−τ,0]

h(x)DdxF (t, η). (2.22)

Moreover if D2(F )(t, η) ∈M([−τ, 0]2) ⊂ (C([−τ, 0])⊗̂πC([−τ, 0]))∗ for all (t, η) ∈ [0, T ]×C([−τ, 0]) (which

will happen in most of the treated cases) we will denote with D2
dx dyF (η), or DdxDdyF (η), the measure on

[−τ, 0]2 such that

M([−τ,0]2)〈D
2F (t, η), h1 · h2〉C([−τ,0]2) = D2F (t, η)(h1, h2) = D2F (η)(h1 ⊗ h2) =

=
∫

[−τ,0]2
h1(x)h2(y)D2

dx dyF (η)
(2.23)

Let 0 ≤ k ≤ +∞, we denote by Ck(Rn) the set of all function g : Rn → R which admits all partial deriva-

tives of order 0 ≤ p ≤ k. In particular let g : [0, T ]× Rn → R be a function in C1,2([0, T ]× Rn), t ∈ [0, T ],

x ∈ Rn, the symbols ∂tg(t, x), ∂ig(t, x) and ∂2
ijg(t, x) will denote respectively the partial derivative with

respect to time, the partial derivative with respect to the i-th component and the second order mixed

derivative with respect to j-th and i-th component evaluated in (t, x).

We denote by C∞p (Rn) (resp. C∞b (Rn) and C∞b (Rn)) the set of all infinitely continuously differentiable

functions g : Rn → R such that g and all its partial derivatives have polynomial growth (resp. g and all its

partial derivatives are bounded and g has compact support).

2.8 Malliavin calculus

We recall some notions of stochastic calculus of variations, i.e. Malliavin calculus, that we need in

the sequel. We refer the reader to [35] for a presentation of the subject.. Let W = {W (h), h ∈ H} be a

stochastic process associated to a the Hilbert space H defined in a complete probability space (Ω,F , P ).

W define a centered Gaussian family of random variables such that E [W (h)W (g)] = 〈h, g〉H . Let S denote

the class of smooth random variables such that a random variable F ∈ S has the form

F = f(W (h1), . . . ,W (hn)) (2.24)
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where f ∈ C∞p (Rn), h1, . . . , hn are in H and n ≥ 1. We will denote by Sb, S0 and P the classes of smooth

random variables of the form (2.24) such that the function f belong to C∞b (Rn), C∞b (Rn) or f is polynomial.

Note that P ⊂ S, S0 ⊂ Sb ⊂ S, and P and S0 are dense in L2(Ω).

We define, as in Definition 1.2.1 in [35], the Malliavin’s derivative of F , this operator will be denoted by

Dm.

Definition 2.11. The derivative of a smooth random variable F of the form (2.24) is the H-valued random

variable given by

DmF =
n∑
i=1

∂if(W (h1), . . . ,W (hn))hi (2.25)

The operator Dm is closable from Lp(Ω) to Lp(Ω;H) for any p ≥ 1, then for any p ≥ 1 we will denote

the domain of Dm in Lp(Ω) by D1,p, meaning that D1,p is the closure of the class of smooth random

variables S with respect to the norm ‖F‖1,p = (E[|F |p] + E[‖DF‖pH ])1/p. For p = 2, the space D1,2 is a

Hilbert space with the scalar product 〈F,G〉 = E[FG] + [〈DF,DG〉H ].

We recall Proposition 1.2.3 in [35] which will be useful for calculus.

Proposition 2.12. Let ϕ : Rn → R be a continuously differentiable function with bounded derivatives,

and fix p ≥ 1. Suppose that F = (F 1, . . . , Fm) is a random vector whose components belong to the space

D1,p. Then ϕ(F ) ∈ D1,p and

Dm(ϕ(F )) =
m∑
i=1

∂iϕ(F )DmF i (2.26)

If we suppose that the Hilbert space H i an L2 space of the form L2(T,B, µ), where µ is a sigma-finte

atomless measure on a measurable space (T,B), the derivative of a random variable F ∈ D1,2 will be a

stochastic process denoted by {Dm
t F, t ∈ T} due to the identification between the Hilbert space L2(Ω;H)

and L2(Ω× T ).

Suppose that W = {W (t), t ∈ [0, 1]} is a one dimensional Brownian motion. In this case Wt =
∫ t

0
dWr =

W (1[0,t]) and E[WsWt] = 〈1[0,s],1[0,t]〉L2(T,B,µ) = t ∧ s. As a lemma of martingale representation Theorem

we know that any square integrable random variable F , measurable with respect to F1, can be written as

F = E[F ] +
∫ 1

0

HsdWs (2.27)

where Hs is an adapted process such that E
[∫ 1

0
H2
sds
]
< ∞. When the variable F belong to the space

D1,2, it turns out that the process Hs can be identified as the optional projection of the derivative of F .

This is called the Clark-Ocone representation formula:
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Proposition 2.13. Let F ∈ D1,2 and suppose that W is a one-dimensional Brownian motion. Then

F = E[F ] +
∫ 1

0

E [Dm
t F |Ft] dWt (2.28)

We recall some useful rules of stochastic calculus of variations. By Propositions 1.3.8 and 1.3.18 in [35]

we obtain that if (ut)t∈[0,1] is a square integrable adapted process

1. Dm
s (Wt) = 1[0,t](s) = 1{s≤t}

2. Dm
s

(∫ t
0
ur dWr

)
= us1{s≤t} +

∫ t
s
Dm
s (ur) dWr

3. Dm
s

(∫ t
0
ur dr

)
=
∫ t
s
Dm
s (ur) dr

Our principal references about functional analysis are [17, 18, 19, 4, 54, 49].



Chapter 3

Calculus via regularization

In this chapter we will define a stochastic integral with respect to a Banach-valued stochastic process.

We did not aim to have a full generalization: integral process will only be scalar. The difficulty in this

construction is the fact that the stochastic integrator is infinite dimensional and is not necessarily a

semimartingale. As a special case in fact it will be possible to consider the C([−τ, 0])-valued window

Brownian motion W (·) as stochastic integrator. Firstly we observe that although we can define the

stochastic integral with respect to an infinite dimension martingale ([11, 33, 16]), we can not apply this

definition to W (·) because, as we will see in the first paragraph, it is not any reasonable C([−τ, 0])-valued

martingale. Then we give a definition of a stochastic integral for Banach valued stochastic processes. The

last part of this chapter is devoted to the Da Prato Zabczyck stochastic integral. We will be interested to

show that whenever Da Prato-Zabczyck integral and forward integral both exist, they are equal.

3.1 Basic motivation: the window Brownian motion

Definition 3.1. Let B be a Banach space and X a B-valued stochastic process. We say that X is a weakly

semimartinglale if, for every φ ∈ B∗, 〈φ,Xt〉 is a real semimartingale with respect to a filtration (Gt). It

holds that if X is a B-valued martingale in the sense of [33], page 12, then it is also a weakly martingale.

We will show that the window Brownian motion is not even a weak semimartingale, then is not a

martingale and we can not define a stochastic integral with the classical method for integration with respect

to Banach valued semimartingale.

Proposition 3.2. The C([−τ, 0])-valued window Brownian motion is not a weakly semimartingale.

Proof. Let (Ft) be the natural filtration generated by the real Brownian motion Wt. It suffices to show that

it exists an element µ in B∗ =M([−τ, 0]) such that 〈µ,Wt(·)〉 =
∫

[−τ,0]
Wt(x)µ(dx) is not a semimartingale

25
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with respect to any filtration. We will prove by contradiction: we suppose that W (·) is a weakly

semimartingale, then in particular if we take µ = δ0 +δ−τ , the process 〈δ0 +δ−τ ,Wt(·)〉 = Wt+Wt−τ := Xt

will be a semimartingale with respect to some filtration (Gt). At the same time Wt +Wt−τ is Ft adapted,

then by Stricker’s theorem Xt is a semimartingale with respect to filtration (Ft), for details about that

theorem see Theorem 4, pag. 53 in [36]. Moreover we observe that Wt−τ is an (Ft) strongly predictable

continuous process, where we recall that R is called strongly predictable with respect to a filtration F, if it

exists δ > 0, such that (Rs+ε)s≥0 is F-adapted, for every ε ≤ δ. This notion of strongly predictable process

has been introduced in [9]. Then by Proposition 4.11 in [9], we have [W·−τ , N ] = 0 for every continuous

Ft-local martigale N , so Wt−τ is an (Ft)-martingale orthogonal process. Since Wt an (Ft) martingale,

process Xt = Wt +Wt−τ is an (Ft) weak Dirichlet process. By unicity of decomposition for an (Ft) weak

Dirichlet process and for an (Ft) semimartingale Wt−τ is a bounded variation process. This generates a

contradiction. In particular Wt−τ is a finite quadratic variation process, not a zero quadratic variation

process, i.e. Wt +Wt−τ is an example of Ft weak Dirichlet with finite quadratic variation which is not a

Ft Dirichlet process.

3.2 Definition of the integral for Banach valued processes

In paragraph 2.2 we briefly recall the definition of forward integral for real valued processes. Now we

define a forward stochastic integral for a Banach valued integrand processes and an integrator process with

values in the dual of the Banach space. We did not aim to have a full generalization. Integral process will

only be scalar.

Definition 3.3. Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] respectively a B-valued and a B∗-valued continuous

stochastic processes, i.e. X : Ω× [0, T ] −→ B and Y : Ω× [0, T ] −→ B∗.

For every fixed t ∈ [0, T ] we define the definite forward integral of Y with respect to X denoted by∫ t
0
Ysd
−Xs or by

∫ t
0
〈Ys, d−Xs〉 as follows∫ t

0

Ysd
−Xs =

∫ t

0
B∗〈Ys, d

−Xs〉B := lim
ε→0

∫ t

0
B∗〈Y (s),

X(s+ ε)−X(s)
ε

〉Bds

The forward stochastic integral of Y with respect to X exists if the process(∫ t

0

Ys, d
−Xs

)
t∈[0,T ]

=
(∫ t

0
B∗〈Ys, d

−Xs〉B
)
t∈[0,T ]

admits a continuous version. In the sequel indexes B∗ and B∗ will be often omitted.

Remark 3.4. 1. We remember that even in the case B = R, the notion of forward integral is a little bit

relaxed with respect to the traditional one appearing for instance in [41] and recalled in paragraph

2.2 where the limit has to be ucp with respect to t and not only in probability for every fixed t.
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2. We remark that if B is a Hilbert space H, then via the Riesz representation theorem, Definition 3.3

gives a definition also in the case X and Y both H-valued.

Remark 3.5. Let B and H be respectively Baanach and Hilbert spaces such that B ⊂ H ∼= H∗ ⊂ B∗. If

X is a B-valued continuous process and Y is an H∗-valued process. Then∫ t

0
B∗〈Ys, d

−Xs〉B =
∫ t

0
H∗〈Ys, d

−Xs〉H (3.1)

Remark 3.6. Those type of stochastic integral involves naturally anticipative stochastic integral even in

elementary case, as we will see in example equation (7.16) of examples 7.3.

3.3 Link with Da Prato-Zabczyk’s integral

Let F and H two separable Hilbert spaces. In the first part of this section we recall the definition

stochastic Itô’s type integral as it has been defined in [11] denoted by∫ t

0

Ys · dW dz
s t ∈ [0, T ]. (3.2)

where W is a Wiener process on H and Y is a process with values being linear but not necessarily bounded

operators from H to F . This integral will be also called Da Prato-Zabczyk integral. We will recall the

definition of Hilbert space valued Wiener processes including cylindrical ones and some properties of the

stochastic integral (3.2). In the second part we illustrate link with our integral. The central result will be

Proposition 3.9. This is an equality result, in fact we will show that if Y is a cadlag H∗-valued process

such that E
∫ t

0
‖Ys‖2H∗ds < +∞ and W is a Q-Brownian motion W , Q being a nuclear operator on H, then

the forward integral
∫ t

0
〈Ys, d−Ws〉 exists as well as the Da Prato-Zabczyk integral

∫ t
0
Ys · dW dz

s and they

are equals.

3.3.1 Notations

Let Q be a symmetric non negative operator in L(H). We will consider first the case when Q is a trace

class operator in H, i.e. Q ∈ L1(H). We assume that there exists a complete orthonormal system {ei}
in H, and a bounded sequence of nonnegative real numbers λi such that Qei = λiei, for i = 1, 2, . . . An

H-valued stochastic process (Wt)t≥0 is called a Q-Wiener motion (or Q-Brownian process) if

(i) W (0) = 0 .

(ii) W has continuous trajectories.

(iii) W has independent increments

(iv) We have

L(W (t)−W (s)) = N (0, (t− s)Q), t ≥ s ≥ 0
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Remark 3.7. Assume that W is a Q-Brownian motion, with Q ∈ L1(H) then the following statements

hold

(1) W is a Gaussian process on H and E(Wt) = 0 and V ar(Wt) = tQ, t ∈ [0, T ].

(2) E(〈Wt, h〉) = 0 ∀h ∈ H
(3) E(〈Wt, h〉2) = t〈Qh, h〉 ∀h ∈ H
(4) E(〈Wt, h1〉〈Wt, h2〉) = t〈Qh1, h2〉 ∀h1, h2 ∈ H
(5) E(〈Wt, h1〉〈Ws, h2〉) = t ∧ s〈Qh1, h2〉 ∀h1, h2 ∈ H

We anticipate that the Da Prato-Zabczyk quadratic variation of a Q-Wiener process in H with

Tr(Q) < +∞ is given by the formula [W ]dzt = tQ. Firstly we summarize the definition of stochastic

integral with respect to a Q-Brownian motion W with values in H, Q trace class operator.

Let F be a separable Hilbert space with complete orthonormal basis {fj} and let us fix a number T > 0.

An L(H;F )-valued process (Φt)t∈[0,T ] taking only a finite number of values is said to be elementary if

there exists a sequence 0 = t0 < t1 < . . . < tM = T and sequence Φ0,Φ1, . . . ,ΦM−1 of L(H;F )-valued

random variables taking only a finite number of values such that Φm are (Ftm)-measurable and Φt = Φm
for t ∈]tm, tm+1], m = 0, . . . ,M − 1. For elementary processes Φ the Da Prato-Zabczyk stochastic integral

is defined by the formula∫ t

0

Φs · dW dz
s :=

M−1∑
m=0

Φm(Wtm+1∧t −Wtm∧t)

We introduce the subspace H0 = Q1/2(H) of H, which, endowed with the inner product

〈u, v〉0 =
∞∑
i=1

1
λi
〈u, ei〉〈v, ei〉 = 〈Q−1/2u,Q−1/2v〉

is a Hilbert space. The space of Hilbert-Schmidt operators from H0 to F , denoted by L2(H0;F ), is also a

separable Hilbert space, equipped with the norm

‖Φ‖2L2(H0;F ) =
∞∑
i=1

‖Φgi‖2F =
∞∑

i,j=1

λi|〈Φei, fj〉|2 = ‖ΦQ1/2‖2L2(H;F ) =

= 〈ΦQ1/2,ΦQ1/2〉L2(H;F ) = Tr
(

(ΦQ1/2)(ΦQ1/2)∗
)

= Tr(ΦQΦ∗)

where gi =
√
λiei, i = 1, 2, . . . , {ei} and {fj} are complete orthonormal bases in H0, H and F . We remark

here that the adjoint operator of Q1/2 is Q−1/2 from H0 to H and that the operator ΦQΦ∗ is of trace class

being a composition of the Hilbert-Schmidt operator (ΦQ1/2) and its adjoint, which is also Hilbert-Schmidt

by properties in [23]. Clearly L(H;F ) ⊂ L2(H0;F ) but L2(H0;F ) contains also unbounded operators on

H.

Let (Φt)t∈[0,T ] be a measurable L2(H0;F )-valued process; we define the norm by

|‖Φ‖|2t = E
∫ t

0

‖Φs‖2L2(H0;F )ds = E
∫ t

0

Tr(ΦsQ1/2)(ΦsQ1/2)∗ds t ∈ [0, T ]
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We denote with N 2
W (0, T ;L2(H0;F )) the Hilbert space of all L2(H0;F ) predictable processes with |‖Φ‖|T <

+∞.

SymbolM2
T (H) will denote the space of all H-valued continuous square integrable martingales M . M2

T (H)

with the norm defined by ‖M‖2M2
T (H)

= E
[
‖MT ‖2H

]
is a Hilbert space.

If a process Φ is elementary and |‖Φ‖|T < +∞, then the stochastic integral
∫ ·

0
Φs · dW dz

s is a continuous

square integrable F -valued martingale on [0, T ] and it holds following isometry

E
∥∥∥∥∫ t

0

Φs · dW dz
s

∥∥∥∥2

F

= |‖Φ‖|2t 0 ≤ t ≤ T (3.3)

The stochastic integral with respect to a Q-Brownian motion is an isometric transformation from the

space of elementary processes equipped with the norm |‖ · ‖| into the space of F -valued square integrable

martingale M2
T (F ). By the fact that elementary processes form a dense set in N 2

W (0, T ;L2(H0;F )) the

definition of stochastic integral is extended to all elements in N 2
W (0, T ;L2(H0;F )) and (3.3) holds true.

Definition 3.8. For a general element Φ ∈ N 2
W (0, T ;L2(H0;F )), we will denote Brownian martingale

the martingale M ∈M2
T (F ) given by the stochastic integral

M· =
∫ ·

0

Φs · dW dz
s (3.4)

By the so called localization procedure it is possible to extend the definition of the Da Prato-Zabczyk

stochastic integral to L2(H0;F )-predictable processes satisfying even the weaker condition

P

[∫ T

0

‖Φs‖2L2(H0;F )ds < +∞

]
= 1

In [11] the definition of stochastic integral with respect to a Q-Brownian motion is extended to a a cylindrical

Brownian motion. Let Q be a general bounded, self-adjoint, non negative (to avoid complication we will

assume strictly positive) operator on H, i.e. not necessarily such that Tr(Q) < +∞. Let H0 = Q1/2(H)

with the induced norm and let H1 be an arbitrary Hilbert space such that H is embedded continuously

into H1 and the embedding J of H0 into H1 is Hilbert-Schmidt. Let {gj} be an orthonormal and complete

basis in H0 and βj a family of independent real valued standard Brownian motion then the the following

series is convergent in L2(Ω;H1)

Wt =
+∞∑
j=1

gjβj(t)

and we will call Wt a cylindrical Brownian motion on H. We recall that Wt is a Q1 Brownian motion on H1

with Tr(Q1) < +∞, Q1 = JJ∗. We remark that a Q Brownian motion with Tr(Q) < +∞ is H-valued and

has the same expansion of a cylindrical Brownian motion in L2(Ω;H). The definition of stochastic integral



30 CHAPTER 3. CALCULUS VIA REGULARIZATION

is the same for a cylindrical Brownian motion because the class N 2
W (0;T ;L2(H0;F )) is independent of the

space H1 and the spaces Q1/2
1 (H1) are identical for all possible extension H1.

We recall some properties of Brownian stochastic integral from chapter 4.4 in [11].

If Φ ∈ N 2
W (0, T ;L2(H0;F )), then the stochastic integral M = Φ ·W

Mt =
∫ t

0

Φ(s) · dW dz
s (3.5)

is a continuous square integrable martingale in M2
T (F ) and its quadratic variation is of the form

[M ]dzt = [Φ ·W ]dzt =
∫ t

0

(
Φ(s)Q1/2

)(
Φ(s)Q1/2

)∗
ds

Moreover if Φ1,Φ2 ∈ N 2
W (0, T ;L2(H0;F )) then

E [Φi ·Wt] = 0 E
[
‖Φi ·Wt‖2

]
< +∞ s, t ∈ [0, T ] and i = 1, 2

and the correlation operator is given by the formula

V (t, s) = Cor [Φ1 ·Wt,Φ2 ·Wt] = E
∫ t∧s

0

(
Φ1(r)Q1/2

)(
Φ2(r)Q1/2

)∗
dr

Moreover under the same hypotheses we have

E [〈Φ1 ·Wt,Φ2 ·Ws〉] = E
∫ t∧s

0

Tr
[(

Φ1(r)Q1/2
)(

Φ2(r)Q1/2
)∗]

dr

We recall also that stochastic integration theory with respect to martingales M ∈ M2
T (F ), completely

analogous to the one with respect to a Wiener process described in preceeding chapters, can be developped,

see [33]. The role of the process tQ is played by the quadratic variation [M ]dzt , t ∈ [0, T ]. We will need

this extension in the case when the martingale M is itself a stochastic integral, say M = Φ ·W with

Φ ∈ N 2
W (0, T ;L2(H0;F )). Then the extension is straightforward, since we can define the stochastic integral

Ψ ·M for Ψ ∈ N 2
M (0, T ;L2(F0;G)) simply by

Ψ ·Mdz
t =

∫ t

0

Ψ(s)dMdz
s :=

∫ t

0

Ψ(s)Φ(s)dW dz
s , t ∈ [0, T ]. (3.6)

Note that

[Ψ ·M ]dzt =
∫ t

0

(
Ψ(s)Φ(s)Q1/2

)(
Ψ(s)Φ(s)Q1/2

)∗
ds (3.7)

We recall that every operator in L(H;F ) is also in L2(H0;F ). In fact if T ∈ L(H;F ) then is well defined

L2(H0;F ) because H0 = Q1/2(H) is a subspace of H. Moreover if we suppose T ∈ L(H;F ), then, using

the fact that gj =
√
λjej and ‖Tej‖F ≤ ‖T‖L(H;F ) being {ej} a complete orthonormal system for H, we

have

‖T‖2L2(H0;F ) =
+∞∑
j=1

‖Tgj‖2F =
+∞∑
j=1

λj‖Tej‖2F ≤
+∞∑
j=1

λj‖T‖2L(H;F ) = Tr(Q) · ‖T‖2L(H;F ) < +∞
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Then for L(H;F ) predictable process Y such that E
∫ t

0
‖Ys‖2L(H;F )ds <∞ it holds

E
∫ t

0

‖Ys‖2L2(H0;F )ds ≤ Tr(Q)E
∫ t

0

‖Ys‖2L(H;F )ds <∞

so Y ∈ N 2
W (0, T ;L2(H0;F )), then the stochastic integral integral

∫
Y · dW dz in the sense of [11] is a well

defined F -valued process.

3.3.2 Main result

We consider F = R.

Proposition 3.9. Let W a H-valued Q-Brownian motion with Q ∈ L1(H), i.e. Tr(Q) =
∑+∞
j=1 λj < +∞,

and Y be a L(H; R) = H∗ cadlag process such that E
∫ t

0
‖Ys‖2H∗ds <∞. Then, for every t ∈ [0, T ],∫ t

0

〈Ys, d−Ws〉 =
∫ t

0

Ys · dW dz
s

Proof. By the hypothesis we obtain that Y in N 2
W (0, T ;L2(H0; R))). On the right hand we have aM2

T (R)

process because it is a stochastic integral for a process Y ∈ N 2
W (0, T ;L2(H0; R)). We want to show that∫ t

0

〈Ys,
Ws+ε −Ws

ε
〉ds P−→

∫ t

0

Yu · dW dz
u (3.8)

We can represent (Ws+ε −Ws) as a H-valued stochastic integral in the sense of [11] with respect to the

L(H;H) elementary process identity on H. This integral, that we will denote with dW dz∗ , is with values

in M2
T (H) because the identity process belong to N 2

W (0, t;L2(H0;H)).

Ws+ε −Ws =
∫ s+ε

s

dW dz∗

u

Then the left hand in (3.8) gives

1
ε

∫ t

0

〈Ys,
∫ s+ε

s

dW dz∗

u 〉ds =
1
ε

∫ t

0

∫ s+ε

s

Ys · dW dz
u ds =

1
ε

∫ t

0

∫ u

u−ε
Ys ds · dW dz

u (3.9)

The first equality in (3.9) is true because, for a fixed ε > 0 and s ∈ [0, t], it holds

〈Ys,
∫ s+ε

s

dW dz∗

u 〉 =
∫ s+ε

s

Ys · dW dz
u

Ys is an elementary process so the definition for the right hand stochastic integral gives∫ s+ε

s

Ys · dW dz
u = 〈Ys,Ws+ε〉 − 〈Ys,Ws〉 = 〈Ys,Ws+ε −Ws〉 = 〈Ys,

∫ s+ε

s

dW dz∗

u 〉
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The second equality in (3.9) is true by the Fubini’s stochastic theorem in [11]. The term
∫ u
u−ε Ys ds has

to be understood as a random Bochner type integral with values in H∗. We remark that
∫ u
u−ε Ys ds ∈

N 2
W (0, t;L2(H0; R)) because it is bounded, in fact ‖

∫ u
u−ε Ys ds‖H∗ ≤

1
ε

∫ u
u−ε ‖Ys‖H∗ds ≤ sups ‖Ys‖H∗ . It

follows that the last integral in (3.9) is well defined. We will prove the following convergence in probability

showing an L2(Ω; R) convergence via the isometry property for the M2
T (R) stochastic integral.∫ t

0

∫ u

u−ε

Ys
ε
ds · dW dz

u −
∫ t

0

Yu · dW dz
u

P−→ 0

It holds

E
[∫ t

0

∫ u

u−ε

Ys
ε
ds · dW dz

u −
∫ t

0

Yu · dW dz
u

]2

= E
[∫ t

0

(∫ u

u−ε

Ys
ε
ds− Yu

)
· dW dz

u

]2

=

= E

[∫ t

0

∥∥∥∥∫ u

u−ε

Ys
ε
ds− Yu

∥∥∥∥2

L2(H0;R)

du

]
≤

≤ E

[∫ t

0

∥∥∥∥∫ u

u−ε

Ys − Yu
ε

ds

∥∥∥∥2

H∗
du

]
≤

≤ E

[∫ t

0

(∫ u

u−ε

‖Ys − Yu‖H∗
ε

ds

)2

du

]
→ 0

We know that ‖Ys − Yu‖H∗ → 0 for for all s→ u, u continuity point for Y , moreover Y is cadlag, then it

has a countable numbers of jumps so the result integrating is then
∫ u
u−ε

‖Ys−Yu‖H∗
ε ds→ 0

In the special case G = R, we obtain a similar result with respect to Brownian martingale

Proposition 3.10. Let M be a F -valued Brownian martingale M ∈ M2
T (F ) defined as a stochastic

integral M = Φ ·W , where Φ ∈ N 2
W (0, T ;L2(H0; R)). Let Y be a L(F ; R) = F ∗-valued cadlag process such

that E
∫ T

0
‖Y (s)‖2F∗ds < +∞.

Then for every t ∈ [0, T ]∫ t

0

〈Ys, d−Ms〉 =
∫ t

0

Ys · dMdz
s

We introduce now a new concept of quadratic variation.



Chapter 4

Chi-quadratic variation

4.1 Comments

In this chapter we will define a concept of quadratic variation which is suitable for Banach spaces. Let

B be a Banach space.

Definition 4.1. A closed linear subspace χ of (B⊗̂πB)∗, endowed with its own norm, such that

‖ · ‖χ ≥ ‖ · ‖(B⊗̂πB)∗. (4.1)

will be called a Chi-subspace of (B⊗̂πB)∗.

The result below follows immediately by the definition

Proposition 4.2. Any closed subspace of a Chi-subspace is a Chi-subspace.

We first try to explain why our concept is more general than other notions in the literature. The

classical notions appear for instance in [33] (resp. [16]) for some classes of B-valued processes where B is a

Hilbert (resp. Banach) space. One typical class is the family of π-processes which are not so far to Banach

valued semimartingales, since their notion is constantly related to Itô type stochastic integrals. We remark

that [11] introduces slight different notion of quadratic variation for B-valued martingales with B Hilbert

separable space.

In that framework of infinite dimension valued stochastic process appear two concepts of quadratic variation:

the real quadratic variation and the tensor quadratic variation. Let X be a B-valued stochastic process; in

the language of regularizations, the first concept can be caracterised as the real-valued increasing continuous

process which is ucp limit of 1/ε
∫ ·

0
‖Xs+ε −Xs‖2B ds which equals

1
ε

∫ ·
0

∥∥(Xs+ε −Xs)⊗2
∥∥
B⊗πB

ds

33
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according to 2.5. The second one, in [33, 16], appears to be related to expression of the type

Xt ⊗2 −X0 ⊗2 −
∫

]0,t]

(Xs− ⊗ dXs + dXs ⊗Xs−);

in our framework, it corresponds to a B⊗̂πB-valued process which is the ucp limit with respect to the

projective topology π of

1
ε

∫ t

0

(Xs+ε −Xs)⊗2 ds, (4.2)

where those integrals have to be considered in the Bochner sense.

In fact, the tensor quadratic variation is the natural object intervening in Itô’s formula which expands F (X)

for some C2-Fréchet B-valued function. To ensure that it has bounded variation, the classical procedure

consists in showing that the real quadratic variation exists. In fact the variation of tensor quadratic

variation is dominated by the variation of real quadratic variation, which is clearly of bounded variation

being an increasing process.

Unfortunately, the existence of the real quadratic variation is a very requiring and rarely verified condition.

For instance, the window Brownian motion W (·), which is our fundamental example, does not have, in

principle, the real quadratic variation. In fact, even if for fixed ε the quantity∫ t

0

‖Ws+ε(·)−Ws(·)‖2C([−τ,0])

ε
ds

exists, it is not possible to control its limit for ε going to zero. The projective norm π is too strong for the

convergence of the approximate tensor quadratic variation

1
ε

∫ t

0

(W (·)s+ε −W (·)s)⊗2 ds. (4.3)

One possible relaxation could be to require a (strong) convergence with respect to a weaker tensor topology

as the Hilbertian or the injective ε-topology, however this route was not easily practicable for us. As

announced, our notion of convergence makes use of a subspace χ of (B⊗̂πB)∗; when χ coincides with the

whole space (B⊗̂πB)∗ our convergence coincides the classical weak topology in (B⊗̂πB).

Our χ-quadratic variation generalizes the concept of tensor quadratic variation at two levels. Let X be a

B-valued stochastic process.

• Firstly replacing the (strong) convergence in (4.2) with a weak type convergence.

• Secondly the choice of a suitable subspace χ of (B⊗̂πB)∗ gives a degree of freedom.

As we will see in ??, whenever X admits one of the classical quadratic variation (in the sense of [21, 11, 33,

16]), it admits a χ-quadratic variation with χ equal to the whole space. This corresponds to the elementary

situation for us.
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A window Brownian motion X = W (·) admits a χ- quadratic variation a priori only for strict subspaces χ.

This will be particularly helpful in applications, in particular for obtaining some generalized Clark-Ocone

formulae.

4.2 Examples of Chi-subspaces

Before providing the definition of the so-called χ-quadratic variation for a B-valued stochastic process,

we will give some examples of Chi-subspaces that we will use frequently in the paper. We recall that a

Chi-subspace has to be a topological subspace of (B⊗̂πB)∗ such that (4.1) is verified. As a preliminary

result we show that a finite direct sum of Chi-subspaces is still a Chi-subspace.

Proposition 4.3. Let χ1, · · · , χn be Chi-subspaces of (B⊗̂πB)∗ such that χi
⋂
χj = {0} for any 1 ≤ i 6=

j ≤ n. Then the normed space χ = χ1 ⊕ · · ·χn is a Chi-subspace of (B⊗̂πB)∗.

Proof. It is enough to prove the result for the case n = 2. Let µ ∈ χ, then it admits decomposition

µ = µ1+µ2, where µ1 ∈ χ1, µ2 ∈ χ2. It holds ‖µ‖(B⊗̂πB)∗ ≤ ‖µ1‖(B⊗̂πB)∗+‖µ2‖(B⊗̂πB)∗ . By assumption,

(4.1) for χ1 and χ2 implies that ‖µi‖(B⊗̂πB)∗ ≤ ‖µi‖χi for i = 1, 2. It follows ‖µ‖(B⊗̂πB)∗ ≤ ‖µ1‖χ1 +‖µ2‖χ2 ,

i.e. the norm (2) with p = 1 in the Banach space χ. Any norms defined in a direct sum of Banach spaces is

equivalent to the product topology, then (4.1) is also verified for any norm.

Example 4.4. Let B be a general Banach space.

• χ = (B⊗̂πB)∗. This corresponds to our elementary case. We will show in chapter ?? that whenever a

process admits a quadratic variation in the sense of [11, 33, 21] then it admits a (B⊗̂πB)∗-quadratic

variation.

Example 4.5. Let B = C([−τ, 0]).

This is the natural value space of all window (continuous) processes. We list some examples of Chi-

subspaces which are valuable for quadratic variations of window processes. Our basic reference subspace

of (C([−τ, 0]⊗̂πC([−τ, 0]))∗ will be M([−τ, 0]2) equipped with the usual total variation norm, denoted

by ‖ · ‖V ar. This is in fact a proper subspace as it will be illustrated in the following lines. Condition

(4.1) may be trivially verified using properties of projective tensor products, see section 2.5. All other

Chi-subspaces will be included in M([−τ, 0]2). Moreover we will show those χ are Chi-subspaces of

M([−τ, 0]2). In particular, they fulfill the (4.1) type relation ‖ · ‖χ ≥ ‖ · ‖V ar. As a consequence, they will

also be Chi-subspaces of (B⊗̂πB)∗.

• M([−τ, 0]2). This space, equipped with the total variation norm, is a Banach space. We can identify
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this space with the dual of the injective tensor product; in fact

M([−τ, 0]2) =
(
C([−τ, 0]2)

)∗
=
(
C([−τ, 0])⊗̂εC([−τ, 0])

)∗ = BI(C([−τ, 0]), C([−τ, 0]))

⊂ B(C([−τ, 0]), C([−τ, 0])) =
(
C([−τ, 0])⊗̂πC([−τ, 0])

)∗
.

In particular by properties of tensor product, (4.1) is verified because ‖µ‖ε∗ = ‖µ‖V ar ≥ ‖µ‖(B⊗̂πB)∗

for every µ ∈M([−τ, 0]2).

• L2([−τ, 0]2). This is a Hilbert subspace of M([−τ, 0]2) and for µ ∈ L2 it holds obviously that

‖µ‖V ar ≤ ‖µ‖L2([−τ,0]2).

• Dij([−τ, 0]2) for every i, j = 0, . . . , N . If µ = λ δai(dx)δaj (dy), ‖µ‖V ar = |λ| = ‖µ‖Di,j .

• Di([−τ, 0])⊗̂hL2([−τ, 0]). For a general element in this space µ = λδai(dx)φ(y)dy, φ ∈ L2([−τ, 0]),

we have ‖µ‖V ar ≤ ‖µ‖L2([−τ,0])⊗̂hDi([−τ,0]) = |λ| · ‖φ‖L2 .

• χ2([−τ, 0]2) := (L2([−τ, 0])⊕Da([−τ, 0]))⊗̂2
h. This space will be denoted frequently shortly by χ2.

This is a well defined Hilbert space with the scalar product which derives from the scalar products in

every Hilbert space and it is a subset of M([−τ, 0]2) and consequently also of (B⊗̂πB)∗.

Remark 4.6. 1. We could have shown that χ2([−τ, 0]2) ⊂ M[−τ, 0]2 through an argument of

tensor product theory. In fact if H is a Hilbert space such that H ⊂M([−τ, 0]) it holds H⊗̂2
h ⊂

H⊗̂2
ε ⊂ M([−τ, 0])⊗̂2

ε = C∗([−τ, 0])⊗̂2
ε ⊂ (C([−τ, 0])⊗̂ε)∗ = (C([−τ, 0]2)∗ = M([−τ, 0]2) be-

cause the ε-topology respects subspaces, see pag. 47 on [46]. Our H = L2 ⊕ Da which is a

Hilbert subset of M([−τ, 0]) as required.

2. It will be useful have a direct sum representation, whenever it is possible, of the Chi-subspaces

involved. In this case using once Remark 2.9, we obtain:

χ2([−τ, 0]2) = L2([−τ, 0]2)⊕ L2([−τ, 0])⊗̂hDa([−τ, 0])⊕Da([−τ, 0])⊗̂hL2([−τ, 0])⊕Da([−τ, 0])⊗̂2
h

(4.4)

Using again Remark 2.9 with (2.16) and (2.17) we can expand every addend in the right-hand side

of (4.4), into a sum of elementary addends. For instance we have L2⊗̂hDa =
⊕N

i=0

(
L2⊗̂hDi

)
and Da⊗̂

2
h = DA =

⊕N
i,j=0Di,j so that (4.4) equals

L2([−τ, 0]2)⊕
N⊕
i=0

(
L2([−τ, 0])⊗̂hDi([−τ, 0])

)
⊕

N⊕
i=0

(
Di([−τ, 0])⊗̂hL2([−τ, 0])

)
⊕

N⊕
i,j=0

Di,j([−τ, 0]2)

(4.5)

Being χ2 a finite direct sum of Chi-subspaces, Proposition 4.3 confirms that it is Chi-subspace.
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• As a particular case of χ2([−τ, 0]2) we will denote χ0([−τ, 0]2), χ0 shortly, the subspace of measures

defined as

χ0([−τ, 0]2) := (D0([−τ, 0])⊕ L2([−τ, 0]))⊗̂2
h.

Again using Remark 2.9, we obtain:

χ0([−τ, 0]2) = L2([−τ, 0]2)⊕L2([−τ, 0])⊗̂hD0([−τ, 0])⊕D0([−τ, 0])⊗̂hL2([−τ, 0])⊕D0,0([−τ, 0]2)

(4.6)

Remark 4.7. For every µ in χ2([−τ, 0]2) there exist µ1 ∈ L2([−τ, 0]2), µ2 ∈ L2([−τ, 0])⊗̂hDa([−τ, 0]),

µ3 ∈ Da([−τ, 0])⊗̂hL2([−τ, 0]) and µ4 ∈ Da([−τ, 0])⊗̂2
h such that

µ = µ1 + µ2 + µ3 + µ4, (4.7)

with µ1 = φ1, µ2 =
∑
i=0,...,N φ2⊗αiδai , µ3 =

∑
i=0,...,N βiδai⊗φ3 and µ4 =

∑
i,j=0,...,N λi,jδai⊗δaj ,

where φ1 ∈ L2([−τ, 0]2), φ1, φ2 ∈ L2([−τ, 0]) and λi,j , αi, βi are real numbers for every i, j = 0, . . . , N .

Components µ1, µ2 and µ3 are singular with respect to the Dirac’s measure on {ai, aj}0≤i,j≤N , then

µk({ai, aj}) = 0 for k = 1, 2, 3. For a general µ it follows

µ ({ai, aj}) = µ4 ({ai, aj}) = λi,j (4.8)

If in particular µ ∈ χ0([−τ, 0]2) then it can be uniquely decomposed into

µ = φ1 + φ2 ⊗ αδ0 + βδ0 ⊗ φ3 + λδ0 ⊗ δ0, (4.9)

where φ1 ∈ L2([−τ, 0]2), φ2, φ3 are functions in L2([−τ, 0]) and λ, α, β are real numbers and

µ ({0, 0}) = µ4 ({0, 0}) = λ. (4.10)

• Diag([−τ, 0]2). Let µ ∈ Diag, we have ‖µ‖V ar ≤ τ ‖µ‖Diag, and (4.1) follows.

• χ3([−τ, 0]2) := χ2([−τ, 0]2) ⊕ Diag([−τ, 0]2). The sum is direct and obviously it is a subset of

M([−τ, 0]2). As a consequence of Proposition 4.3, χ3 is a Chi-subspace. This is Banach space with

any norm in the direct sum, it fails to be a Hilbert space because Diag is not Hilbert. We select

here the norm (2), with p = 2. Let µ be an element in χ3([−τ, 0]2) with decomposition µ = µ1 + µ2,

µ1 ∈ χ2([−τ, 0]2) and µ2 ∈ Diag([−τ, 0]2), we define

‖µ‖2χ3([−τ,0]2) = ‖µ1‖2χ2([−τ,0]2) + ‖µ2‖2Diag([−τ,0]2) (4.11)
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• χ6([−τ, 0]2) where

χ6([−τ, 0]2) := Dd([−τ, 0]2)⊕L2([−τ, 0]2)⊕L2([−τ, 0])⊗̂hDa([−τ, 0])⊕Da([−τ, 0])⊗̂hL2([−τ, 0])

(4.12)

This is a subspace of M([−τ, 0]2) and it is a Chi-subspace because of Proposition 4.3.

The following examples are academic and they will not be used in the sequel in a relevant way. Some of

them involves discrete infinite measures.

• χ4([−τ, 0]2) = DN×N([−τ, 0]2) with

DN×N([−τ, 0]2) :=

µ ∈M([−τ, 0]2) : µ =
∑
i,j∈N

λi,jδ(αi,αj);λi,j ∈ R, sup
i,j
{|λi,j |i2j2} < +∞

 (4.13)

where (αi)i∈N and (αj)j∈N are two sequences of given points in [−τ, 0], then an element of χ4 is a

discrete measure concentrated on a countable sequence of fixed points (αi, αj)(i,j)∈N×N on the square

[−τ, 0]2. The space DN×N([−τ, 0]2) equipped with the norm ‖µ‖DN×N([−τ,0]2) = supi,j{|λi,j |i2j2}, is a

Banach subspace of M([−τ, 0]2).

To be a Chi-subspace it remains to show ‖µ‖V ar ≤ ‖µ‖χ4 . For an element µ ∈ χ4 the total variation

norm is ‖µ‖V ar([−τ,0]2) =
∑
i,j∈N |λi,j | and it is finite. In particular ‖µ‖V ar([−τ,0]2) =

∑
i,j∈N |λi,j | =∑

i,j∈N |λi,j |i2j2 1
i2j2 ≤ supi,j{|λi,j |i2j2}

∑
i,j∈N

1
i2j2 = ‖µ‖χ4

π4

36 .

• Let {µi}i=1,...,N be N fixed mutually singular measures in M([−τ, 0]2) with ‖µi‖V ar = 1. We define

the space χ5([−τ, 0]2) as the space

χ5([−τ, 0]2) := Span({µi}i=1,...,N ) =

µ =
∑

i=1,...,N

λiµi; µi ∈M([−τ, 0]2), λi ∈ R

 . (4.14)

The space χ5 equipped with the norm ‖µ‖χ5 =
√∑N

i=1 λ
2
i , is a Banach subspace of M([−τ, 0]2) of

finite dimension N . The norm ‖ · ‖χ5 is compatible with the induced topology defined byM([−τ, 0]2).

By Proposition 4.2, χ5 is a Chi-subspace. We observe that ‖µ‖V ar =
∑N
i=1 |λi| ≤ ‖µ‖χ5 =

√∑N
i=1 λ

2
i .

• Let µ be a fixed finite measure on [−τ, 0]2 singular with respect to the Lebesgue measure.

χµ([−τ, 0]2) = {ν ∈M([−τ, 0]2); dν = g dµ, g ∈ L∞(dµ)} (4.15)

Without restriction of generality we can consider µ being a positive measure. χµ is the space of

measure absolutely continuous with respect µ with density in L∞(dµ). The space χµ equipped

with the norm ‖ν‖χµ := ‖g‖L∞ is a Banach subspace of M([−τ, 0]2) and it is therefore isomorphic

to L∞(dµ). For a general measure ν ∈ χµ it holds ‖ν‖V ar ≤ ‖g‖L∞ ‖µ‖V ar = C ‖ν‖χµ with C a

constant, so it is a Chi-subspace. We illustrate two significant cases:
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1. Let I be a countable set. Let {µi}i∈I , singular non-negative finite measure. The set constituted

by measures ν of the type ν =
∑
i∈I giµi, gi Borel bounded functions coincides with χµ

with µ =
∑
i∈I µi. In fact dν = g dµ, with g =

∑
i∈I gi

dµi
dµ . We observe that ‖ν‖χµ =

supi
{
‖gi‖L∞(µi)

}
= ‖g‖L∞(µ). By definition of µ we have µi << µ and dµi dµ belong to

L∞(dµ), in fact for avery set A we have µ(A) =
∫
A
1Adµ and for every i ∈ I we have

µi(A) =
∫
A
fidµ by the Radon-Nikodym theorem because µi << µ. On the other hand

µi(A) =
∫
A
dµi then fi = dµi/dµ. To prove fi ∈ L∞(dµ) we take a general set A. The following

integral µ(A)− µi(A) =
∫
A
1A − fidµ is always greater or equal to 0, µ being a sum of positive

measures. So we conclude that fi ≤ 1A µ-a.e.

2. As a special case of previous example we can take µi = δ(ai,bi), where (ai, bi) ∈ [−τ, 0]2 for

i ∈ I = {= 1, . . . , N}, then ν =
∑N
i=1 λiδ(ai,bi) and easily ‖ν‖ = max1≤i≤N{|λi|}.

• Another example of Chi-subspace is L2([−τ, 0]2) ⊕ χµ([−τ, 0]2), where µ is a given measure in

M([−τ, 0]2). This is a Chi-subspace again because of Proposition 4.3.

Example 4.8. Let B = H = L2([−τ, 0]).

For processes with values in the Hilbert spaceH = L2([−τ, 0]), χ has to be a subset of (L2([−τ, 0]⊗̂πL2([−τ, 0]))∗.

We recall that (L2([−τ, 0]⊗̂πL2([−τ, 0]))∗ = B(L2([−τ, 0], L2([−τ, 0])). This Banach space contains two sig-

nificant Chi-subspaces; the first one is naturally associated with L2([−τ, 0]2, the second one with L∞([−τ, 0]).

We observe that L2([−τ, 0]2) = L2([−τ, 0])⊗̂2
h ≡ (L2([−τ, 0])⊗̂2

h)∗ ⊂ (L2([−τ, 0])⊗̂2
π)∗, where ≡ is the

usual Riesz identification and the last inclusion is continuous as we have seen in Remark 2.8. The space

L2([−τ, 0]2) identifies a subspace of bilinear bounded (continuous) forms on (L2([−τ, 0])× L2([−τ, 0])). In

fact for every f ∈ L2([−τ, 0]2) we can associate a bilinear operator

T f : L2([−τ, 0])× L2([−τ, 0]) −→ R (g, h) 7→ T f (g, h) =
∫

[−τ,0]2
g(x)h(y)f(x, y) dx dy. (4.16)

Definition 4.9. We will denote by L2
B([−τ, 0]2) the set of all bilinear maps T f . This space equipped with

the norm ‖T f‖L2
B([−τ,0]2) := ‖f‖L2([−τ,0]2), is a Hilbert space which indeed coincides with L2([−τ, 0]2)∗.

Proposition 4.10. L2
B([−τ, 0]2) is included properly in B(L2([−τ, 0], L2([−τ, 0])).

Remark 4.11. We anticipate that L2
B([−τ, 0]2) is not densely included in B(L2([−τ, 0], L2([−τ, 0])). This

will be shown in Proposition 5.35 using a probabilistic argument.

Proof of Proposition 4.10. We can prove that the bilinear bounded form defined by

T : L2([−τ, 0])× L2([−τ, 0]) −→ R (g, h) 7→ T (g, h) =
∫

[−τ,0]

g(x)h(x) dx = 〈g, h〉L2([−τ,0])

does not belong to L2
B([−τ, 0]2).

We denote the Hilbert space L2([−τ, 0]) by H. To show that T /∈ L2([−τ, 0]2) we will use the identification
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between L2([−τ, 0]2) = H⊗̂2
h and the space L2

(
H;H∗

)
of Hilbert-Schmidt operators from H to H∗. We

show that the operator T̄ in L(H;H∗) associated canonically to T in B(H,H) is not Hilbert-Schmidt.

Canonical identification between B(E,F ) and L(E;F ∗) give us

F∗〈T̄ (e), f〉F = T (e, f) e ∈ E, f ∈ F

In our case E = F =: H and T (e, f) = H〈f, g〉H .

Let (ei)i∈N and (e∗j )j∈N be respectively the usual basis of H and its dual H∗. Using Parseval’s identity and

the Riesz isomorphism ei 7→ e∗i we obtain

+∞∑
i=1

‖T̄ (ei)‖2H∗ =
+∞∑
i=1

∞∑
j=1

H∗〈T̄ (ei), e∗j 〉2H∗ =
+∞∑
i=1

∞∑
j=1

H∗〈T̄ (ei), ej〉2H =
+∞∑
i=1

∞∑
j=1

T (ei, ej) =

=
+∞∑
i=1

∞∑
j=1

H〈ei, ej〉
2
H =

+∞∑
i=1

1 = +∞

Then T̄ is not Hilbert-Schmidt and consequently T /∈ L2([−τ, 0]2) = L2([−τ, 0])⊗̂hL2([−τ, 0]).

Below we describe the announced Chi-subspaces.

• χ = L2
B([−τ, 0]2) equipped with its norm. We verify directly condition (4.1). We recall the isometry

between (L2([−τ, 0]⊗̂πL2([−τ, 0]))∗ and B(L2([−τ, 0], L2([−τ, 0])), i.e. the usual norm of the bilinear

operator T f , denoted by ‖ · ‖, is equal to the norm of the corresponding element in (L2([−τ, 0])⊗̂2
π)∗.

So it is enough to remark that

‖T f‖ = sup
‖g‖≤1,‖f‖≤1

|T (g, h)| ≤ ‖f‖L2([−τ,0]2) = ‖T f‖L2
B([−τ,0]2)

Condition (4.1) should have been verified also using relations (2.11) and (2.12).

• χ = DiagB([−τ, 0]2) where DiagB([−τ, 0]2) is the following set

{
T f ∈ B

(
L2([−τ, 0]), L2([−τ, 0])

)
, s.t. T f (g, h) =

∫
[−τ,0]

g(x)h(x)f(x) dx ; f ∈ L∞([−τ, 0])

}
(4.17)

By definition it is a subspace of B
(
L2([−τ, 0]), L2([−τ, 0])

)
and every operator T f is determined by a

function in f ∈ L∞([−τ, 0]). This space equipped with the norm ‖T f‖DiagB([−τ,0]2) := ‖f‖L∞([−τ,0])

is a Banach space. We verify condition (4.1). Let T ∈ DiagB([−τ, 0]2), we have

‖T‖ = sup
‖g‖≤1, ‖h‖≤1

|T (g, h)| = sup
‖g‖≤1, ‖h‖≤1

∣∣∣∣∣
∫

[−τ,0]

g(x)h(x)f(x)dx

∣∣∣∣∣ ≤ ‖f‖L∞([−τ,0]) = ‖T‖DiagB([−τ,0]2)
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Remark 4.12. This space has been denoted with DiagB because it has a strong relation with the

space of measures Diag defined in (2.20). In fact let ϕ be a function in L∞([−τ, 0]), we can associate

a measure µϕ ∈ Diag([−τ, 0]2) and an operator Tϕ ∈ DiagB([−τ, 0]2). The measure is identified by

µϕ(dx, dy) = ϕ(x)δy(dx)dy. The bilinear operator is identified by Tϕ(g, h) =
∫

[−τ,0]
g(x)h(x)ϕ(x) dx.

Let η1, η2 be two elements in C([τ, 0]) ⊂ L2([−τ, 0]),

M([−τ,0]2)〈µ
ϕ, η1 ⊗ η2〉C([−τ,0]2) = 〈µϕ(dx, dy), η1(x) · η2(y)〉 =

∫
[−τ,0]2

η1(x)η2(y)ϕ(x)δy(dx)dy =

=
∫

[−τ,0]

η1(x)η2(x)ϕ(x)dx

and

〈Tϕ, η1 ⊗ η2〉 = T (η1, η2) =
∫

[−τ,0]

η1(x)η2(x)ϕ(x)dx

For instance if ϕ is the constant function equal to 1, then diagonal measure µ1 corresponds to the

inner product in L2([−τ, 0]) in the sense that

〈µ1, η1 ⊗ η2〉 = T 1(η1, η2) = 〈η1, η2〉L2([−τ,0]).

Remark 4.13. We recall that the bilinear functions in L2
B([−τ, 0]2) identified with L2([−τ, 0]2), can

be also observed as a subspace of M([−τ, 0]2).

4.3 Definition of χ-quadratic variation and some related results

In this section, we introduce the definition of the χ-quadratic variation of a B-valued stochastic process

X.

Let χ be a Chi-subspace, X be a B-valued stochastic process and ε > 0. We denote by [X,X]ε, or simply

by [X]ε, the following application

[X]ε : χ −→ C([0, T ])

defined by

φ 7→

(∫ t

0

〈φ,
J
(
(Xs+ε −Xs)⊗2

)
ε

〉 ds

)
t∈[0,T ]

where the canonical injection J between a space and its bidual was introduced in section 2.1. In the sequel

J will be often omitted. With this application it is possible to associate another one, denoted by [̃X,X]
ε

,

or simply by [̃X]ε, defined by

[̃X]
ε
(ω, ·) : [0, T ] −→ χ∗



42 CHAPTER 4. CHI-QUADRATIC VARIATION

such that

t 7→
(
φ 7→ 1

ε

∫ t

0

〈φ, J
(
(Xs+ε −Xs)⊗2

)
〉 ds
)
.

We observe that it is of bounded variation.

Remark 4.14. We recall that χ ⊂ (B⊗̂πB)∗ then (B⊗̂πB) ⊂ (B⊗̂πB)∗∗ ⊂ χ∗. In this context 〈·, ·〉
indicates the duality between the space χ and its dual χ∗. φ is in fact an element of χ and (Xs+ε −Xs)⊗2 ∈
B⊗̂πB, then J

(
(Xs+ε −Xs)⊗2

)
∈ (B⊗̂πB)∗∗ ⊂ χ∗. In the case B = C([−τ, 0]), we will identify η1 ⊗ η2

in (B⊗̂πB) ⊂ (B⊗̂πB)∗∗ ⊂ χ∗ with the element η in C([−τ, 0]2) defined by η(x, y) = η1(x) · η2(y). In this

context, all the considered Chi-subspaces will be subspaces of M([−τ, 0]2) and the pair duality between χ

and χ∗ will be compatible with the pair duality between a measure µ and the continuous function η.

Definition 4.15. Let χ be a Chi-subspace of (B⊗̂πB)∗ and X a B-valued stochastic process. We say that

X admits a χ-quadratic variation if the following assumptions are fulfilled.

H1 For all (εn) ↓ 0 it exists a subsequence (εnk) such that

sup
k

∫ T

0

sup
‖φ‖χ≤1

∣∣∣∣∣〈φ, (Xs+εnk
−Xs)⊗2

π

εnk
〉

∣∣∣∣∣ ds = sup
k

1
εnk

∫ T

0

∥∥∥J ((Xs+εnk
−Xs)⊗2

π

)∥∥∥
χ∗
ds <∞

(4.18)

H2 (i) It exists an application χ −→ C([0, T ]), denoted by [X,X] or simply by [X], such that [X,X]ε(φ)
ucp−−→

[X,X](φ) when ε→ 0+ for every φ ∈ χ ⊂ (B⊗̂πB)∗.

(ii) There is a bounded variation process [̃X,X](ω, ·) : [0, T ] −→ χ∗ such that [̃X,X](ω, t)(φ) =

[X,X](φ)(ω, t). This application will be denoted also by [̃X].

Remark 4.16. 1. Under Assumption H2(i), for fixed (ω, t) the application φ 7→ [X,X](φ)(ω, t) is

linear, however for fixed (ω, t) it could be not continuous.

2. The H2(ii) condition can be omitted in most cases using Corollary 4.30.

When X admits a χ-quadratic variation, we will call χ-quadratic variation of X the χ∗-valued process

([̃X])0≤t≤T defined for every ω ∈ Ω and t ∈ [0, T ] by φ 7→ [̃X](ω, t)(φ) = [X](φ)(ω, t). Sometimes, with a

slight abuse of notation, even [X] will be called χ-quadratic variation and it will be confused with [̃X].

Remark 4.17. 1. A practical criterion to verify Condition H1 is

1
ε

∫ T

0

∥∥J ((Xs+ε −Xs)⊗2
π

)∥∥
χ∗
ds ≤ B(ε) (4.19)

where B(ε) converges in probability. In fact convergence in probability is equivalent with convergence

a.s. of a subsequence, and the convergence implies the boundness.
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2. A consequence of Condition H1 is that for all (εn) ↓ 0 it exists a subsequence (εnk) such that

sup
k
‖[̃X]

εnk ‖V ar[0,T ] <∞ a.s. (4.20)

In fact ‖[̃X]
ε
‖V ar[0,T ] ≤ 1

ε

∫ T
0
‖J
(
(Xs+ε −Xs)⊗2

π

)
‖χ∗ds. This implies that for a χ-valued continuous

stochastic process Y the integral
∫ t

0
〈Ys, d[̃X]

εnk
s 〉 is a well-defined Lebesgue-Stieltjes type integral for

almost all ω ∈ Ω.

Definition 4.18. We say that a continuous B-valued process X admits global quadratic variation if it

admits a χ-quadratic variation with χ = (B⊗̂πB)∗. We will also say that X is a finite quadratic variation

process.

Proposition 4.19. Let X be a B-valued process and χ1, χ2 be two Chi-subspaces. Let χ = χ1 ⊕ χ2. If

X admits χi-quadratic variation [X]i for i = 1, 2 then it admits a χ-quadratic variation [X] and it holds

[X](φ) = [X]1(φ1) + [X]2(φ2) for all φ ∈ χ with unique decomposition φ = φ1 + φ2.

Proof. χ is a Chi-subspace because of Proposition 4.3. We remark that for all possible norm in χ1 ⊕ χ2

we have ‖φ‖χ ≥ ‖φi‖χi . Then condition H1 follows immediately by inequality∫ T

0

sup
‖φ‖χ1⊕χ2≤1

∣∣〈φ, (Xs+ε −Xs)⊗2
∣∣ ds ≤ ∫ T

0

sup
‖φ1‖χ1≤1

∣∣〈φ1, (Xs+ε −Xs)⊗2
∣∣ ds+

+
∫ T

0

sup
‖φ2‖χ2≤1

∣∣〈φ2, (Xs+ε −Xs)⊗2
∣∣ ds

Condition H2(i) follows by linearity; in fact

[X]ε(φ) =
∫ t

0

〈φ1 + φ2, (Xs+ε −Xs)⊗2〉ds =

=
∫ t

0

〈φ1, (Xs+ε −Xs)⊗2〉ds+
∫ t

0

〈φ2, (Xs+ε −Xs)⊗2〉ds ucp−−−→
ε→0

[X]1(φ1) + [X]2(φ2)

We also have [̃X](t)(φ) = [X](φ)(t) = [̃X]1(t)(φ1) + [̃X]2(t)(φ2). [̃X] has bounded variation because

‖[̃X]‖V ar[0,T ] ≤ ‖[̃X]1‖V ar[0,T ] + ‖[̃X]2‖V ar[0,T ] a.s., then H2(ii) follows. Finally X admits χ-quadratic

variation [X] and it is equal to [X](φ) = [X]1(φ1) + [X]2(φ2).

Proposition 4.20. Let X be a B-valued stochastic process and χ1 χ2 two Chi-subspaces such that

χ1 ⊂ χ2 ⊂ (B⊗̂πB)∗ densely embedded, i.e. ‖φ‖χ1 ≥ ‖φ‖χ2 ≥ ‖φ‖(B⊗̂πB)∗ for all φ ∈ χ1.

If X admits a χ2-quadratic variation [X]2, then it admits also a χ1-quadratic variation [X]1 and it holds

[X]1(φ) = [X]2(φ) for all φ ∈ χ1.
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Proof. We remark that (Xs+ε−Xs)⊗2 is an element in (B⊗̂πB) ⊂ (B⊗̂πB)∗∗ ⊂ χ∗2 ⊂ χ∗1. Assumption H1

follows immediately using the inequality
∥∥(Xs+ε −Xs)⊗2

∥∥
χ∗1
≤
∥∥(Xs+ε −Xs)⊗2

∥∥
χ∗2

. Assumption H2(i) is

trivially verified because for all φ ∈ χ1 by hypothesis we have [X]ε(φ)
ucp−−−→
ε→0

[X]2(φ). Moreover [̃X]1(t)(φ) =

[X]1(φ)(t) = [̃X]2(t)(φ) and ‖[̃X]1‖V ar[0,T ] ≤ ‖[̃X]2‖V ar[0,T ]. So that also point (ii) of condition H2 is

established. We conclude that X admits χ1-quadratic variation and it holds [X]1(φ) = [X]2(φ) for all

φ ∈ χ1.

Remark 4.21. 1. On the contrary, let χ1 χ2 be two Chi-subspaces such that χ1 ⊂ χ2 ⊂ (B⊗̂πB)∗ as

for Proposition 4.20, it may happens that a B-valued process X does not admit a (B⊗̂πB)∗-quadratic

variation or not even a χ2-quadratic variation but it admits a χ1-quadratic variation. For this reason

the fact to introduce a subspace of (B⊗̂πB)∗ give much more possibilities of calculus.

2. It is obvious that if Condition H1 is verified for χ2 than Condition H1 is verified for χ1. In fact

if A := {φ ∈ χ1 ; ‖φ‖χ1≤1} and B := {φ ∈ χ2 ; ‖φ‖χ2≤1}, then A ⊂ B and
∫ t

0
supA |〈φ, (Xs+ε(·) −

Xs(·))⊗2〉|ds ≤
∫ t

0
supB |〈φ, (Xs+ε(·)−Xs(·))⊗2〉|ds.

3. We anticipate that the C([−τ, 0])-valued window Brownian motion admits a χ2-quadratic variation

but it does not have M([−τ, 0]2)-quadratic variation. This will be seen in details in chapter 5.

We continue with some general properties of χ-quadratic variation.

Lemma 4.22. If the sequence of random variables defined, for every ε, by 1
ε

∫ T
0
‖J
(
(Xs+ε −Xs)⊗2

)
‖χ∗ ds

converge to 0 in probability then X admits a zero χ-quadratic variation.

Proof. Condition H1 is verified because of Remark 4.17(1). We verify H2(i) directly. For every fixed

φ ∈ χ we have

|[X,X]ε(φ)(t)| =
∣∣∣∣∫ t

0

〈φ, (Xs+ε −Xs)⊗2

ε
〉 ds
∣∣∣∣ ≤ ∫ t

0

∣∣∣∣〈φ, (Xs+ε −Xs)⊗2

ε
〉
∣∣∣∣ ds ≤ ∫ T

0

∣∣∣∣〈φ, (Xs+ε −Xs)⊗2

ε
〉
∣∣∣∣ ds

then we obtain

sup
t∈[0,T ]

|[X,X]ε(φ)(t)| ≤
∫ T

0

∣∣∣∣〈φ, (Xs+ε −Xs)⊗2

ε
〉
∣∣∣∣ ds ≤ ‖φ‖χ 1

ε

∫ T

0

‖J
(
(Xs+ε −Xs)⊗2

)
‖χ∗ ds

P−→ 0

in probability by the hypothesis of the lemma. This allows to conclude.

An important proposition used later to prove Itô’s formula is the following.

Proposition 4.23. Let Fn : χ −→ C([0, T ]) be a sequence of linear continuous maps and F̃n(ω, ·) :

[0, T ] −→ χ∗a.s. such that F̃n(ω, t)(φ) := Fn(φ)(ω, t). We suppose the following:

i) it exists a linear continuous map F : χ −→ C([0, T ]) such that for all t ∈ [0, T ] and for every φ ∈ χ
Fn(φ)(·, t) −→ F (φ)(·, t) in probability.

Moreover it exists F̃ (ω, ·) : [0, T ] −→ χ∗ of bounded variation defined by F̃ (ω, t)(φ) := F (φ)(ω, t).
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ii) for all (nk) it exists (nkj ) such that supj ‖F̃
nkj ‖V ar[0,T ] <∞.

Then for every t ∈ [0, T ] and every continuous process H : Ω× [0, T ] −→ χ∫ t

0

〈H(·, s), dF̃n(·, s)〉 −→
∫ t

0

〈H(·, s), dF̃ (·, s)〉 in probability. (4.21)

Proof. Let t ∈ [0, T ] fixed. Let δ > 0 and a subdivision of [0, t] 0 = t0 < t1 < · · · < tm = t with mesh

smaller than δ. Let (nk) be a sequence diverging to infinity and (nkj ) a subsequence according to ii. We

denote

I(n)(ω) :=
∫ t

0

〈H(ω, s), dF̃n(ω, s)〉 −
∫ t

0

〈H(ω, s), dF̃ (ω, s)〉

Up to a further subsequence, that in general will always be denoted by (nkj), we need to prove that

I(nkj )(ω)→ 0 a. s. (4.22)

In fact, for ω ∈ Ω we have

∣∣I(nkj )(ω)
∣∣ =

∣∣∣∣∣
m∑
i=1

(∫ ti

ti−1

〈H(ω, s), dF̃nkj (ω, s)〉 − 〈H(ω, s), dF̃ (ω, s)〉

)∣∣∣∣∣ ≤
≤

m∑
i=1

∣∣∣∣∣
∫ ti

ti−1

〈H(ω, s)−H(ω, ti−1) +H(ω, ti−1), dF̃nkj (ω, s)〉+

−
∫ ti

ti−1

〈H(ω, s)−H(ω, ti−1) +H(ω, ti−1), dF̃ (ω, s)〉

∣∣∣∣∣ ≤
≤ I1(nkj )(ω) + I2(nkj )(ω) + I3(nkj )(ω)

where

I1(nkj )(ω) =
m∑
i=1

∣∣∣∣∣
∫ ti

ti−1

〈H(ω, s)−H(tω,i−1 ), dF̃nkj (ω, s)〉

∣∣∣∣∣ ≤ $(H(ω, ·), δ) sup
j
‖F̃nkj (ω)‖V ar[0,T ]

I2(nkj )(ω) =
m∑
i=1

∣∣∣∣∣
∫ ti

ti−1

〈H(ω, s)−H(ω, ti−1), dF̃ (ω, s)〉

∣∣∣∣∣ ≤ $(H(ω, ·), δ) ‖F̃ (ω)‖V ar[0,T ]

I3(nkj )(ω) =
m∑
i=1

∣∣∣∣∣
∫ ti

ti−1

〈H(ω, ti−1), d(F̃nkj (ω, s)− F̃ (ω, s))〉

∣∣∣∣∣ =

=
m∑
i=1

∣∣∣〈H(ω, ti−1), F̃nkj (ω, ti)− F̃ (ω, ti)− F̃nkj (ω, ti−1) + F̃ (ω, ti−1)〉
∣∣∣ ≤

≤
m∑
i=1

|Fnkj (H(ω, ti−1))(ω, ti)− F (H(ω, ti−1))(ω, ti)|+

m∑
i=1

|Fnkj (H(ω, ti−1))(ω, ti−1)− F (H(ω, ti−1))(ω, ti−1)|
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The notation $(H(ω, ·), δ) indicates the modulus of continuity for H and it is a random variable, in fact it

depends on ω in the sense that

$(H(ω, ·), δ) = sup
|s−t|≤δ

‖H(ω, s)−H(ω, t)‖χ

Assumption i implies that I3(nkj )(·) → 0 in probability because Fn(φ)(·, t) → F (φ)(·, t) for all

φ = H(ω, ti), i = 0, . . . ,m. After extracting a further subsequence we can suppose that I3(nkj )(·)→ 0 a.s.

for j → +∞. Therefore a.s.

lim sup
j→∞

|I(nkj )(ω)| ≤
(

sup
j
‖F̃nkj (ω)‖V ar[0,T ] + ‖F̃ (ω)‖V ar[0,T ]

)
$(H(ω, ·), δ) (4.23)

Since δ > 0 is arbitrary and H is uniformly continuous on [0, t] so that $(H(·, ·), δ) → 0 a.s. for δ → 0,

then lim supj→∞ |I(nkj )(·)| = 0 a.s..

This concludes (4.22) and the proof of the Propositon.

Corollary 4.24. Let X be a B-valued stochastic process with χ-quadratic variation and H a continuous

measurable process H : Ω× [0, T ] −→ χ. Then for every t ∈ [0, T ]∫ t

0

〈H(·, s), d[̃X]
ε
(·, s)〉 −→

∫ t

0

〈H(·, s), d[̃X](·, s)〉 (4.24)

in probability.

Proof. The proof follows from Proposition 4.23 and definition of χ-quadratic variation. Of course the ucp

convergence implies in fact the convergence in probability for every t ∈ [0, T ].

An important theorem for Banach valued stochastic integration is given below. It will be a consequence

of Banach-Steinhaus type result for Fréchet spaces, see Theorem II.1.18, pag. 55 in [17]. We start with a

remark.

Remark 4.25. 1. In the mentioned Banach-Steinhaus theorem intervenes the following notion. Let E

be a Fréchet spaces, F -space shortly. A subset B of E is called bounded if for all ε > 0 it exists δε
such that for all 0 < α ≤ δε, αB is included in the open ball B(0, ε).

2. Let (Y n) be a sequence of random elements with values in a Banach space (B, ‖ · ‖B) such that

supn ‖Y n‖B ≤ Z a.s. for some positive random variable Z. Then (Y n) is bounded in the F -space of

random elements equipped with the convergence in probability equipped with the metric

d(X,Y ) = E [‖X − Y ‖ ∧ 1] .

In fact by Lebesgue dominated convergence theorem we have limγ→0 E[γZ ∧ 1] = 0.
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3. In particular taking B = C([0, T ]) a sequence of continuous processes (Y n) such that supt≤T |Y nt | ≤ Z
a.s. is bounded for the usual metric in C([0, T ]) equipped with the topology related to the ucp

convergence.

Theorem 4.26. Let Fn : χ −→ C([0, T ]) be a sequence of linear continuous maps such that Fn(φ)(0) = 0

a.s. and such Fn(φ)(ω, t) = F̃n(ω, t)(φ) where F̃n(ω, ·) : [0, T ] −→ χ∗ a.s.

We suppose the following:

i) supn ‖F̃n‖V ar <∞ a.s.

ii) There is a subset S ⊂ χ such that Span(S) = χ and a linear application F : S −→ C([0, T ]) such that

Fn(φ) −→ F (φ) ucp for every φ ∈ S.

Then there is a linear and continuous extension F : χ −→ C([0, T ]) and there is F̃ : Ω× [0, T ] −→ χ∗ such

that F̃ (ω, t)(φ) = F (φ)(ω, t). Moreover the following properties hold:

a) For every φ ∈ χ, Fn(φ)
ucp−−→ F (φ). In particular for every t ∈ [0, T ], φ ∈ χ, Fn(φ)(·, t) P−→ F (φ)(ω, t).

b) ‖F̃‖V ar <∞ a.s.

Remark 4.27. 1) Given G : χ −→ C([0, T ]) we can associate G̃ : [0, T ] −→ χ∗ setting G̃(t)(φ) = G(φ)(t).

G̃ : [0, T ] −→ χ∗ has bounded variation if

‖G̃‖V ar[0,T ] = sup
σ∈Σ[0,T ]

∑
(ti)i∈σ

∥∥∥G̃(ti+1)− G̃(ti)
∥∥∥
χ∗

= sup
σ∈Σ[0,T ]

∑
(ti)i∈σ

sup
‖φ‖χ≤1

|G(φ)(ti+1)−G(φ)(ti)| <∞

This quantity is called total variation of G̃.

For example if G(φ) =
∫ t

0
Ġs(φ) ds then ‖G‖V ar =

∫ T
0

sup‖φ‖χ≤1 |Ġs(φ)| ds.

2) Unfortunately the situation is more complicated for stochastic processes. Let F : χ −→ C([0, T ]). For

every φ ∈ χ, F (φ) ∈ C([0, T ]) a.s. and we associate F̃ (ω, t)(φ) = F (φ)(ω, t). It may happen that

for fixed ω ∈ Ω, t ∈ [0, T ] the linear form F̃ (ω, t) is not continuous. In fact given φn −→ φ in χ,

F (φn) −→ F (φ) in C([0, T ]) with the ucp convergence, then there is only a subsequence such that

F (φnk) −→ F (φ) a.s. in C([0, T ]).

Proof of the Theorem 4.26.

a) We recall that C([0, T ]) is an F -space. It holds supt∈[0,T ] |Fn(φ)(t)| ≤ supn ‖F̃n‖V ar‖φ‖ <∞ a.s. by

the hypothesis. By Remark 4.25(2,3) it follows that the set {Fn(φ)} is a bounded subset of the

F -space C([0, T ]) for every fixed φ ∈ S.

We can apply the mentioned Banach-Steinhaus type theorem, which implies the existence of F : χ −→
C([0, T ]) linear and continuous such that Fn(φ) −→ F (φ) ucp for every φ ∈ χ. So a) is established.
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b.1) Let (nk) be a sequence, for ω ∈ Ω, t ∈ [0, T ] and φ ∈ χ we set

F̃ (ω, t)(φ) = F (φ)(ω, t) and F̃nk(ω, t)(φ) = Fnk(φ)(ω, t).

We first prove the existence of a suitable version F̃ of F such that F̃ (ω, ·) : [0, T ] −→ χ∗ is weakly

star continuous ω a.s.

Since χ is separable, we consider a dense countable subset D ⊂ χ. Point a) implies that for a fixed

φ ∈ D there is a further subsequence (nk) such that Fnk(φ)(ω, t) −→ F (φ)(ω, t) for all t ∈ [0, T ] a.s.

Since D is countable there is a null set N0 and subsequence (nk) such that

Fnk(φ)(ω, t) −→ F (φ)(ω, t) ∀ t ∈ [0, T ], ∀φ ∈ D, ∀ω /∈ N0 (4.25)

Let t ∈ [0, T ], ω /∈ N0 the sequence

F̃nk(ω, t) : χ −→ R

are linear continuous forms such that

• F̃nk(ω, t)(φ) −→ F̃ (ω, t)(φ) for all φ ∈ D, because of (4.25).

• supk |F̃nk(ω, t)(φ)| ≤ supk sup‖φ‖≤1 |F̃nk(ω, t)(φ)| ‖φ‖ ≤ supk ‖F̃nk(ω, t)‖V ar‖φ‖ <∞ a.s.

Banach Steinhaus thereom for Banach spaces implies the existence of

F̃ (ω, t) : χ −→ R

linear continuous form extending previous map F̃ (ω, t) from D to χ with

F̃nk(ω, t)(φ) −→ F̃ (ω, t)(φ) ∀ t ∈ [0, T ], ∀φ ∈ χ, ∀ω /∈ N0

Moreover, for every ω /∈ N0 the application

F̃ (ω, ·) : [0, T ] −→ χ∗ t 7→ F̃ (ω, t)

is weakly star continuous, i.e. for tn → t, F̃ (ω, tn)(φ)→ F̃ (ω, t)(φ) for all φ ∈ χ. F̃ (ω, ·) is measurable

from [0, T ] to χ∗ being limit of measurable functions.

b.2) We prove now that the χ∗-valued process F̃ has bounded variation.

Let ω /∈ N0 fixed again. Let (ti)Ni=0 be a subdivision of [0, T ] and let φ ∈ χ. Since the functions

F ti,ti+1 : φ −→
(
F̃ (ti+1)− F̃ (ti)

)
(φ) Fnk,ti,ti+1 : φ −→

(
F̃nk(ti+1)− F̃nk(ti)

)
(φ)

belong to χ∗, Banach-Steinhaus theorem says

sup
‖φ‖≤1

∣∣∣(F̃ (ti+1)− F̃ (ti)
)

(φ)
∣∣∣ = ‖F ti,ti+1‖χ∗ ≤ lim inf

k→∞
‖Fnk,ti,ti+1‖χ∗ =
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= lim inf
k→∞

sup
‖φ‖≤1

∣∣∣(F̃nk(ti+1)− F̃nk(ti)
)

(φ)
∣∣∣

Taking the sum over i = 0, . . . , (N − 1) we get

N−1∑
i=0

sup
‖φ‖≤1

∣∣∣(F̃ (ti+1)− F̃ (ti)
)

(φ)
∣∣∣ ≤ N−1∑

i=0

lim inf
k→∞

sup
‖φ‖≤1

∣∣∣(F̃nk(ti+1)− F̃nk(ti)
)

(φ)
∣∣∣ ≤

≤ sup
k

N−1∑
i=0

sup
‖φ‖≤1

∣∣∣(F̃nk(ti+1)− F̃nk(ti)
)

(φ)
∣∣∣ ≤ sup

k
‖F̃nk‖V ar

where the second inequality is justified by the relation lim inf ani + lim inf bni ≤ sup(ani + bni ).

Taking the sup over all subdivision (ti)Ni=0 we obtain

‖F̃‖V ar ≤ sup
k
‖F̃nk‖V ar <∞

This shows finally the fact that F̃ (ω, ·) : [0, T ] −→ χ∗ has bounded variation.

Corollary 4.28. We can replace condition ii) in Therem 4.26 with

ii’) There is a subset S ⊂ χ such that Span(S) = χ and a linear application F : S −→ C([0, T ]) such that

for every φ ∈ S.

• Fn(φ)(t) −→ F (φ)(t) for every t ∈ [0, T ] in probability

• Fn(φ) is an increasing process.

Proof. Since for every φ ∈ S, F (φ) is an increasing process, Lemma 2.1 implies that Fn(φ) −→ F (φ) ucp

for every φ ∈ S, so ii) is established.

Important implications of Theorem 4.26 and its Corollary 4.28 are Corollaries 4.29 and 4.30, which

gives us easier conditions for existence of χ-quadratic variation. We will replace H2 with convergence in

probability in a generator system S of χ.

Corollary 4.29. Let B be a Banach space, χ ⊂ (B⊗̂πB)∗ be a Chi-subspace and X a B-valued stochastic

process. We suppose the following

H0’ There is S ⊂ χ such that Span(S) = χ.

H1 For every sequence (εn) ↓ 0 there is a subsequence (εnk) such that

sup
k

∫ T

0

sup
‖φ‖χ≤1

∣∣∣∣∣〈φ, (Xs+εnk
−Xs)⊗2

π

εnk
〉

∣∣∣∣∣ ds < +∞

and
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H2’ There is T : χ −→ C([0, T ]) such that [X,X]ε(φ)(t)→ T (φ)(t) ucp for all φ ∈ S.

Then X admits a χ-quadratic variation and it is equal to T .

Proof. Condition H1 is verified by assumption. Conditions H2(i) and (ii) follow by Theorem 4.26.

Corollary 4.30. Let B be a Banach space, χ ⊂ (B⊗̂πB)∗ be a Chi-subspace and X a B-valued stochastic

process. We suppose the following

H0” There are subsets S, Sp of χ such that Span(S) = χ, Span(S) = Span(Sp) and Sp is constituted by

positive definite elements φ in the sense that 〈φ, b⊗ b〉 ≥ 0 for all b ∈ B.

H1 For every sequence (εn) ↓ 0 there is a subsequence (εnk) such that

sup
k

∫ T

0

sup
‖φ‖χ≤1

∣∣∣∣∣〈φ, (Xs+εnk
−Xs)⊗2

π

εnk
〉

∣∣∣∣∣ ds < +∞

and

H2” There is T : χ −→ C([0, T ]) such that [X,X]ε(φ)(t)→ T (φ)(t) in probability for every φ ∈ S and for

every t ∈ [0, T ].

Then X admits a χ-quadratic variation and it is equal to T .

Proof. We verify the conditions of Corollary 4.29. Conditions H0’ and H1 are verified by assumption.

We observe that for every φ ∈ Sp, [X,X]ε(φ) is an increasing process. By linearity, it follows that for

any φ ∈ Sp, [X,X]ε(φ)(t) converges in probability to T (φ)(t) for any t ∈ [0, T ]. Lemma 2.1 implies that

[X,X]ε(φ) converges ucp for every φ ∈ Sp and therefore in S. Conditions H2’ of Corollary 4.29 is now

verified.



Chapter 5

Evaluations of χ-quadratic variations

In this chapter, for simplicity of exposition, we will consider in most of the cases τ = T . Only when it

is really necessary in view of furthers applications we develop computations also for τ < T . We start with

some examples of χ-quadratic variation calculated directly through the definition.

Proposition 5.1. Let X be a real valued process with Hölder continuous paths of parameter γ > 1/2.

Then the C([−T, 0])-valued process X(·) admits a zero global quadratic variation.

Proof. Since the injection J : B → B∗∗ is isometric, quantity

1
ε

∫ T

0

∥∥(Xs+ε(·)−Xs(·))⊗2
∥∥

(B⊗̂πB)∗∗
ds (5.1)

equals

1
ε

∫ T

0

∥∥(Xs+ε(·)−Xs(·))⊗2
∥∥
B⊗̂πB

ds =
1
ε

∫ T

0

‖Xs+ε(·)−Xs(·)‖2C[−T,0] ds

=
1
ε

∫ T

0

sup
u∈[−T,0]

|Xs+u+ε −Xs+u|2 ds

Since X is a.s. γ-Hölder continuous this is bounded by Z(ε) := ε2γ−1 Z T where Z is a non-negative finite

random variable. This implies that (5.1) converges to zero a.s. for γ > 1
2 . Lemma 4.22 implies that the

process admits zero global quadratic variation.

Remark 5.2. By Proposition 4.20 every window process associated to a continuous process with Hölder

continuous paths of parameter γ > 1/2 admits zero χ-quadratic variation for every Chi-subspace χ, for

instance χ =M([−T, 0]2).

Definition 5.3. The fractional Brownian motion BH of Hurst parameter H ∈ (0, 1] is a centered

Gaussian process with covariance

RH(t, s) =
1
2
(
|t|2H + |s|2H − |t− s|2H

)
51
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If H = 1/2 it corresponds to a classical Brownian motion. The process is Hölder continuous of order γ for

any γ ∈ (0, H). This follows from the Kolmogorov criterion, see [30].

Definition 5.4. The bifractional Brownian motion BH,K is a centered Gaussian process with covari-

ance

RH,K(t, s) =
1

2K
(
(t2H + s2H)K − |t− s|2HK

)
with H ∈ (0, 1) and K ∈ (0, 1]. Notice that if K = 1, then BH,1 coincides with a fractional Brownian

motion with Hurst parameter H ∈ (0, 1).

We recall some properties about quadratic variation in the particular case HK = 1/2 from Proposition 1 in

[39]. If K = 1, then H = 1/2 and it is a Brownian motion. If K 6= 1, it provides an example of a Gaussian

process, having non-zero finite quadratic variation which in particular equals 21−Kt, so, modulo a constant,

the same as Brownian motion. The process is Hölder continuous of order γ for any γ ∈ (0, HK). This

follows again from Kolmogorov criterion.

Remark 5.5. As consequences of Proposition 5.1 we have the following properties.

1. The fractional window Brownian motion BH(·) with H > 1/2 admits a zero global quadratic variation.

2. The bifractional window Brownian motion BH,K(·) with KH > 1/2 admits a zero global quadratic

variation.

Remark 5.6. We recall that a Brownian motion W has Hölder continuous paths of parameter γ < 1/2 so

that we can not use Proposition 5.1.

Remark 5.7. In principle the window Brownian motion W (·) does not admit even a M([−T, 0]2)-

quadratic variation because the first condition is not verified. However we do not have a formal proof of

this. Presumably the window Brownian motion W (·) does not admit a global quadratic variation. In fact

setting B = C([−τ, 0]), it is possible to show that the expectation

lim
ε→0

E

[∫ T

0

1
ε
‖Wu+ε(·)−Wu(·)‖2B du

]
= +∞. (5.2)

This is a consequence of the following result.

Proposition 5.8. Let W be a classical Brownian motion. Let 0 < τ1 < τ2, then there are positive

constants C1, C2 such that

C1 ≤ E

[
sup

u∈[τ1,τ2]

|Wu+ε −Wu|2

ε ln(1/ε)
du

]
≤ C2

Proof. See [26].
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The following proposition constitutes an existence result of a χ-quadratic variations calculated with the

help of Corollaries 4.29 and 4.30.

Proposition 5.9. Let X be a real continuous process with finite quadratic variation [X]. Then

1) X(·) admits zero χ-quadratic variation, where χ = L2([−T, 0]2).

2) X(·) admits zero χ-quadratic variation for every i ∈ {0, . . . , N}, where χ = L2([−T, 0])⊗̂hDi([−T, 0]).

If moreover the covariation [X·+ai , X·+aj ] exists for a given i, j ∈ {0, . . . , N}, then

3) X(·) admits χ-quadratic variation which equals

[X(·)]t(µ) = µ({ai, aj})[X·+ai , X·+aj ]t. (5.3)

where χ = Di,j([−T, 0]2).

Proof. Example 4.5 says that the three involved sets χ are Chi-subspaces. Let {ej}j∈N be a basis for

L2([−T, 0]); {fi = δai} is clearly a basis for Di. Then {ei ⊗ ej}i,j∈N is a basis of L2([−T, 0]2), {ej ⊗ fi}j∈N

is a basis of L2([−T, 0])⊗̂hDi([−T, 0]) and {fi ⊗ fj} is a basis of Di,j([−T, 0]2). We will show the result

using Corollary 4.30. To verify Condition H1 we consider

A(ε) :=
1
ε

∫ T

0

sup
‖φ‖χ≤1

∣∣〈φ, (Xs+ε(·)−Xs(·))⊗2〉
∣∣ ds

for the three Chi-subspaces. In all the three situations we will show the existence of a family of random

variables {B(ε)} converging in probability to some random variable B, such that A(ε) ≤ B(ε) a.s. In

particular this clearly implies Assumption H1.

1) Suppose χ = L2([−T, 0]2). By Cauchy Schwarz inequality we have

A(ε) ≤ 1
ε

∫ T

0

sup
‖φ‖L2([−T,0]2)≤1

‖φ‖L2([−T,0]2) · ‖Xs+ε(·)−Xs(·)‖2L2([−T,0]) ≤

≤ 1
ε

∫ T

0

∫ s

0

(Xu+ε −Xu)2
du ds ≤ B(ε)

where

B(ε) = T

∫ T

0

(Xu+ε −Xu)2

ε
du

which converges in probability to T [X]T .

2) We proceed now similarly for χ = L2([−T, 0])⊗̂hDi([−T, 0]). We consider φ of the form φ = φ̃⊗λiδ{ai},
where φ̃ is an element of L2([−T, 0]), λiδ{ai} is an element of Di. We first recall

‖φ‖L2([−T,0])⊗̂hDi =
∥∥∥φ̃∥∥∥

L2([−T,0])
·
∥∥λiδ{ai}∥∥Di =

√∫
[−T,0]

φ̃(s)2 ds
√
λ2
i
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Then

A(ε) =
1
ε

∫ T

0

sup
‖φ‖L2([−T,0])⊗̂hDi

≤1

∣∣∣∣∣λi (Xs+ε(ai)−Xs(ai))
∫

[−T,0]

(Xs+ε(x)−Xs(x)) φ̃(x) dx

∣∣∣∣∣ ds ≤
≤ 1
ε

∫ T

0

sup
‖φ‖≤1

(√
λ2
i

√
(Xs+ε(ai)−Xs(ai))

2

)
·

·

(∥∥∥φ̃∥∥∥
L2([−T,0])

√∫
[−T,0]

(Xs+ε(x)−Xs(x))2
dx

)
ds ≤

≤
∫ T

0

1
ε

√
(Xs+ε(ai)−Xs(ai))

2

√∫
[−T,0]

(Xs+ε(x)−Xs(x))2
dx ds ≤ B(ε)

where

B(ε) =
∫ T

0

(Xy+ε −Xy)2

ε
dy

sequence that converges in probability to [X]T .

3) For the last case χ = Di,j([−T, 0]2) we consider a general element φ = λiδ{ai}⊗µjδ{aj} = λiµjδ{(ai,aj)},

λi, µj in R. Its norm is defined by ‖φ‖Di,j =
√
λ2
iµ

2
i . Then, again using Cauchy Schwarz inequality,

A(ε) =
1
ε

∫ T

0

sup
‖φ‖Di,j≤1

∣∣λiµj (Xs+ai+ε −Xs+ai)
(
Xs+aj+ε −Xs+aj

)∣∣ ds ≤
≤ 1
ε

∫ T

0

∣∣(Xs+ai+ε −Xs+ai)
(
Xs+aj+ε −Xs+aj

)∣∣ ds ≤
≤

√∫ T

0

(Xs+ai+ε −Xs+ai)
2

ε
ds

√∫ T

0

(
Xs+aj+ε −Xs+aj

)2
ε

ds ≤ B(ε)
(5.4)

where

B(ε) =
∫ T

0

(Xs+ε −Xs)
2

ε
ds

We verify now Conditions H0” and H2”.

1) A general element in {ei ⊗ ej}i,j∈N is different of two positive definite elements in {ei⊗2, (ei +

ej)⊗2}i,j∈N. Therefore we set S = {ei ⊗ ej}i,j∈N and Sp = {ei⊗2, (ei + ej)⊗2}i,j∈N. This implies

H0”. It remains to verify

[X(·)]ε(ei ⊗ ej)(t) −→ 0 (5.5)

in probability for any i, j ∈ N in order to conclude the validity of Condition H2”. Without restriction

of generality we can suppose {ei}i∈N ∈ C1([−T, 0]). We fix ω ∈ Ω, fixed but omitted. We have

[X(·)]ε(ei ⊗ ej)(t) =
∫ t

0

γ(s, ε)
∫ 0

−s
ei(x) (Xs+x+ε −Xs+x) dx ds (5.6)
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where

γ(s, ε) =
1
ε

∫ 0

−s
ej(y) (Xs+y+ε −Xs+y) dy

Now for every s ∈ [0, T ], a.s.

γ(s, ε) −→ Xsej(0)−
∫ 0

−s
Xs+ydej(y)

and for every s ∈ [0, T ], ε > 0,

|γ(s, ε)| ≤ sup
t∈[0,T ]

|Xt| ‖ej‖∞ + sup
t∈[0,T ]

|Xt|
∫ T

0

ėj(y)dy

Consequently Lebesgue dominated convergence theorem implies that

[X(·)]ε(ei ⊗ ej)(t) −→ 0

a.s. and therefore (8.1).

2) A general element in {ej⊗fi}j∈N is different of two positive definite elements of type {ej⊗2, fi⊗2, (ej+

fi)⊗2}j∈N. This shows H0”. It remains to show that

[X(·)]ε (ej ⊗ fi) (t) −→ 0 (5.7)

in probability. In fact the left-hand side equals∫ t

0

γ(s, ε) (Xs+ai+ε −Xs+ai) ds

A similar argument as for point 1) shows the result.

3) A general element fi ⊗ fj is different of two positive definite elements (fi + fj)⊗2 and fi ⊗2 +fj⊗2.

So that Condition H0” is fulfilled. Concerning Condition H2” we have, for 0 ≤ i, j ≤ N ,

[X(·)]ε (fi ⊗ fj) (t) =
1
ε

∫ t

0

(Xs+ai+ε −Xs+ai)
(
Xs+aj+ε −Xs+aj

)
ds

This converges to [X·+ai , X·+aj ] which exists by hypothesis.

This finally concludes the proof of Proposition 5.9.

We recall that Dd, DA, χ2, χ0 and χ6 were defined respectively at (2.19), (2.17), (4.4), (4.6) and (4.12).

Corollary 5.10. Let X be a real continuous process with finite quadratic variation [X]. Then for every

i ∈ {0, . . . , N}
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4) X(·) admits a Di,i([−T, 0]2)-quadratic variation which equals

[X(·)]t(µ) = µ({ai, ai})[X·+ai , X·+ai ]t. (5.8)

5) X(·) admits a Dd([−T, 0]2)-quadratic variation which equals

[X(·)]t(µ) =
N∑
i=0

µ({ai, ai})[X]t+ai . (5.9)

6) X(·) admits a χ0([−T, 0]2)-quadratic variation which equals

[X(·)]t(µ) = µ({0, 0})[X]t. (5.10)

7) X(·) admits a χ6([−T, 0]2)-quadratic variation which equals

[X(·)]t(µ) =
N∑
i=0

µ({ai, ai})[X]t+ai (5.11)

Corollary 5.11. Let X be a real continuous process with covariation structure [X·+ai , X·+aj ] for every

i, j = 0, . . . , N , in particular it is has finite quadratic variation process [X]. Then

8) X(·) admits a DA([−T, 0]2)-quadratic variation which equals

[X(·)]t(µ) =
N∑

i,j=0

µ({ai, aj})[X·+ai , X·+aj ]t (5.12)

9) X(·) admits a χ2([−T, 0]2)-quadratic variation which equals

[X(·)]t(µ) =
N∑

i,j=0

µ({ai, aj})[X·+ai , X·+aj ]t (5.13)

Proof of Corollaries 5.10 and 5.11. Space χ2 admits a finite direct sum decomposition given by (4.5).

Also χ6, χ0, Dd and DA admit a finite direct sum decomposition by definition. Results follow using

Propositions 4.19 and 5.9

We mention a particular case of Corollary 5.11 that we will frequently meet in the paper.

Remark 5.12. Let X be a real continuous process with covariation structure such that [X·+ai , X·+aj ] = 0

for i 6= j. In this case the χ2([−T, 0]2)-quadratic variation of X(·) simplifies in

[X(·)]t(µ) =
N∑
i=0

µ({ai, ai})[X·+ai ]t =
N∑
i=0

µ({ai, ai})[X·]t+ai (5.14)
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Remark 5.13. We remark that in Corollary 5.10 (respectively in Corollary 5.11) the quadratic variation

[X] of the real finite quadratic variation process X (respectively the covariation structure of X) not only

insure the existence of χ-quadratic variation but complete determines the χ-quadratic variation. For

example if X is a real finite quadratic variation process such that [X]t = t, then X(·) has the same

χ0-quadratic variation as the window Brownian motion. On the contrary in Remark 5.12 all the covariation

structure of X is necessary to insure the existence of χ-quadratic variation even if it is completely determined

only by the quadratic variation [X].

Now we list two corollaries of Propositions 5.9 and 4.19 that will be useful in the application to Dirichlet

processes in chapter 6.3.

Corollary 5.14. Let V be a real continuous zero quadratic variation process. Then the associated window

process V (·) has zero DA([−τ, 0]2)-quadratic variation. In particular the associated window process of a

real bounded variation process has zero DA([−τ, 0]2)-quadratic variation.

Corollary 5.15. Let V be a real continuous zero quadratic variation process. Then V (·) has zero

χ2([−τ, 0]2)-quadratic variation.

Proposition 5.16. Let V a real absolutely continuous process such that V ′ ∈ L2([0, T ]) ω-a.s. Then the

associated window process V (·) has zero M([−τ, 0]2)-quadratic variation.

Proof. By hypothesis Vt − V0 =
∫ t

0
g(s) ds ω-a.s., with g ∈ L2([0, T ]) ω a.s..

Using Lemma 4.22, it will be enough to show the convergence to zero in probability of the quantity

∫ t

0

1
ε

sup
‖µ‖V ar≤1

∣∣∣∣∣
∫

[−τ,0]2
(Vs+ε(x1)− Vs(x1)) (Vs+ε(x2)− Vs(x2)) µ(dx1, dx2)

∣∣∣∣∣ ds (5.15)

for which we will even show the a.s. convergence. (5.15) equals

∫ t∧τ

0

1
ε

sup
‖µ‖V ar≤1

∣∣∣∣∣
∫

[−s,0]2
(Vs+ε(x1)− Vs(x1)) (Vs+ε(x2)− Vs(x2)) µ(dx1, dx2)

∣∣∣∣∣ ds+∫ t

t∧τ

1
ε

sup
‖µ‖V ar≤1

∣∣∣∣∣
∫

[−τ,0]2
(Vs+ε(x1)− Vs(x1)) (Vs+ε(x2)− Vs(x2)) µ(dx1, dx2)

∣∣∣∣∣ ds
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The proof for both integrals is similar, so we concentrate on the first one. It gives∫ t∧τ

0

1
ε

sup
‖µ‖V ar≤1

∣∣∣∣∣
∫

[−s,0]2

∫ s+x1+ε

s+x1

g(u)du
∫ s+x2+ε

s+x2

g(u)duµ(dx1, dx2)

∣∣∣∣∣ ds ≤
≤
∫ t∧τ

0

1
ε

sup
‖µ‖V ar≤1

∫
[−s,0]2

√
ε

∫ s+x1+ε

s+x1

g2(u)du

√
ε

∫ s+x2+ε

s+x2

g2(u)du |µ|(dx1, dx2)ds ≤

≤
∫ t∧τ

0

sup
x∈[−s,0]

[∫ s+x+ε

s+x

g2(u)du
]

sup
‖µ‖V ar≤1

∫
[−s,0]2

|µ|(dx1, dx2)ds ≤

≤
∫ t∧τ

0

sup
x∈[−τ,0]

[∫ s+x+ε

s+x

g2(u)du
]
ds

Previous term converges to zero a.s. by dominated convergence theorem.

Example 5.17. We list some examples of processes fulfilling the assumptions of Corollary 5.11 or only

those of Corollary 5.10. If we only know the quadratic variation but we do not know the whole covariation

structure of the process we use Corollary 5.10. We insist on the fact that to study the χ2-quadratic variation

it is necessary to know the whole covariation structure of X.

1) All continuous real semimartingale X. In fact X is a finite quadratic variation process and it holds

[X·+ai , X·+aj ] = 0 for i 6= j, see Proposition 2.6.

2) In particular if X is the Brownian motion W . In fact [W ]t = t and [W·+ai ,W·+aj ] = 0 for i 6= j

because W is a semimartingale.

3)

Proposition 5.18. Let BH,K be a bifractional Brownian motion with HK = 1/2. Then [BH,K ] =

21−Kt and [BH,K·+ai , B
H,K
·+aj ] = 0 for i 6= j.

Remark 5.19. • If K = 1, then H = 1/2 and BH,K is a Brownian motion, case already treated.

• In the case K 6= 1 we recall that the bifractional Brownian motion BH,K is not a semimartingale,

see Proposition 6 from [39].

Proof. Proposition 1 in [39] says that BH,K has finite quadratic variation equals to [BH,K ] = 21−Kt.

By Proposition 1 and Theorem 2 in [32] there are two constants α and β depending on K, a centered

Gaussian process XH,K with absolutely continuous trajectories on [0,+∞[ and a standard Brownian

motion W such that αXH,K +BH,K = βW . Then

[αXH,K
·+ai +BH,K·+ai , αX

H,K
·+aj +BH,K·+aj ] = β2[W·+ai ,W·+aj ] (5.16)
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Using bilinearity of the covariation we expand the left-hand side in (5.16) into a sum of four terms

α2[XH,K
·+ai , X

H,K
·+aj ] + α[BH,K·+ai , X

H,K
·+aj ] + α[XH,K

·+ai , B
H,K
·+aj ] + [BH,K·+ai , B

H,K
·+aj ] (5.17)

Since XH,K has bounded variation then first three terms on (5.17) vanish using Proposition 1 in

[44]. On the other hand term the right-hand side in (5.16) is equal to zero for i 6= j since W is a

semimartingale, see point 1. We conclude that [BH,K·+ai , B
H,K
·+aj ] = 0 for i 6= j.

4) Let X be a real continuous (Ft)-Dirichlet process with decomposition X = M+A, M local martingale

and A zero quadratic variation process. Then X satisfies the hypotheses of the Corollary 5.11, in

particular of Remark 5.12. In fact [X]t = [M ]t and [X·+ai , X·+aj ] = 0 for i 6= j. Consequently the

associated window Dirichlet process admits a χ2-quadratic variation.

More details about Dirichlet processes and their properties will be given in chapter 6.3.

5) Let D be a (Ft)-weak Dirichlet process with decomposition D = W +A, W being a (Ft)-Brownian

motion and the process A which is adapted and [A,N ] = 0 for any continuous (Ft)-local martingale

N . Moreover we suppose that A is a finite quadratic variation process. Then D is an example of

finite quadratic variation process in fact [D] = [W ] + [A]. However the covariation structure is not

determined by D. This is an example where we only can use Corollary 5.10 but not Corollary 5.11.

We will show now that, under the same assumptions of Corollary 5.11, a finite quadratic variation

process X admits a Diag([−τ, 0]2)-quadratic variation, with 0 < τ ≤ T . We will see that in the case τ < T

there will be an additive term. This will be used in Example 7.3 of application of the Itô’s formula to the

window Brownian motion.

Proposition 5.20. Let 0 < τ ≤ T . Let X be a real continuous process with finite quadratic variation [X].

Then X(·) admits a Diag([−τ, 0]2)-quadratic variation, where Diag([−τ, 0]2) was defined in (2.20). We

have

[X(·)] : Diag([−τ, 0]2) −→ C([0, T ])

such that

µ 7→ [X(·)]t(µ) =
∫ 0

−τ
g(y)[X]t+ydy t ∈ [0, T ], (5.18)

where µ is a generic element in Diag([−τ, 0]2) of type µ(dx, dy) = g(x)δy(dx)dy, with associated g in

L∞([−τ, 0]).

Proof. We recall that for a generic element µ we have ‖µ‖Diag = ‖g‖∞.
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Firstly we show the result for τ = T . We verify Condition H1. We can write

1
ε

∫ T

0

sup
‖µ‖Diag≤1

∣∣〈µ, (Xs+ε(·)−Xs(·))⊗2〉
∣∣ ds =

1
ε

∫ T

0

sup
‖µ‖Diag≤1

∣∣∣∣∣
∫

[−T,0]2
(Xs+ε(·)−Xs(·))⊗2 µ(dx, dy)

∣∣∣∣∣ ds =

=
1
ε

∫ T

0

sup
‖g‖∞≤1

∣∣∣∣∫ 0

−T
g(x) (Xs+ε(x)−Xs(x))2

dx

∣∣∣∣ ds =

=
∫ T

0

sup
‖g‖∞≤1

∣∣∣∣∣
∫ s

0

(Xx+ε −Xx)2

ε
g(x− s) dx

∣∣∣∣∣ ds ≤ T [X]T

So in particular Condition H1 is verified by Remark 4.17.

Concerning the remaining conditions, we will use the setting of Corollary 4.29. S will be the set of

non-negative bounded functions, so that H0’ is obviously verified. It remains to prove Condition H2’.

Using Fubini’s theorem, we obtain

[X(·)]εt(µ) =
1
ε

∫ t

0

〈µ(dx, dy), (Xs+ε(·)−Xs(·))⊗2〉 ds =

=
1
ε

∫ t

0

∫
[−T,0]2

(Xs+ε(x)−Xs(x)) (Xs+ε(y)−Xs(y)) g(x)δx(dy)dx ds =

=
1
ε

∫ t

0

∫
[−T,0]

(Xs+ε(x)−Xs(x))2
g(x)dx ds =

=
∫ 0

−t
g(x)

∫ t

−x

(Xs+x+ε −Xs+x)2

ε
ds dx =

=
∫ 0

−t
g(x)

∫ t+x

0

(Xs+ε −Xs)
2

ε
ds dx (5.19)

Every function g can be written as g+ − g−, i.e. a difference of two non-negative functions: its positive

part g+ and its negative part g−. So without loss of generality we can consider a non-negative function g,

so process (5.19) will be an increasing process. It can be shown that(∫ 0

−t
g(x)

∫ t+x

0

(Xs+ε −Xs)
2

ε
ds dx

)
t∈[0,T ]

ucp−−→
(∫ 0

−t
g(x)[X]t+x dx

)
t∈[0,T ]

(5.20)

In fact we have∣∣∣∣[X(·)]εt(µ)−
∫ 0

−t
g(x)[X]t+x dx

∣∣∣∣ =

∣∣∣∣∣
∫ 0

−t
g(x)

(∫ t+x

0

(Xs+ε −Xs)
2

ε
ds− [X]t+x

)
dx

∣∣∣∣∣ ≤
≤
∫ 0

−T
|g(x)| sup

t∈[0,T ]

∣∣∣∣∣
∫ t+x

0

(Xs+ε −Xs)
2

ε
ds− [X]t+x

∣∣∣∣∣ dx ≤
≤
∫ 0

−T
|g(x)| sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0

(Xs+ε −Xs)
2

ε
ds− [X]t

∣∣∣∣∣ dx (5.21)
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By the dominated convergence theorem and the ucp convergence for the real quadratic variation of the

process X, the last term in (6.25) converges to zero. Consequently ucp convergence in (5.20) follows. We

conclude the proof for τ = T by applying Corollary 4.29.

For the case τ < T Condition H1 is already verified. Developing [X(·)]εt(µ) we obtain∫ t

0

∫ 0

−τ

(Xs+x+ε −Xs+x)2

ε
g(x)dxds =

∫ t∧τ

0

∫ 0

−s

(Xs+x+ε −Xs+x)2

ε
g(x)dxds+

+
∫ t

t∧τ

∫ 0

−τ

(Xs+x+ε −Xs+x)2

ε
g(x)dxds = Iε1(t) + Iε2(t)

By the same argument of the case τ = T we obtain the convergence ucp of the first addend Iε1(t) to∫ t∧τ

0

g(−x)[X](t∧τ)−xdx

The second term Iε2(t) requires some more computations. It converges ucp to∫ 0

−τ
g(x) ([X]t+x − [X]τ+x) dx

Then we conclude the result. We remark that when t ≤ τ (in particular this is always the case when τ = T

because 0 ≤ t ≤ T ) we only have the first term because the second term is zero. When τ ≤ t ≤ T , we have

to sum the two terms. More explicitly we obtain

[X(·)]t(µ) =


∫ t

0

g(−x)[X]t−xdx 0 ≤ t ≤ τ∫ τ

0

g(−x)[X]τ−xdx+
∫ τ

0

g(−x) ([X]t−x − [X]τ−x) dx =
∫ τ

0

g(−x)[X]t−xdx τ < t ≤ T

With the usual property [X]t = 0 for t < 0 we rewrite the result in the compact form (5.18).

Direct consequences of Propositions 5.11, 5.10, 5.20 and 4.19 are the two corollaries below.

Corollary 5.21. Let 0 < τ ≤ T and X be a real continuous process with finite quadratic variation [X]

and covariation structure [X·+ai , X·+aj ] for i, j ∈ {0, . . . , N}. Then X(·) admits a χ3([−τ, 0]2)-quadratic

variation where χ3([−τ, 0]2) = χ2([−τ, 0]2)⊕Diag([−τ, 0]2). The χ3([−τ, 0]2)-quadratic variation is

[X(·)]t(µ) =
N∑

i,j=0

µ({ai, aj})[X·+ai , X·+aj ]t +
∫ 0

−t
g(x)[X]t+xdx

where µ is a generic element in Diag([−τ, 0]2) of type µ(dx, dy) = g(x)δy(dx)dy, with associated g in

L∞([−τ, 0]).
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Corollary 5.22. Let 0 < τ ≤ T and X be a real continuous process with finite quadratic variation [X].

Then X(·) admits a Dd([−τ, 0]2)⊕Diag([−τ, 0]2)-quadratic variation which equals

[X(·)]t(µ) =
N∑
i=0

µ({ai, ai})[X·+ai ]t +
∫ 0

−t
g(x)[X]t+xdx

where µ is a generic element in Diag([−τ, 0]2) of type µ(dx, dy) = g(x)δy(dx)dy, with associated g in

L∞([−τ, 0]).

Example 5.23. For further calculations we indicate a direct application of Proposition 5.20.

1. Suppose that [X] is absolutely continuous with At = d[X]t
dt . For µ ∈ Diag([−τ, 0]2), µ(dx, dy) =

g(x)δy(dx)dy, with associated g in L∞([−τ, 0]), we have

∫ T

0

〈µ, d[̃X(·)]〉t =
∫ T

0

∫ 0

−t
g(x)At+xdx dt

2. In particular if A ≡ 1, as for standard Brownian motion,

∫ T

0

〈µ, d[̃X(·)]〉t =
∫ T

0

∫ 0

−t
g(x)dx dt (5.22)

We go on with evaluation of χ-quadratic variation. We first recall that χ4([−T, 0]2) and χ5([−τ, 0]2)

were defined respectively at (4.13) and (4.14). In the next examples, the knowledge of the whole covariation

structure of the process is needed.

Proposition 5.24. Let X be a real continuous process with finite quadratic variation [X] and covariation

structure [X·+αi , X·+αj ] for every i, j ∈ N. Then X(·) admits a χ4([−T, 0]2)-quadratic variation equals to

[X(·)]t(µ) =
∑
i,j∈N

µ({αi, αj})[X·+αi , X·+αj ]t (5.23)

where µ is a general element in χ4 which can be written µ =
∑
i,j∈N λi,jδ(αi,αj).

Proof. We make use of Corollary 4.30. We recall that for a general µ ∈ χ4 the norm is ‖µ‖χ4 =
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supi,j{|λi,j |i2j2}, then

1
ε

∫ T

0

sup
‖µ‖χ4≤1

∣∣〈µ, (Xs+ε(·)−Xs(·))⊗2〉
∣∣ ds =

=
1
ε

∫ T

0

sup
‖µ‖χ4≤1

∣∣∣∣∣∣
∑
i,j∈N

λi,j(Xs+αi+ε −Xs+αi)(Xs+αj+ε −Xs+αj )

∣∣∣∣∣∣ ds =

=
∫ T

0

sup
‖µ‖≤1

∣∣∣∣∣∣
∑
i,j∈N

λi,ji
2j2 (Xs+αi+ε −Xs+αi)(Xs+αj+ε −Xs+αj )

εi2j2

∣∣∣∣∣∣ ds ≤
≤
∑
i,j∈N

1
i2j2

√∫ T

0

(Xs+αi+ε −Xs+αi)2

ε
ds

√∫ T

0

(Xs+αj+ε −Xs+αj )2

ε
ds ≤

≤
∑
i,j∈N

1
i2j2

∫ T

0

(Xs+ε −Xs)2

ε
ds =

=
(
π2

6

)2 ∫ T

0

(Xs+ε −Xs)2

ε
ds

P−→ π4

36
[X]T

Condition H1 follows by using Remark 4.17 .

We set S = {δ(αi,αi), }i,j∈N and Sp = {δαi⊗2,
(
δαi + δαj

)
⊗2}i,j∈N and H0” is verified. Also Condition

H2” is proved, in fact for every element in S we have

∫ t

0

(Xs+αi+ε −Xs+αi)(Xs+αj+ε −Xs+αj )
ε

ds
P−→ [X·+αi , X·+αj ]t

The result is established by Corollary 4.30.

Proposition 5.25. Let X be a real continuous process with given covariation structure [X·+x, X·+y]

for every x, y ∈ [−τ, 0], in particular X is a finite quadratic variation process. Then X(·) admits a

χ5([−τ, 0]2)-quadratic variation

[X(·)]t(µ) =
∫

[−τ,0]2
[X·+x, X·+y]tµ(dx, dy) =

N∑
i=1

λi

∫
[−τ,0]2

[X·+x, X·+y]tµi(dx, dy) (5.24)

where µ is a general element in χ5([−τ, 0]2) which can be written as µ =
∑N
i=1 λiµi, µ is a linear composition

of N fixed measures (µi)i=1,...,N with total variation 1.
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Proof. We verify H1. We recall that ‖µ‖2χ5 =
∑N
i=1 λ

2
i , then

1
ε

∫ T

0

sup
‖µ‖χ5≤1

∣∣〈µ, (Xs+ε(·)−Xs(·))⊗2〉
∣∣ ds =

=
∫ T

0

sup
‖µ‖χ5≤1

∣∣∣∣∣
∫

[−τ,0]2

(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

µ(dx, dy)

∣∣∣∣∣ ds =

=
∫ T

0

sup
‖µ‖2

χ5≤1

∣∣∣∣∣
N∑
i=1

λi

∫
[−τ,0]2

(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

µi(dx, dy)

∣∣∣∣∣ ds ≤
≤
∫ T

0

N∑
i=1

supP
λ2
i≤1

{
|λi|

∣∣∣∣∣
∫

[−τ,0]2

(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

µi(dx, dy)

∣∣∣∣∣
}
ds

In particular |λi| ≤ 1 for every i, then using Fubini’s theorem and Cauchy Schwarz inequality previous

quantity is less or equal to

N∑
i=1

∫ T

0

∫
[−τ,0]2

|(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)|
ε

|µi|(dx, dy)ds =

=
N∑
i=1

∫
[−τ,0]2

∫ T

0

|(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)|
ε

ds |µi|(dx, dy) ≤

≤
N∑
i=1

∫
[−τ,0]2

√∫ T

0

(Xs+x+ε −Xs+x)2

ε
ds

√∫ T

0

(Xs+y+ε −Xs+y)2

ε
ds |µi|(dx, dy) ≤

≤
N∑
i=1

∫
[−τ,0]2

∫ T

0

(Xs+ε −Xs)2

ε
ds |µi|(dx, dy) P−→ [X]T

N∑
i=1

∫
[−τ,0]2

|µi|(dx, dy) =

= [X]T
N∑
i=1

|µi|([−τ, 0]2) < +∞

By Remark 4.17, Condition H1 is verified. Since the signed measure µi can be decomposed in differences

of positive and negative parts µ+
i and µ−i , setting S = {µi}i∈{1,...,N} and Sp = {µ+

i , µ
−
i }i∈{1,...,N} H0” is

verified. To verify Condition H2” we consider a fixed positive measure µ with unitary total variation. It

holds ∫ t

0

∫
[−τ,0]2

(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

µ(dx, dy) ds P−→
∫

[−τ,0]2
[X·+x, X·+y]tµ(dx, dy) (5.25)

By Fubini’s theorem and passing to subsequence we have to show the deterministic convergence for every

ω /∈ N of the quantity∫
[−τ,0]2

∫ t

0

(Xs+x+εnk
−Xs+x)(Xs+y+εnk

−Xs+y)
εnk

ds µ(dx, dy) =
∫

[−τ,0]2
γεnk (x, y)µ(dx, dy)
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where

γεnk (x, y) =
∫ t

0

(Xs+x+εnk
−Xs+x)(Xs+y+εnk

−Xs+y)
εnk

ds

It holds that γε(x, y) P−→ [X·+x, X·+y]t and |γεnk | ≤ supk
1
εnk

∫ t
0

(Xs+εnk
−Xs)2ds ∈ L1([−τ, 0]2, µ). Then, by

the dominated convergence theorem applied for every ω /∈ N , we conclude with the convergence in probability.

The fact that the term
∫

[−τ,0]2
[X·+x, X·+y]tµ(dx, dy) is measurable, i.e. [X·+x, X·+y]t ∈ L1([−τ, 0]2, µ) for

every x, y ∈ [−τ, 0], is insured by the existence of the quadratic variation since by the Kunita-Watanabe

inequality we have |[X·+x, X·+y]| ≤
√

[X·+x][X·+y] ≤ [X]. Again by applying Corollary 4.30 the result is

established.

Remark 5.26. As a particular case of Proposition 5.25 we observe that if X is a real continuous process

with finite quadratic variation [X] and covariation structure such that [X·+x, X·+y] = 0 for x 6= y. Then

the χ5([−τ, 0]2)-quadratic variation of X(·) equals

[X(·)]t(µ) =
∫

[−τ,0]2
[X]t+x1D(x, y)µ(dx, dy) (5.26)

where µ is a general element χ5([−τ, 0]2) which can be written as µ =
∑N
i=1 λiµi, and D = {(x, y) ∈

[−τ, 0]2;x = y} is the diagonal of the square [−τ, 0]2.

Another significant example is the following. Let µ be a fixed measure on [−τ, 0]2 finite and singular

with respect to Lebesgue measure, we recall definition of χµ in (4.15).

Proposition 5.27. Let µ be a given positive, finite and singular measure on [−τ, 0]2 and X be a real process

with finite quadratic variation [X] admitting a covariation process [X·+x, X·+y] for every x, y ∈ [−τ, 0].

Then X(·) admits a χµ-quadratic variation which equals, for a measure dν = g dµ with g ∈ L∞(dµ),

[X(·)]t(ν) =
∫

[−τ,0]2
[X·+x, X·+y]tν(dx, dy) (5.27)

Proof. We have

1
ε

∫ T

0

sup
‖ν‖χµ≤1

∣∣〈ν, (Xs+ε(·)−Xs(·))⊗2〉
∣∣ ds =

=
∫ T

0

sup
‖g‖L∞(dµ)≤1

∣∣∣∣∣
∫

[−τ,0]2

(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

g(x, y)µ(dx, dy)

∣∣∣∣∣ ds ≤
=
∫ T

0

∫
[−τ,0]2

∣∣∣∣ (Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

∣∣∣∣ |µ|(dx, dy)ds ≤

≤
∫

[−τ,0]2

∫ T

0

(Xs+ε −Xs)2

ε
ds |µ|(dx, dy) P−→ [X]T

∫
[−τ,0]2

|µ|(dx, dy) = [X]T |µ|([−τ, 0]2) < +∞
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So H1 is established using Remark 4.17. It is always possible to write g as difference of its positive and

negative part such that g = g+ − g−, with g+ and g− positive functions. Setting S = {g}g∈L∞(dµ) and

Sp = {g+, g−}g∈L∞(dµ) Condition H0” is verified. Moreover for every dν = g dµ it holds∫ t

0

∫
[τ,0]2

(Xs+x+ε −Xs+x)(Xs+y+ε −Xs+y)
ε

g(x, y)µ(dx, dy) ds P−→
∫

[−τ,0]2
[X·+x, X·+y]tν(dx, dy)

Also Condition H2” is verified and result follows again by Corollary 4.30.

For further applications now we consider window processes as processes with values in the Hilbert space

L2([−τ, 0]) and we will compute some χ-quadratic variations. We start with a preliminary result.

Proposition 5.28. Let X be a real continuous process with finite quadratic variation [X]t = t. Then

1
ε

∫ t

0

‖Xs+ε(·)−Xs(·)‖2L2([−τ,0]) ds
ucp−−−→
ε→0


t2

2
0 ≤ t ≤ τ

τ
(
t− τ

2

)
τ < t ≤ T

Proof. The random variables are increasing with respect to time, so by using Lemma 2.1 it will be enough

to show convergence in probability for every fixed t ∈ [0, T ]. We have

1
ε

∫ t

0

‖Xs+ε(·)−Xs(·)‖2L2([−τ,0]) ds =
1
ε

∫ t

0

∫ 0

−τ
(Xs+r+ε −Xs+r)2 dr ds =

=
∫ t∧τ

0

∫ 0

−s

(Xs+r+ε −Xs+r)2

ε
dr ds+

∫ t

t∧τ

∫ 0

−τ

(Xs+r+ε −Xs+r)2

ε
dr ds =

=


∫ t

0

∫ 0

−s

(Xs+r+ε −Xs+r)2

ε
dr ds

P−−−→
ε→0

t2

2
0 ≤ t ≤ τ∫ τ

0

∫ 0

−s

(Xs+r+ε −Xs+r)2

ε
dr ds+

∫ t

τ

∫ 0

−τ

(Xs+r+ε −Xs+r)2

ε
dr ds

P−−−→
ε→0

τ2

2
+ τ(t− τ) τ < t ≤ T

Remark 5.29. Let X be a real continuous process with finite quadratic variation [X]t = t. We

consider X(·) process with values in L2([−τ, 0]). As consequences of Proposition 5.28 we have

1. Condition H1 for existence of (L2([−τ, 0])⊗̂2
π)∗-quadratic variation of X(·) is verified. Let χ be a

Chi-subspace of (L2([−τ, 0])⊗̂2
π)∗, using Remark 4.21.2, it follows that Condition H1 for existence of

χ-quadratic variation of X(·) is verified.

2. We are not able to prove the existence of a (L2([−τ, 0])⊗̂2
π)∗-quadratic variation because we can not

prove Condition H2, i.e. that it exists an application [X(·)], such that [X(·)]ε(φ)
ucp−−−→
ε→0

[X(·)](φ)

for every φ ∈ (L2([−τ, 0])⊗̂2
π)∗ = B(L2([−τ, 0]), L2([−τ, 0])). Nevertheless we have an expression

of this limit for some particular φ ∈ (L2([−τ, 0])⊗̂2
π)∗. For instance if we fix the bilinear bounded
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operator φ : L2([−τ, 0])× L2([−τ, 0])→ R, defined by (h, g) 7→ φ(h, g) = 〈h, g〉L2([−τ,0]) we can show

that [X(·)]ε(φ)
ucp−−−→
ε→0

[X(·)](φ). This ucp convergence is exactly the one that has been shown in

Proposition 5.28.

Corollary 5.30. Let X be a real continuous process with zero quadratic variation [X] = 0. Then the

L2([−τ, 0])-valued window process X(·) admits zero global quadratic variation.

Proof. The result follows immediately using lemma 4.22.

We recall the definitions of Chi-subspaces L2
B([−τ, 0]2) and DiagB([−τ, 0]2) given respectively in

Definition 4.9 and in (4.17).

Proposition 5.31. Let X a real continuous process with finite quadratic variation [X]. We consider X(·)
process with values in L2([−τ, 0]).

1. X(·) admits zero L2
B([−τ, 0]2)-quadratic variation.

2. X(·) admits a DiagB([−τ, 0]2)-quadratic variation which equals, for every T f ∈ DiagB([−τ, 0]2),

[X(·)]t(T f ) =
∫ 0

−τ
f(y)[X]t+ydy t ∈ [0, T ] (5.28)

remembering that [X]u = 0 for u < 0. In particular that quadratic variation is non zero.

Proof.

1. The proof is exactly the same that we have seen in Proposition 5.9 for the L2([−τ, 0]2)-quadratic

variation of the window process with values in C([−τ, 0]).

2. The proof is practically the same in Proposition 5.20. More explicitly, we have

[X(·)]t(T f ) =


∫ t

0

f(−y)[X]t−ydy 0 ≤ t ≤ τ∫ τ

0

f(−y)[X]t−ydy τ < t ≤ T

Remark 5.32. Let consider H = L2([−τ, 0]2) and E = L2([−τ, 0])⊗̂2
π. We recall that H is the Hilbert

tensor product of L2([−τ, 0]) with itself. Consequently E is densely embedded into H because of (2.11).

1. The norms ‖ · ‖H∗ ≥ ‖ · ‖E∗ by (2.7). Moreover they are not equivalent. In fact, consider (ei)iN
an orthonormal basis of L2([−τ, 0]) and set gn =

∑n
i=1 ei ⊗ ei. It holds ‖gn‖2H∗ = n. On the

other hand, let h and f in L2([−τ, 0]), gn(h, f) =
∑n
i=1〈h, ei〉〈f, ei〉 =

∑n
i=0〈h ⊗ f, ei ⊗ ei〉. So

|gn(h, f)| ≤
√∑n

i=1〈h, ei〉2
∑n
j=1〈f, ej〉2 = ‖h‖ ‖f‖, where the last equality comes by Parseval’s

identity. Then ‖gn‖E∗ = sup‖h‖,‖f‖≤1 |gn(h, f)| ≤ 1.
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2. Let g ∈ E∗ of the form g(h, f) = 〈h, f〉L2([−τ,0]). We have

g(h, f) = 〈h, f〉L2([−τ,0]) =
∞∑
i=0

〈h, ei〉〈f, ei〉 = lim
n→+∞

n∑
i=0

〈h⊗ f, ei ⊗ ei〉 = lim
n→+∞

gn(h, f)

This means that for a h and f in L2([−τ, 0]), gn(h, f)→ g(h, f). However gn does not converge to g

according to E∗. In fact the sequence (gn) is not Cauchy. For m,n ∈ N, m > n, for h, f in L2([−τ, 0])

we have (gn − gm)(h, f) =
∑n
i=m+1〈ei ⊗ ei, h⊗ f〉H . Taking h = f = ei, previous quantity equals 1

so that ‖gn − gm‖E∗ = 1

We would like to comment on a well-known functional analytical result, see for instance pag. 55 in [38],

which is the following.

Theorem 5.33. Let E be a reflexive Banach subspace densely embedded in a Hilbert space H. Then H∗

is densely embedded in E∗.

Remark 5.34. 1. In fact by an unfortunate miss print of [38] the reflexivity assumption on E does not

appear.

2. Using arguments related to covariation maps we can provide a probabilistic proof that the theorem

statement is wrong if E is not reflexive.

Proposition 5.35. With previous conventions H∗ is not densely embedded in E∗.

Proof. Let W (·) be a window Brownian motion considered with values in L2([−τ, 0]). Point 1 of Proposition

5.31 says that W (·) has zero H∗-quadratic variation. We suppose ab absurdo that H∗ is densely embedded

in E∗. We recall by Remark 5.29.1 that Condition H1 related to definition of E∗−quadratic variation is

always verified. Setting S = H∗, then Conditions H0’ and H2’ of Corollary 4.29 are verified. Consequently

W (·) has a E∗-quadratic variation. Since the quadratic variation [W (·)] : E∗ −→ C([0, T ]) is continuous, it

must be identically zero. This contradicts Point 2 of the same Proposition 5.31.



Chapter 6

Stability of χ-quadratic variation and

of χ-covariation

In this chapter we will firstly introduce the definition of a so-called χ−covariation between two Banach

valued processes X and Y and secondly we will concentrate about some stability results of the χ-covariation

through a real function C1 in the Fréchet sense.

6.1 The notion of χ-covariation

Let B1, B2 be two Banach spaces.

Definition 6.1. A closed linear subspace χ of (B1⊗̂πB2)∗, endowed with its own norm, such that

‖ · ‖χ ≥ ‖ · ‖(B1⊗̂πB2)∗. (6.1)

will be called a Chi-subspace of (B1⊗̂πB2)∗.

Definition 6.2. Let B1, B2 be two Banach spaces and χ be a Chi-subspace of (B1⊗̂πB2)∗. Let X

(respectively Y ) be B1 (respectively B2) valued stochastic processes. We say that X and Y admit a

χ-covariation if

H1 For all (εn) it exists a subsequence (εnk) such that

sup
k

∫ T

0

sup
‖φ‖χ≤1

∣∣∣∣〈φ, (Xs+εnk
−Xs)⊗ (Ys+εnk − Ys)

εnk
〉
∣∣∣∣ ds <∞ (6.2)

H2 (i) It exists an application denoted by [X,Y ] : χ −→ C([0, T ]) such that [X,Y ]ε(φ) −→ [X,Y ](φ) in

the ucp topology when ε→ 0+ for every φ ∈ χ ⊂ (B1⊗̂πB2)∗.

69
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(ii) Moreover we can associate a bounded variation function [̃X,Y ](ω, ·) : [0, T ] −→ χ∗ defined by

[̃X,Y ](ω, t)(φ) := [X,Y ](φ)(ω, t)

If X, Y admit a χ-covariation we will denote with ([̃X,Y ])0≤t≤T defined for every ω ∈ Ω and t ∈ [0, T ] the

χ∗-valued process φ 7→ [̃X,Y ](ω, t)(φ) := [X,Y ](φ)(ω, t) = limucp 1
ε

∫ t
0
〈φ, (Xs+ε −Xs)⊗ (Ys+ε − Ys)〉ds =:

[X,Y ]t(φ).

If the covariation exists for χ = (B1⊗̂πB2)∗, we say that X and Y admit a global covariation.

We enunciate now an important proposition used later to prove Itô’s formula and other results of

stability. It is a corollary of Proposition 4.23.

Corollary 6.3. Let B1, B2 be two Banach spaces and χ be a Chi-subspace of (B1⊗̂πB2)∗. Let X and

Y be two stochastic processes with values in B1 and B2 admitting a χ-covariation and H a continuous

measurable process H : Ω× [0, T ] −→ χ. Then for every t ∈ [0, T ]∫ t

0

〈H(·, s), d[̃X,Y ]
ε

(·, s)〉 −→
∫ t

0

〈H(·, s), d[̃X,Y ](·, s)〉 (6.3)

in probability.

Proof. The proof follows from Proposition 4.23 and definition of χ-covariation.

Remark 6.4. 1) The statement of Propositions 4.19 and 4.20 related to the χ-quadratic variation of

Banach valued process X can be immediately extended to the case of χ−covariation of two Banach

valued processes X and Y . We obtain sufficient condition for the existence of χ-covariation, if χ is a

finite direct sum of Chi-subspaces, for instance the space χ2([−τ, 0]2).

2) Analogously the statement of Corollaries 4.29 and 4.30 related to the χ-quadratic variation of a

Banach valued process X can be extended to the case of χ−covariation of two Banach valued processes

X and Y . Their proofs make use of Theorem 4.26. In most of the cases, the bounded variation

property of the χ∗-valued process [̃X,Y ] will be automatically satisfied. As an interesting consequence

of this last property we obtain a sufficient condition in the real case to have the bounded variation

of the covariation process. Let X and Y be two real continuous processes such that [X], [Y ] and

[X,Y ] exist in the sense of 2.2, then [X,Y ] has bounded variation in fact via polarity can be written

as difference of positive functions. But this assumption is strong, in fact there exist processes not

necessarily with finite quadratic variation process that admit covariation. For instance an (Ft)-weak

Dirichlet process D with decomposition M +A and an (Ft)-local martingale N admit covariation

[D,N ] = [M,N ] even if D may not have a finite quadratic variation. Using Theorem 4.26 we obtain a

sufficient condition for the bounded variation of real covariation which does not involve the existence

of [X] and [Y ]. We have the following proposition.
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Proposition 6.5. Let X and Y be two real continuous processes such that

i) [X,Y ] exists and

ii) for all (εn) it exists a subsequence (εnk) such that

sup
k

1
εnk

∫ T

0

∣∣∣Xs+εnk
−Xs

∣∣∣ · ∣∣∣Ys+εnk − Ys∣∣∣ ds <∞ (6.4)

Then the real covariation process [X,Y ] has bounded variation.

Proof. We just observe that if the processes are real valued, space (R⊗̂πR)∗ coincides with R. Processes X

and Y admit global covariation which coincides with the classical covariation [X,Y ] defined in 2.2. Taking

into account Remark 6.4 we obtain that [X,Y ] has bounded variation.

As an immediate corollary we show that all finite quadratic variation processes X and Y admitting a

covariation [X,Y ] satisfy hypothesis of Proposition 6.5.

Corollary 6.6. Let X and Y be two real continuous processes such that [X], [Y ] and [X,Y ] exist. Then

Condition ii) of Proposition 6.5 is verified, in particular as it is well known the real covariation process

[X,Y ] has bounded variation.

Proof. Using Cauchy Schwarz inequality we have that

1
ε

∫ T

0

|Xs+ε −Xs| · |Ys+ε − Ys| ds ≤

√∫ T

0

(Xs+ε −Xs)2

ε
ds

√∫ T

0

(Ys+ε − Ys)2

ε
ds =: A(ε)

where the sequence A(ε) converges in probability to
√

[X]T [Y ]T . The convergence implies the boundness

and the result follows.

The proof of the propositions below can be provided taking into account Remark 6.4.

Proposition 6.7. Let X and Y be two real continuous processes such that [X], [Y ] and [X,Y ] exist. Then

1) X(·) and Y (·) admit zero χ-covariation, where χ = L2([−T, 0]2).

2) X(·) and Y (·) admit zero χ-covariation for every i ∈ {0, . . . , N}, where χ = L2([−T, 0])⊗̂hDi([−T, 0]).

If moreover the covariation [X·+ai , Y·+aj ] exists for a given i, j ∈ {0, . . . , N}, then

3) X(·) and Y (·) admits χ-covariation which equals

[X(·), Y (·)]t(µ) = µ({ai, aj})[X·+ai , Y·+aj ]t. (6.5)

where χ = Di,j([−T, 0]2).
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Proof. The proof is practically the same of Proposition 5.9.

Concerning the χ-covariation with χ = Di,j([−T, 0]2) we can even relax the hypothesis. It holds the

following proposition.

Proposition 6.8. Under the same assumptions as in Proposition 6.5 and if the covariation [X·+ai , Y·+aj ]

exists for a given i, j ∈ {0, . . . , N}, then X(·) and Y (·) admits χ-quadratic variation which equals (5.3)

where χ = Di,j([−τ, 0]2).

Proof. The proof is practically the same of Proposition 6.7, but to show Assumption H1 in 5.4 we will use

(6.4) instead of the finite quadratic variation property of processes X and Y .

Remark 6.9. In particular assumptions of Proposition 6.5 give sufficient conditions for a χ-covariation

with χ = D0,0([−τ, 0]2) of X(·) and Y (·)

Theorem 6.10. Let X and Y be two real continuous processes with finite quadratic variation [X] and [Y ]

and with given covariation structure [X·+ai , Y·+aj ], for every i, j = 0, . . . , N . Then X(·) and Y (·) admit

the following χ2([−τ, 0]2)-covariation

[X(·), Y (·)] : χ2([−τ, 0]2)([−τ, 0]2) −→ C([0, T ]) µ 7→
N∑

i,j=0

µ({ai, aj})[X·+ai , Y·+aj ]

Theorem 6.11. Let X and Y be two real continuous processes such that [X], [Y ] and [X,Y ] exist. Then

X(·) and Y (·) admit the following χ0([−τ, 0]2)-covariation

[X(·), Y (·)] : χ0([−τ, 0]2) −→ C([0, T ]) µ 7→ µ({0, 0})[X,Y ]

Remark 6.12. 1. We remark that the existence of χ0([−τ, 0]2)-covariation only requires the existence

of the real covariations [X,Y ], [X] and [Y ]. We do not need the existence of [X·+ai , Y·+aj ], for every

i, j = 0, . . . , N .

2. Let D be a real (Ft)-weak Dirichlet process with finite quadratic variation and decomposition M +A,

M being an (Ft)-local martingale and let N be a real (Ft)-martingale. Then D(·) and N(·) admit

χ0-covariation given by [D(·), N(·)](µ) = µ({0, 0})[M,N ] for every µ ∈ χ0. This follows from Theorem

6.11, because D and N are with finite quadratic variation processes and [D,N ] = [M,N ].

3. Let D be a real (Ft)-Dirichlet process with decomposition M +A, M being the (Ft)-local martin-

gale part and let N be a real (Ft)-local martingale. Then D(·) and N(·) admit a χ2-covariation

given by [D(·), N(·)](µ) =
∑N
i,j=0 µ({ai, aj})[D·+ai , N·+aj ]· =

∑N
i,j=0 µ({ai, aj})[M·+ai , N·+aj ] =∑N

i=0 µ({ai, ai})[M·+ai , N·+ai ]. This follows again from Theorem 6.11 and Proposition 2.6
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6.2 The stability of χ-covariation in the Banach space framework

In this section, we analyze the stability of χ-covariation for Banach valued processes transformed

through C1 Fréchet differentiable functions.

We recall first what happens in multidimensional case. We have a stability result concerning the covariation

for vector valued processes through a C1 function.

Proposition 6.13. Let X = (X1, . . . , Xn) be a vector of real processes having all its mutual covariation,

F , G ∈ C1(Rn). Then the covariation [F (X), G(X)] exists and is given by

[F (X), G(X)]· =
n∑

i,j=1

∫ ·
0

∂iF (X)∂jG(X)d[Xi, Xj ]

This include the case of Propostion 2.1 in [42], setting n = 2, F (x, y) = f(x), G(x, y) = g(y),

f, g ∈ C1(R). Now we develop those type of stability results in the Banach framework.

Let X, Y B-vaued stochastic processes and F ,G : B −→ R of class C1 in the Fréchet sense. We are mainly

interested in the three following situations.

1. The case when X admits a χ-quadratic variation and (x, y) → DF (x) ⊗ DF (y) is a continuous

application from B×B to χ. Then the quadratic variation of the real process F (X) exists and equals

[F (X)]· =
∫ ·

0

〈DF (Xs)⊗DF (Xs), d[̃X(·)]s

2. The case when X admits a χ-quadratic variation and (x, y) → DF (x) ⊗ DG(y) is continuous

application from B ×B to χ. Then the covariation of F (X) and G(X) exists and equals

[F (X), G(X)]· =
∫ ·

0

〈DF (Xs)⊗DG(Xs), d[̃X(·)]s

3. The case when X and Y admit χ-covariation and (x, y)→ DF (x)⊗DG(y) is a continuous application

from B ×B to χ. Then the covariation of F (X) and G(Y ) exists and equals

[F (X), G(Y )]· =
∫ ·

0

〈DF (Xs)⊗DG(Ys), d ˜[X(·), Y (·)]s

Remark 6.14. 1. Let S, T : B0 −→ R be linear continuous forms. S⊗T is the unique linear continuous

form from B0⊗̂πB0 to R⊗̂πR ≡ R such that S ⊗ T (b1 ⊗ b2) = S(b1) · T (b2) and ‖S ⊗ T‖ = ‖S‖ ‖T‖,
see Proposition 2.3 in [46].

2. Suppose that B0 is a Hilbert space. Then S (respectively T ) can be identified via Riesz with S
(respectively T ) element of B0. In this case S ⊗ T ∈ (B0⊗̂hB0)∗ and it will be identified via Riesz

with S ⊗ T , tensor product in B0⊗̂hB0. That Riesz identification will be omitted in the sequel.
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3. With previous conventions, let x and y be fixed, DF (x) (respectively DF (y)) are linear continuous

forms from B to R. Then above term DF (x)⊗DF (y) denotes the unique linear continuous form

from B⊗̂πB to R as explained in point 1. We insist on the fact that ”a priori“ DF (x)⊗DF (y) does

not denote an element of some tensor product B∗⊗B∗. With a little abuse of notation we will denote

the application f ⊗ f by f⊗2.

As corollary of Remark 6.14.2 we have the following result. This corollary will be used in chapter 6.3.

Corollary 6.15. Let F 1 and F 2 be two functions from C([−τ, 0]) to Da⊕L2([−τ, 0]) such that η 7→ F j(η) =∑
i=0,...N λ

j
i (η)δai + gj(η) with η ∈ C([−T, 0]), λji : C([−τ, 0]) −→ R and gj : C([−τ, 0]) −→ L2([−T, 0])

continuous for j = 1, 2. Then for any (η1, η2), (F 1 ⊗ F 2)(η1, η2) will be identified with the true tensor

product F 1(η1)⊗ F 2(η2) which belongs to χ2([−τ, 0]2). In fact we have

F 1(η1)⊗ F 2(η2) =
∑

i,j=0,...,N

λ1
i (η1)λ2

j (η2)δai ⊗ δaj + g1(η1)⊗
∑

i=0,...,N

λ2
i (η2)δai+

+
∑

i=0,...,N

λ1
i (η1)δai ⊗ g2(η2) + g1(η1)⊗ g2(η2)

(6.6)

Theorem 6.16. Let B be a Banach space, χ a Chi-subspace of (B⊗̂πB)∗ and X1, X2 two B-valued

continuous stochastic process admitting a χ-covariation. Let F 1, F 2 : B −→ R be two functions of class C1

in the Fréchet sense. We suppose moreover that the following applications

DF i(·)⊗DF j(·) : B ×B −→ χ ⊂ (B⊗̂πB)∗

(x, y) 7→ DF (x)⊗DF (y)

are continuous for i, j = 1, 2.

Then the covariation between F i(Xi) and F j(Xj) exists and is given by

[F i(Xi), F j(Xj)]· =
∫ ·

0

〈DF i(Xi
s)⊗DF j(Xj

s ), d ˜[Xi, Xj ]s〉 (6.7)

Remark 6.17. If there exists a χ∗-valued stochastic process H Bochner integrable such that ˜[Xi, Xj ]s =∫ s
0
Hu du. Then

[F i(Xi), F j(Xj)]· =
∫ ·

0

〈DF i(Xi
s)⊗DF j(Xj

s ), Hs〉 ds

Proof. This proof makes use in an essential manner of Corollary 6.3. Without restriction of generality we

only consider the case F 1 = F 2 = F and X1 = X2 = X. In this case previous result reduces to Corollary

4.24.
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By definition of quadratic variation between real processes in [42] we know that [F (X)]· is the limit in the

ucp sense of the quantity ∫ ·
0

(F (Xs+ε)− F (Xs))
2

ε
ds

Since Lemma 2.1, it will be enough to show the convergence in probability for a fixed t ∈ [0, T ].

Using a Taylor’s expansion we have

1
ε

∫ t

0

(F (Xs+ε)− F (Xs))
2
ds =

1
ε

∫ t

0

(
〈DF (Xs), Xs+ε −Xs〉+

+
∫ 1

0

〈DF ((1− α)Xs + αXs+ε)−DF (Xs), Xs+ε −Xs〉 dα
)2

ds =

= A1(ε) +A2(ε) +A3(ε)

where

A1(ε) =
1
ε

∫ t

0

〈DF (Xs), Xs+ε −Xs〉2ds =

=
∫ t

0

〈DF (Xs)⊗DF (Xs),
(Xs+ε −Xs)⊗2

ε
〉ds

A2(ε) =
2
ε

∫ t

0

〈DF (Xs), Xs+ε −Xs〉·

·
∫ 1

0

〈DF ((1− α)Xs + αXs+ε)−DF (Xs), Xs+ε −Xs〉dα ds =

= 2
∫ t

0

∫ 1

0

〈DF (Xs)⊗ (DF ((1− α)Xs + αXs+ε)−DF (Xs)) ,
(Xs+ε −Xs)⊗2

ε
〉dα ds

A3(ε) =
1
ε

∫ t

0

(∫ 1

0

〈DF ((1− α)Xs + αXs+ε)−DF (Xs), Xs+ε −Xs〉dα
)2

ds ≤

≤ 1
ε

∫ t

0

∫ 1

0

〈DF ((1− α)Xs + αXs+ε)−DF (Xs), Xs+ε −Xs〉2dα ds =

=
∫ t

0

∫ 1

0

〈(DF ((1− α)Xs + αXs+ε)−DF (Xs))⊗2,
(Xs+ε −Xs)⊗2

ε
〉dα ds

Using Corollary 4.24 it follows

A1(ε) P−→
∫ t

0

〈DF (Xs)⊗DF (Xs), d[̃X]s〉

It remains to show the convergence in probability of A2(ε) and A3(ε) to zero.

Concerning A2(ε) we observe that we can decompose as follows

DF (Xs)⊗(DF ((1− α)Xs + αXs+ε)−DF (Xs)) = DF (Xs)⊗DF ((1− α)Xs + αXs+ε)−DF (Xs)⊗DF (Xs)

(6.8)
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and concerning A3(ε) we have

(DF ((1− α)Xs + αXs+ε)−DF (Xs))⊗2 = DF ((1− α)Xs + αXs+ε)⊗2 +

+DF (Xs)⊗DF (Xs)+

−DF ((1− α)Xs + αXs+ε)⊗DF (Xs)+

−DF (Xs)⊗DF ((1− α)Xs + αXs+ε) . (6.9)

Using (6.8), we obtain

|A2(ε)| ≤ 2
∫ t

0

∫ 1

0

∣∣∣∣〈DF (Xs)⊗ (DF ((1− α)Xs + αXs+ε)−DF (Xs)) ,
(Xs+ε −Xs)⊗2

ε
〉
∣∣∣∣ dα ds ≤

≤
∫ t

0

∫ 1

0

‖DF (Xs)⊗DF ((1− α)Xs + αXs+ε)−DF (Xs)⊗DF (Xs)‖χ

∥∥∥∥ (Xs+ε −Xs)⊗2

ε

∥∥∥∥
χ∗
dα ds

(6.10)

For fixed ω ∈ Ω we denote by V(ω) := {Xt(ω); t ∈ [0, T ]} and

U = U(ω) = conv(V(ω)), (6.11)

i.e. the set U is the closed convex hull of the compact subset V(ω) of B. From (6.10) we deduce

|A2(ε)| ≤ $U×UDF⊗DF (ε)
∫ t

0

∥∥∥∥ (Xs+ε −Xs)⊗2

ε

∥∥∥∥
χ∗
ds,

where $U×UDF⊗DF is the continuity modulus of the application DF (·)⊗DF (·) : B ×B −→ χ restricted to

U × U . We recall that

$U×UDF⊗DF (δ) = sup
‖(x1,y1)−(x2,y2)‖B×B≤δ

‖DF (x1)⊗DF (y1)−DF (x2)⊗DF (y2)‖χ

where the space B ×B is equipped with the norm equal to the norm obtained summing the norms of the

two components.

According to Theorem 5.35 from [2], U(ω) is compact, then the function DF (·)⊗DF (·) on U(ω)× U(ω)

is uniformly continuous and $U×UDF⊗DF is a positive, increasing function on R+ converging to 0 when the

argument converges to zero.

Let (εn) converging to zero; Condition H1 in the definition of χ-quadratic variation, implies the existence

of a subsequence (εnk) such that A2(εnk) converges to zero a.s. We can now conclude that A2(ε)→ 0 in

probability.
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With similar arguments, using (6.9), we can show that A3(ε)→ 0 in probability. We observe in fact

|A3(ε)| ≤
∫ t

0

∫ 1

0

∥∥DF ((1− α)Xs + αXs+ε)⊗2 −DF (Xs)⊗DF ((1− α)Xs + αXs+ε)
∥∥
χ
·

·
∥∥∥∥ (Xs+ε −Xs)⊗2

ε

∥∥∥∥
χ∗
dα ds+

+
∫ t

0

∫ 1

0

∥∥DF ((1− α)Xs + αXs+ε)⊗DF (Xs)−DF (Xs)⊗2
∥∥
χ

∥∥∥∥ (Xs+ε −Xs)⊗2

ε

∥∥∥∥
χ∗
dα ds ≤

≤ 2$U×UDF⊗DF (ε)
∫ t

0

∥∥∥∥ (Xs+ε −Xs)⊗2

ε

∥∥∥∥
χ∗
ds

Corollary 6.18. Let B, B0 be Banach spaces such that B0 ⊃ B, χ a Chi-subspace of (B⊗̂πB)∗ such that

χ = (B0⊗̂πB0)∗ and X a B-valued stochastic process admitting χ-quadratic variation. Let F 1, F 2 : B −→ R
be functions of class C1 in the sense of Fréchet differentiable such that applications

DF i : B −→ B∗0 ⊂ B∗

are continuous, i = 1, 2.

Then the covariation of F i(X) and F j(X) exists and it is given by

[F i(X), F j(X)]· =
∫ ·

0

〈DF i(Xs)⊗DF j(Xs), d[̃X]s〉 (6.12)

Proof. For any given x, y ∈ B, i, j = 1, 2, by characterization of DF i(x)⊗DF j(y) given in Remark 6.14,

it follows that the following applications

DF i(x)⊗DF j(y) : B0⊗̂πB0 −→ R

are continuous for i, j = 1, 2. The result follows from Theorem 6.16.

Remark 6.19. Under the same assumptions as Corollary 6.18 we suppose moreover that B0 is a Hilbert

space. In this case for any x, y ∈ B, DF (x)⊗DG(y) belongs to
(
B0⊗̂hB0

)∗ and it will we associated to

the true tensor product in the sense of Remark 6.14.2.

In view of further applications we will see an important application of this corollary in Proposition 6.15, which

set B = C([−τ, 0]). This is the case when the Fréchet derivative of F and G are in Da([−τ, 0])⊕L2([−τ, 0])

as in Corollary 6.15.

Example 6.20. LetX be a Rn-valued stochastic process with finite quadratic variation [X] : (Rn⊗̂πRn)∗ −→
C([0, T ]) and the associated [̃X](ω, ·) : [0, T ] −→ (Rn⊗̂πRn)∗∗ ∼= (Rn⊗̂πRn). This space can be identified

with the space of matrices Mnn(R). In fact the tensor product between a vector x = (x1, . . . , xn)∗ and a
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vector y = (y1, . . . , yn) can be linked to the matrix (xiyj)i,j=1,...,n ∈Mnn(R), see chapter ??.

Let F,G : Rn −→ R ∈ C1(Rn). Then

[F (X), G(X)]· =
∫ ·

0

〈DF (Xs)⊗DG(Xs), d[̃X]s〉

which coincides with result recalled in Proposition 6.13.

6.3 Dirichlet processes

We formulate now some results about the stability of a window Dirichlet process and some related

Fukushima type decomposition. If X is a Dirichlet process and F : C([−τ, 0]) −→ R of class C1 such that

the first derivative belongs to D0([−τ, 0]2)⊕L2([−τ, 0]), then Theorem 6.25 says that F (X(·)) is a Dirichlet

process.

First we need a preliminary result on measure theory.

Lemma 6.21. Let B be a topological direct sum B1 ⊕ B2 where B1, B2 are Banach spaces equipped

with some norm ‖ · ‖Bi . We denote by Pi the projectors Pi : χ → Bi, i ∈ 1, 2. For g̃ : [0, T ] → B∗, we

define g̃i : [0, T ] → B∗i setting g̃i(t)(η) := g̃(t)(η) for all η ∈ Bi, i.e. the restriction of g̃(t) to B∗i . Let g̃i
continuous with bounded variation and f : [0, T ]→ B with projections fi := Pi(f) defined from [0, T ] to

Bi by Pi(f(s)). Then

1) f in L1
B(g̃) (for instance cadlag) iff fi in L1

Bi
(g̃i) and it holds∫ t

0
B〈f(s), dg̃(s)〉B∗ =

∫ t

0
B1
〈f1(s), dg̃1(s)〉B∗1 +

∫ t

0
B2
〈f2(s), dg̃2(s)〉B∗2 (6.13)

2) In particular if g̃2(t) ≡ 0 then∫ t

0
B〈f(s), dg̃(s)〉B∗ =

∫ t

0
B1
〈f1(s), dg̃1(s)〉B∗1 (6.14)

3) Suppose that B1 = Di,j([−τ, 0]2), B2 be a Chi-subspace ofM([−τ, 0]2) and g̃2(t) ≡ 0. Moreover there

exists g1 : [0, T ]→ R continuous with bounded variation such that g̃1(t)(µ) = 〈µ, δai ⊗ δaj 〉g1(t) =

λ g1(t) for every element µ = λ δai ⊗ δaj in Dij , λ = µ({ai, aj}) real number. Then (6.14) equals∫ t

0
B〈f(s), dg̃(s)〉B∗ =

∫ t

0
B1
〈f1(s), δai ⊗ δaj 〉B∗1 dg1(s) =

∫ t

0

f(s)({ai, aj})dg1(s) (6.15)

Proof.

1) By hypothesis on g̃i we deduce that g̃ : [0, T ] → B∗i has bounded variation. If f : [0, T ] → χ in

L1
B, then fi = Pi(f) : [0, T ]→ Bi, i = 1, 2 belongs to L1

Bi
by the property ‖Pif‖Bi ≤ ‖f‖B. As we
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can see in the appendix vector valued integrations on L1
B(g̃), as well as on L1

Bi
(g̃i), is defined by

density on step functions. First we show the result for a step function f : [0, T ] → B∗ defined by

f(s) =
∑N
j=1 φAj (s)fj with φAj indicator functions of the subsets Aj of [0, T ] and fj ∈ B. We have

fj = f1j + f2j by projections, so

∫ T

0

〈f(s), dg̃(s)〉 =
N∑
j=1

∫
Aj

〈fj , dg̃(s)〉 =
N∑
j=1

〈fj ,
∫
Aj

dg̃(s)〉 =
N∑
j=1

〈fj , g̃(Aj)〉 =

=
N∑
j=1

〈f1j , g̃1(Aj)〉+
N∑
j=1

〈f2j , g̃2(Aj)〉 =

=
∫ T

0

〈f1(s), dg̃1(s)〉+
∫ T

0

〈f2(s)dg̃2(s)〉

A general function f in L1
B(g̃) is a sum of f1 + f2, fi ∈ L1

Bi
(g̃i) for i = 1, 2. Both f1 and f2 can be

approximate by step functions. The result follows by an approximation argument.

2) Follows easily by 1).

3) It is a consequence of 2) and Theorem 30 in Chapter 1, paragraph 2 of [16]. Obviously g1 has bounded

variation and g̃1(t) = g1(t)δ(ai,aj) = g1(t)δai ⊗ δaj . Consequently, by inspection∫ t

0
B1
〈f1(s), dg̃1(s)〉B∗1 =

∫ t

0

f1(s)({ai, aj})dg1(s) =
∫ t

0

f(s)({ai, aj})dg1(s)

and the result follows.

Remark 6.22. Let χ be a Banach subspace ofM([−τ, 0]2) containing Di,j([−τ, 0]2). A typical example of

application of Lemma 6.21 is given by χ1 = Di,j([−τ, 0]2) and χ2 = {µ ∈ χ | µ({ai, aj}) = 0}. Any µ ∈ χ
can be decomposed into µ1 + µ2, where µ1 = µ({ai, aj})δ(ai,aj) and µ2 ∈ χ2. This framework will be the

one of proposition below.

Lemma 6.21 will be applied considering g̃ as the χ-covariation of two processes X and Y

Proposition 6.23. Let χ2 be a Chi-subspace of M([−τ, 0]2) such that µ({ai, aj}) = 0 for a given

i, j ∈ {0, . . . , N} and µ ∈ χ2. We set χ = Di,j([−τ, 0]2)⊕ χ2, Let X, Y be two real continuous processes

such that X(·) and Y (·) admit a zero χ2-covariation and a Di,j([−τ, 0]2)-covariation. Then

1) [X·+ai , Y·+aj ] exists and the Di,j([−τ, 0]2)-covariation is given by

[X(·), Y (·)] : Di,j([−τ, 0]2) −→ C([0, T ]) µ 7→ µ({ai, aj})[X·+ai , Y·+aj ].
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2) χ is a Chi-subspace of M([−τ, 0]2).

3) X(·) and Y (·) admit a χ-covariation of the type

[X(·), Y (·)] : χ −→ C([0, T ]) [X(·), Y (·)](µ) = µ({ai, aj})[X·+ai , Y·+aj ]

4) for every χ-valued process Z with locally bounded paths (for instance cadlag) we have∫ ·
0

〈Zs, d ˜[X(·), Y (·)]s〉 =
∫ ·

0

Zs({ai, aj})d[X·+ai , Y·+aj ]s (6.16)

Proof.

1) is a consequence of the fact that X(·) and Y (·) admit a Di,j([−τ, 0]2)-covariation.

2) follows by Proposition 4.3.

3) Since Di,j([−τ, 0]2) and χ2 are Chi-subspaces, X(·) and Y (·) admit Di,j([−τ, 0]2)-covariation and

χ2-covariation, then Remark 6.4 point 1) implies that X(·) and Y (·) admit χ-covariation which equals

the sum of Di,j([−τ, 0]2)-covariation and χ2-covariation. For µ in χ with decomposition µ1 + µ2,

µ1 ∈ Di,j([−τ, 0]2) and µ2 ∈ χ2 we have

[X(·), Y (·)](µ) = [X(·), Y (·)](µ1) + [X(·), Y (·)](µ2) =

= [X(·), Y (·)](µ1) =

= µ1({ai, aj})[X·+ai , Y·+aj ] =

= µ({ai, aj})[X·+ai , Y·+aj ].

4) Since both side of (6.16) are continuous processes, it is enough to show that they are equals a.s. for

every fixed t ∈ [0, T ]. This follows for almost all ω ∈ Ω using Lemma 6.21 where f = Z(ω) and

g̃ = ˜[X(·), Y (·)](ω).

Remark 6.24. Proposition 6.23 will be used in the sequel especially in the case ai = aj = 0.

Theorem 6.25. Let X be a real continuous (Ft)−Dirichlet process with decomposition X = M +A, M

local martingale and A is a zero quadratic variation process with A0 = 0. Let F : C([−τ, 0]) −→ R be a

Fréchet differentiable function such that the range of DF is D0([−τ, 0])⊕L2([−τ, 0]). Moreover we suppose

that DF : C([−τ, 0]) −→ D0([−τ, 0])⊕ L2([−τ, 0]) is continuous.

Then F (X(·)) is an (Ft)-Dirichlet process with local martingale component equal to

M̄· =
∫ ·

0

DF
(
Xs(·)

)
({0})dMs + F

(
X0(·)

)
.
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Proof. We need to show that [Ā] = 0 where Ā := F (X(·)) − M̄ . From now on in this proof we denote

α0(η) = DF (η)({0}). By the linearity of the real covariation we have [Ā] = A1 +A2 − 2A3 where

A1 = [F (X·(·))]

A2 =
[∫ ·

0

α0

(
Xs(·)

)
dMs

]
A3 =

[
F (X(·)),

∫ ·
0

α0

(
Xs(·)

)
dMs

]
Since X is a finite quadratic variation process, then by Corollary 5.10 its window process X(·) admits

χ0([−τ, 0]2)-quadratic variation [X(·)]. Moreover by Corollary 6.15 and Remark 6.19 the map DF ⊗DF :

C([−τ, 0])× C([−τ, 0]) −→ χ0([−τ, 0]2) is a continuous application. Applying Theorem 6.16 and (6.16) of

Proposition 6.23 we obtain

A1 =
∫ ·

0

〈DF (Xs(·))⊗DF (Xs(·)), d[̃X·(·)]s〉 =

=
∫ ·

0

α2
0(Xs(·))d[X]s =

∫ ·
0

α2
0(Xs(·))d[M ]s

Term A2 is the quadratic variation of an Itô’s integral because the stochastic process α0

(
Xs(·)

)
is (Fs)-

adapted, so that

A2 =
∫ ·

0

α2
0(Xs(·))d[M ]s

It remains to prove that A3 =
∫ ·

0
α2

0(Xs(·))d[M ]s.We define G : C([−τ, 0]) −→ R by G(η) = η(0). We

observe that M̄ = G(M̄(·)) where M̄(·) denotes as usual the window process associated to M̄ . G is Fréchet

differentiable and DG(η) = δ0, therefore DG is continuous from C([−τ, 0]) to D0([−τ, 0]) ⊕ L2([−τ, 0]).

Moreover by Corollary 6.15 we know that DF⊗DG : C([−τ, 0])×C([−τ, 0]) −→ χ0([−τ, 0]2) is a continuous

application. Remark 6.12 point 2. says that the χ0([−τ, 0]2)-covariation between X(·) and M̄(·) exists and

it is given by

[X(·), M̄(·)](µ) = µ({0, 0})[X, M̄ ]. (6.17)

By usual properties of stochastic calculus we have [X, M̄ ] = [M,M̄ ] + [A, M̄ ] =
[
M,
∫ ·

0
a0

(
Xs(·)

)
dMs

]
=∫ ·

0
α0

(
Xs(·)

)
d[M ]s. Finally again applying Theorem 6.16, equation (6.16) in Proposition 6.23 and result

(6.17) we obtain

A3 = [F (X(·)), G(M̃(·))] =

=
∫ ·

0

〈DF (Xs(·))⊗DG(M̄s(·)), d ˜[X(·), M̄(·)]s〉 =

=
∫ ·

0

α0(Xs(·))d[X, M̄ ]s =
∫ ·

0

α2
0(Xs(·))d[M ]s
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Theorem 6.26. Let X be a real continuous (Ft)-Dirichlet process with decomposition X = M +A, M

local martingale and A zero quadratic variation process with A0 = 0. Let F : C([−τ, 0]) −→ R be a Fréchet

differentiable function such that DF : C([−τ, 0]) −→ Da([−τ, 0]) ⊕ L2([−τ, 0]) is continuous. Denoting

αi(η) = DF (η)({ai}), we have the following.

1) F (X(·)) is a finite quadratic variation process and

[F (X(·))] =
∑

i=0,...,N

∫ t

0

α2
i (Xs(·))d[M·+ai ]s (6.18)

2) F (X(·)) is an (Ft)-weak Dirichlet process with decomposition F (X(·)) = M̄ + Ā, where M̄ is a local

martingale defined by M̄· :=
∫ ·

0
α0

(
Xs(·)

)
dMs + F (X0(·)) and Ā is the (Ft)-martingale orthogonal

process.

3) Moreover Ā is a finite quadratic variation process and

[Ā]t =
∑

i=1,...,N

∫ t

0

α2
i (Xs(·))d[M·+ai ]s (6.19)

4) In particular {F (Xt(·)); t ∈ [0,−a1]} is a Dirichlet process with local martingale component M̄ .

Proof.

1) By Corollary 6.15 we know that DF ⊗ DF : C([−τ, 0]) × C([−τ, 0]) −→ χ2([−τ, 0]2) and it is a

continuous map. Applying Theorem 6.16, equation (6.16) in Proposition 6.23 and Example 5.17 point

4) we obtain

[F (X(·))]t =
∫ t

0

〈DF (Xs(·))⊗DF (Xs(·)), d ˜[Xs(·)]〉 =

=
∫ t

0

∑
i,j=0...,N

αi(Xs(·))αj(Xs(·))d[X·+ai , X·+aj ]s =

=
∑

i=0,...,N

∫ t

0

α2
i (Xs(·))d[M·+ai ]s

and (6.18) is proved.

2) To show that it F (X(·)) is a weak Dirichlet process we need to show that [F (X(·))−
∫ ·

0
α0

(
Xs(·)

)
dMs, N ]

is zero for every (Ft)-continuous local martingale N . Again setting G : C([−τ, 0]) −→ R setting

G(η) = η(0). It holds Nt = G(Nt(·)). Function G is Fréchet differentiable with DG : C([−τ, 0]) −→
D0([−τ, 0]), DG(η) = δ0. Corollary 6.15 says that DF ⊗DG : C([−τ, 0])×C([−τ, 0]) −→ χ2([−τ, 0]2)
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and it is a continuous map. Theorem 6.10 implies that X(·) and N(·) admit a χ2([−τ, 0]2)-covariation

which equals

[X(·), N(·)](µ) = µ({0, 0})[M,N ]. (6.20)

By Theorem 6.16 and (6.20) we have

[F (X(·)), N ]t = [F (X(·)), G(N(·))]t =
∫ t

0

〈DF (Xs(·))⊗DG(Ns(·)), d ˜[X(·), N(·)]s〉 =

=
∫ t

0

α0(Xs(·))d[M,N ]s (6.21)

On the other hand α0

(
Xs(·)

)
is (Fs)-adapted so

∫ ·
0
α0

(
Xs(·)

)
dMs is an Itô’s integral then by usual

properties of stochastic calculus[∫ ·
0

α0

(
Xs(·)

)
dMs, N

]
t

=
∫ t

0

α0

(
Xs(·)

)
d[M,N ]s

and the result follows.

3) Moreover [Ā] = [F (X(·))] + [M̄ ]− 2[F (X(·)), M̄ ]. The first bracket is equal to (6.18). The second

term is[∫ ·
0

α0

(
Xs(·)

)
dMs

]
=
∫ t

0

α2
0(Xs(·))d[M ]s

Setting Nt =
∫ t

0
α0(Xs(·))dMs, (6.21) gives[

F (X(·)),
∫ ·

0

α0

(
Xs(·)

)
dMs

]
=
∫ t

0

α2
0(Xs(·))d[M ]s

and (6.19) follows.

4) It is an easy consequence of (6.19) since (Āt)t∈[0,−a1[ is a zero quadratic variation process.

Remark 6.27. 1. Theorem 6.26 gives a class of examples of (Ft)-weak Dirichlet processes with finite

quadratic variation which are not (Ft)-Dirichlet processes.

2. An example of F : C([−τ, 0]) −→ R Fréchet differentiable such that DF : C([−τ, 0]) −→ Da([−τ, 0])⊕
L2([−τ, 0]) continuously is, for instance, F (η) =

∑N
i=0 fi

(
η(ai)

)
, with fi ∈ C1(R). We have DF (η) =∑N

i=0 f
′
i

(
η(ai)

)
δai .
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3. Let a ∈ [−τ, 0[ and W be a classical (Ft)-Brownian motion, process X defined as Xt := Wt+a is

an (Ft)-weak Dirichlet process that is not (Ft)-Dirichlet. This result can be proved of course also

directly, see Proposition 4.11 in [9].

We now go on with a result concerning weak Dirichlet processes. Let D be a real continuous (Ft)-
Dirichlet process. In [24], Proposition 3.10, it was proved that given u ∈ C0,1(R+ × R), Xt = u(t,Dt) is

an (Ft)-weak Dirichlet process. Let F ∈ C0,1(R+ × C([−τ, 0])) in the Fréchet sense. Similarly to [24] we

cannot expect X = F (·, D·(·)) to be a Dirichlet process. In general it will not even be a finite quadratic

variation process if the dependence on t is very irregular. However we will show that X is a weak Dirichlet

process, even if D is weak Dirichlet process with finite quadratic variation.

Theorem 6.28. Let D be an (Ft)-weak Dirichlet process with finite quadratic variation where M is the local

martingale part. Let F : [0, T ]×C([−τ, 0]) −→ R continuous. We suppose moreover that (t, η) 7→ DF (t, η)

exists with values in D0([−τ, 0])⊕ L2([−τ, 0]) and DF : [0, T ]× C([−τ, 0]) −→ D0([−τ, 0])⊕ L2([−τ, 0]) is

continuous.

Then F (·, D·(·)) is an (Ft)-weak Dirichlet process with martingale part

M̄F
t = F (0, D0(·)) +

∫ t

0

Dδ0F (s,Ds(·))dMs (6.22)

where Dδ0F (s,Ds(·)) denotes DF (s,Ds(·))({0}), i.e. the Dirac zero component of the first derivative of F

calculated in (s,Ds(·)).

Proof. In the sequel we will denote real process M̄F simply by M̄ . We need to show that for any

(Ft)-continuous local martingale N[
F (·, D(·))− M̄,N·

]
t

= 0 a.s. (6.23)

Since the covariation of semimartingales coincides with the classical covariation[
M̄,N

]
t

=
∫ t

0

Dδ0F (s,Ds(·))d[M,N ]s (6.24)

It remains to check that, for every t ∈ [0, T ],

[F (·, D(·)), N ]t =
∫ t

0

Dδ0F (s,Ds(·))d[M,N ]s

For this we have to evaluate the ucp limit of∫ t

0

(
F (s+ ε,Ds+ε(·))− F (s,Ds(·))

)Ns+ε −Ns
ε

ds (6.25)

if it exists. (6.25) can be written as the sum of the two terms

I1(t, ε) =
∫ t

0

(
F (s+ ε,Ds+ε(·))− F (s+ ε,Ds(·))

)Ns+ε −Ns
ε

ds ,

I2(t, ε) =
∫ t

0

(
F (s+ ε,Ds(·))− F (s,Ds(·))

)Ns+ε −Ns
ε

ds
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First we prove that I1(t, ε) converges to
∫ t

0
Dδ0F (s,Ds(·))d[M,N ]s. If G : C([−τ, 0]) → R is again

the function G(η) = η(0), then G is of class C1 and DG(η) = δ0 for all η ∈ C([−τ, 0]) so that DG :

C([−τ, 0]) −→ D0([−τ, 0]) is continuous. In particular it holds the equality η(0) = G(η(·)) = 〈δ0, η〉. We

express

I1(t, ε) =
∫ t

0

〈DF (s+ ε,Ds(·)), (Ds+ε(·)−Ds(·))〉
Ns+ε −Ns

ε
ds+R1(t, ε)

=
∫ t

0

〈DF (s+ ε,Ds(·)), (Ds+ε(·)−Ds(·))〉
〈δ0, Ns+ε(·)Ns(·)〉

ε
ds+R1(t, ε) (6.26)

Now we have

R1(t, ε) =
∫ t

0

[∫ 1

0

〈DF
(
s+ ε, (1− α)Ds(·) + αDs(·)

)
−DF

(
s+ ε,Ds(·)

)
,
(
Ds+ε(·)−Ds(·)

)
〉dα
]
×

× 〈δ0, Ns+ε(·)−Ns(·)〉
ε

ds =

=
∫ t

0

∫ 1

0

〈DF
(
s+ ε, (1− α)Ds(·) + αDs(·)

)
⊗ δ0 −DF

(
s+ ε,Ds(·)

)
⊗ δ0,(

Ds+ε(·)−Ds(·)
)
⊗
(
Ns+ε(·)−Ns(·)

)
ε

〉dα ds

We recall that for t ∈ [0, T ], η1, η2 ∈ C([−τ, 0]) the map DF (t, η1) ⊗DG(η2) equals the tensor product

DF (t, η1) ⊗ δ0 by hypothesis and by Riesz identification of DF (t, η1). By Corollary 6.15 we know that

map DF ⊗ δ0 : [0, T ]× C([−τ, 0]) −→ χ0([−τ, 0]2) and it is a continuous map.

We denote by U = U(ω) the closed convex hull of the compact subset V of C([−τ, 0]) defined, for every ω,

by

V = V(ω) := {Dt(ω); t ∈ [0, T ]}

According to Theorem 5.35 from [2], U(ω) = conv(V)(ω) is compact, then the function DF (·, ·)⊗ δ0 on

[0, T ]× U is uniformly continuous and we denote by $[0,T ]×U
DF (·,·)⊗δ0 the continuity modulus of the application

DF (·, ·)⊗δ0 restricted to [0, T ]×U . $[0,T ]×U
DF (·,·)⊗δ0 is, as usual, a positive, increasing function on R+ converging

to zero when the argument converges to zero. So we have

sup
t∈[0,T ]

|R1(t, ε)| ≤
∫ T

0

$
[0,T ]×U
DF (·,·)⊗δ0(ε)

∥∥∥∥∥
(
Ds+ε(·)−Ds(·)

)
⊗
(
Ns+ε(·)−Ns(·)

)
ε

∥∥∥∥∥
χ0([−τ,0]2)

ds (6.27)

We recall by Remark 6.12, point 2. that D(·) and N(·) admit χ2([−τ, 0]2)-covariation. In particular using

condition H1 and (6.27) claim R1(t, ε)
ucp−−−→
ε→0

0 follows.

On the other hand the first addend in (6.26) can be rewritten as∫ t

0

〈DF
(
s,Ds(·)

)
⊗ δ0,

(
Ds+ε(·)−Ds(·)

)
⊗
(
Ns+ε(·)−Ns(·)

)
ε

〉ds+R2(t, ε) (6.28)
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where R2(t, ε)
ucp−−−→
ε→0

0 arguing similarly as for R1(t, ε). Using bilinearity and Corollary 4.24 the integral in

(6.28) converges then ucp to∫ t

0

〈DF
(
s,Ds(·)

)
⊗ δ0, d ˜[D(·), N(·)]s〉 (6.29)

By (6.16) in Proposition 6.23 in the case ai = aj = 0, (6.29) equals∫ t

0

Dδ0F (s,Ds(·))d[D,N ]s =
∫ t

0

Dδ0F (s,Ds(·))d[M,N ]s (6.30)

It remains to show that I2(·, ε) ucp−−−→
ε→0

0.

By stochastic Fubini’s theorem we obtain

I2(t, ε) =
∫ t

0

ξ(ε, r)dNr

where

ξ(ε, r) =
1
ε

∫ r

0∨(r−ε)
F (s+ ε,Ds(·))− F (s,Ds(·))ds

Proposition 2.26, chapter 3 of [30] says that I2(·, ε) ucp−−−→
ε→0

0 if

∫ T

0

ξ2(ε, r)d[N ]r −−−→
ε→0

0 (6.31)

We fix ω ∈ Ω and we can even show that the convergence in (6.31) holds pointwise. We denote by $[0,T ]×U
F

the continuity modulus of the application F restricted to the compact set [0, T ]× U . For every r ∈ [0, T ]

we have

|ξ(ε, r)| ≤ sup
r∈[0,T ]

|F (r + ε,Dr(·))− F (r,Dr(·))| ≤ $[0,T ]×U
F (ε)

which converges to zero for ε going to zero since function F on [0, T ]× U is uniformly continuous on the

compact set and $
[0,T ]×U
F is, as usual, a positive, increasing function on R+ converging to zero when the

argument converges to zero. By Lebesgue’s dominated convergence theorem we finally obtain (6.31).



Chapter 7

Itô’s formula

We are now able to state an Itô’s formula for stochastic processes with values in a general Banach space.

Theorem 7.1. Let B be a Banach space, χ be a Chi-subspace of (B⊗̂πB)∗ and X a B-valued continuous

process admitting a χ-quadratic variation. Let F : [0, T ] × B −→ R be a function once continuously

differentiable with respect to the first variable t and of class C2 in the Fréchet sense with respect to the

second variable such that

D2F : [0, T ]×B −→ χ ⊂ (B⊗̂πB)∗ continuous with respect to χ (7.1)

Then for every t ∈ [0, T ] the forward integral∫ t

0
B∗〈DF (s,Xs), d−Xs〉B

exists and following formula holds.

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

〈DF (s,Xs), d−Xs〉+
1
2

∫ t

0

〈D2F (s,Xs), d[̃X]s〉 (7.2)

Proof. We fix a t ∈ [0, T ] and we observe that the quantity

I0(ε, t) =
∫ t

0

F (s+ ε,Xs+ε)− F (s,Xs)
ε

ds (7.3)

converges ucp for ε → 0 to F (t,Xt) − F (0, X0) since F (Xs) is continuous. At the same time, using the

Taylor’s expansion, (7.3) can be written as the sum of two terms:

I1(ε, t) =
∫ t

0

F (s+ ε,Xs+ε)− F (s,Xs+ε)
ε

ds (7.4)

and

I2(ε, t) =
∫ t

0

F (s,Xs+ε)− F (s,Xs)
ε

ds (7.5)
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First we prove that

I1(ε, t) −→
∫ t

0

∂tF (s,Xs)ds (7.6)

in probability for every fixed t ∈ [0, T ]. In fact

I1(ε, t) =
∫ t

0

∂tF (s,Xs+ε)ds+R1(ε, t) (7.7)

where

R1(ε, t) =
∫ t

0

∫ 1

0

∂tF
(
s+ (1− α)ε,Xs+ε

)
− ∂tF (s,Xs+ε)dαds

We have

sup
t∈[0,T ]

|R1(ε, t)| ≤ T $[0,T ]×U
∂tF

(ε)

where $[0,T ]×U
∂tF

(ε) is the continuity modulus in ε of the application ∂tF : [0, T ] × B −→ R restricted to

[0, T ]×U . We recall that set U is been defined in (6.11) and there we have proved also that it is a compact

set, as well as [0, T ]× U . By the continuity of the ∂tF as function from [0, T ]×B to R follows that the

restriction on [0, T ] × U is uniformly continuous and $
[0,T ]×U
∂tF

is a positive, increasing function on R+

converging to 0 when the argument converges to zero. We deduce that R1(ε, t)→ 0 ucp as ε→ 0.

On the other hand the first term in (7.7) can be rewritten as∫ t

0

∂tF (s,Xs)ds+R2(ε, t)

where R2(ε, t)→ 0 ucp arguing as for R1(ε, t). Convergence (7.6) is now established

The second term I2(ε, t) in (7.5), may also be approximated by using the Taylor’s expansion and it can be

written as the sum of three terms:

I21(ε, t) =
∫ t

0

〈DF (s,Xs),
Xs+ε −Xs

ε
〉ds

I22(ε, t) =
1
2

∫ t

0

〈D2F (s,Xs),
(Xs+ε −Xs)⊗2

ε
〉ds

I23(ε, t) =
∫ t

0

[∫ 1

0

α〈D2F (s, (1− α)Xs+ε + αXs)−D2F (s,Xs),
(Xs+ε −Xs)⊗2

ε
〉 dα

]
ds

By Corollary 4.24,

I22(ε, t) P−−−→
ε→0

1
2

∫ t

0

〈D2F (s,Xs), d[̃X]s〉
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for every t ∈ [0, T ].

We study now I23(ε, t) and we will show that I23(ε, t) P−→ 0. We have

|I23(ε, t)| ≤ 1
ε

∫ t

0

∫ 1

0

α
∣∣〈D2F (s, (1− α)Xs+ε + αXs)−D2F (s,Xs), (Xs+ε −Xs)⊗2〉

∣∣ dα ds ≤
≤ 1
ε

∫ t

0

∫ 1

0

α
∥∥D2F (s, (1− α)Xs+ε + αXs)−D2F (s,Xs)

∥∥
χ

∥∥(Xs+ε −Xs)⊗2
∥∥
χ∗
dα ds ≤

≤ $[0,T ]×U
D2F (ε)

∫ t

0

sup
‖φ‖χ≤1

∣∣∣∣〈φ, (Xs+ε −Xs)⊗2

ε
〉
∣∣∣∣ ds

where $[0,T ]×U
D2F (ε) is the continuity modulus of the application D2F : [0, T ] × B −→ χ restricted to the

compact set [0, T ]×U . We recall that U was defined in (6.11) and there we also proved that it is a compact

set. So again D2F on [0, T ] × U is uniformly continuous and $
[0,T ]×U
D2F is a positive, increasing function

on R+ converging to 0 when the argument converges to zero. Taking into account condition H1 in the

definition of χ-quadratic variation, I23(ε, t)→ 0 in probability when ε goes to zero.

Since I0, I1, I22 and I23 converge in probability for every fixed t ∈ [0, T ], it follows

I21(ε, t) −→
∫ t

0

〈DF (s,Xs), d−Xs〉

in probability. This insure by definition that the forward integral exists.

This in particular also implies the so-called Itô’s formula (7.2).

As corollary of Theorem 7.1 we have the so-colled Itô’s formula in the homogeneous case, i.e. without

the dependence on the time variable t.

Corollary 7.2. Let B be a Banach space, χ be a Chi-subspace of (B⊗̂πB)∗ and X a B-valued continuous

process admitting a χ-quadratic variation. Let G : B −→ R a function of class C2 Fréchet such that

D2G : B −→ χ ⊂ (B⊗̂πB)∗ continuous with respect to χ (7.8)

Then for every t ∈ [0, T ] the forward integral∫ t

0
B∗〈DG(Xs), d−Xs〉B

exists and following formula holds:

G(Xt) = G(X0) +
∫ t

0
B∗〈DG(Xs), d−Xs〉B +

1
2

∫ t

0
χ〈D

2G(Xs), d[̃X]s〉χ∗ (7.9)

Proof. The proof is just an application of Theorem 7.1 without the dependence on time variable t

The Chi-subspace χ of (B⊗̂πB)∗ constitutes a degree of freedom of validity of Itô’s formula. In order

to find the suitable expansion for F (t,Xt) we may proceed as follows
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• Let F : [0, T ]× R −→ R of class C1 we compute the second order derivative D2F if it exists.

• We check the existence of a Chi-subspace χ of (B⊗̂πB)∗ for which the range of D2F : [0, T ]×B −→
(B⊗̂πB)∗ is included in χ and it is continuous with respect to the topology of χ.

• We verify that X admits a χ-quadratic variation

We observe that whenever X admits a global quadratic variation, i.e. χ = (B⊗̂πB)∗, previous points

reduce to check that F ∈ C1,2. When X is a semimartingale we rediscover the classical Itô’s formula.

We illustrate now an application of Corollary 7.2 for window processes X(·), where X is a real continuous

finite quadratic variation process. X(·) can be reasonably observed in the two following perspectives:

a) X(·) is C([−τ, 0])-valued and χ has to be a Chi-subspace of (C([−τ, 0])⊗̂πC([−τ, 0]))∗. Related

examples of such χ are listed in Example 4.5.

b) X(·) is L2([−τ, 0])-valued and χ has to be a Chi-subspace of (L2([−τ, 0])⊗̂πL2([−τ, 0]))∗. Related

examples of such χ are listed in Examples 4.8.

Let G : L2([−τ, 0]) −→ R be defined by

G(η) =
∫ 0

−τ
η2(s)ds = ‖η‖2L2([−η,0]) (7.10)

G is a continuous function as well as its restriction F to C([−τ, 0]).

We have

D2G : L2([−τ, 0]) −→ DiagB([−τ, 0]2) (7.11)

In fact it is constant and equal to the double inner product in L2([−τ, 0]), i.e. the bilinear map such that

(f, g) 7→ 2〈f, g〉L2([−τ,0]).

Also the restriction F is C2 Fréchet in fact

D2F : C([−τ, 0]) −→ Diag([−τ, 0]2) (7.12)

and it is the constant Radon measure on [−τ, 0]2, defined by

µ(dx, dy) = 21[−τ,0](x)δy(dx)dy (7.13)

Being constant previous maps are both continuous with respect to the corresponding χ-topology. We

illustrate an application of Corollary 7.2 to function F (Xt(·)) and G(Xt(·)). The proposition below gives

in particular a representation of a forward type integral.
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Proposition 7.3. Let 0 < τ ≤ T andX a continuous real process such that [X]t = t. We setB = C([−τ, 0]).

Then for the B-valued window process X(·) it holds

2
∫ t

0
B∗〈Xs(·), d−Xs(·)〉B = ‖Xt(·)‖2L2([−τ,0]) −

∫ t∧τ

0

(t− y)dy (7.14)

Proof. We apply Itô’s formula of Corollary 7.2 to F (Xt(·)). In this case we have for η, h, h1 and h2 in

C([−τ, 0])

DF (η)(h) = 2
∫ 0

−τ
η(s)h(s)ds

D2F (η)(h1, h2) = 2
∫ 0

−τ
h1(s)h2(s)ds = 2〈h1, h2〉L2([−η,0])

wwhere D2F was given in (7.13). In terms of measures, it gives

DdxF (η) = 21[−τ,0](x)η(x)dx

D2
dx dyF (η) = 21[−τ,0](x)δy(dx)dy (7.15)

We set χ = Diag([−τ, 0]2). By Proposition 5.20 X(·) admits χ-quadratic variation given by (5.18). For

every t ∈ [0, T ], by Corollary 7.2, we obtain∫ t

0

〈DF (Xs(·)),
Xs+ε(·)−Xs(·)

ε
〉ds P−−−→

ε→0
2
∫ t

0

〈Xs(·), d−Xs(·)〉 (7.16)

The χ-quadratic variation (5.18) in the case [X]t = t and for a general diagonal measure µ(dx, dy) =

g(x, y)δy(dx)dy is given by

[X(·)]t(µ) =
∫ t∧τ

0

g(−y)(t− y)dy =


∫ t

0

g(−y)(t− y)dy 0 ≤ t ≤ τ∫ τ

0

g(−y)(t− y)dy τ < t ≤ T

We denote D2F (Xs(·)) by µ for every s ∈ [0, T ], where µ = 21[−τ,0](x)δy(dx)dy. So the second order

derivative term in Itô’s formula became a trivial case of Lebesgue-Stieltjes integral:

1
2

∫ t

0

〈D2F (Xs(·)), d[̃X(·)]s〉 =
1
2
〈µ, [̃X(·)]t〉 −

1
2
〈µ, [̃X(·)]0〉 =

1
2

[X(·)]t(µ) =
∫ t∧τ

0

(t− y)dy =

=


t2

2
0 ≤ t ≤ τ

τ(t− τ

2
) τ < t ≤ T

This concludes the proof.

Remark 7.4. Even in the case whenX is a classical Brownian motionW , the forward integral
∫ t

0
〈Ws(·), d−Ws〉

is of anticipating type, see for example [53] for similar considerations.
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Remark 7.5. 1) We set now H = L2([−τ, 0]). Expressing G(Xt(·)) where X(·) is seen as a H-valued

process and G is defined as in (7.10), we can obtain

2
∫ t

0
H∗〈Xs(·), d−Xs(·)〉H = ‖Xt(·)‖2L2([−τ,0]) −

∫ t∧τ

0

(t− y)dy (7.17)

This follows again by Corollary 7.2 and the fact that X(·) admits a DiagB([−τ, 0]2)-quadratic variation

given by (5.28), see Proposition 5.31.

2) Remark 3.5 implies that∫ t

0
B∗〈Xs(·), d−Xs(·)〉B =

∫ t

0
H∗〈Xs(·), d−Xs(·)〉H

so that point 1) provides another proof of Proposition 7.3.

Remark 7.6. In the case X = W a Brownian motion, formula (7.17) was established in Example 8.7 of

[53]. Their techniques use Skorohod anticipating calculus and they only could be applied because X is a

Gaussian. Our considerations did not make any assumption on the law of X.



Chapter 8

A generalized Clark-Ocone formula

8.1 Introduction

In this chapter we will consider τ = T . Let Y = (Yt)t∈[0,T ] be a stochastic process such that [Y ]t = t.

The main aim of this chapter consists in looking for classes of functionals H : C([−T, 0]) −→ R for which

there is H0 ∈ R, ξ an adapted process with respect to the canonical filtration of Y such that

H = H0 +
∫ T

0

ξsd
−Ys (8.1)

Moreover we look for an explicit expression for H0 and ξ.

We do not aim to find out the full generality under which (8.1) is possible. We start with the following toy

model.

H = f(YT ) so that H(η) = f(η(0)).

We recall, see [47, 3, 9], that whenever u ∈ C1,2([0, T [×R) ∩ C0([0, T ]× R) with u(T, x) = f(x), then we

can choose

H0 = u(0, Y0) ξt = ∂xu(t, Yt).

We recall that in that case∫ T

0

Hsd
−Ys

is the improper integral

lim
t→T

∫ t

0

Hsd
−Ys

We will investigate the following cases
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1. H ∈ C2(L2([−T, 0])) such that D2H(η) ∈ L2([−T, 0]2) with polynomial growth such that DH(η) ∈
H1([−T, 0]) for every η ∈ C([−T, 0]). This can be generalized to the case H = C2(L2([−T, 0]) ⊕
D0([−T, 0])) which includes the previous toy model. However we have chosen not to formulate this

full generality.

2. H(η) = ‖η‖2L2([−T,0]).

3. H(η) = f
(∫ 0

−T η(s)ds
)

and f : R→ R such that f
(∫ T

0
Wsds

)
∈ L1(Ω).

4. H(η) = f
(∫ 0

−T ϕ1(u+ T )dη(u), . . . ,
∫ 0

−T ϕn(u+ T )dη(u)
)

where ϕi : [0, T ]→ R in C2([0, T ]; R) and

f : Rn → R be a measurable and bounded function.

We need now to develop some technical preliminaries.

8.2 Some technical preliminaries

Let us consider a process (Yt)t≥0 such that [Y ]t = t. We make the usual convention of prolongation by

continuity for t ≤ 0. In this chapter we aim at representing

h = H(YT (·)) where H : L2([−τ, 0]) −→ R

is of class C2, in the form

H = H0 +
∫ T

0

ξsd
−Ys (8.2)

Let now consider a standard Brownian motion W and its canonical filtration (Ft).

Notation 8.1. For 0 < s < t < T , η ∈ C([−T, 0]) we define the “flow”

Xs,η
t (x) =

{
η(x+ t− s) x ∈ [−T, s− t]
η(0) +Wt(x)−Ws x ∈ [s− t, 0]

(8.3)

(Xs,η
t )0≤s≤t≤T, η∈C([−T,0]) is a C([−T, 0])-valued random field. We observe that (Xs,η

t )0≤s≤t≤T, η∈C([−T,0])

is continuous with respect to the three variables.

Lemma 8.2. The following flow property holds, for 0 < s < t < r < T ,

Xs,η
r = X

t,Xs,ηt
r (8.4)

Proof. We have, for η̃ ∈ C([−T, 0]),

Xt,η̃
r (x) =

{
η̃(x+ r − t) x ∈ [−T, t− r]
η̃(0) +Wr(x)−Wt x ∈ [t− r, 0]
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We substitute η̃ = Xt,η
s to get

X
t,Xt,ηs
r (x) =


η(x+ r − s) x ∈ [−T, s− r]
η(0) +Wt(x+ r − t)−Ws x ∈ [s− r, t− r]
η(0) + (Wt −Ws) +Wr(x)−Wt x ∈ [t− r, 0]

 = Xs,η
r (x)

This concludes the proof of the Lemma.

Remark 8.3. We have

Xt,η
T (x) =

{
η(x+ T − t) x ∈ [−T, t− T ]

η(0) +WT−t(x) x ∈ [t− T, 0]

where W is a standard Brownian motion.

Given H : L2([−T, 0]) −→ R, we express

E [H(WT (·))|Ft] = u(t,Wt(·)) (8.5)

where u : [0, T ]× C([−T, 0]) −→ R. Clearly Lemma 8.2 implies WT (·) = X
t,Wt(·)
T , so

Vt = E
[
H
(
X
t,X0,0

t

T

)
|Ft
]

= E
[
H
(
X
t,Wt(·)
T

)
|Ft
]

= u(t,Wt(·))

with

u(t, η) = E
[
H
(
Xt,η
T

)]
(8.6)

In the sequel η will always be a generic function in C([−T, 0]).

That function u will play a crucial role in this chapter. In particular, given Yt a real continuous process,

we will evaluate an Itô’s type expansion of u(t, Yt(·)).
By definition 8.1 it follows the following homogeneity property.

Remark 8.4. We have

u(t, η) = E
[
H
(
X0,η
T−t
)]

(8.7)

We need an ulterior preliminary tool.

Lemma 8.5. Let (tn)n a sequence in [0, T ] such that tn → t0. Then

X0,η
T−tn

a.s. in C([−T,0])−−−−−−−−−−−→
n→∞

X0,η
T−t0 (8.8)
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Proof. For every ω, supx∈[−T,0] |X
0,η
T−tn −X

0,η
T−t0 | equals

sup
x∈[−T,0]

| (η(x+ T − tn)− η(x+ T − t0))1[−T,t−T ](x) + (WT−tn(x)−WT−t0(x))1[t−T,0](x)| ≤

≤ sup
x∈[−T,0]

|η(x+ T − tn)− η(x+ T − t0)|+ sup
x∈[−T,0]

|WT−tn(x)−WT−t0(x)| ≤

≤ $η(ε) +$W (ω)(ε) −−−→
ε→0

0

where $η and $W (ω) are respectively the modulus of continuity of η and the Brownian motion for every

fixed ω. Since η and W (ω) are uniformly continuous on the compact set [0, T ] both modulus of continuity

converge to zero when ε→ 0. In particular X0,η
T−tn

a.s. in C([−T,0])−−−−−−−−−−−→
n→∞

X0,η
T−t0 .

We continue stating two Fréchet regularity results about u defined in (8.6).

Theorem 8.6. Let u defined by (8.6) and H ∈ C2(L2([−T, 0])) such that the second order Fréchet

derivative D2H belong to L2([−T, 0]2) and has polynomial growth (for instance bounded).

1) Then u ∈ C0,2([0, T ]× C([−T, 0])) and Du(t, η) and D2(t, η) are given by (8.12) and (8.13).

2) If moreover DH(η) ∈ H1([−T, 0]), i.e. function x 7→ DxH(η) is in H1([−T, 0]), every fixed η. Then

u ∈ C1,2([0, T ]× C([−T, 0])) and ∂tu(t, η) is given by (8.24).

Moreover u satisfies

∂tu(t, η) + 〈Dacu(t, η), dη〉+
1
2
D2

0,0u(t, η) = 0. (8.9)

Proof of 1) of Theorem 8.6. • Continuity of function u with respect to time t.

We consider a sequence (tn)n in [0, T ] such that tn −−−−→
n→∞

t0. By Assumption H ∈ C0(L2([−T, 0])) and

therefore also H ∈ C0(C([−T, 0])). Consequently, by Lemma 8.5, it follows

H
(
X0,η
T−tn

) a.s.−−−−→
n→∞

H
(
X0,η
T−t0

)
(8.10)

By a Taylor’s expansion, given for instance by Theorem 5.6.1 in [6], the fact that D2H has polynomial

growth implies that H also has also polynomial growth. Therefore there is p ≥ 1 such that

|H(ζ)| ≤ const

(
1 + sup

t∈[0,T ]

|ζ(t)|p
)

We observe that

|H(X0,η
T−t)| ≤ const

(
1 +

∥∥∥X0,η
T−t

∥∥∥p) ≤
≤ const

(
1 + sup

t≤T
|ηt|p + sup

t≤T
|Wt|p

)
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By Lebesgue dominated convergence theorem, the fact that supt≤T |Wt|p is integrable and (8.10), it follows

that

u(tn, η) = E
[
H
(
X0,η
T−tn

)]
−−−−→
n→∞

E
[
H
(
X0,η
T−t0

)]
= u(t0, η) (8.11)

The continuity is now established by Remark 8.4.

• First Fréchet derivative

We express now the derivatives of u with respect to derivatives of H. We start with Du : [0, T ] ×
C([−T, 0]) −→M([−T, 0]). We have

Ddxu(t, η) = Dδ0
dxu(t, η) +Dac

x u(t, η)dx (8.12)

where

Dδ0
dxu(t, η) = E

[∫ 0

t−T
DsH

(
Xt,η
T

)
ds

]
δ0(dx)

Dac
x u(t, η)dx = E

[
Dx−T+tH

(
Xt,η
T

)]
1[−t,0](x)dx =

{
0 x ∈ [−T,−t]
E
[
Dx−T+tH

(
Xt,η
T

)]
x ∈ ]− t, 0]

• Second Fréchet derivative

We discuss the second derivativeD2u : [0, T ]×C([−T, 0]) −→ (C([−T, 0])⊗̂πC([−T, 0]))∗ ∼= B(C([−T, 0]), C([−T, 0])).

We obtain

D2
dx,dyu(t, η) = E

[
Dy−T+tDx−T+tH

(
Xt,η
T

)]
1[−t,0](x)1[−t,0](y)dx dy+

+ E
[∫ 0

t−T
DsDx−T+tH

(
Xt,η
T

)
ds

]
1[−t,0](x)dx δ0(dy)+

+ E
[∫ 0

t−T
Dy−T+tDsH

(
Xt,η
T

)
ds

]
1[−t,0](y)dy δ0(dx)+

+ E

[∫
[t−T,0]2

Ds1Ds2H
(
Xt,η
T

)
ds1 ds2

]
δ0(dx) δ0(dy) (8.13)

Clearly D2u(t, η) ∈ (D0 ⊕ L2([−T, 0]))⊗̂2
h.

It is possible to show that all the term in first and second derivative are well defined using similar technique

used in the first part of the proof. We omit this technicality for simplicity.

Proof of 2) of Theorem 8.6. We will denote D′H(η) the first Fréchet derivative in L2([−T, 0]) of H, every

fixed η.

• Derivability with respect to time t.

In order to express ∂tu, let ε > 0 and try to express the quantity

u(t+ ε, η)− u(t, η)
ε

(8.14)
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The flow property (8.4) gives Xt,η
T = X

t+ε,Xt,ηt+ε
T , then

u(t, η) = E
[
H
(
X
t+ε,Xt,ηt+ε
T

)]
(8.15)

By derivability of H in L2([−T, 0]) we have

H
(
Xt+ε,η
T

)
−H

(
X
t+ε,Xt,ηt+ε
T

)
= 〈DH

(
Xt,η
T

)
, Xt+ε,η

T −Xt+ε,Xt,ηt+ε
T 〉+

+
∫ 1

0

〈DH
(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−DH

(
Xt,η
T

)
, Xt+ε,η

T −Xt+ε,Xt,ηt+ε
T 〉dα =

=
∫ 0

−T
DxH

(
Xt,η
T

)(
Xt+ε,η
T (x)−Xt+ε,Xt,ηt+ε

T (x)
)
dx+R(ε, t, η)

(8.16)

where

R(ε, t, η) =
∫ 1

0

〈DH
(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−DH

(
Xt,η
T

)
, Xt+ε,η

T −Xt+ε,Xt,ηt+ε
T 〉dα

We need to evaluate

Xt+ε,η
T (x)−Xt+ε,γ

T (x) x ∈ [−T, 0] in view of γ = Xt,η
t+ε (8.17)

(8.17) gives

Xt+ε,η
T (x)−Xt+ε,γ

T (x) =

{
η(x+ T − t− ε)− γ(x+ T − t− ε) x ∈ [−T, t− T + ε]

η(0)− γ(0) = −Wt+ε(0) +Wt x ∈ [t− T + ε, 0]
(8.18)

where γ(0) = Xt,η
t+ε(0) = η(0) +Wt+ε(0)−Wt. Moreover we have, by (8.3),

γ(x+ T − t− ε) = Xt,η
t+ε(x+ T − t− ε) =

{
η(x+ T − t) x ∈ [−T, t− T ]

η(0) +WT (x)−Wt x ∈ [t− T, t− T + ε]

Finally we obtain an expression for (8.17), (8.18) gives in fact

Xt+ε,η
T (x)−Xt+ε,γ

T (x)


η(x+ T − t− ε)− η(x+ T − t) x ∈ [−T, t− T ]

η(x+ T − t− ε)− η(0)−WT (x) +Wt x ∈ [t− T, t− T + ε]

Wt −Wt+ε x ∈ [t− T + ε, 0]

(8.19)

Consequently, using (8.15), (8.16) and (8.19), (8.14) can be written as sum of the following terms

u(t+ ε, η)− u(t, η)
ε

=
1
ε
E
[
H
(
Xt+ε,η
T

)
−H

(
X
t+ε,Xt,ηt+ε
T

)]
= I1(ε, t, η)+I2(ε, t, η)+I3(ε, t, η)+

1
ε
E [R(ε, t, η)]

(8.20)
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where

I1(ε, t, η) = E

[∫ t−T

−T
DxH

(
Xt,η
T

) η(x+ T − t− ε)− η(x+ T − t)
ε

dx

]
=

= −E
[∫ 0

−t
Dx−T+tH

(
Xt,η
T

) η(x)− η(x− ε)
ε

dx

]
I2(ε, t, η) = E

[∫ t−T+ε

t−T
DxH

(
Xt,η
T

) η(x+ T − t− ε)− η(0)−WT (x) +Wt

ε
dx

]
+

− E

[∫ t−T−ε

t−T
DxH

(
Xt,η
T

) Wt −Wt+ε

ε
dx

]

I3(ε, t, η) = E
[∫ 0

t−T
DxH

(
Xt,η
T

) Wt −Wt+ε

ε
dx

]

and 1
εE [R(ε, t, η)] is equal to

1
ε

∫ 1

0

E
[∫ 0

−T

(
DxH

(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−DxH

(
Xt,η
T

))(
Xt+ε,η
T (x)−Xt+ε,Xt,ηt+ε

T (x)
)
dx

]
dα

(8.21)

• First we prove that I1(ε, t, η) −−−→
ε→0

I1(t, η) := I11(t, η) + I12(t, η) + I13(t, η) where

I11(t, η) = E
[
DTH

(
Xt,η
T

)
η(−t)

]
I12(t, η) = −E

[∫ 0

−t
D′x−T+t

(
Xt,η
T

)
η(x)dx

]
I13(t, η) = −E

[
Dt−TH

(
Xt,η
T

)
η(0)

]
In fact I1(ε, t, η) can be rewritten as sum of three terms

I11(ε, t, η) = E
[∫ −t+ε
−t

Dx−T+tH
(
Xt,η
T

) η(x− ε)
ε

dx

]
I12(ε, t, η) = −E

[∫ 0

−t

Dx+ε−T+tH
(
Xt,η
T

)
−Dx−T+tH

(
Xt,η
T

)
ε

η(x)dx

]

I13(ε, t, η) = −E
[∫ ε

0

Dx−T+tH
(
Xt,η
T

) η(x− ε)
ε

dx

]

By hypothesis function x 7→ DxH(η) in H1, for every fixed η and where we have denoted its derivative

by D′H(η). Then in particular x 7→ DxH(η) is a continuous function.By application of finite increments

theorem and dominated convergence theorem the following limit holds I1i(ε, t, η) −−−→
ε→0

I1i(t, η) for i = 1, 2, 3.
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• Secondly we prove that I2(ε, t, η) −−−→
ε→0

0. In fact, by using mean theorem, there exists x̄ = x̄(ε) ∈
[t− T, t− T + ε] such that

I2(ε, t, η) =
∫ t−T+ε

t−T
E
[
DxH

(
Xt,η
T

) η(x+ T − t− ε)− η(0)−WT (x) +Wt+ε

ε

]
dx

= E
[
Dx̄H

(
Xt,η
T

)
(η(x̄+ T − t− ε)− η(0)−WT (x̄) +Wt+ε)

]
We have that when ε goes to zero then x̄ goes to (t− T ) and by continuity of flow (8.3), in particular in

x = (t− T ), it follows that

Dx̄H
(
Xt,η
T

)
η(x̄+T−t−ε)−η(0)−WT (x̄)+Wt+ε −−−→

ε→0
Dt−TH

(
Xt,η
T

)
(η(0)− η(0)−WT (t− T ) +Wt) = 0 a.s.

Again by using dominated convergence theorem we conclude that I2(ε, t, η) converges to zero.

• Finally we prove that

I3(ε, t, η) −−−→
ε→0

−E

[∫
[t−T,0]2

Ds1Ds2H
(
Xt,η
T

)
ds1 ds2

]
=: I3(t, η)

Using Skorohod integral term I3(ε, t, η) can be rewritten as follows

−1
ε

∫ 0

t−T
E
[
DxH

(
Xt,η
T

) ∫ t+ε

t

δWs

]
dx (8.22)

We observe that DxH
(
Xt,η
T

)
∈ D1,2 then using integrations by parts in Malliavin’s calculus, following

equality holds

E
[
DxH

(
Xt,η
T

) ∫ t+ε

t

δWs

]
= E

[∫ t+ε

t

Dm
r

[
DxH

(
Xt,η
T

)]
dr

]
We calculate, using results of [35], chapter 1, pag. 32.

Dm
r

[
DxH

(
Xt,η
T

)]
=
∫ 0

r−T
DsDxH

(
Xt,η
T

)
ds (8.23)

Using Fubini’s Theorem and then integrating with respect to variable r we obtain that (8.22) equals

I3(ε, t, η) = −1
ε

∫ 0

t−T
E
[∫ t+ε

t

∫ 0

r−T
DsDxH

(
Xt,η
T

)
ds dr

]
dx =

= −1
ε

∫ 0

t−T
E
[∫ 0

t−T

∫ t+ε

t

DsDxH
(
Xt,η
T

)
dr ds

]
dx =

= −
∫ 0

t−T
E
[∫ 0

t−T
DsDxH

(
Xt,η
T

)
ds

]
dx

Then the result follows, in fact I3(ε, t, η) = I3(t, η).

• We study now the term 1/εE [R(ε, t, η)]. By using (8.19) and the fact that H ∈ C2(L2([−T, 0])), (8.21)
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can be rewritten as the sum of the following terms

A1(ε, t, η) =
∫ 1

0

E

[∫ t−T

−T

(
DxH

(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−DxH

(
Xt,η
T

))
×

×η(x+ T − t− ε)− η(x+ T − t)
ε

dx

]
dα

A2(ε, t, η) =
∫ 1

0

E

[∫ t−T−ε

t−T

(
DxH

(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−DxH

(
Xt,η
T

))
×

×η(x+ T − t− ε)− η(0)−WT (x) +Wt+ε

ε
dx

]
dα

A3(ε, t, η) = A31(ε, t, η) +A32(ε, t, η)

where

A31(ε, t, η) =
1
2

E
[
〈D2H

(
Xt,η
T

)
,

(Wt −Wt+ε)2

ε
〉|[t−T,0]2

]
=

=
1
2

E

[∫
[t−T,0]2

DxDyH
(
Xt,η
T

) (Wt −Wt+ε)2

ε
dx dy

]

A32(ε, t, η) =
∫ 1

0

E
[
〈
(
D2H

(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−D2H

(
Xt,η
T

))
,

(Wt −Wt+ε)2

ε
〉|[t−T,0]2

]
=

=
∫ 1

0

E

[∫
[t−T,0]2

(
DxDyH

(
αXt+ε,η

T + (1− α)X
t+ε,Xt,ηt+ε
T

)
−DxDyH

(
Xt,η
T

))
×

× (Wt −Wt+ε)2

ε
dx dy

]
dα

With the usual technique we obtain that A1(ε, t, η), A2(ε, t, η) and A32(ε, t, η) go to zero as ε goes to zero.

On the contrary we observe that Xt,η
t |[t−T,0] is independent from (Wt+ε − Wt), as well as its second

derivative. By the factorization of the expectation we obtain then

A31(ε, t, η) =
1
2

∫
[t−T,0]2

E
[
DxDyH

(
Xt,η
T

)]
dx dy =: A31(t, η)

• Concerning the derivative with respect to t, we obtain that ∂tu : [0, T ]× C([−T, 0]) −→ R and we get

∂tu(t, η) = I1(t, η) + I3(t, η) +A31(t, η) which gives

∂tu(t, η) = E
[
DTH

(
Xt,η
T

)
η(−t)

]
− E

[∫ 0

−t
D′x−T+t

(
Xt,η
T

)
η(x)dx

]
− E

[
Dt−TH

(
Xt,η
T

)
η(0)

]
+

− 1
2

∫
[t−T,0]2

E
[
DxDyH

(
Xt,η
T

)]
dx dy

(8.24)
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Remark 8.7. It remains clear that dependence with respect to time t is a difficult problem. In general we

will make this assumption, but in most of the examples that we will see u will be C1,2 even with weaker

assumption on functional H.

Corollary 8.8. Let u defined by (8.6) and Y a real continuous process with [Y ]t = t. If H ∈ C2(L2([−T, 0]))

and D2H with polynomial growth and such that D2H belongs to L2([−T, 0]2), then u ∈ C1,2([0, T ] ×
C([−T, 0])) and following representation formula holds

u(T, YT (·)) = H0 +
∫ T

0

ξid
−Wt (8.25)

with H0 = u(0, Y0(·)) and ξt = Dδ0u(t, Yt(·)).

Proof. We recall that D2u(t, η) belong to (D0 ⊕ L2([−T, 0]))⊗2
h continuously, then we apply Itô’s formula

(7.2) to equation u in (t, Yt(·)). We obtain, with the previous notations,

u(T, YT (·)) = u(0, Y0(·)) +
∫ T

0

I1(t, Yt(·))dt+
∫ T

0

I31(t, Yt(·))dt+
∫ T

0

A31(t, Yt(·))

+
∫ T

0

Dδ0u(t, Yt(·))d−Yt +
∫ T

0

〈Dacu(t, Yt(·)), d−Yt(·)〉+

+
1
2

∫ T

0

〈D2u(t, Yt(·)), d[̃Y (·)]t〉 =

= u(0, Y0(·)) +
∫ T

0

Dδ0u(t, Yt(·))d−Yt

In fact we recall by (8.24) that∫ T

0

I1(t, Yt(·))dt = −
∫ T

0

〈Dacu(t, Yt(·)), d−Yt(·)〉

and that∫ T

0

I31(t, Yt(·))dt+
∫ T

0

A31(t, Yt(·)) = −1
2

∫ T

0

〈D2u(t, Yt(·)), d[̃Y (·)]t

A more signicant achievement concerns the comparison with Clark-Ocone formula. It is illustrated in

the following Lemma.

Lemma 8.9. Let u defined by (8.6) fulfilling assumption of Theorem 8.6 and Y aqual to the Brownian

motion W . Then∫ T

0

E [Dm
t H(WT (·))|Ft] dWt =

∫ T

0

〈Dδ0u(t,Wt(·)), d−Wt(·)〉 (8.26)
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Proof. We try to compare with the classical Clark-Ocone formula. We calculate, using results of [35],

chapter 1, pag. 32.

Dm
t H(WT (·)) =

∫ 0

t−T
DsH(WT (·))ds

Taking the expectation with respect to (Ft) we obtain

E [Dm
t H(WT (·))|Ft] = E

[∫ 0

t−T
DsH

(
X
t,Wt(·)
T

)
|Ft
]

= Γ(Wt(·))

where

Γ(η) = E
[∫ 0

t−T
DsH

(
Xt,η
T

)]
Now we observe that∫ T

0

E [Dm
t H(WT (·))|Ft] dWt =

∫ T

0

Γ(Wt(·))dWt =
∫ T

0

〈Dδ0u(t,Wt(·)), d−Wt(·)〉

Remark 8.10. Using previous Lemma 8.9 with (8.25) we have a generalization of Clark-Ocone formula.

We will see in the sequel that a Clark-Ocone formula it is found also in weaker assumption, as in application

8.5.

Let us consider an (Gt)-martingale M square integrable and h = H(MT (·)) with H : L2([−T, 0]) −→ R
with linear growth. We are interested in sufficient condition so that

h = E[h] +
∫ T

0

ξsdMs (8.27)

where (ξs) is explicit. We start with a Corollary for Theorem 6.28 that give us sufficient conditions for

such representation.

Corollary 8.11. Suppose there is u : [0, T ]× C([−T, 0]) −→ R with property of Theorem 6.28 statement

such that E [h|Gt] = u(t,Mt(·)). Then

h = E[h] +
∫ T

0

Dδ0u(s,Ms(·))dMs

where as usual Dδ0u(s,Ms(·)) denotes Du(s,Ms(·))({0}).

Proof. According to Theorem 6.28, u(·, D·(·)) is a (Gt)-weak Dirichlet process with martingale part given

in (6.22). Since u(·,M·(·)) is obviously a (Gt)-martingale being a conditional expectation with respect to

filtration (Gt), then uniqueness of the decomposition of weak Dirichlet processes allows to conclude. In

particular the (Ft)-martingale orthogonal process is zero. It holds

H = u(0,M0(·)) +
∫ T

0

Dδ0u(s,Ms(·))dMs
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8.3 Some particular representations

In this chapter we will develop explicitly some calculus with Itô’s formula in some path dependent

options. In particular we will retrieve the terms appearing in the Clark-Ocone’s formula. As first example

we will consider S = W the Brownian motion equipped with its canonical filtration (Ft).

8.3.1 First example

We consider the contingent claim defined with the function H : L2([−T, 0]) −→ R by H(η) = ‖η‖2L2 , i.e.

H(WT (·)) =
∫ 0

−T
WT (s)2ds =

∫ T

0

W 2
s ds

H(WT (·)) is FT−measurable and is in D1,2, then, by Clark-Ocone’s formula (2.28), we have

H = E [H] +
∫ T

0

E [Dm
t H|Ft] dWt (8.28)

where the Malliavin’s derivative Dm
t H can be easily calculated as follows.

Dm
t H = Dm

t

(∫ T

0

W 2
s ds

)
=
∫ T

t

Dm
t (W 2

s )ds =
∫ T

t

2WsD
m
t (Ws)ds =

∫ T

t

2Wsds

Consequently, using usual properties of the conditional expectation,

E [Dm
t H|Ft] = E

[∫ T

t

2Wsds|Ft

]
= 2

∫ T

t

E [Ws|Ft] ds = 2Wt(T − t)

Then (8.28) gives

H = E [H] + 2
∫ T

0

Wt(T − t)dWt (8.29)

We will retrieve this representation using Itô’s formula (7.2). For all t ∈ [0, T ] we define the real stochastic

process V by

Vt = E [H|Ft] (8.30)

So (8.30) gives

Vt =
∫ t

0

W 2
s ds+W 2

t (T − t) +
(T − t)2

2
=
∫ 0

−t
W 2
t (u)du+W 2

t (0)(T − t) +
(T − t)2

2
= φ(t,Wt(·))

with φ : [0, T ]× C([−T, 0])→ R

φ(t, η) =
∫ 0

−T
η2(s)ds+ η(0)2(T − t) +

(T − t)2

2
(8.31)
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In particular H = VT = φ(T,WT (·)) and trivially E [H] = E
[∫ T

0
W 2
s ds
]

= T 2

2 .

We want to apply Itô’s formula (7.2) to the function φ ∈ C1,2 applied to Wt(·). First of all we evaluate the

different derivatives of φ.

∂tφ(t, η) = −η2(0)− (T − t)

Ddxφ(t, η) = 2η(x)dx+ 2η(0)(T − t)δ0(dx)

D2
dx dyφ(t, η) = 2δy(dx) dy + 2(T − t)δ0(dx)δ0(dy) = 2δx(dy) dx+ 2(T − t)δ0(dx)δ0(dy)

It happens that D2φ(t, η) belongs to the subspace Diag ⊕D0,0 of M([−T, 0]2) and (t, η)→ D2φ(t, η) is

continuous from [0, T ]× C([−T, 0] into Diag ⊕D0,0 We recall that the window Brownian motion admits a

Diag ⊕D0,0-quadratic variation given by

[W·(·)]t : Diag ⊕D00 −→ C([0, T ])

µ1 + µ2 −→
∫ 0

−t
g(y)(t+ y)dy + α[W ]t =

∫ 0

−t
g(y)(t+ y)dy + αt

(8.32)

where µ1(dx, dy) = g(y)δy(dx) dy, with g ∈ L∞([−T, 0]) is a general diagonal measure and µ2(dx, dy) =

αδ0(dx)δ0(dy), α ∈ R, is a general Dirac’s measure on {0, 0} and d[̃W (·)](t)(µ1+µ2) = dt

(∫ 0

−t g(y)(t+ y)dy
)

+

αdt =
∫ 0

−t g(y)dydt+ αdt or [W (·)](µ1 + µ2)(t) =
∫ t

0

(∫ 0

−s g(y)dy
)
ds+ α t. We apply Itô’s formula for φ:

φ(T,WT (·)) = φ(0,W0(·)) +
∫ T

0

∂tφ(t,Wt(·))dt+
∫ T

0

〈Dφ(t,Wt(·)), d−Wt(·)〉+

+
1
2

∫ T

0

〈D2φ(t,Wt(·)), d[̃W (·)]t〉 =
T 2

2
+ I1 + I2 + I3 =

= E [H] + I1 + I2 + I3 (8.33)

For the other terms we have

I1 =
∫ T

0

(t− T −W 2
t )dt =

∫ T

0

(t−W 2
t ) dt− T 2

I2 =
∫ T

0

〈Dφ(t,Wt(·)), d−Wt(·)〉 = lim
ε→0

∫ T

0

〈Dφ(t,Wt(·)),
Wt+ε(·)−Wt(·)

ε
〉 = lim

ε→0
(I21(ε) + I22(ε))

I21(ε) = 2
∫ T

0

∫ 0

−t
Wt(r)

Wt+ε(r)−Wt(r)
ε

dr dt =

= 2
∫ T

0

∫ t

0

Wu
Wu+ε −Wu

ε
du dt

P−→ 2
∫ T

0

∫ t

0

WudWudt =
∫ T

0

(W 2
t − t) dt

and

I22(ε) = 2
∫ T

0

Wt(0)(T − t)Wt+ε(0)−Wt(0)
ε

dt
P−→ 2

∫ T

0

Wt(T − t)dWt
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Previous convergence of I22(ε) holds because Itô’s integral coincides with forward integral, see Remark 2.4

2. This limiting term is the same as in (8.29). Coming back to (8.32) and (8.33) it follows

I3 =
∫ T

0

dt

(∫ 0

−t
(t+ y)dy

)
+
∫ T

0

(T − t)dt =
∫ T

0

tdt+
∫ T

0

(T − t)dt = T 2

so dt
(∫ 0

−t(t+ y)dy
)

= dt( t
2

2 ) = tdt. Finally (8.33) gives

H = φ(T,WT (·)) = E[H]− T 2 + 2
∫ T

0

Wt(T − t)dWt + T 2 = E[H] + 2
∫ T

0

Wt(T − t)dWt (8.34)

that is exactly (8.29).

8.3.2 Second example

We consider the contingent claim defined with the function H : C([−T, 0]) −→ R

H(η) =
(∫ 0

−T
η(s)ds

)2

. (8.35)

H(WT (·)) is FT -measurable and it belongs D1,2. We compute first the Malliavin’s derivative of H denoted

by Dm
t H; it gives

Dm
t H = Dm

t

(∫ T

0

Wsds

)2

= 2

(∫ T

0

Wsds

)
Dm
t

(∫ T

0

Wsds

)
= 2(T − t)

∫ T

0

Wsds

Consequently, using usual properties of the conditional expectation,

E [Dm
t H|Ft] = E

[
2(T − t)

∫ T

0

Wsds|Ft

]
= 2(T − t)

∫ t

0

Wsds+ 2(T − t)2Wt

Clark-Ocone formula (8.28) gives

H = E [H] + 2
∫ T

0

(T − t)
(∫ t

0

Ws ds

)
dWt + 2

∫ T

0

(T − t)2WtdWt (8.36)

and

E [H] = E

(∫ T

0

Wsds

)2
 = E

(TWT −
∫ T

0

sdWs

)2
 = T 3 +

∫ T

0

s2ds− 2
T 3

2
=
T 3

3

because it is a difference of mean-zero Gaussian random variables with covariance
∫ T

0
sTds = T 3/2. We

will retrieve this representation using Itô’s formula (7.2). For all t ∈ [0, T ] we define the martingale V via

the conditional expectation of r.v. H:

Vt = E [H|Ft] =
(∫ 0

−t
Wt(s)ds+Wt(0)(T − t)

)2

+
(T − t)3

3
= φ(t,Wt(·))
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with φ : [0, T ]× C([−T, 0])→ R

φ(t, η) =
(∫ 0

−T
η(s)ds+ η(0)(T − t)

)2

+
(T − t)3

3
(8.37)

In particular H = VT = φ(T,WT (·)) and trivially φ(0,W0(·)) = T 3/3 = E [H].

Since we will apply Itô’s formula to the function φ ∈ C1,2 applied to the window Brownian motion, we

need to evaluate the corresponding derivatives.

∂tφ(t, η) = −2η(0)
(∫ 0

−T
η(s)ds+ η(0)(T − t)

)
− (T − t)2

Ddxφ(t, η) = 2
(∫ 0

−T
η(s)ds+ η(0)(T − t)

)(
1[−T,0](x)dx+ (T − t)δ0(dx)

)
D2
dx dyφ(t, η) = 21[−T,0]2(x, y)dx dy+

+ 2(T − t)1[−T,0](x)dx δ0(dy)+

+ 2(T − t)δ0(dx)1[−T,0](y)dy+

+ 2(T − t)2δ0(dx) δ0(dy)

We observe that for any (t, η), D2φ(t, η) belongs to (L2([−T, 0])⊕D0)⊗̂2
h and D2φ : [0, T ]× C([−T, 0])→

(L2([−T, 0])⊕D0)⊗̂2
h is continuous. We recall that the window Brownian motion admits a (L2([−T, 0])⊕

D0)⊗̂2
h-quadratic variation given by Corollary 5.11. Itô’s formula gives

φ(T,WT (·)) = φ(0,W0(·)) +
∫ T

0

∂tφ(t,Wt(·))dt+
∫ T

0

〈Dφ(t,Wt(·)), d−Wt(·)〉+

+
1
2

∫ T

0

〈D2φ(t,Wt(·)), d[̃W (·)]t〉 =

=
T 3

3
+ I1 + I2 + I3 = E [H] + I1 + I2 + I3 (8.38)

Moreover we have

I1 = −2
∫ T

0

Wt

∫ 0

−T
Wt(s)ds dt− 2

∫ T

0

W 2
t (T − t)dt−

∫ T

0

(T − t)2dt

= −2
∫ T

0

Wt

∫ t

0

Wudu dt− 2
∫ T

0

W 2
t (T − t)dt−

∫ T

0

(T − t)2dt

I2 =
∫ T

0

〈Dφ(t,Wt(·)), d−Wt(·)〉 = lim
ε→0

∫ T

0

〈Dφ(t,Wt(·)),
Wt+ε(·)−Wt(·)

ε
〉 =

= lim
ε→0

(I21(ε) + I22(ε))
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where

I21(ε) = 2
∫ T

0

(∫ t

0

Ws ds

)(∫ t

0

Ws+ε −Ws

ε
ds

)
dt+ 2

∫ T

0

(T − t)Wt

(∫ t

0

Ws+ε −Ws

ε
ds

)
dt

I22(ε) = 2
∫ T

0

(T − t)
(∫ t

0

Wudu

)
Wt+ε −Wt

ε
dt+ 2

∫ T

0

(T − t)2Wt
Wt+ε −Wt

ε
dt

We observe that for any (t, η) in [0, T ] × C([−T, 0]) the first Fréchet derivative Dφ(t, η) belongs to

L2([−T, 0])⊕D0. With our notation in I21(ε) appears the L2([−T, 0]) contribution and in I22(ε) appears

the D0 contribution of Dφ(t,Wt(·)). Since
∫ t

0
Ws+ε−Ws

ε ds → Wt a.s. when ε → 0 and by Lebesgue

dominated convergence theorem we have

I21(ε) P−→ 2
∫ T

0

Wt

∫ t

0

Ws ds dt+ 2
∫ T

0

W 2
t (T − t)dt =: I21

and again because Remark 2.4 2 we obtain convergence in probability of I22(ε)

I22(ε) P−→ 2
∫ T

0

(T − t)
∫ t

0

Ws ds dWt + 2
∫ T

0

(T − t)2WtdWt =: I22

Expression I22 coincides with the stochastic integral appearing in Clark-Ocone’s formula and we observe

that it is given by the Dirac contribution of the first derivative. Recalling the χ2-quadratic variation for

the window Brownian motion in Corollary 5.11 we obtain

I3 =
1
2

∫ T

0

2(T − t)2dt =
∫ T

0

(T − t)2dt

Finally (8.38) gives

H = φ(T,WT (·)) = E[H] + 2
∫ T

0

(T − t)
∫ t

0

Ws ds dWt + 2
∫ T

0

(T − t)2WtdWt

which corresponds exactly to (8.36).

Before the next section we introduce a particular function that will be useful.

Notation 8.12. Let the function p : [0, T ]×R→ R be the density function of a gaussian random variable

with expected value 0 and variance, which depends on t ∈ [0, T ], denoted by σ2
t . Equivalently the standard

deviation, i.e. the square root of variance, will be denoted by σt. The function t→ σ(t) := σt from [0, T ]

to R+ has to be differentiable and its derivative will be denoted by σ′t.

p(t, x) =
1

σt
√

2π
e
− x2

2σ2
t

When the variance has null value, σT = 0, we have to consider the case of a random variable with mean

zero and null variance, i.e. a dirac function concentrated in 0. To consider the limit case p(T, dx) = δ0(dx)
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we introduce, with a little abuse of notation, the function p : [0, T ]× B(R) −→M(R), which is a measure

on R for every t ∈ [0, T ], defined as follow

p(t, dx) =

 = p(t, x)dx = 1
σt
√

2π
e
− x2

2σ2
t dx if t ∈ [0, T ]

= δ0(dx) if t = T
(8.39)

For the real function p it holds

∂tp(t, x) = σtσ
′
t∂xxp(t, x) (8.40)

As particular case we have

1. σt =
√

(T−t)3
3 . For instance σt is the standard deviation of the random variable

∫ T
t

(Wr −Wt)dr. It

holds in particular

∂tp(t, x) =
[
− (T − t)2

2

]
∂xxp(t, x) (8.41)

We remark that σT = 0.

2. σt =
√∫ T

t
ϕ2(s)ds, whith φ as in (8.54) then we have

∂tp(t, x) =
[
−1

2
ϕ2
t

]
∂xxp(t, x) (8.42)

Also in this example we remark that σT = 0.

8.4 Toy model with H(WT (·)) = f
(∫ 0
−T WT (s)ds

)
We consider a general case where the value of the option at time T is given by H(WT (·)), H is a

function H : C([−T, 0]) −→ R defined by

H(η) = f

(∫ 0

−T
η(s)ds

)
(8.43)

and f : R→ R is a function such that

f

(∫ T

0

Wsds

)
∈ L1(Ω) i.e. E

[∣∣∣∣∣f
(∫ T

0

Wsds

)∣∣∣∣∣
]

=
∫

R
|f(y)| p(0, y)dy < +∞ (8.44)

This hypothesis allows to compute the conditional expectation of H.

Theorem 8.13. Let H and f be defined such that (8.43) and (8.44) hold. Then we have

H = H0 +
∫ T

0

Atd
−Wt
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where H0 = E[H] and (At)t∈[0,u] is the process defined by

At := (T − t)
∫

R
f

(∫ 0

−T
η(s)ds+ η(0)(T − t) + x

)
∂xp(t, x)dx (8.45)

Proof. The value of the option at time T is

H(WT (·)) = f

(∫ 0

−T
WT (s)ds

)

The option that we have considered in (8.35) can be see in this class of options in the special case f(x) = x2.

Let (Ft) be the Brownian filtration, we define, for every t ∈ [0, T ], the real stochastic process V as the

conditional expectation of the option H with respect to (Ft):

Vt = E

[
f

(∫ T

0

Wsds

)
|Ft

]
= E

[
f

(∫ t

0

Ws ds+Wt(T − t) +
∫ T

t

(Ws −Wt)ds

)
|Ft

]
= φ(t,Wt(·))

where φ is the function from [0, T ]× C([−T, 0]) to R defined by

φ(t, η) = E

[
f

(∫ 0

−T
η(r)dr + η(0)(T − t) +

∫ T

t

(Wr −Wt)dr

)]
=

=
∫

R
f

(∫ 0

−T
η(r)dr + η(0)(T − t) + x

)
p(t, dx) (8.46)

Where p(t, dx) is the function defined in (8.39), with σt =
√

(T−t)3
3 because

∫ T
t

(Wr −Wt)dr is a centered

gaussian random variable with standard deviation σt.

In t = T , p(T, dx) = δ0(dx), then φ(T,WT (·)) = f
(∫ T

0
Wsds

)
= H = VT .

From now on we will consider t < T , then p(t, dx) = p(t, x)dx.

We have also φ(0,W0(·)) = E
[
f
(∫ 0

−T W0(s)ds+W0T +
∫ T

0
(Ws −W0)ds

)]
= E

[
f
(∫ T

0
Wsds

)]
= E [H].

We need the linear change of variables z =
(∫ 0

−T η(r)dr + η(0)(T − t) + x
)

to obtain another expression of

φ which is in C1,2([0, T [×B) ∩ C0([0, T ]×B), B = C([−T, 0]).

φ(t, η) =
∫

R
f(z)p

(
t, dz −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
=

=
∫

R
f(z)p

(
t, z −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
dz
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In order to apply the Itô’s formula to φ from 0 to u < T we evaluate the different derivatives.

∂tφ(t, η) =
∫

R
f(z)η(0)∂xp

(
t, z −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
dz+

+
∫

R
f(y)∂tp

(
t, z −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
dz

Ddxφ(t, η) = −
∫

R
f(z)∂xp

(
t, z −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
dz
(
1[−T,0](x)dx+ (T − t)δ0(dx)

)
D2
dx dyφ(t, η) =

∫
R
f(z)∂xxp

(
t, z −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
dz ·

(
A1 +A2 +A3 +A4

)

where

A1 = 1[−T,0]2(x, y)dx dy

A2 = (T − t)1[−T,0](x)dx δ0(dy)

A3 = (T − t)δ0(dx)1[−T,0](y)dy

A4 = (T − t)2δ0(dx) δ0(dy)

and ∂xp(t, x) = 1
σt
√

2π

(
− x2

σ2
t

)
e
− x2

2σ2
t and ∂tp(t, x) =

[
− (T−t)2

2

]
∂xxp(t, x) by (8.41).

We have D2φ : [0, T ] × C([−T, 0]) → (L2([−T, 0]) ⊕ D0)⊗̂2
h and we recall that the window of a real

process having finite quadratic admits a (L2([−T, 0]) ⊕ D0)⊗̂2
h-quadratic variation which is determined

only by the D00 component, which is in this case

A4 ·
∫

R
f(z)∂xxp

(
t, z −

∫ 0

−T
η(r)dr − η(0)(T − t)

)
dz.

Now we apply the Itô’s formula for φ from 0 to u < T . We obtain

φ(u,Wu(·)) = H = φ(0,W0(·)) +
∫ u

0

∂tφ(t,Wt(·))dt+
∫ u

0

〈Dφ(t,Wt(·)), d−Wt(·)〉+

+
1
2

∫ u

0

〈D2φ(t,Wt(·)), d[̃W (·)]t〉 =

= E [H] + I1 + I2 + I3 (8.47)

For simplicity we make another change of variable x =
(
z −

∫ 0

−T η(r)dr − η(0)(T − t)
)

. Concerning the
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first term I1 and using (8.41) we obtain

I1 =
∫ u

0

∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
Wt ∂xp(t, x)dx dt+

+
∫ u

0

∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂tp(t, x)dx dt =

=
∫ u

0

∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
Wt ∂xp(t, x)dx dt+

− 1
2

∫ u

0

∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
(T − t)2∂xxp(t, x)dx dt

We continue with the second term I2 obtaining

I2 =
∫ u

0

〈Dφ(t,Wt(·)), d−Wt(·)〉 = lim
ε→0

∫ u

0

〈Dφ(t,Wt(·)),
Wt+ε(·)−Wt(·)

ε
〉 = lim

ε→0
(I21(ε) + I22(ε))

I21(ε) = −
∫ u

0

[∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂xp(t, x)dx

]
(T − t)Wt+ε −Wt

ε
dt

I22(ε) = −
∫ u

0

[∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂xp(t, x)dx

] [∫ t

0

Wu+ε −Wu

ε
du

]
dt

We have if it is the Brownian motion the term I21(ε) converges and it is the Itô’s integral being the process

(Ft)-adapted:

I21(ε) P−→ −
∫ u

0

[∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂xp(t, x)dx

]
(T − t)dWt

I22(ε) P−→ −
∫ u

0

[∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂xp(t, x)dx

]
Wt dt

Finally concerning the term I3 we have, after the study of the appropriate χ-quadratic variation for the

window of a process with finite quadratic variation

I3 =
1
2

∫ u

0

(T − t)2

[∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂xxp(t, x)dx

]
d[W ]t =

=
1
2

∫ u

0

(T − t)2

[∫
R
f

(∫ 0

−T
Wt(r)dr +Wt(T − t) + x

)
∂xxp(t, x)dx

]
dt

So (8.47) gives explicitly

φ(u,Wu(·)) = E[H]−
∫ u

0

At dWt (8.48)

where (At)t∈[0,u] is the process defined by (8.45) If u→ T in probability we have exactly
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H = φ(T,WT (·)) = E[H]−
∫ T

0

Atd
−Wt (8.49)

with (At)t∈[0,T ] the process defined as in (8.45).

Next proposition gives sufficient condition such that, let X be a Gaussian random variable, f(X) belong

to L1(Ω).

Proposition 8.14. Given T > 0 and X a Gaussian random variable with mean 0 and variance T 3/3. Let

f : R→ R be a function such that

i f ∈ L1
loc(R)

ii f subexponential, i.e. there exist M > 0 and γ > 0 such that |f(y)| ≤ eγ|y| for |y| > M

then f(X) ∈ L1(Ω), i.e. E [|f(X)|] =
∫

R |f(y)|p(0, y)dy < +∞

Remark 8.15. Proposition 8.14 gives sufficient conditions, for instance, such that f
(∫ T

0
Wsds

)
∈ L1(Ω),

fulfill the assumption in the previous toy model (we show sufficient condition to apply Itô’s formula).

Proposition 8.16. Let H be an option with values in time T equal to H(WT (·)) = f
(∫ T

0
Wsds

)
and

f : R→ R is a real function once differentiable and with polynomial growth, denoted by f ∈ C1
pol(R). Then

the integral in (8.49) is an Itô’s integral and

At = E [Dm
t H|Ft]

Remark 8.17. If f ∈ C1
pol(R) then f

(∫ T
0
Wsds

)
∈ L1(Ω), via the remark in fact we can show that

f ∈ L1
loc(R) and it is subexponential.

Proof of the Proposition. Let (Ft) be the Brownian filtration, H(WT (·)) = f
(∫ T

0
Wsds

)
is (FT )−measurable

and it is in D1,2 because
∫ T

0
Wsds ∈ D1,2 and f ∈ C1

pol(R) by hypothesis. Then we compute the Clark-

Ocone’s formula as in (8.28) (that is a representation theorem).

We compute tha Malliavin’s derivative of H denoted by Dm
t H:

Dm
t H = Dm

t f

(∫ T

0

Wsds

)
= f ′

(∫ T

0

Wsds

)
Dm
t

(∫ T

0

Wsds

)
=

= f ′

(∫ T

0

Wsds

)∫ T

t

Dm
t (Ws)ds =

= f ′

(∫ T

0

Wsds

)∫ T

t

1[0,s](t)ds =

= f ′

(∫ T

0

Wsds

)
(T − t)



114 CHAPTER 8. A GENERALIZED CLARK-OCONE FORMULA

Again we compute the conditional expectation

E [Dm
t H|Ft] = E

[
f ′

(∫ T

0

Wsds

)
(T − t)|Ft

]
=

= E

[
f ′

(∫ t

0

Wsds+Wt(T − t) +
∫ T

t

(Ws −Wt)ds

)
(T − t)|Ft

]
=

= F (t,Wt(·))

where F : [0, T ]× C([−T, 0])→ R is defined by

F (t, η) = E

[
f ′

(∫ 0

−T
η(s)ds+ η(0)(T − t) +

∫ T

t

(Ws −Wt)ds

)
(T − t)

]
=

=
∫

R
f ′
(∫ 0

−T
η(s)ds+ η(0)(T − t) + x

)
(T − t)p(t, x)dx =

= −(T − t)
∫

R
f

(∫ 0

−T
η(s)ds+ η(0)(T − t) + x

)
∂xp(t, x)dx =

The last equality is obtained via integration by parts. The function p is the one with variation σ2
t = (T−t)3

3 ,

because
∫ T
t

(Ws −Wt)ds is a gaussian random variable with mean zero and variance (T−t)3
3 .

Then (8.28) gives

H = E [H]−
∫ T

0

(T − t)
∫

R
f

(∫ 0

−T
η(s)ds+ η(0)(T − t) + x

)
∂xp(t, x)dx dWt (8.50)

Moreover the limit for u→ T is with the Itô’s integral because f continuous.

Now we want to illustrate an example where we have a ‘representation theorem’ via the improper

forward integral of a random variable that is not in L2(Ω). We recall that a random variable in L2(Ω)

admits a representation via the representation martingale theorem or the Clark-Ocone’s formula.

Proposition 8.18. Let f : R→ R be a positive function such that f(WT ) ∈ L1(Ω). Let u : [0, T ]×R→ R
be a function in C1,2([0, T [×R) such that{

u(t, x) =
∫

R pT−t(x− y)f(y)dy

u(T, x) = f(x)

Then

f(WT ) = u(0,W0) +
∫ T

0

∂xu(s,Ws)d−Ws (8.51)

The last integral is the improper forward integral, i.e. is the limit in probability for t→ T of the forward

integral whenever it exists.
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Proof. Let N be a fixed number. We pose fN = f ∧N .

By construction u(t,Wt) = E [f(WT )|Ft]. We know the martingale process E [f(WT )|Ft] admits a cadlag

version because the Brownian filtration (Ft)t fulfill the usual assumption. Then by Doob’s second martingale

convergence theorem (controllare!) it exist a process denoted by NT− such that

E [f(WT )|Ft] −→ NT− a.s.

We want to compare f(WT ) and NT− and show that they are equals a.s.

f(WT )−NT− =
(
f(WT )− fN (WT )

)
+
(
fN (WT )− E

[
fN (WT )|Ft

])
+

+
(
E
[
fN (WT )|Ft

]
− E [f(WT )|Ft]

)
+ (E [f(WT )|Ft]−NT−) = I1 + I2 + I3 + I4

We observe that fN (WT ) ∈ L2(Ω), in fact it is also in L∞ because it is bounded.

We fix N large enough and for each N we choose a suitable cadlag version for E
[
fN (WT )|Ft

]
that will be

prolonged.

Now we consider

lim inf
t→T
|f(WT )−NT− | ≤ lim inf

t→T
|I1|+ lim inf

t→T
|I2|+ lim inf

t→T
|I3|+ lim inf

t→T
|I4| ≤

≤
∣∣f(WT )− fN (WT )

∣∣+ lim inf
t→T

E
[
fN (WT )− f(WT )|Ft

]
because lim inft→T |I4| for the suitable versione by the convergence a.s. zero by dominated Lebesgue’s

theorem We take the expectation and with Fatou’s lemma we have

E [|f(WT )−NT− |] ≤ E
[∣∣fN (WT )− f(WT )

∣∣]
Now we choose just N > N0 such that E

[
fN (WT )− f(WT )

]
< ε since fN (WT )

L1(Ω)−−−−→ f(WT ), i.e.

E
[∣∣f(WT )− fN (WT )

∣∣]→ 0. This allows to conclude that NT− = f(WT ) a.s.

Now we apply the Itô’s formula to u(t,Wt) for t < T and we have

u(t,Wt) = u(0,W0) +
∫ t

0

∂xu(s,Ws)dWs

On the left side, taking the limit in probability we obtain

lim
t→T

u(t,Wt) = lim
t→T

E [f(WT )|Ft] = NT− = f(WT ) a.s.

On the right side we obtain the improper integral u(0,W0)+
∫ t

0
∂xu(s,Ws)dWs

t→T−−−→ u(0,W0)+
∫ T

0
∂xu(s,Ws)d−Ws.

The result is now established.

8.5 Toy model

We will consider the window Brownian process Wt(·). Let Ft be the Brownian filtration, Ft =

σ (Ws; s ≤ t) = σ (Wt(·)). For all i = 1, . . . , n, let ϕi : [0, T ] → R be C2([0, T ]; R), then they are in
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particular H1([0, T ]; R)-valued functions, i.e. it exists ϕ̇i ∈ L2([0, T ]) such that ϕi(T )−ϕi(0) =
∫ T

0
ϕ̇i(s)ds.

Moreover we have that ϕ̇i are bounded variation functions for all i = 1 . . . , n. We consider, without

restriction of generality, ϕ1, . . . , ϕn orthogonal in the space L2([0, T ]) and we pose, for every i, ϕi(t) = 0

for t /∈ [0, T ]. Obviously we have ϕi(0−) = 0 and ϕi(T+) = 0.

Let f : Rn → R be a measurable and bounded function (or linear increasing). We consider the function

H : C([−T, 0])→ R defined by

H(η) = f

(∫ 0

−T
ϕ1(u+ T )dη(u), . . . ,

∫ 0

−T
ϕn(u+ T )dη(u)

)
This is well defined because by integration by parts we have

∫ 0

−T ϕi(u+ T )dη(u) = ϕi(t)η(t− T )−
∫ t

0
η(s−

T )dϕi(s). So for the stochastic process WT (·) we have

H(WT (·)) = f

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
=

= f

(∫ 0

−T
ϕ1(u+ T )dWT (u), . . . ,

∫ 0

−T
ϕn(u+ T )dWT (u)

)
(8.52)

We remark that by integration by parts for stochastic processes∫ t

0

ϕi(s)dWs =
∫ 0

−t
ϕi(u+ t)dWt(u) = ϕi(t)Wt(0)− ϕi(0)Wt(−t)−

∫ 0

−t
Wt(u)dϕi(u+ t) =

= ϕi(t)Wt −
∫ t

0

Wsdϕi(s) (8.53)

i.e. it is just a pathwise integral. We calculate the conditional expectation and we have

E[H|Ft] = E

[
f

(∫ T

0

ϕi(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
|Ft

]
=

= E

[
f

(∫ t

0

ϕ1(s)dWs +
∫ T

t

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs +
∫ T

t

ϕn(s)dWs

)
|Ft

]
=

= Ψ
(
t,

∫ t

0

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs

)
=

= Ψ
(
t,

∫ 0

−t
ϕ1(u+ t)dWt(u), . . . ,

∫ 0

−t
ϕn(u+ t)dWt(u)

)
=

= Ψ
(
t,

∫ 0

−T
ϕ1(u+ t)dWt(u), . . . ,

∫ 0

−T
ϕn(u+ t)dWt(u)

)
where the function Ψ : [0, T ]× Rn −→ R is defined by

Ψ(t, y1, . . . , yn) = E

[
f

(
y1 +

∫ T

t

ϕ1(s)dWs, . . . . . . , yn +
∫ T

t

ϕn(s)dWs

)]
Ψ(T, y1, . . . , yn) = f (y1, . . . . . . , yn) (8.54)
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If we fix the hypothesis that the gaussian vector
(∫ T

t
ϕ1(s)dWs, . . . ,

∫ T
t
ϕn(s)dWs

)
has a variance

covariance matrix Σt defined by (Σt)i,j =
∫ T
t
ϕi(s)ϕj(s)ds that is invertible for every t > 0 then Ψ ∈

C1,2([0, T [×Rn). In fact the function p : [0, T ]× Rn → R defined by

p(t, z1, . . . , zn) =

√
1

(2π)ndet (Σt)
exp

{
− (z1, . . . , zn)Σ−1

t (z1, . . . , zn)∗

2

}
is the density function of the gaussian vector

(∫ T
t
ϕ1(s)dWs, . . . ,

∫ T
t
ϕn(s)dWs

)
. The function Ψ becomes

Ψ(t, y1, . . . , yn) =
∫

Rn
f (y1 + z1, . . . , yn + zn) p(t, z1, . . . , zn)dz1 · · · dzn =

=
∫

Rn
f (z̃1, . . . , z̃n) p(t, z̃1 − y1, . . . , z̃n − yn)dz̃1 · · · dz̃n

The function p is a solution C1,2([0, T ]× Rn) of

∂tp(t, z1, . . . , zn) = −1
2

n∑
i,j=1

ϕi(t)ϕj(t)∂2
ijp(t, z1, . . . , zn)

We remark that when (ϕi)i=1,...,n is an orthogonal system in L2([0, T ]) the variance covariance matrix Σ0

is a diagonal matrix in Mn,n(R).

From the relation for p we deduce that the function Ψ is a solution C1,2([0, T [×Rn) of

∂tΨ(t, z1, . . . , zn) = −1
2

n∑
i,j=1

ϕi(t)ϕj(t)∂2
ijΨ(t, z1, . . . , zn) (8.55)

Finally we define a function

u : [0, T [×C([−T, 0]) −→ R u ∈ C1,2([0, T ]× C([−T, 0]))

by

u(t, η) = Ψ
(
t, ϕ1(t)η(0)−

∫ t

0

η(s− t)dϕ1(s), . . . , ϕn(t)η(0)−
∫ t

0

η(s− t)dϕn(s)
)

We note that ϕi is a bounded variation function for every i = 1, . . . , n, then the term

ϕi(t)η(0)−
∫ t

0

η(s− t)dϕi(s) = ϕi(t)η(0)−
∫ t

0

η(s− t)ϕ̇i(s)ds

is well defined in the Riemann-Stietjies sense and will be denoted for simplicity by∫ t

0

ϕi(s)dη(s− t) =
∫ 0

−t
ϕi(s+ t)dη(s) := ϕi(t)η(0)−

∫ t

0

η(s− t)dϕi(s) =

= η(0)ϕi(t)− η(−t−)ϕi(0−)−
∫ t

0

η(s− t)ϕ̇i(s)ds =

= η(0)ϕi(t)−
∫ t

0

η(s− t)ϕ̇i(s)ds
(8.56)
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The last equality comes from ϕi(0−) = 0. We recall that in general let g, f : [a, b]→ R be càdlàg (continue

à droite and limité à gauche) and g of bounded variation we have∫
[a,b]

g df = g(b) f(b)− g(a−) f(a−)−
∫

[a,b]

f dg (8.57)

With this notation we have another expression for the function u

u(t, η) =Ψ
(
t,

∫ 0

−t
ϕ1(s+ t)dη(s), . . . ,

∫ 0

−t
ϕn(s+ t)dη(s)

)
=

= E

[
f

(∫ 0

−t
ϕ1(s+ t)dη(s) +

∫ T

t

ϕ1(s)dWs, . . . . . . ,

∫ 0

−t
ϕn(s+ t)dη(s) +

∫ T

t

ϕn(s)dWs

)]

(8.58)

We can verify, as a property, that for every window process Xt(·) such that Xt(0) is a real process with

finite quadratic variation [X·(0)] = t

u(T,XT (·)) = E
[
f

(∫ 0

−T
ϕ1(s+ t)dXT (s), . . . . . . ,

∫ 0

−T
ϕn(s+ t)dXT (s)

)]
(8.59)

oppure u evaluated in (t,Wt(·)) verifies the equation for the conditional expectation, in fact by (8.53) we

have

u (t,Wt(·)) = Ψ
(
t, ϕ1(t)Wt −

∫ t

0

Wsdϕ1(s), . . . , ϕn(t)Wt −
∫ t

0

Wsdϕn(s)
)

= E[H|Ft] (8.60)

In the following proposition we will use that function u to apply Itô’s formula.

Proposition 8.19. Let u : [0, T ]×C([−T, 0])→ R be the function in C1,2 defined in (8.58) via a function

Ψ such that is a solution C1,2([0, T [×Rn) of (8.55). Let X(·) be a window process such that X(0) is a real

finite quadratic variation process with [X(0)]t = t. Then

1.

u(T,XT (·)) = u(0, X0(·)) +
∫ T

0

Asd
−Xs (8.61)

with the process As defined by

As =
n∑
i=1

∂iΨ
(
s,

∫ 0

−s
ϕ1(r + s)d−Xs(r), . . . ,

∫ 0

−s
ϕn(r + s)d−Xs(r)

)
ϕi(s) (8.62)

2. If Xt(·) is the window Brownian motion Wt(·) and if u(T,XT (·)) is square integrable then As is

exactly the adapted process given by martingale representation theorem

As =
n∑
i=1

∂iΨ
(
s,

∫ 0

−s
ϕ1(r + s)dWs(r), . . . ,

∫ 0

−s
ϕn(r + s)dWs(r)

)
ϕi(s)
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3. If Xt(·) is the window Brownian motion Wt(·) and if f ∈ C1
b (Rn) then

At = E [Dm
t H|Ft] (8.63)

Proof.

1. The stochastic process X(·) admits a (D0⊕L2)⊗̂2
h. We have to verify that the second order derivative

with respect to the space is in (D0 ⊕ L2)⊗̂2
h to apply the Itô’s formula for the function u.

The first derivative Dtu : [0, T ]× C([−T, 0])→ R with respect to the space [0, T ] is

∂tu(t, η) =∂tΨ
(
t,

∫ 0

−t
ϕ(s+ t)dη(s)

)
+

+
n∑
i=1

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dη(s), . . . ,

∫ 0

−t
ϕn(s+ t)dη(s)

))
·
(
∂t

∫ 0

−t
ϕi(s+ t)dη(s)

)
=

= ∂tΨ
(
t,

∫ 0

−t
ϕ(s+ t)dη(s)

)
+

+
n∑
i=1

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dη(s), . . . ,

∫ 0

−t
ϕn(s+ t)dη(s)

))
·
(∫ 0

−t
ϕ̇i(s+ t)dη(s)

)
(8.64)

The last equality because by integration by parts

∂t

(∫ 0

−t
ϕi(s+ t)dη(s)

)
= ∂t

(
η(0)ϕi(t)−

∫ 0

−t
η(s)ϕ̇i(s+ t)ds

)
=

= η(0)ϕ̇i(t)− η(−t)ϕ̇i(0)−
∫ 0

−t
η(s)ϕ̈i(s+ t)ds =

= η(0)ϕ̇i(t)− η(−t)ϕ̇i(0)−
[
η(0)ϕ̇i(t)− η(−t)ϕ̇i(0)−

∫ 0

−t
η̇(s)ϕ̇i(s+ t)ds

]
=

=
∫ 0

−t
ϕ̇i(s+ t)dη(s)

(8.65)

We remark that the term
∫ 0

−t ϕ̇i(s+ t)dη(s) is an integral that exists for every continuous function

η. In fact ϕ̇, being C1, is also of bounded variation and then the integral has a sense simply via

integration by part. On the other hand the integral∫ 0

−t
ϕ̇i(t+ s)dWt(s) =

∫ 0

−t
ϕ̇i(t+ s)dWt+s =

∫ t

0

ϕ̇i(u)dWu

is a well defined Itô’s integral for (8.53) and it is exactly equal to the one in (8.65) if we fix η = Wt(·).
We go on with the evaluation of the derivative: the first derivative Dxu : [0, T ] × C([−T, 0]) →
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M([−T, 0]) with respect the space C([−T, 0]) is a measure

Ddsu(t, η) =
n∑
i=1

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dη(s), . . . ,

∫ 0

−t
ϕn(s+ t)dη(s)

))
·

·
(
ϕi(t)δ0(ds)− 1[−t,0](s)dϕi(s+ t)

)
=

=
n∑
i=1

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dη(s), . . . ,

∫ 0

−t
ϕn(s+ t)dη(s)

))
·

·
(
ϕi(t)δ0(ds)− 1[−t,0](s)ϕ̇i(ds+ t)

)
(8.66)

We recall that, for avery i, dϕi(s+t) = ϕ̇i(ds+t) and ϕ̇i is of bounded variation because it is supposed

in C1. The measure 1[−t,0](·)dϕi(·+ t) on [−T, 0] is a measure such that on a continuous function

h ∈ C([−T, 0]) we have 〈h,1[−t,0](·)dϕi(·+ t)〉 =
∫ 0

−T h(s)1[−t,0](s)dϕi(s+ t) =
∫ 0

−t h(s)dϕi(s+ t) =∫ 0

−t h(s)ϕ̇i(ds+ t). Moreover the measure dϕi is singular with respect to the Dirac measure δ0.

For the second derivative with respect to the space D2
xxu : [0, T ] × C([−T, 0]) → (C([−T, 0])⊗̂2

π)∗

with respect the space C([−T, 0]) we have

D2
dv,dzu(t, η) =

n∑
i,j=1

(
∂2
i,jΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dη(s), . . . ,

∫ 0

−t
ϕn(s+ t)dη(s)

))
·

·

(
ϕi(t)ϕj(t)δ0(dv)δ0(dz)− ϕi(t)1[−t,0](v)ϕ̇j(dv + t)δ0(dz)+

− ϕj(t)1[−t,0](z)ϕ̇i(dz + t)δ0(dv) + 1[−t,0](v)1[−t,0](z)ϕ̇i(dv + t)ϕ̇j(dz + t)

)
(8.67)

We recall that, for all i = 1, . . . , n, ϕi are C2 functions, then in particular ϕ̇i are in L2. Then

D2u : [0, T ]× C([−T, 0])→ (D0 ⊕ L2)⊗̂2
h continuously.

We can apply the Itô’s formula for the function u and the process X. We have

u(T,XT (·)) = u(0, X0(·)) +
∫ T

0

∂tu(t,Xt(·))dt+
∫ T

0

〈Du(t,Xt()·), d−Xt(·)〉+

+
1
2

∫ T

0

〈D2u(t,Xt(·)), d[̃X(·)]t〉 = u(0, X0(·)) + I1 + I2 + I3
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where

I1 =
∫ T

0

∂tΨ
(
t,

∫ 0

−t
ϕ(s+ t)dXt(s)

)
dt+

+
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
×

×
(∫ 0

−t
ϕ̇i(s+ t)d−Xt(s)

)
dt =

= I11 + I12

I2 = lim
ε→0

(I21(ε) + I22(ε)) in probability with

I21(ε) =
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)

Xt+ε(0)−Xt(0)
ε

dt

I22(ε) = −
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
·

·
(∫ 0

−t
ϕ̇i(ds+ t)

Xt+ε(s)−Xt(s)
ε

)
dt

and finally

I3 =
1
2

n∑
i,j=1

∫ T

0

(
∂2
i,jΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)ϕj(t)d[X·(0)]t =

=
1
2

n∑
i,j=1

∫ T

0

(
∂2
i,jΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)ϕj(t)dt

The Itô’s formula in particular tell us the convergence in probability for the sum I21(ε) + I22(ε)

I21(ε) + I2(ε) =
∫ T

0

〈Dx(t,Xt(·)),
Xt+ε(·)−Xt(·)

ε
dt〉 P−→

∫ T

0

〈Dx(t,Xt(·)), d−Xt(·)〉 (8.68)

Moreover we will show

I22(ε) a.s.−−→= I22 = −I12

I22 = −
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))(∫ t

0

ϕ̇i(u)d−Xu(0)
)
dt

(8.69)

In fact I22(ε) is always convergent pathwise, i.e. for almost all ω. We show firstly the a.s. convergence

of
∫ 0

−t ϕ̇i(ds+ t)Xt+ε(s)−Xt(s)ε to
∫ t

0
ϕ̇i(s)d−Xs. Even if a priori it is an anticipating integral, ϕ̇ is of
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bounded variation, so the integral has a sense via an integration by parts. We have in fact∫ 0

−t
ϕ̇i(ds+ t)

Xt+ε(s)−Xt(s)
ε

=
∫ t

0

ϕ̇i(s+ t)
Xs+ε −Xs

ε
ds =

=
∫ t+ε

t

ϕ̇i(u− ε)
ε

Xudu+
∫ t

ε

ϕ̇i(u− ε)− ϕ̇i(u)
ε

Xudu−
∫ ε

0

ϕ̇i(u)
ε

Xudu

a.s.−−→ ϕ̇i(t)Xt −
∫ t

0

Xudϕ̇i(u)− ϕ̇i(0)X0 =
∫ t

0

ϕ̇i(u)d−Xu

By the dominated convergence theorem we have the a.s. convergence for I22(ε). Consequently by

(8.68) and (8.69) we deduce the convergence in probability for I21(ε) to I21

I21(ε) P−→
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)d−Xt(0) = I21

(8.70)

The first result follows from the Itô’s formula with (8.55):

u(T,XT (·)) = u(0, X0(·)) + I11 + I21 + I3 =

= u(0, X0) +
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)d−Xt

+
∫ T

0

∂tΨ
(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

)
dt+

+
1
2

n∑
i,j=1

∫ T

0

(
∂2
i,jΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)ϕj(t)dt =

= u(0, X0) +
n∑
i=1

∫ T

0

(
∂iΨ

(
t,

∫ 0

−t
ϕ1(s+ t)dXt(s), . . . ,

∫ 0

−t
ϕn(s+ t)dXt(s)

))
ϕi(t)d−Xt

(8.71)

2. For the second result we pose as window process the window Brownian motion Wt(·). Clearly the

process ∂iΨ
(
t,
∫ 0

−t ϕ1(s+ t)dWt(s), . . . ,
∫ 0

−t ϕn(s+ t)dWt(s)
)
ϕi(t) is Ft-adapted, then the forward

integral coincides with the classical Itô’s integral:

H = u(T,WT (·)) = u(0,W0(·)) +
∫ T

0

n∑
i=1

∂iΨ
(
t,

∫ t

0

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs

)
ϕi(t)dWt

At the same time we know, by the martingale representation theorem, that it exists a Ft-adapted

process At such that the square integrable martingale H = u(T,XT (·)) hs the following decomposition

u(T,XT (·)) = E [u(T,XT (·))] +
∫ T

0

AsdWs
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The second result follows by uniqueness of decomposition.

At =
n∑
i=1

∂iΨ
(
t,

∫ t

0

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs

)
ϕi(t)

3. For the last result we observe that if f ∈ C1
b (Rn) then, using Proposition 2.12, we know the

decomposition given by the Clark-Ocone’s formula (8.28). By unicity of decomposition we have

an expression for the conditional expectation of the Malliavin’s derivative of H. In particular the

expression will be independent from the derivatives of function f , in fact

Dm
t H = Dm

t

[
f

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)]
=

=
n∑
i=1

∂if

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
Dm
t

[∫ T

0

ϕi(s)dWs

]
=

=
n∑
i=1

∂if

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)(
ϕi(t) +

∫ T

t

Dm
t [ϕi(s)] dWs

)
=

=
n∑
i=1

∂if

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
ϕi(t)

E [Dm
t H|Ft] = E

[
n∑
i=1

∂if

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
ϕi(t)|Ft

]
=

=
n∑
i=1

E

[
∂if

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
|Ft

]
ϕi(t)

By the definition of Ψ in (8.54) we have just to verify that for every i = 1, . . . , n we have

E

[
∂if

(∫ T

0

ϕi(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
|Ft

]
= ∂iΨ

(
t,

∫ t

0

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs

)
This is trivial in fact it will be n functions such that

E

[
∂if

(∫ T

0

ϕ1(s)dWs, . . . ,

∫ T

0

ϕn(s)dWs

)
|Ft

]
=

= E

[
∂if

(∫ t

0

ϕ1(s)dWs +
∫ T

t

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs +
∫ T

t

ϕn(s)dWs

)
|Ft

]
=

= Ψi

(
t,

∫ t

0

ϕ1(s)dWs, . . . ,

∫ t

0

ϕn(s)dWs

)
where Ψi : [0, T ]× Rn → R defined by

Ψi(t, y1, . . . , yn) = E

[
∂if

(
y1 +

∫ T

t

ϕ1(s)dWs, . . . , yn +
∫ T

t

ϕn(s)dWs

)]
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Now it is easy to know that Ψi is exactly the function ∂iΨ, then the result.

Remark 8.20. In the previous proposition we have an expression for the conditional expectation of the

Malliavin’s derivative dependent only from the derivative of Ψ even if the hypothesis f ∈ C1(Rn).

Lemma 8.21. Ψ is a C1,2([0, T [×Rn) solution of (8.55), as in the hypotheses of the proposition, under

the following assumptions:

1. f ∈ C2(Rn) and ϕi ∈ C2([0, T ]).

2. For all t > 0 the matrix Σt defined by (Σt)i,j =
∫ T
t
ϕi(s)ϕj(s)ds is invertible.

This is the example that we have seen at the beginning of this chapter.
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[6] Henri Cartan. Calcul différentiel. Hermann, Paris, 1967.

[7] Anna Chojnowska Michalik. Representation theorem for general stochastic delay equations. Bull.

Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 26:635–642, 1978.
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[38] Michael Röckner and Claudia Prévôt. A Concise Course on Stochastic Partial Differential Equations,

volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007.

[39] Francesco Russo and Ciprian A. Tudor. On bifractional brownian motion. Stochastic Processes and

their Applications, 116(5):830 – 856, 2006.
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Titolo: Calcolo stocastico via regolarizzazione in dimensione infinita e motivazioni finanziarie

Riassunto: Questa tesi di dottorato sviluppa certi aspetti del calcolo stocastico via regolarizzazione per dei processi a valori in

uno spazio di Banach generale B. Viene introdotto un concetto orginale di χ−variazione quadratica, dove χ è un sottospazio del

duale de prodotto tensoriale B ⊗ B, munito della topologia proiettiva. Una attenzione particolare é dedicata al caso in cui B é lo

spazio della funzioni continue su l’intervallo [−τ, 0], τ > 0. Viene dimostrata una classe di risultati di stabilità attraverso funzioni

di classe C1 di processi che ammettono una χ-variazione quadratica e viene dimostrata una formula di Itô per tali processi. I

processi continui reali a variazione quadratica finita Y (ad esempio processi di Dirichelt o anche Dirichlet debole) giocano un ruolo

significativo. Viene definito un processo associato chiamato processo finestra e indicato con Yt(·) definito da Yt(y) = Yt+y per

y ∈ [−τ, 0]. Y (·) è un processo a valori nello spazio di Banach C[−τ, 0]. Se Y è un processo reale con varazione quadratica uguale

a [Y ]t = t e h = F (YT (·)) dove F è una funzione di classe C2(H) Fréchet e H = L2([−T, 0]), è possibile rappresentare h come

somma di un numero reale H0 più un integrale forward di tipo
R T
0 ξd−Y dove ξ è un processo di cui diamo la forma esplicita. Questo

generalizza la formula di Clark-Ocone valida quando Y è un moto Browniano standard W . Una delle motivazioni viene dalla teoria di

copertura di opzioni che dipendono da tutta la traiettoria del sottostante o quando il prezzo dell’azione sottostante non è una semimartingala.
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Discipline : Mathématiques (Paris 13), Metodi Matematici per l’Economia, l’Azienda, la Finanza e le Assicurazioni (LUISS Guido Carli,

Roma).

Mots-clés, Key words and phrases : Calculus via regularization, infinite dimensional analysis, fractional Brownian motion, tensor

analysis, hedging theory without semimartingales.
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