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Abstract 

 
 

In this paper we examine the performance of theories of decision making under 

uncertainty/ambiguity from the perspective of their descriptive and predictive power, taking into 

account the relative parsimony of the various theories. To this end, we employ an innovative 

experimental design which enables us to reproduce ambiguity in the laboratory in a transparent and 

non-probabilistic way. We find that judging theories on the basis of their theoretical appeal, or on 

their ability to do well in testing contexts, is not the same as judging them on the basis of their 

explanatory and predictive power. We also find that the more elegant theoretical models do not 

perform as well as simple rules of thumb. 
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1. Introduction 

 This paper is concerned with decision-making in situations in which probabilities are not 

knowable by the decision-maker. Such situations are described by economists as uncertain or 

ambiguous. In 1954, Savage argued that (subjective) Expected Utility theory is an appropriate 

theory of behaviour in such situations: given the validity of several normatively appealing axioms, 

he showed that people act as if they attached subjective probabilities to the various possible events. 

However, this conclusion has been frequently challenged as being as descriptively inaccurate. In 

particular, Ellsberg’s 1961 paper has been prominent. In this, he offered his famous (hypothetical) 

experiment as evidence against the Savage theory. He wrote: 

Let us suppose that you confront two urns containing red and black balls, from one of 
which a ball will be drawn at random. To "bet on Red I" will mean that you choose to 
draw from Urn I; and that you will receive a prize a (say $100) if you draw a red ball 
("if Red I occurs") and a smaller amount b (say, $0) if you draw a black ("if not-Red I 
occurs"). You have the following information. Urn I contains 100 red and black balls, 
but in a ratio entirely unknown to you; there may be from 0 to 100 red balls. In Urn II, 
you confirm that there are exactly 50 red and 50 black balls. An observer – who, let us 
say, is ignorant of the state of your information about the urns – sets out to measure 
your subjective probabilities by interrogating you as to your preferences in the 
following pairs of gambles: 
1. "Which do you prefer to bet on, Red I or Black I: or are you indifferent?" That is, 
drawing a ball from Urn I, on which "event" do you prefer the $100 stake, red or black: 
or do you care?” 
2. "Which would you prefer to bet on, Red II or Black II?" 
3. "Which do you prefer to bet on, Red I or Red II?" 
4. "Which do you prefer to bet on, Black I or Black II?” 
 

Ellsberg noted that  “…if you prefer to bet on Red II rather than Red I, and Black II rather than 

Black I … or if you prefer to bet on Red I rather than Red II, and Black I rather than Black II … 

you are now in trouble with the Savage axioms.” After introspecting about the likely results from 

conducting an experiment of this type, Ellsberg concluded that many people would be in “trouble 

with the Savage Axioms”. Real experiments with monetary incentives have confirmed that this is 

indeed the case.  

 The Ellsberg experiment indicates that there are situations in which decision-makers do not 

act as if they have subjective probabilities, obeying the usual probability rules, over the various 
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possibilities. It follows, therefore, that in such situations, (subjective) Expected Utility (EU) theory 

can not be a descriptively accurate account of behaviour. New theories need to be sought. 

 Theorists have not been slow in coming forward with alternatives, and it is to these 

alternatives, which we discuss shortly, and their relative superiority over EU, that this paper is 

addressed. More specifically, we examine how much better these other theories explain and predict 

behaviour than EU. To this end, we generate data from experiments and use this data to investigate 

empirically the various theories.  

However, in contrast with previous experiments, we do not carry out statistical tests 

comparing the various theories. This is for two methodological reasons. The first is concerned with 

the nature of statistical testing. Suppose that some theory (call it GEU) is a generalisation of EU, in 

the sense that EU is nested within GEU. Then it is inevitably the case that GEU does not explain 

less of the data than EU4. Moreover, let us suppose that EU is not exactly true (which we know is 

the case, like with any theory); then, as long as there is noise in behaviour (which again we know to 

be the case), then, given enough data, we can always reject EU in favour of GEU at any level of 

significance. This leads us onto our second methodological point: rejection of EU in favour of some 

generalisation tells us that there is noise in the data and that we have enough observations for 

statistical significance – but it does not tell us whether the generalisation is economically 

significantly better as an explanation of behaviour. Statistical significance tells us nothing about 

economic significance. Nor does it tell us whether the increase in statistical predictability is worth 

the reduction in theoretical parsimony. Hence, rather than carrying out statistical tests comparing 

the various theories, we estimate the associated preference functionals, and compare their 

descriptive and predictive abilities, taking into account their relative parsimony. 

 The paper includes a further innovation – the nature of our experiment, and in particular, 

the way we implemented an uncertain/ambiguous situation in the laboratory. In the Ellsberg 

hypothetical experiment, the ambiguous/uncertain urn was represented to the hypothetical subject 

                                                 
4 Indeed, it is easy to obtain a theory which explains all the data (“the decision-maker chooses something”) but such a 
theory is valueless. 
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simply as one which “contains 100 red and black balls, but in a ratio entirely unknown to you; there 

may be from 0 to 100 red balls”.  Such a description has been followed in numerous real 

experiments. A good example is the experiment reported recently in Halevy (2007), in which the 

instructions included the following: 

Consider the following scenario. There are four boxes, each containing 10 chips, which 
can be either red or black. The composition of chips in the boxes is as follows: 
Box 1: Contains 5 red chips and 5 black chips. 
Box 2: The number of red and black chips is unknown. It could be any number between 
0 red chips (and 10 black chips) and 10 red chips (and 0 black chips). 
Box 3: The number of red and black chips is determined as follows: one ticket is chosen 
from a bag containing 11 tickets with the numbers 0 to 10 written on them. The number 
written on the drawn ticket will determine the number of red chips in the third box. For 
example, if the ticket drawn is 3, then there will be 3 red chips and 7 black chips. 
Box 4: The composition of chips in this box is determined in a manner similar to box 3, 
but instead of 11 tickets in the bag, there are 2, with the numbers 0 and 10 written on 
them. Therefore, the box may contain either 0 red chips (and 10 black chips) or 10 red 
chips (and 0 black chips). 
 

Here Box 2 is the “uncertain box”, corresponding to the “uncertain Urn I” of Ellsberg. 

 The implementation of the uncertain box/urn in the laboratory is not straightforward, 

particularly with modern practices where openness and transparency are paramount. Is the above 

description sufficient? Should we tell the subjects more? What do we tell the subjects if they ask 

about Urn I/Box 2? How, in fact, do we compose Urn I/Box 2? – if, indeed, as we have to, we are 

going to make a drawing from it. Will we tell the subjects how we composed it? Will it be on 

display in the laboratory? 

 Some of the possible ways of composing Box 2 are those which are described as Box 3 and 

Box 4 above – though clearly the descriptions of Boxes 2, 3 and 4 differ one from the other, and 

could be perceived as different by the subjects. What is crucial about Box 2 is that probabilities are 

not knowable. This is the essential point. In Boxes 3 and 4, probabilities are knowable – though 

subjects might not know how to calculate them. But that is a different point. We would argue that 

Boxes 3 and 4 do not capture the essential point that the probabilities are not knowable, and also 

induce the subjects to think in terms of second-order probabilities. 



 5 

 Going back to the original Ellsberg experiment, there is an additional problem, which leads 

to an another reason why people might “prefer to bet on Red II rather than Red I, and Black II 

rather than Black I”: simply that they do not trust the experimenter. If they assume that the 

experimenter wants to spend as little money as possible on the experiment, they will naturally try 

and imagine ways that the experimenter could have rigged Urn I to save money. Urn I becomes the 

‘suspicious urn’ – and not the ambiguous/uncertain urn – whether or not there are grounds for 

suspicion. 

 To get round this problem, suspicion must be removed from Urn I; moreover drawing a ball 

from Urn I must be done in an open and transparent way. It follows that Urn I must be on display 

during the experiment. But how can this be so – in such a way that the probabilities can not be 

knowable? We used a Bingo Blower. 

 Bingo Blowers used to be common in the UK, though they are no longer so, having been 

replaced by electronic machines. Bingo Blowers are still used in the United States, however. In our 

case, the Bingo Blower is a rectangular-shaped, glass-sided, object some 3 feet high and 2 feet by 2 

feet in horizontal section5. Inside the glass walls are a set of (table-tennis) balls – in continuous 

motion – being moved about by a jet of air from a fan in the base. When the time comes to eject 

one of the balls from the Blower, a transparent tube is tilted and a ball expelled at random up the 

tube through the pressure of the air created by the fan. It is all physical, there is nothing electronic 

and it is not manipulatable. There is no way that the identity of the ball being ejected can be 

selected – by either the experimenter or the subject. Moreover – and this is crucial to our design – 

all the balls inside the Blower can at all times be seen by people outside, but – unless the number of 

balls in the Blower is low – the number of balls of differing colours can not be counted: they are 

continually moving around. Hence the balls in the bingo can be seen but not counted, and the 

                                                 
5 The Bingo Blower can be seen in action at http://www.luiss.it/fur2006/hey/ambiguity/1st.avi (Treatment 1), 
http://www.luiss.it/fur2006/hey/ambiguity/2nd.avi (Treatment 2) and http://www.luiss.it/fur2006/hey/ambiguity/3rd.avi 
(Treatment 3). You might need xvid.exe installed on your computer.  You can get this latter from http://www.xvid.org/. 
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information available is not sufficient to calculate probabilities6.  The probabilities exist but are 

unknowable. We have created a situation of genuine uncertainty/ambiguity. 

 

2. The Theories under Investigation 

 This section discusses the theories of decision-making under ambiguity/uncertainty that we 

investigate with our experimental data. We leave technical details to Appendix 2, and confine 

ourselves here to a descriptive outline.  

 We note at the outset that there are two broad classes of theory: those that lead directly to a 

decision rule; and those that proceed indirectly through the use of a preference functional. In the 

first class, there is no explicit preference functional; in the second, the preference functional is 

primal – it determines the decision: the decision-maker is perceived as choosing the lottery which 

maximises the value of the preference functional. This distinction will be used later – when we talk 

about the stochastic assumptions underlying our empirical work. 

 We start with the preference functional that is most familiar – that of (subjective) Expected 

Utility theory. According to this theory, agents attach subjective probabilities (which satisfy the 

usual probability laws) to the various possible events and choose the lottery which yields the 

highest expected utility (where the subjective probabilities are used to compute the expectations). 

As we have already noted, the Ellsberg experiment casts doubt on this theory, particularly on the 

implication that the decision-maker acts as if he or she is attaching probabilities to the various 

events. As a consequence, there are now many alternative theories. In differing respects, these 

alternatives amend the axioms underlying the theory so that the implication of well-defined 

probabilities no longer follows. Different modifications lead to different theories. If, instead of the 

Savage Axioms, which implicitly assume a benevolent non-strategic Nature, one assumes that the 

decision-maker always assumes that the worst thing will happen (and hence that Nature is a 

malevolent opponent), we get the theory known as MaxMin – the decision-maker chooses the 

                                                 
6 Though, of course, there are objective probabilities which the subjects could know if they could count the numbers of 
balls of different colours – but they cannot (unless the total number of balls in the Blower is small). 
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lottery for which the worst outcome is best. If, on the contrary, the decision-maker assumes that 

Nature is benevolent, we get the theory known as MaxMax – the decision-maker chooses the lottery 

for which the best outcome is best.  The first of these rules is ultra-pessimistic, the second ultra-

optimistic. Both of them are in our first class of theories – where the theory provides a decision rule, 

rather than a preference functional. A further alternative within this first class is the Minimax Regret 

criterion where the decision-maker is assumed to worry about the regret arising from his or her 

decision (rather than the utility of the payoff per se) and chooses that lottery for which the 

maximum regret is minimized. Again this is an ultra-pessimistic decision criterion. A criterion 

which is a mixture of pessimism and optimism is that known as the Hurwicz Criterion which 

suggests that the decision-maker chooses the lottery for which a weighted average of the worst and 

best outcome is maximised. This criterion belongs to the second class of theories that we have 

defined above, as it defines a preference functional, on the basis of which decisions are taken. 

 While the modern derivation of EU is axiomatic, the others described above (MaxMin, 

MaxMax, Minimax Regret and the Hurwicz criterion) are not; these latter criterion come from an 

age when axioms were considered less important than they are now. However, the spirit of the 

Hurwicz criterion has been resurrected in a new axiom-based theory proposed by Ghirardato et al 

(2004) which is a generalisation of the theory proposed in Gilboa and Schmeidler (1989). Following 

Ghirardato et al, we refer to this model as the Alpha model. Ghirardato et al’s axioms imply that, 

although the decision-maker does not know the true probabilities, he or she acts as if he or she 

believes that the true probabilities lie within some compact convex set, and that decisions are made 

on the basis of a weighted average of the minimum expected utility over this set and the maximum 

expected utility over this set. We note that, if this convex set is the whole probability space, then 

this Alpha theory reduces to that of Hurwicz. Note also that if the weight attached to the minimum 

expected utility is one (and that to the maximum expected utility is zero) then the Alpha theory 

reduces to that termed by Gilboa and Schmeidler (1989) the Maximin Expected Utility model (with 
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a non-unique prior). Conversely, if the weight attached to the minimum expected utility is zero, then 

we get what we might term the “Gilboa and Schmeidler” Maximax Expected Utility model. 

This approach leads us to think of the probabilities as not being unique, but belonging to 

some set. An alternative is that the probabilities themselves come from some distribution – so that 

the decision-maker does not know the actual probabilities but has a subjective distribution of their 

possible values. This is precisely what Halevy is implementing in his Boxes 3 and 4. Note that in 

Box 3, the probability of drawing a black chip is not known, but it could equally well be one of 

0/10, 1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10 and 10/10. Similarly in Halevy’s Box 4 the 

probability is not known – but it could equally well be either 0 or 1. So with these two boxes we 

have a two-stage probability tree – at the first stage the probability of a black chip is determined and 

at the second whether the chip is black or not. 

 Of course, if the decision-maker used the reduction of compound lotteries axiom, then he or 

she would regard Boxes 3 and 4 identical and exactly the same as Box 1 – the probability of a black 

chip is ½ in all three boxes. However, if the decision-maker can not, or does not, use reduction, then 

he or she may well regard Boxes 3 and 4 as different and both of them as different from Box 1. The 

issue then is how the decision-maker processes two-stage probability trees if he or she does not use 

reduction. Halevy (2007) has an extended discussion of this case and refers the reader to Segal 

(1987) and to Klibanoff et al (2005). Segal assumes that the decision-maker processes the 

compound lottery by backwardly-inducting using certainty equivalents. Of course, if the decision-

maker’s preferences were those of EU (and the decision-maker had a unique utility function used at 

all stages in the decision process) this procedure would lead to exactly the same decisions as the 

procedure using reduction – so Segal assumes non-EU preferences. In contrast, Klibanoff et al 

assume that the decision-maker has EU preferences on both first and second stage lotteries – but 

that these EU preferences differ – thus again not implying the same behaviour as a decision-maker 

who follows the reduction of compound lotteries axiom. 
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 We do not investigate the Segal and Klibanoff et al preference functionals for the simple 

reason that in our experiment there is just a single stage. While Halevy, in Boxes 3 and 4, in an 

attempt to create ambiguity in a way congruent to the theorists, introduces two-stage lotteries, we 

do not – as these seem contrary to the original Ellsberg ambiguous urn. In our Bingo Blower, we 

have created the ambiguous (unknown probabilities) urn without the need for two-stage lotteries. 

Hence we do not consider those theories which rely on a two-stage lottery to create and model 

ambiguity7.  

 A further theory which we investigate is Decision Field Theory (DFT) – proposed by 

Busemeyer and Townsend (1993). This could be described as a stochastic EU model with 

heteroscedasticity. We shall explain this in detail after we have discussed stochastic specifications 

in section 4. Finally we should note that we do not consider psychological theories that involve 

competence – such as that by Fox and Tversky (1995) – since the competence of subjects (in 

assessing the actual probabilities) is irrelevant in our experimental setting8. 

 We do investigate what we term Prospect Theory, though our interpretation of it may not be 

what Kahneman and Tversky (1989) had in mind. In that original version of Prospect Theory, 

decision-makers were envisaged as attaching unique probabilities to the various singular events (or 

using ‘objective’ probabilities if they exist), and then weighting these by some probability-

weighting function. The preference functional that emerges is the same as Expected Utility theory, 

in that it is a weighted average of the utilities from the lottery, but the weights do not sum to unity. 

It can be thought of as the preference functional of an EU person with non-additive probabilities 

attached to the various singular events. There is a problem with this original version of Prospect 

Theory, however: decision-makers using it may violate dominance. Such considerations led to the 

development of the model termed Cumulative Prospect Theory (CPT), where, on the same 

interpretation, decision-makers look as if they are attaching non-additive ‘probabilities’ to all the 

                                                 
7 There is a second reason, on which we elaborate in the concluding section of this paper. 
8 This kind of theory is appropriate in a context where ambiguity is created in the laboratory through the use of real 
events – such as the temperature in New York or the value of the Japanese stock exchange index at a particular time on 
a particular day. Here subjects may differ in their knowledge of such events. 
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various events (including all possible combined events). This looks very similar to Choquet 

Expected Utility (CEU) theory, but there is one extension: Cumulative Prospect Theory makes a 

clear distinction between gains and losses with respective to some reference point. Indeed, Choquet 

Expected Utility theory is nested within Cumulative Prospect Theory. Moreover, in Choquet 

Expected Utility, decision-makers are perceived as attaching capacities to the various possible 

events, while in Cumulative Prospect Theory, decision-makers are perceived as attaching 

probabilities to the various events, which they then weight with some probability weighting 

function – the capacities in CEU can be interpreted as being the same as the weighted probabilities 

in CPT. 

 

3. The Implementation 

 We now return to the detailed experimental design. We have already discussed the basic 

setting. Inside the Bingo Blower there are balls of different colours. Lotteries, or uncertain choices, 

are bets on particular colours. Lotteries are played out, or implemented, by ejecting one ball from 

the Bingo Blower and noting its colour. So, for example, with three different colours in the Blower, 

a lottery (£100, blue; -£10, pink; £10, yellow) would indicate an uncertain choice with a payoff of 

£100 if the ball ejected was blue, a loss of £10 if the ball ejected was pink and a payoff of £10 if the 

ball ejected was yellow.   

Now we discuss the precise form of the experiment, and the actual decision tasks posed to 

the subjects in the experiment. One possibility we could have employed was to get subjects to value 

lotteries defined on the Bingo Blower, using either some kind of auction mechanism, or the Becker-

Degroot-Marschak Mechanism, to give an appropriate incentive to subjects. Despite the attractions 

of obtaining valuations of lotteries (particularly that of the increased information value of each 

observations), we decided that problems with explaining and implementing the incentive 

mechanism outweighed these attractions. Instead, we decided to give them a set of n pairwise 

choice questions between (pairs of) lotteries, and incentivate them by choosing at random, after they 
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had expressed their preference on each of the n questions, one of the n questions, and playing out 

their preferred lottery on that question for real. The reasons for this are that: pairwise choice 

questions are easier to explain to subjects; easier for them to understand; and less prone to problems 

of understanding associated with the various mechanisms for eliciting valuations9. 

 It was decided that there would be balls of m different colours in the Blower, and lotteries 

would be defined in terms of amounts of money and an associated colour. We then had to decide on 

n and m. The value of m clearly determines the number of possible events: with m = 2 then there are 

just four events: , , ,  and a b a b∅ ∪  (where a and b are the two colours); if m = 3 then there are 8 

events: ,  ,  ,  ,  ,  ,   and  a b c a b a c b c a b c∅ ∪ ∪ ∪ ∪ ∪  (where a, b and c are the three colours). In 

general, with m colours, there are 2m possible events. Clearly m = 2 is (relatively) uninteresting, 

while with m greater than 3 there are more than 15 different events. Since, with some of the models 

that we are going to fit, the number of parameters that need to be estimated increases linearly with 

the number of possible events, we needed to keep m low in order to conserve on degrees of 

freedom. We chose m = 3 and hence had 3 colours: pink, blue and yellow. We also decided that 

there would be three amounts of money – three possible prizes – x1, x2 and x3. This implies that we 

need, in addition, to estimate one utility value – that of x2 – normalising the other two to 0 and 1 

respectively10. 

 We now had to decide on the number n of pairwise choice questions. With 3 colours and 

with 3 amounts of money there are 33 = 27 possible lotteries that can be composed and hence 

27x26/2 = 351 possible different pairwise choice questions. Eliminating those questions in which 

there is stochastic (first-order) dominance, leaves us with 162 questions. This appears a lot. 

However, extensive simulation work before the implementation of the experiment convinced us that 

we needed this many observations in order to get accurate estimates. Moreover, even if we forced 

                                                 
9 The use of this random lottery incentive mechanism has its critics. However, the paper by Hey and Lee (2005), and 
references therein, show that while the criticisms may be valid in theory, they are not so in practice. 
10 Except in the case of Cumulative Prospect Theory, where there is an additional parameter to estimate. 
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subjects to spend 30 seconds answering each question (which we did), the substantive part of the 

experiment lasted just 81 minutes. 

 Next we had to decide on the three outcomes: x1, x2 and x3. We chose the numbers in the 

example above; -£10, £10 and £100. In addition we gave the subjects a participation fee of £10. 

Thus their take-away earnings at the end of the experiment were either £0, £20 or £110. Such high 

amounts of money were necessary to get an incentive to take the experiment seriously. For a risk-

neutral subject, who knew the correct probabilities, his or her expected earnings from the 

experiment were £46.63 (plus the participation fee), while if this subject just answered the questions 

at random his or her expected earnings would be £33.33 (plus the participation fee). 

 Finally we had to decide the actual numbers of balls in the Bingo Blower. We decided that 

we did not want the same number of each colour. Moreover, we wanted different treatments in 

which the amount of ambiguity varied. We chose: 

 Treatment 1:  2 pink, 5 blue, 3 yellow; 

 Treatment 2:  4 pink, 10 blue, 6 yellow; 

 Treatment 3:  8 pink, 20 blue, 12 yellow. 

In Treatment 1, it is actually possible to count the balls of each colour – so this is a situation of risk. 

In Treatment 2, it is just about possible to count the number of pink balls and begin to guess the 

number of yellow balls but it is impossible to count the number of blue balls. In Treatment 3 it is 

impossible to count the balls of any colour. We would say (though we cannot prove this) that the 

amount of ambiguity increases as we go through the treatments: it is effectively zero in Treatment 

1, positive in Treatments 2 and 3  and higher in Treatment 3 than in Treatment 2. 

 This completes the description of the design. We recruited 48 subjects – 15 on Treatment 1, 

17 on Treatment 2 and 16 on Treatment 3. As we have already noted, this was an expensive 

experiment: we paid out a total of £2130 – equal to £44.37 per subject. Subjects were recruited 

using the ORSEE (Greiner 2004) software and the experiment was conducted in the EXEC 

laboratory at the University of York using purpose-written software written in Visual Basic 6.  



 13 

 In the laboratory the Bingo Blower was on display, in action, in the middle of the room, 

throughout the whole of the experimental session. In addition, images of the Blower in action were 

projected via a video camera onto two big screens in the lab. Subjects were free at any stage to go 

closer to the Blower to examine it as much as they wanted. At the beginning of the experiment, 

subjects were taken into the laboratory and given written Instructions (available in Appendix 1). 

They were then allowed to turn to the computer, which repeated the Instructions. The experimenter 

then responded to any questions, and the subjects were allowed to begin answering the 162 pairwise 

choice questions11. The software was designed so that they had to spend a minimum of 30 seconds 

before they could move on to the next question (though they could take more time if they wanted). 

When they had answered all 162 questions, they called over an experimenter and drew a numbered 

ticket from a box containing tickets numbered from 1 to 162. The computer then recalled their 

answer to that question. At that point the subject and the experimenter went over to the Bingo 

Blower and expelled one ball. The colour of the ball, the question picked at random and their 

answer to that question determined their payment. They filled in a brief questionnaire, were paid, 

signed a receipt and were free to go. 

 

4. The Stochastic Assumptions 

 We use maximum likelihood techniques to estimate the parameters of the theories that we 

are investigating. This requires us to specify the stochastic nature of our data. As we have noted 

earlier, we have two broad classes of theory – those that lead directly to a decision rule and those 

that lead indirectly to a rule through the medium of a preference functional. We discuss these in 

turn. 

 For those theories which lead directly to a decision rule we have a simple stochastic story: 

subjects implement the decision implied by the rule with some probability (1-t) and ‘tremble’ with 

probability t.  Using the interpretation common in the literature (see Moffatt and Peters 2001), we 

                                                 
11 The order of the questions and the left-right juxtaposition of the two lotteries on the screen were randomised. 
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assume that when the decision-maker trembles, he or she chooses amongst the available options at 

random. Hence with just two choices, subjects take the decision implied by the rule with probability 

(1-t/2) and take the other decision with probability t/2.  

 For those theories which imply a preference functional over the two lotteries, we assume 

that the decision-maker measures his or her preferences with some error. If we denote the 

preference function by V(.) and the two lotteries in any pairwise choice by L and R (Left and Right), 

then in the absence of any measurement error the subject would choose L(R) if V(L) >(<) V(R), that 

is, if V(L) – V(R) >(<) 0.12 With measurement error the subject chooses L(R) if V(L) – V(R) + ε 

>(<) 0 where ε represents the error in the measurement in the difference between the two lotteries. 

Finally we have to make an assumption about the distribution of ε – for all of the theories except 

one we will assume that this is normally distributed with zero mean and constant variance s2. 

 This one exception is a preference functional that we have not yet described – that implied 

by Decision Field Theory (DFT) – see Busemeyer and Townsend (1993). This is described by them 

as Random SEU Theory. In the absence of measurement error it is exactly the same as deterministic 

EU theory. With error, it is as we have discussed in the paragraph above – except for the fact that 

the theory prescribes a heteroscedastic error – so that the s in the paragraph above is not 

independent of the decision task.  We note that neither one of EU and DFT is nested within the 

other. We give a brief description of DFT here though we refer the reader to Busemeyer and 

Townsend (1993) for the details. Consider a choice problem between two lotteries: suppose the 

lottery on the left of the screen leads to outcomes xa, xb  and xc if respectively the colour drawn is a, 

b or c; similarly suppose that the lottery on the right leads to outcomes ya, yb  and yc if respectively 

the colour drawn is a, b or c. (Each of xa, xb , xc ya, yb  and yc are one of -£10, £10 and £100.) To save 

notational complexity, let us use va, vb, vc, wa, wb and wc (just in this paragraph) to refer to the 

associated utilities. According to DFT, the attention weight  (similar to a probability) for any colour 

is a random variable, and the associated Expected Utility for each lottery is therefore a random 

                                                 
12 Being indifferent if V(L) = V(R). 
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variable. To distinguish DFT from EU, Busemeyer and Townsend use the expression valence 

instead of Expected Utility. The valence for the left lottery is given by V = Pava + Pbvb + Pcvc and 

that of the right lottery W = Pawa + Pbwb + Pcwc  where the attention weights, Pa, Pb and Pc, are 

random variables centred on the individual’s subjective probabilities pa, pb and pc.  So the key 

variable on which the decision will be taken, V - W, is a random variable with mean  

d = (pava + pbvb + pcvc) – (pawa + pbwb + pcwc)  

and variance σ2
. This variance is crucially not constant, but, in the theory expounded by Busemeyer 

and Townsend, is given by the expression  

s
2
{pa(va – wa)

2
 +  pb(vb – wb)

2
 +  pc(vc – wc)

2
 – (V-W)

2
}.   

It can be interpreted as the weighted variance of the difference between the utilities of the outcomes 

conditional on the colours. Busemeyer and Townsend call it the variance of the valence difference. 

An interesting special case is when both lotteries are certainties and one dominates the other. In this 

case, we have that va = vb = vc = v, that wa = wb = wc = w, and that v = w +d. In this case it follows 

that the variance σ2 is zero, so that the subject never makes an error and always chooses the 

dominating lottery. Note that this property is not implied by the EU specification with a 

homosecedastic error term – here violations of dominance are possible (though not observed in the 

experiment, as there are no choice problems in which one lottery dominates the other). More 

generally, the theory implies that the more dispersed are the outcomes for particular colours, then 

the more likely it is that the subject makes a mistake. Consider Figure 1, in which two pairwise 

choices are displayed. In the left-hand pair, the differences in the outcomes on pink and yellow are 

much greater than the differences in the outcomes on blue and yellow in the right-hand pair. The 

theory implies that, other things being equal (which is not necessarily true in this example), subjects 

are more likely to make an error in the left-hand choice pair than in the right-hand choice pair. The 

explanation for this property is based on psychological principles, which are discussed in detail in 

the Busemeyer and Townsend paper. 
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5. The Estimated Preference Functionals 

 We consider 12 different specifications: (subjective) Expected Utility theory (EU), Choquet 

Expected Utility theory (CEU), Prospect Theory (PT), Cumulative Prospect Theory (CPT), 

Decision Field Theory (DFT), Gilboa and Schmeidler’s MaxMin Expected Utility theory (GS Min), 

“Gilboa and Schmeidler’s” MaxMax Expected Utility theory (GS Max), Ghirardato et al’s Alpha 

theory (Alpha), MaxMin, MaxMax, Minimum Regret (MinReg) and Hurwicz’s criterion (Hurwicz). 

It should be noted that EU is nested within PT which is nested within CEU which in turn is nested 

within CPT. EU and DFT are ‘overlapping’ specifications, to use Vuong’s (1989) terminology. The 

GS Min and GS Max models are nested with the Alpha model and Hurwicz within the Alpha 

model. The other specifications are not nested inside any other specifications.  

 Because subjects are quite clearly different, and our intention is not to find the ‘best-fitting 

specification’ across all subjects, we fit these 12 specifications to the data subject by subject. 

Moreover, because we are interested in the out-of-sample predictive ability of the various fitted 

specifications, we estimate using three different data sets: first, using all 162 observations on each 

subject; second, using the first 152 of these (which vary from subject to subject as they were 

presented them in a randomised order), keeping 10 for out-of-sample predictions; third, using the 

first 142 of these, keeping 20 for out-of-sample predictions. We fitted the models to the data using 

GAUSS. The resulting maximised log-likelihoods are reported in Table 1.1 (all 162 observations 

used for estimation), Table 1.2 (152 observations used for estimation) and Table 1.3 (142 

observations used for estimation). We note that full detail on the estimated parameters, and on their 

standard errors, are available on request.  

The issue13 now is how to evaluate and compare these maximised log-likelihoods, given that the 

number of parameters estimated varies from specification to specification. To be precise we have 

                                                 
13 An alternative way of proceeding would be to carry out various pairwise tests between the various specifications. To 
be precise we could carry out likelihood ratio tests between the nested models, Voung (non-nested) tests between the 
non-nested models and Vuong (overlapping) tests between the overlapping models (see Vuong 1989). The problem here 
is that with 12 competing specifications, there is a total of 66 possible pairwise tests that we could carry out for each 
subject, and the results may well be conflicting. That is, we could, for example, find that specification 1 is not 
significantly better (or not significantly closer to the true model) than specification 2, that specification 2 is not 
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the following parameters, where u denotes the utility value of the middle outcome (see above), s is 

the standard deviation of the error term (for those decision rules which operate through a preference 

functional), and t is the tremble probability (for those decision rules which do not have an 

associated preference functional) 

1. EU (4 estimated parameters):  u, two probabilities (one for each of the three colours, 

with the third being the residual of the sum of the other two from 1), and s. 

2. CEU (8 estimated parameters): u, six capacities (one on each colour separately and one 

on each pairwise combination of colours), which are not necessarily additive, and s. 

3. PT (5 estimated parameters): u, three weighted probabilities (one for each of the three 

colours) which do not necessarily sum to 1, and s. 

4. CPT (9 estimated parameters): u, v,
14 six  weighted probabilities (one on each colour 

separately and one on each pairwise combination of colours) which are not necessarily 

additive, and s. 

5. DFT (4 estimated parameters):  u, two probabilities (one for each of the three colours, 

with the third being the residual of the other two from 1), and s. 

6. GS Min (5 estimated parameters): u, three minimum probabilities (one for each of the 

three colours), and s 

7. GS Max (5 estimated parameters): u, three maximum probabilities (one for each of the 

three colours), and s. 

8. Alpha (6 estimated parameters): u, three bounding probabilities15 (one for each of the 

three colours), α and s. 

                                                                                                                                                                  
significantly better (or not significantly closer to the true model) than specification 3, but that specification 1 is 
significantly better (or significantly closer to the true model) than specification 3. Or we could, for example, find that 
specification 1 is significantly better (or significantly closer to the true model) than specification 2, that specification 2 
is significantly better (or significantly closer to the true model) than specification 3, but that specification 1 is not 
significantly better (or not significantly closer to the true model) than specification 3.  What do we then conclude? 
14 We adopt £0 as the reference point and normalize by putting u(£0) = 0 and u(£100) = 1. u is equal to u(£10) and v is 
equal to u(-£10). 
15 Ghirardato et al do not specify how the convex set should be characterised. To make the characterisation as 
parsimonious as possible, as well as treating the three colours symmetrically, we assumed that the convex space, in a 
triangle with the probability of one colour on the horizontal axis and the probability of a second colour on the vertical 
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9. MaxMin (1 estimated parameter): t. 

10. MaxMax (1 estimated parameter): t. 

11. MinReg (1 estimated parameter): t. 

12. Hurwicz (3 estimated parameters): u, α and s. 

We need to somehow correct the log-likelihoods for their degrees of freedom. One 

possibility is to use the Akaike Information Criterion.  However, given the fact that we have many 

observations, and given Hansen’s comments (see Hansen 1999) on the unreliability of the AIC and 

the better performance of the Bayesian Information Criterion (BIC) in selecting the best model, we 

report in Tables 2.1 through 2.3 the associated values of the BIC.  An asterisk indicates the model 

with the highest value of the BIC16. Tables 3.1 and 3.2 summarise the results. We will concentrate 

attention on these latter tables.  

First, we note that of the 48 subjects, one specification is best over all three data sets for 40 

of the subjects. The remaining 8 are not clear, having one ‘best’ specification on two of the data sets 

and another on the third. To help classify these 8, we refer to Table 5, which reports the values of 

the BIC for the two competing specifications, as well as their predictive ability. For subject 5, both 

DFT and EU have the same predictive ability, and there seems no way that we can declare one as 

being better than the other on the basis of the BICs. For subject 12, however, GS Min seems better 

on the basis of predictive ability. The same is true for PT for subject 17, GS Min for subject 21, 

Alpha (marginally) for subject 24, and GS Min for subject 48. Subjects 32 and 46 are similar to 

subject 5, and it is difficult to declare an ‘overall winner’ for these subjects. Summarising, we get 

Table 3.2, from which it seems that we can dismiss CEU, CPT, MinReg and Hurwicz as plausible 

empirical models. The Alpha model does not perform too well, penalised by its high number of 

parameters, as is GS Max. What is interesting is that PT and DFT emerge as the empirically best 

models, though the ‘rules of thumb’ models, MaxMin, MaxMax (and also GS Min, which is not a 

                                                                                                                                                                  
axis, was bounded by a vertical line, a horizontal line and a line parallel to the hypoteneuse. In estimating this model, 
we found the best-fitting values for these three bounds. 
16 The calculations are carried out to more than the two decimal places reported in Tables 2, and the asterisk is awarded 
on the basis of the unrounded values. 
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rule of thumb) perform almost as well as EU. There is also very slight evidence that these rules of 

thumb are increasingly used as ambiguity increases – going from Treatment 1 (essentially a 

situation of risk) through Treatment 2 to Treatment 317. 

 An alternative way to compare the performance of the various specifications is to look at 

their predictive abilities. Tables 4.1 through 4.3 report the percentage of correct predictions both in 

and out of sample. Clearly the numbers in Table 4.1 are highly correlated with the maximised log-

likelihoods reported in Table 1.1, and similarly the in-sample predictive abilities reported in Tables 

4.2 and 4.3 are highly correlated with the maximised log-likelihoods reported in Tables 1.2 and 1.3 

respectively. Note that these predictiction numbers are not corrected for the numbers of parameters 

involved in the estimation.  

 As can be seen from these tables, the model which has the lowest value of the BIC is not 

necessarily the model which predicts best out of sample. When the estimation is done using the first 

152 observations, the model which fits the best also is the best predictor of the remaining 10 

observations for 30 of the 48 subjects. The remaining 18 subjects are listed in Table 6.1, which 

shows, in the second column the best fitting model (according to the BIC) and its predictive ability 

(the percentage of the 10 observations correctly predicted), and in the other columns the models 

with a better predictive ability, and their respective predictive abilities. For example, for subject 3, 

the model which fits the best according to the BIC is PT (see Table 3) and it correctly predicts 8 out 

of the 10 observations. However, MaxMin and MaxMax correctly predict all 10 while MinReg 

correctly predicts 9 out of the 10. Table 6.2 gives the same information when the first 142 

observations are used for estimation and the remaining 20 for prediction; here it will be noted that 

the best-fitting model is also the best-predicting model for exactly half of the 48 subjects. 

 We use the data from the previous tables to produce Tables 7. In these tables (Table 7.1 for 

when 152 observations are used for estimation and Table 7.2 for when 142 observations are used 

for estimation) the model which performs the best on the estimation criterion is listed down the 

                                                 
17 We would like to argue that Treatment 3 is more ambiguous than Treatment 2, but despite referring to the arguments 
of Einhorn and Hogarth (1985) we find ourselves unable to unambiguously prove this. 
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rows and the model(s) which perform the best on the prediction criterion is(are) listed along the 

columns. Where there are n models which predict equally well and best, we assign a value 1/n to the 

cell entry. So the first row of Table 7.1 indicates that, when using 152 observations for estimation 

and 10 for prediction, EU is both the best explanatory model and the best predictor for 3 of the 

subjects. In 2 other cases when EU is the best explanatory model, CEU is the better predictor for 

one subject while for the other subject CEU, CPT and Alpha are all equally good and the best 

predictors and better than EU. Clearly, given the way that the table has been constructed, the sum of 

the row totals and the sum of the column totals are both 48 – the number of subjects. We also report 

in these tables an index, which is constructed by dividing the diagonal element by the row total. 

This gives an indication of the relative predictive ability of the model. Based on this criterion, we 

get a ranking of the models: DFT, MaxMax, (GS Min and MaxMin), EU, GS Max, PT and (CEU, 

CPT, Alpha, MinReg and Hurwicz) – the latter block having an index value of 0 – from Table 7.1, 

and a ranking: GS Max, MaxMax, MaxMin, DFT, EU, PT and (CEU, CPT, GS min, Alpha, 

MinReg and Hurwicz) – again this latter block having an index value of 0 – from Table 7.2. It is 

interesting to note that PT, which does well on the absolute ranking, does badly by this criterion, 

unlike DFT which does well on both.  

 It is important to note, however, that the ranking discussed in the paragraph above is a 

relative ranking. One should also take into account the absolute values of the diagonal elements. 

These give us a ranking of the models: DFT, PT, MaxMin, (EU and MaxMax), GS Min, GS Max, 

(CEU, CPT, Alpha, MinReg and Hurwicz) from Table 7.1; and DFT, PT, MaxMax, (EU 

andMaxMin), GS Max and (CEU, CPT, GS Min, Alpha, MinReg and Hurwicz) from Table 7.2.  

We note that DFT and PT emerge as the best models on this criterion. It is interesting to note that 

the more recent and more sophisticated models perform relatively poorly as judged in this light.  

This could be because of the relatively simple context of the experiment that we performed and the 

large number of parameters of the more sophisticated models. 
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6. Discussion and Conclusions 

 Table 3.2 essentially gives the bottom line. It seems that we can dismiss CEU, CPT, 

Minimax Regret and the Hurwicz Criterion. GS Max is best only once and Alpha only one-and-a-

half times. Of the remaining models, clearly the best are PT and DFT, while EU, GS Min, MaxMin 

and MaxMax score almost equally. As we go from Treatment 1 through Treatment 2 to Treatment 

3, we note some interesting effects18: there is a very slight evidence of an increase in the ‘rules of 

thumb’, MaxMin and MaxMax; and interestingly and counter-intuitively, EU seems to improve, 

with a corresponding decline in PT.  

 We should comment on these findings, and, in particular, the high success rate of PT and 

DFT, and the poor showing of the more sophisticated models. If we take together EU, PT, GS Min 

and DFT,  these four models explain best the behaviour of over 35 of our 48 subjects.  In a sense 

these four models are close cousins: they all involve the simple weighting of the utilities (by 

additive probabilities in the case of EU and DFT and by weighted probabilites in the case of PT; 

they all involve decisions made on the basis of ‘expected utility’ with EU and DFT differing only in 

that EU (as modelled here) has a homoscedastic error term while DFT has a particular 

heteroscedastic error term. GS Min is similar to EU but has a bias towards pessimism. It is clear that 

these are simple rules to apply – just comparing an average of the utilities of the two lotteries in 

each pairwise choice question. DFT performs better than EU, as a consequence of the assumption 

made about the variance of the error term: here it seems that DFT captures well the idea that error 

rates increase as the lotteries become more different.  So DFT, while adopting the same simple rule 

as EU, takes into account in a formal sense the variation in behaviour. The fact that the performance 

of EU improves and that of PT declines as we go from Treatment 1 through Treatment 2 to 

Treatment 3 is interesting – and a trifle mysterious – and seems to go against our idea that 

ambiguity increases as we go throught the treatments. However, there are some people who would 

argue that ambiguity decreases, certainly from Treatment 2 to Treatment 3. In the latter, the balls 

                                                 
18 Though we note that we have too few observations to draw any definite conclusions about treatment effects. 
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almost become a blur of colour and perhaps it is easier to see the proportions of the various colours: 

instead of counting the balls of different colours subjects may be simply estimating the proportions. 

We are not sure that we are convinced by this argument, but it is a possible explanation. In order to 

investigate it further, we would need to carry out an auxiliary experiment in which we try to 

discover directly how the subjects are perceiving the different treatments. 

 Perhaps a discussion of these auxiliary experiments might be of interest, as it points to a 

possible way forward. There are two cases to consider: one in which subjects are trying to count the 

numbers of balls of each colour, with the intention then of calculating the proportions of each 

colour; and one in which subjects think directly in terms of proportions. Let us consider the first 

case first. In each treatment, subjects may have subjective beliefs about the numbers of balls of each 

colour. This could be represented by a joint discrete probability distribution f(na,nb,nc) representing 

the subjective probability that there are na balls of colour a, nb balls of colour b and nc balls of 

colour c. Alternatively it could be represented by three discrete marginal probability distributions 

fd(nd) (d = a, b, c).  The latter can be obtained from the former, though not the former from the 

latter. In the case of Treatment 1, where the balls can be counted, and there are 2 pink, 5 blue and 3 

yellow, then if a is pink, b is blue and c is yellow, we have that fa(2) = 1 and fa(na) = 0 for na ≠ 2; 

fb(5) = 1 and fb(nb) = 0 for nb ≠ 5; and fc(3) = 1 and fc(nc) = 0 for nc ≠ 3. In Treatment 2, where 

perhaps the pink balls (there are 4 of them) can be counted, and the yellow balls can almost be 

counted, we may have something like: that fa(4) = 1 and fa(na) = 0 for na ≠ 4;  fb(nb) = 1/5 for nb = 

8, 9, 10, 11, 12 and fb(nb) = 0 for nb ≠ 8, 9, 10, 11, 12; and fc(nc) = 1/3 for nc = 5, 6, 7 and fc(nc) = 0 

for nc ≠ 5, 6, 7. This would embody the idea that the subject is sure that there are 4 pink balls, thinks 

that the number of blue balls is either 8, 9 , 10, 11 or 12 (all of these being equally likely) and thinks 

that the number of yellow balls is either 5, 6 or 7 (all of these being equally likely). Obviously these 

are subjective perceptions and may vary from subject to subject. If, however, our conjecture about 

ambiguity increasing from Treatment 1 throught Treatment 2 to Treatment 3 is correct, we would 
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expect that the subjective marginal distributions19 fd(.) for d =  a, b and c all get more dispersed as 

we go through the treatments.  

 How do we test this directly? We would need to somehow elicit these distributions, in a way 

where the elicitation was not dependent on (or not influenced by) the preferences of the subjects. 

This seems difficult – the use of scoring rules assumes risk neutrality of the subjects. An alternative 

would be to try to elicit solely the lower and upper bounds on these distributions. Let us denote by 

d
n  and 

d
n  these lower and upper bounds (d = a, b, c). In the example, above, we have that 

4   4    8   12    5   7.
a a b b c c

n n n n n n= = = = = =  If our conjecture about increasing ambiguity is 

correct, we would expect that the difference between these upper and lower bounds would relatively 

increase as we went through the treatments. For example,  

 

2   2    5   =5    3   3  in Treatment 1

4   4    8   12    5    7 in Treatment 2

7   9    14   26    8    16 in Treatment 3

a a b b c c

a a b b c c

a a b b c c

n n n n n n

n n n n n n

n n n n n n

= = = = =

= = = = = =

= = = = = =
 

If this was true for all subjects, we could conclude that perceived ambiguity increased through the 

treatments20, though this is not saying that objective ambiguity increases through the treatments. 

 How might we elicit lower and upper bounds in an incentive compatible way that does not 

make any assumptions about the preference functional of the individual? Let us discuss this in the 

context of proportions rather than numbers. One possibility is the following: to elicit the upper 

bound21 p , we could ask the subject to state a number (which should turn out to be his or her upper 

bound), and then, if this number is less than the true proportion P, we give them nothing, whereas if 

it is greater than P, we we will play out a binary lottery which yields them some big prize with 

probability 1 p−  and nothing with probability p .  This gives them an incentive to keep their stated 

p  as low as possible but greater than the true P. Unfortunately, this would only work if there was 

                                                 
19 Or the joint distribution f(.,.,.). 
20 Though we note that increased relative differences between the lower and upper bounds is not necessarily the same as 
increase relative dispersion of the marginal distributions. 
21 To elicit their lower bound we could follow a similar procedure, mutatis mutandis. 
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sufficient subjective probability mass at the upper bound – for otherwise the subject would have an 

incentive to state a number lower than the upper bound with the objective of increasing the 

probability of winning the big prize.  Moreover, this elication procedure would require extra 

experimental sessions with the same subjects. Additionally, it elicits only the lower and upper 

bounds of the marginal distributions, and not the whole of the marginal distributions and clearly not 

the joint distribution of all three colours. Also, in the context of eliciting bounds on the numbers, it 

would seem to be the case that we might have to reveal to subjects the total number of balls in the 

Bingo Blower. 

 However we should note that, rather than elicit subjects’ perceptions of the possible 

numbers, or proportions, of  balls of different colours, we would like to have some objective 

statement about the relative amounts of ambiguity in the different treatments. 

 Interestingly, the discussion above has led us to a world in which subjects might be thinking 

about second-order probability distributions. It will be recalled that in section 2, we commented that 

we would not be investigating theories of decision making under ambiguity (such as those of Segal 

(1987) and Klibanoff el al (2005)) which use second-order probabilities, because they did not seem 

appropriate to the context of our experiment. The discussion in the paragraphs above suggest that 

they may in fact be appropriate. But there is a more serious objection (and probably our real reason 

for us not considering these types of models): if one follows the route of these two-stage probability 

distributions, we would then have to estimate the first-stage probability distributions (in the absence 

of an independent procedure to elicit them). Without any restriction on the form of these first-stage 

distributions, we have a serious problem with degrees of freedom. We would have to estimate either 

the (subjective) joint distribution, denoted f(.,.,.) above, or  the three marginal distributions fa(.) ,fb(.) 

and fc(.). The number of extra parameters to be estimated is high: in Treatment 3 (even if we make 

the bold assumption that the subject can count the total number of balls), the number of extra 

parameters is equal to the number of balls of each colour that are possible  – probably a number in 

excess of 8+20+12 = 40. Given that the more sophisticated models that we have already considered 
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fare badly, probably because of their extra parameters, we would expect that these models based on 

second-order probability distributions would do considerably worse. 

 We suspect that this, and the fact that CEU and CPT do badly, is probably a consequence of 

the fact that subjects are trying to simplify a complex problem. In this context, subjects can not (and 

seem to not) use sophisticated rules with many parameters. Instead they use simple rules (like EU, 

PT and DFT which involve only the calculation of one utility value and two or three probabilities).  

Or a simple pessimistic rule – GS Min. Or they use even simpler rules – such as MaxMin and 

MaxMax. At the end of the day, it would seem that over 45 of our 48 subjects are using such simple 

rules. Sophistication is not possible in this context. 
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Table 1.1: Maximised Log-Likelihoods - Number of observations used for estimation 162 

 
subject EU CEU PT CPT DFT GS MIN GS MAX Alpha MaxMin MaxMax MinReg Hurwicz 

1 -16.39 -3.86 -13.54 -3.86 -13.40 -25.67 -14.14 -11.81 -35.17 -78.20 -80.24 -70.88 

2 -31.93 -25.06 -26.31 -25.06 -35.06 -30.41 -26.31 -25.98 -69.96 -48.36 -54.85 -93.90 

3 -26.20 -16.16 -22.38 -15.78 -25.64 -25.99 -22.38 -22.37 -72.27 -72.27 -79.28 -102.37 

4 -24.08 -14.21 -24.06 -14.21 -25.83 -24.06 -16.37 -16.37 -71.14 -42.16 -53.01 -76.19 

5 -6.27 -3.95 -6.27 -3.95 -6.24 -6.27 -6.27 -5.99 -52.13 -85.15 -87.86 -74.86 

6 -17.18 -8.85 -12.83 -8.82 -20.64 -12.83 -16.31 -12.83 -10.32 -67.49 -67.55 -69.99 

7 -38.00 -30.18 -31.09 -29.45 -37.78 -33.07 -31.09 -30.15 -53.92 -37.60 -49.01 -94.27 

8 -27.44 -21.07 -22.04 -20.56 -28.77 -26.56 -22.04 -21.15 -71.14 -75.41 -82.04 -101.89 

9 -26.52 -12.15 -16.17 -12.15 -28.94 -26.52 -16.17 -16.17 -64.83 -79.87 -83.70 -97.59 

10 -33.32 -30.54 -32.73 -30.53 -31.64 -33.21 -32.73 -31.88 -55.64 -69.96 -72.74 -92.87 

11 -33.21 -23.60 -25.75 -20.98 -34.75 -29.22 -25.75 -23.63 -53.92 -68.75 -75.08 -98.30 

12 -41.77 -32.55 -36.88 -30.06 -42.22 -36.82 -36.88 -35.03 -58.92 -76.38 -82.89 -97.04 

13 -16.80 -15.98 -16.81 -16.81 -8.87 -16.57 -16.81 -16.21 -51.98 -84.68 -86.82 -74.86 

14 -30.48 -20.23 -25.99 -19.85 -30.54 -24.39 -26.00 -22.16 -77.31 -63.43 -70.24 -100.34 

15 -30.26 -25.83 -29.81 -24.05 -32.30 -35.57 -29.21 -29.21 -37.60 -79.05 -81.16 -76.72 

16 -69.01 -65.65 -68.57 -65.65 -70.01 -69.01 -69.01 -69.01 -88.29 -84.03 -87.25 -106.89 

17 -17.91 -10.87 -12.74 -10.87 -17.16 -15.22 -12.74 -11.07 -48.36 -72.27 -76.19 -92.52 

18 -29.59 -16.09 -17.78 -15.42 -29.79 -27.56 -17.78 -16.55 -68.75 -66.18 -72.74 -102.07 

19 -21.64 -17.80 -21.62 -17.80 -19.46 -19.24 -21.64 -19.24 -46.24 -75.09 -77.98 -86.40 

20 -24.63 -23.01 -24.34 -22.66 -23.01 -23.24 -24.34 -23.19 -37.60 -75.41 -78.29 -83.04 

21 -47.05 -35.70 -41.57 -35.26 -49.78 -39.97 -41.57 -38.85 -61.98 -72.27 -79.28 -101.79 

22 -53.73 -49.25 -50.00 -48.89 -54.81 -52.57 -50.00 -49.53 -65.95 -65.95 -73.66 -101.84 

23 -28.33 -27.47 -28.04 -27.47 -30.47 -27.83 -28.04 -27.79 -17.80 -65.95 -65.93 -80.38 

24 -54.65 -44.46 -49.79 -44.46 -57.35 -49.57 -49.79 -46.18 -65.95 -67.24 -74.80 -104.30 

25 0.00 0.00 0.00 0.00 0.00 0.00 -1.39 0.00 -84.03 -48.36 -60.01 -74.67 

26 -22.42 -21.56 -22.34 -19.88 -21.91 -21.84 -22.34 -21.83 -46.37 -71.14 -73.93 -85.96 

27 -35.53 -29.22 -32.82 -28.59 -33.69 -32.84 -32.82 -31.29 -60.47 -82.11 -85.93 -96.36 

28 -32.16 -28.97 -30.16 -26.72 -29.46 -30.78 -30.16 -29.89 -58.92 -85.15 -87.25 -89.12 

29 -35.83 -27.13 -33.02 -27.13 -36.27 -31.97 -32.65 -30.89 -79.50 -69.70 -75.90 -102.06 

30 -53.13 -48.15 -52.88 -48.15 -56.29 -53.13 -52.88 -52.44 -66.74 -45.99 -56.14 -87.27 

31 -31.26 -26.64 -27.82 -26.64 -34.03 -30.23 -27.82 -26.71 -61.98 -76.38 -80.24 -99.02 

32 -37.35 -19.50 -20.47 -19.46 -36.73 -34.97 -20.80 -19.85 -63.43 -53.92 -63.18 -98.99 

33 -22.35 -17.07 -22.05 -16.28 -27.21 -30.69 -22.05 -20.19 -58.92 -72.27 -76.19 -90.54 

34 -29.79 -23.97 -27.31 -23.97 -28.55 -29.38 -29.79 -27.31 -32.64 -75.41 -78.29 -76.32 

35 -28.80 -23.08 -28.78 -23.08 -28.97 -27.54 -28.78 -27.54 -55.64 -35.17 -49.14 -85.98 

36 -36.08 -22.43 -32.25 -21.31 -36.69 -36.09 -34.00 -34.00 -32.57 -55.48 -56.47 -83.34 

37 -27.40 -18.62 -21.40 -18.62 -23.83 -35.50 -26.67 -21.11 -50.28 -82.11 -83.70 -72.48 

38 -25.36 -24.30 -25.31 -24.30 -25.70 -25.31 -25.24 -25.19 -78.20 -84.03 -87.86 -99.75 

39 -26.48 -20.57 -21.33 -20.57 -22.51 -21.31 -21.33 -20.94 -69.96 0.00 -18.02 -67.57 

40 -13.80 -12.22 -13.80 -11.59 -9.39 -13.08 -13.80 -13.08 -17.83 -74.40 -76.19 -70.88 

41 -6.65 -3.98 -6.47 -2.19 -7.72 -110.04 -6.47 -6.47 -69.96 0.00 -21.39 -67.57 

42 -26.98 -15.93 -16.82 -15.93 -24.85 -25.70 -16.82 -16.19 -61.98 -79.87 -83.70 -96.67 

43 -33.45 -12.33 -13.28 -8.63 -33.20 -26.64 -13.28 -12.16 -52.13 -39.92 -49.14 -97.08 

44 -25.07 -24.74 -25.05 -24.67 -25.73 -25.05 -25.05 -25.03 -80.65 -50.28 -60.01 -81.91 

45 -4.38 -3.90 -4.38 -3.82 -2.50 -4.38 -4.18 -4.18 -50.28 -84.61 -87.25 -74.86 

46 -39.89 -37.39 -37.81 -35.89 -40.37 -39.12 -37.81 -37.40 -74.40 -58.92 -65.71 -96.46 

47 -26.76 -18.18 -20.58 -18.18 -25.58 -23.30 -20.58 -19.61 -42.16 -66.18 -72.74 -92.97 

48 -22.67 -16.88 -22.20 -17.19 -22.28 -17.98 -22.20 -17.32 -77.31 -79.05 -84.48 -102.37 
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Table 1.2: Maximised Log-Likelihoods - Number of observations used for estimation 152 

 
subject EU CEU PT CPT DFT GS MIN GS MAX Alpha MaxMin MaxMax MinReg Hurwicz 

1 -16.38 -3.86 -13.51 -3.86 -13.38 -25.41 -14.13 -11.76 -34.51 -72.78 -73.47 -65.57 

2 -29.83 -23.74 -25.25 -23.70 -33.10 -27.73 -25.25 -24.56 -66.63 -45.35 -53.43 -89.90 

3 -22.97 -14.15 -18.51 -13.98 -22.05 -22.76 -18.51 -18.49 -70.20 -70.20 -75.72 -97.33 

4 -22.57 -10.62 -22.50 -10.65 -23.90 -22.57 -15.40 -15.40 -65.46 -36.86 -48.09 -71.21 

5 -6.27 -3.95 -6.27 -3.95 -6.24 -6.27 -5.99 -5.99 -48.96 -79.88 -81.68 -71.39 

6 -17.13 -8.81 -12.83 -8.81 -20.54 -12.83 -16.31 -12.83 -10.16 -62.47 -63.91 -67.05 

7 -36.80 -27.67 -28.66 -27.06 -36.60 -31.51 -28.66 -28.66 -48.96 -36.77 -45.74 -90.36 

8 -26.91 -21.01 -21.92 -20.53 -28.28 -26.06 -21.92 -21.77 -66.63 -69.90 -76.28 -94.24 

9 -25.16 -12.15 -14.82 -12.15 -27.34 -25.16 -18.18 -15.04 -60.27 -74.50 -77.96 -92.78 

10 -29.84 -24.18 -27.48 -24.18 -27.80 -27.68 -27.48 -25.15 -47.26 -64.23 -66.99 -86.44 

11 -32.56 -23.12 -25.16 -20.51 -34.09 -28.79 -25.16 -23.16 -50.89 -62.96 -69.16 -92.14 

12 -40.29 -30.66 -34.70 -28.67 -40.91 -36.37 -34.70 -33.13 -57.57 -70.20 -76.97 -93.08 

13 -15.91 -15.10 -15.91 -15.26 -8.69 -15.71 -15.91 -15.26 -49.11 -79.86 -81.94 -70.70 

14 -29.90 -20.17 -25.66 -19.82 -29.95 -24.21 -25.67 -22.01 -67.19 -56.97 -61.14 -93.15 

15 -28.33 -24.79 -27.97 -23.20 -29.71 -32.96 -27.89 -27.89 -32.12 -74.01 -76.05 -72.04 

16 -67.36 -64.21 -67.01 -64.26 -68.53 -67.36 -67.32 -67.32 -84.34 -80.21 -83.43 -100.62 

17 -16.34 -10.80 -12.58 -10.80 -14.91 -14.35 -26.63 -10.98 -45.35 -65.46 -69.43 -86.21 

18 -29.09 -15.69 -17.33 -15.14 -29.34 -26.99 -17.33 -16.18 -64.48 -64.48 -70.86 -97.18 

19 -19.19 -15.76 -19.12 -15.76 -17.28 -17.68 -19.19 -17.68 -41.28 -69.90 -72.76 -79.36 

20 -24.60 -22.99 -24.32 -22.62 -22.99 -23.22 -24.32 -23.17 -36.96 -71.22 -72.76 -78.49 

21 -45.45 -29.89 -39.46 -29.89 -47.82 -37.78 -39.46 -36.97 -58.85 -68.85 -75.72 -97.12 

22 -50.43 -45.11 -45.78 -45.11 -51.74 -49.65 -45.78 -45.66 -61.17 -61.17 -68.89 -95.78 

23 -26.92 -25.60 -26.54 -25.37 -29.00 -26.10 -26.54 -26.05 -17.54 -62.72 -62.55 -77.58 

24 -49.44 -39.37 -43.03 -39.37 -51.44 -45.94 -40.70 -39.81 -62.72 -62.72 -70.30 -97.79 

25 0.00 0.00 0.00 0.00 0.00 0.00 -1.39 0.00 -79.31 -47.26 -58.35 -70.65 

26 -22.09 -21.06 -22.01 -19.64 -21.55 -21.51 -22.01 -21.51 -45.35 -66.63 -70.58 -82.64 

27 -34.84 -29.00 -32.58 -28.43 -32.95 -32.17 -32.58 -30.95 -56.97 -75.27 -79.09 -90.58 

28 -27.91 -25.78 -26.83 -20.68 -25.83 -26.85 -26.83 -26.52 -52.60 -79.31 -81.29 -80.40 

29 -35.00 -25.51 -32.13 -25.51 -34.92 -31.11 -31.62 -30.13 -76.06 -65.46 -72.76 -96.13 

30 -47.12 -43.22 -45.79 -43.22 -49.98 -47.12 -45.79 -44.96 -62.94 -40.70 -51.05 -84.45 

31 -30.22 -24.17 -26.57 -24.17 -33.00 -28.42 -28.27 -24.70 -60.27 -71.86 -74.45 -94.85 

32 -35.66 -19.10 -20.10 -19.05 -35.34 -33.62 -20.49 -19.51 -60.49 -49.26 -56.95 -92.83 

33 -21.33 -17.04 -21.02 -16.15 -26.05 -28.76 -21.02 -19.96 -55.84 -66.63 -70.58 -86.01 

34 -28.62 -22.91 -26.24 -22.91 -27.67 -28.22 -28.62 -26.24 -32.12 -72.19 -75.09 -71.59 

35 -27.22 -21.51 -27.20 -21.51 -27.38 -25.97 -27.20 -25.97 -51.36 -34.76 -46.37 -78.58 

36 -32.39 -17.35 -28.58 -15.83 -33.15 -32.39 -28.58 -28.58 -32.20 -54.61 -55.64 -76.94 

37 -24.99 -18.28 -20.26 -18.28 -19.78 -20.26 -24.47 -20.12 -45.35 -77.47 -79.12 -67.11 

38 -23.93 -23.28 -23.93 -23.28 -24.28 -23.93 -23.93 -23.93 -72.44 -78.29 -82.12 -94.56 

39 -21.09 -20.30 -21.02 -20.30 -21.96 -21.00 -21.02 -20.71 -63.98 0.00 -14.18 -63.68 

40 -11.65 -10.84 -11.65 -10.09 -7.97 -11.49 -11.65 -11.49 -17.50 -68.26 -71.10 -66.53 

41 -5.99 -3.98 -5.94 -2.39 -6.63 -37.95 -5.94 -5.94 -65.19 0.00 -17.70 -64.15 

42 -26.67 -15.80 -16.65 -15.97 -24.64 -25.47 -16.65 -16.00 -60.71 -74.36 -79.05 -90.48 

43 -32.30 -8.13 -10.41 -6.02 -32.20 -85.69 -10.41 -10.41 -50.89 -39.11 -47.96 -92.02 

44 -24.36 -23.94 -24.29 -23.94 -25.12 -24.29 -24.29 -24.24 -76.83 -47.54 -57.13 -76.31 

45 -4.38 -3.59 -4.38 -3.28 -2.50 -4.38 -3.92 -3.92 -47.26 -78.12 -80.60 -69.10 

46 -31.28 -28.99 -29.59 -27.71 -29.54 -31.03 -29.59 -29.52 -71.22 -52.77 -59.88 -87.87 

47 -25.11 -17.89 -19.69 -17.89 -23.79 -22.53 -19.69 -19.26 -36.86 -61.64 -68.23 -85.95 

48 -21.21 -15.99 -20.79 -16.12 -20.88 -17.43 -20.79 -16.68 -71.53 -71.53 -77.96 -95.70 
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Table 1.3: Maximised Log-Likelihoods - Number of observations used for estimation 142 

 
subject EU CEU PT CPT DFT GS MIN GS MAX Alpha MaxMin MaxMax MinReg Hurwicz 

1 -15.59 -3.63 -12.96 -3.63 -12.98 -23.15 -13.29 -11.22 -34.07 -71.03 -70.58 -59.71 

2 -28.05 -22.89 -24.50 -22.78 -31.28 -25.87 -24.50 -23.63 -64.06 -42.20 -50.06 -84.20 

3 -20.52 -12.20 -15.47 -11.92 -19.01 -20.34 -15.47 -15.42 -65.09 -65.09 -70.51 -91.06 

4 -21.36 -10.52 -21.29 -10.54 -22.99 -21.36 -14.99 -14.99 -61.86 -33.70 -44.94 -69.09 

5 -5.70 -3.95 -5.70 -4.57 -6.22 -5.70 -5.46 -5.46 -47.85 -75.07 -77.40 -66.42 

6 -16.48 -8.54 -12.46 -8.54 -19.67 -12.46 -15.77 -12.46 -10.03 -60.69 -62.23 -62.87 

7 -32.78 -24.46 -25.58 -24.02 -32.46 -28.01 -25.58 -24.62 -48.02 -33.88 -40.70 -83.86 

8 -24.52 -20.03 -20.88 -19.80 -25.81 -23.50 -20.88 -20.63 -59.72 -65.40 -70.86 -85.78 

9 -24.13 -11.57 -13.75 -11.57 -26.49 -26.31 -13.75 -13.75 -59.14 -71.85 -74.92 -86.52 

10 -29.02 -23.62 -26.77 -23.62 -26.70 -27.11 -26.77 -24.63 -46.24 -62.41 -64.93 -81.39 

11 -29.75 -22.03 -23.19 -19.70 -31.56 -26.67 -23.19 -22.04 -46.24 -59.97 -65.80 -85.63 

12 -36.31 -27.19 -30.13 -25.18 -37.12 -31.99 -30.13 -28.87 -51.36 -64.65 -71.53 -87.25 

13 -14.34 -13.64 -14.34 -14.34 -8.53 -14.34 -14.34 -13.64 -48.02 -76.03 -78.29 -66.54 

14 -29.27 -18.32 -25.12 -18.38 -29.55 -22.69 -25.13 -20.76 -63.45 -55.04 -59.14 -88.16 

15 -28.01 -24.31 -27.68 -23.11 -29.16 -31.38 -27.64 -27.64 -31.65 -69.27 -70.90 -67.27 

16 -62.64 -58.29 -61.91 -58.08 -63.21 -62.64 -62.56 -62.56 -78.98 -76.51 -78.92 -94.92 

17 -16.33 -10.80 -12.57 -10.80 -14.91 -14.34 -26.46 -10.96 -44.10 -61.86 -65.80 -81.38 

18 -27.52 -13.83 -16.14 -13.60 -27.70 -25.52 -16.14 -14.49 -59.97 -61.21 -67.48 -91.26 

19 -14.00 -13.10 -13.91 -13.10 -13.06 -13.46 -14.00 -13.46 -38.25 -63.27 -66.90 -73.85 

20 -21.55 -20.04 -21.36 -20.04 -19.95 -20.65 -21.36 -20.61 -28.82 -62.98 -65.52 -73.07 

21 -41.11 -28.45 -35.81 -28.45 -43.32 -35.55 -35.81 -33.85 -52.55 -62.98 -69.93 -89.88 

22 -48.43 -43.76 -44.12 -43.76 -49.66 -48.00 -44.12 -44.10 -56.87 -58.19 -65.80 -88.29 

23 -26.13 -24.85 -25.90 -24.63 -28.06 -25.24 -25.90 -25.24 -17.26 -58.19 -56.34 -73.09 

24 -44.89 -36.69 -39.98 -36.69 -46.30 -42.24 -39.98 -36.94 -60.21 -57.55 -65.46 -89.98 

25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -72.39 -42.20 -53.51 -67.11 

26 -19.82 -17.58 -19.73 -17.09 -18.96 -18.38 -19.73 -18.38 -44.39 -64.65 -67.19 -76.40 

27 -32.20 -25.61 -30.01 -25.14 -30.79 -29.24 -30.01 -28.03 -50.81 -68.39 -71.39 -84.56 

28 -27.23 -25.11 -26.10 -19.37 -25.49 -26.23 -26.10 -25.84 -51.55 -74.91 -76.38 -75.42 

29 -31.44 -20.06 -28.89 -20.06 -32.16 -27.33 -28.46 -26.59 -71.06 -59.47 -66.60 -90.20 

30 -33.48 -26.75 -28.42 -26.75 -31.32 -33.48 -28.61 -28.61 -60.44 -35.44 -46.09 -78.28 

31 -26.84 -20.17 -22.39 -19.92 -30.31 -25.98 -23.22 -20.69 -58.91 -68.93 -71.19 -88.57 

32 -31.20 -10.21 -13.98 -10.21 -31.07 -24.18 -14.00 -11.41 -51.18 -42.33 -50.40 -86.90 

33 -21.13 -16.68 -20.75 -15.74 -25.23 -28.46 -19.72 -19.72 -52.55 -61.86 -65.80 -80.85 

34 -27.90 -22.41 -25.51 -22.41 -26.94 -27.40 -27.90 -25.51 -31.49 -68.59 -71.19 -67.54 

35 -25.12 -19.59 -25.03 -19.39 -25.09 -24.44 -25.12 -24.44 -48.02 -31.49 -43.10 -70.97 

36 -28.54 -15.01 -25.18 -14.68 -29.10 -28.54 -25.92 -25.18 -26.44 -53.32 -52.60 -71.25 

37 -23.06 -17.45 -19.09 -17.45 -18.60 -19.09 -22.64 -18.93 -40.70 -74.73 -75.30 -61.42 

38 -21.57 -20.91 -21.49 -20.91 -21.86 -21.31 -21.57 -21.31 -65.74 -71.96 -75.78 -87.54 

39 -20.15 -19.58 -20.13 -19.58 -20.76 -20.13 -20.14 -20.07 -61.86 0.00 -13.98 -59.99 

40 -11.65 -10.79 -11.65 -10.09 -7.97 -11.49 -11.65 -11.49 -17.18 -63.45 -66.31 -63.38 

41 -5.68 -3.47 -5.64 -1.04 -6.43 -77.07 -5.64 -5.64 -60.69 0.00 -17.43 -59.20 

42 -25.79 -15.15 -16.29 -15.15 -23.72 -24.52 -16.29 -15.53 -57.55 -69.82 -74.50 -84.91 

43 -31.86 -8.13 -10.41 -5.97 -31.62 -120.61 -10.41 -9.36 -49.55 -38.25 -44.67 -87.53 

44 -21.95 -21.42 -21.81 -21.39 -23.17 -21.81 -21.72 -21.64 -69.82 -42.59 -50.73 -70.32 

45 -4.38 -3.62 -4.38 -3.27 -2.50 -4.38 -3.92 -3.92 -46.24 -73.87 -76.38 -64.33 

46 -29.81 -28.06 -28.68 -27.54 -28.04 -29.73 -28.68 -28.67 -66.07 -47.69 -54.86 -80.62 

47 -21.56 -14.98 -15.94 -14.98 -20.45 -18.83 -15.94 -15.19 -31.49 -55.92 -62.72 -79.61 

48 -16.54 -12.26 -15.44 -11.80 -15.20 -14.90 -15.44 -14.90 -66.67 -65.74 -72.22 -89.23 
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Table 2.1: Bayesian Information Criteria - Number of observations used for estimation 162 
 
subject EU CEU PT CPT DFT GS MIN GS MAX Alpha MaxMin MaxMax MinReg Hurwicz 

1 53.14 48.42 52.51 53.51 47.15* 76.78 53.72 54.16 75.44 161.49 165.56 157.01 

2 84.21 90.83 78.05* 95.92 90.46 86.25 78.05 82.49 145.01 101.81 114.79 203.06 

3 72.74 73.02 70.20* 77.34 71.62 77.42 70.20 75.27 149.62 149.62 163.65 220.00 

4 68.50 69.11 73.55 74.20 72.02 73.55 58.17* 63.26 147.36 89.40 111.11 167.64 

5 32.88 48.61 37.97 53.69 32.82* 37.97 37.97 42.50 109.35 175.38 180.81 164.98 

6 54.70 58.40 51.09 63.42 61.63 51.09 58.07 56.18 25.72* 140.06 140.20 155.24 

7 96.34 101.06 87.62 104.68 95.90 91.58 87.62 90.83 112.92 80.28* 103.10 203.80 

8 75.24 82.85 69.51* 86.91 77.90 78.55 69.51 72.83 147.36 155.91 169.16 219.05 

9 73.39 65.00 57.79* 70.08 78.23 78.48 57.79 62.87 134.74 164.83 172.48 210.45 

10 86.99 101.78 90.90 106.85 83.64* 91.86 90.90 94.29 116.38 145.01 150.57 201.00 

11 86.77 87.89 76.95* 87.76 89.85 83.89 76.95 77.78 112.92 142.58 155.25 211.86 

12 103.88 105.80 99.20 105.90 104.80 99.07* 99.20 100.59 122.93 157.84 170.86 209.33 

13 53.95 72.65 59.05 79.40 38.08* 58.57 59.05 62.94 109.05 174.45 178.73 164.98 

14 81.31 81.16 77.42 85.49 81.43 74.21* 77.44 74.85 159.70 131.94 145.56 215.94 

15 80.86 92.36 85.06 93.89 84.96 96.59 83.86 88.95 80.28* 163.20 167.40 168.70 

16 158.38* 171.99 162.58 177.08 160.37 163.47 163.46 168.55 181.67 173.16 179.59 229.05 

17 56.16 62.45 50.92* 67.54 54.67 55.89 50.92 52.66 101.81 149.62 157.46 200.29 

18 79.53 72.88 60.99* 76.62 79.93 80.55 60.99 63.62 142.58 137.45 150.57 219.41 

19 63.63 76.30 68.68 81.39 59.26* 63.91 68.72 69.00 97.58 155.27 161.04 188.06 

20 69.61 86.73 74.12 91.10 66.36* 71.92 74.12 76.91 80.28 155.91 161.66 181.35 

21 114.45 112.10 108.57 116.31 119.90 105.38* 108.57 108.22 129.04 149.62 163.65 218.84 

22 127.81 139.20 125.44* 143.57 129.97 130.58 125.44 129.59 136.98 136.98 152.41 218.94 

23 77.01 95.64 81.53 100.73 81.30 81.11 81.53 86.10 40.69* 136.98 136.95 176.01 

24 129.65 129.62 125.01 134.71 135.05 124.58 125.01 122.88* 136.98 139.57 154.68 223.87 

25 20.35* 40.70 25.44 45.79 20.35 25.44 28.21 30.53 173.16 101.81 125.12 164.60 

26 65.19 83.82 70.11 85.55 64.18* 69.11 70.11 74.19 97.82 147.36 152.95 187.19 

27 91.40 99.13 91.07 102.98 87.74* 91.12 91.07 93.10 126.04 169.31 176.95 207.99 

28 84.66 98.65 85.76 99.22 79.26* 87.01 85.76 90.30 122.93 175.38 179.59 193.50 

29 92.00 94.96 91.48 100.05 92.88 89.38* 90.73 92.31 164.09 144.48 156.88 219.39 

30 126.61 137.00 131.19 142.09 132.92 131.70 131.19 135.40 138.57 97.07* 117.37 189.81 

31 82.87 93.98 81.08* 99.07 88.40 85.89 81.08 83.94 129.04 157.84 165.56 213.30 

32 95.06 79.70 66.37* 84.71 93.81 95.39 67.04 70.23 131.94 112.92 131.45 213.25 

33 65.04* 74.85 69.55 78.36 74.78 86.81 69.55 70.91 122.93 149.62 157.46 196.35 

34 79.93 88.64 80.06 93.72 77.45 84.20 85.01 85.15 70.37* 155.91 161.66 167.90 

35 77.95 86.86 82.99 91.95 78.30 80.51 82.99 85.60 116.38 75.44* 103.36 187.23 

36 92.52 85.55 89.94 88.41 93.72 97.61 93.44 98.52 70.23* 116.04 118.03 181.95 

37 75.15 77.94 68.24 83.02 68.00* 96.44 78.77 72.74 105.65 169.31 172.48 160.23 

38 71.07* 89.30 76.05 94.39 71.75 76.05 75.92 80.91 161.49 173.16 180.81 214.75 

39 73.31 81.84 68.09 86.92 65.37 68.05 68.09 72.41 145.01 5.09* 41.12 150.40 

40 47.95 65.15 53.04 68.97 39.13* 51.60 53.04 56.69 40.75 153.89 157.46 157.01 

41 33.65 48.67 38.37 50.17 35.80 245.52 38.37 43.46 145.01 5.09* 47.86 150.40 

42 74.31 72.57 59.08* 77.66 70.04 76.84 59.08 62.91 129.04 164.83 172.48 208.59 

43 87.25 65.37 52.00* 63.06 86.74 78.72 52.00 54.84 109.35 84.93 103.36 209.42 

44 70.49* 90.19 75.53 95.13 71.81 75.53 75.53 80.59 166.39 105.65 125.12 179.09 

45 29.12 48.50 34.20 53.43 25.35* 34.20 33.80 38.89 105.65 174.30 179.59 164.98 

46 100.14* 115.47 101.05 117.56 101.10 103.68 101.05 105.33 153.89 122.93 136.51 208.18 

47 73.87 77.07 66.59* 82.15 71.52 72.03 66.59 69.76 89.40 137.45 150.57 201.21 

48 65.70 74.46 69.84 80.17 64.90 61.40* 69.84 65.16 159.70 163.20 174.04 220.00 
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Table 2.2: Bayesian Information Criteria - Number of observations used for estimation 152 
 
subject EU CEU PT CPT DFT GS MIN GS MAX Alpha MaxMin MaxMax MinReg Hurwicz 

1 53.11 48.42 52.45 53.51 47.11* 76.26 53.70 54.05 74.10 150.65 152.03 146.40 

2 80.02 88.18 75.93* 93.19 86.54 80.89 75.93 79.64 138.36 95.78 111.96 195.07 

3 66.28 69.01 62.45* 73.76 64.44 70.96 62.45 67.50 145.50 145.50 156.52 209.92 

4 65.49 61.95 70.44 67.08 68.16 70.58 56.24* 61.33 136.00 78.81 101.27 157.68 

5 32.88 48.60 37.97 53.69 32.82* 37.97 37.42 42.51 103.00 164.85 168.44 158.05 

6 54.61 58.32 51.09 63.41 61.43 51.09 58.06 56.18 25.40* 130.03 132.91 149.36 

7 93.95 96.03 82.76 99.91 93.55 88.46 82.76 87.85 103.00 78.62* 96.56 195.98 

8 74.17 82.73 69.27* 86.84 76.91 77.55 69.27 74.07 138.36 144.88 157.65 203.75 

9 70.67 65.00 55.08* 70.08 75.02 75.76 61.80 60.61 125.63 154.08 161.00 200.81 

10 80.04 89.06 80.40 94.15 75.95* 80.79 80.40 80.83 99.61 133.55 139.07 188.15 

11 85.47 86.94 75.76* 86.80 88.53 83.02 75.76 76.84 106.86 131.01 143.40 199.55 

12 100.93 102.01 94.84* 103.13 102.17 98.18 94.84 96.79 120.23 145.50 159.02 201.42 

13 52.16 70.90 57.25 76.31 37.73* 56.86 57.25 61.05 103.31 164.80 168.97 156.66 

14 80.14 81.04 76.76 85.43 80.25 73.86* 76.77 74.55 139.47 119.02 127.37 201.56 

15 77.00 90.28 81.38 92.19 79.76 91.37 81.22 86.31 69.33* 153.11 157.18 159.35 

16 155.06* 169.12 159.45 174.30 157.42 160.15 160.07 165.16 173.77 165.50 171.94 216.49 

17 53.04 62.30 50.59 67.39 50.17* 54.15 78.70 52.49 95.78 136.00 143.95 187.68 

18 78.52 72.09 60.09* 76.08 79.03 79.42 60.09 62.89 134.06 134.06 146.81 209.63 

19 58.74 72.22 63.67 77.31 54.92* 60.80 63.83 65.89 87.64 144.88 150.60 173.98 

20 69.56 86.68 74.07 91.03 66.32* 71.88 74.07 76.87 79.00 147.52 150.60 172.23 

21 111.25 100.48* 104.35 105.56 115.99 101.01 104.35 104.48 122.78 142.80 156.52 209.51 

22 121.20 130.92 117.00* 136.00 123.83 124.73 117.00 121.85 127.44 127.44 142.86 206.82 

23 74.18 91.89 78.51 96.53 78.34 77.63 78.51 82.64 40.16* 130.53 130.19 170.43 

24 119.23 119.45 111.50 124.53 123.22 117.31 106.84* 110.14 130.53 130.53 145.69 210.85 

25 20.35* 40.70 25.44 45.79 20.35 25.44 28.21 30.53 163.71 99.61 121.79 156.56 

26 64.52 82.82 69.46 85.06 63.45* 68.47 69.46 73.55 95.78 138.36 146.25 180.54 

27 90.03 98.70 90.59 102.65 86.25* 89.77 90.59 92.42 119.02 155.64 163.28 196.42 

28 76.17 92.26 79.10 87.15 72.00* 79.13 79.10 83.57 110.29 163.71 167.67 176.07 

29 90.35 91.71 89.71 96.80 90.19 87.67* 88.68 90.78 157.21 136.00 150.60 207.52 

30 114.59 127.13 117.02 132.22 120.32 119.68 117.02 120.44 130.97 86.48* 107.18 184.15 

31 80.78 89.04 78.59* 94.13 86.36 82.28 81.99 79.93 125.63 148.81 153.98 204.96 

32 91.67 78.91 65.64* 83.88 91.02 92.69 66.42 69.54 126.07 103.61 118.99 200.91 

33 63.01* 74.77 67.47 78.08 72.45 82.95 67.47 70.45 116.76 138.36 146.25 187.27 

34 77.60 86.51 77.91 91.60 75.70 81.89 82.69 83.00 69.33* 149.46 155.27 158.44 

35 74.79 83.71 79.83 88.80 75.11 77.38 79.83 82.47 107.81 74.61* 97.82 172.42 

36 85.14 75.39 82.59 77.45 86.65 90.23 82.59 87.68 69.48* 114.30 116.38 169.15 

37 70.33 77.27 65.95 82.35 59.91* 65.95 74.38 70.76 95.78 160.03 163.33 149.47 

38 68.21* 87.26 73.30 92.35 68.90 73.30 73.30 78.38 149.96 161.68 169.33 204.39 

39 62.53 81.30 67.49 86.39 64.27 67.45 67.48 71.94 133.05 5.09* 33.44 142.63 

40 43.65 62.38 48.74 65.96 36.29* 48.42 48.74 53.51 40.09 141.60 147.30 148.33 

41 32.34 48.67 37.31 50.57 33.60 101.34 37.31 42.40 135.47 5.09* 40.49 143.57 

42 73.69 72.30 58.74* 77.73 69.62 76.38 58.74 62.52 126.50 153.80 163.20 196.23 

43 84.95 56.96 46.25* 57.83 84.76 196.81 46.25 51.34 106.86 83.32 101.00 199.30 

44 69.06* 88.57 74.02 93.66 70.59 74.02 74.01 79.01 158.75 100.18 119.35 167.87 

45 29.12 47.88 34.20 52.35 25.36* 34.20 33.27 38.36 99.61 161.33 166.30 153.47 

46 82.92 98.68 84.62 101.21 79.42* 87.50 84.62 89.57 147.52 110.63 124.84 191.00 

47 70.57 76.49 64.82* 81.57 67.93 70.49 64.82 69.04 78.81 128.37 141.55 187.16 

48 62.78 72.67 67.02 78.02 62.10 60.29* 67.02 63.88 148.15 148.15 161.00 206.65 
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Table 2.3: Bayesian Information Criteria - Number of observations used for estimation 142 
 
subject EU CEU PT CPT DFT GS MIN GS MAX Alpha MaxMin MaxMax MinReg Hurwicz 

1 51.53 47.97 51.36 53.06 46.30* 71.74 52.02 52.97 73.22 147.15 146.25 134.69 

2 76.46 86.47 74.43* 91.36 82.90 77.17 74.43 77.78 133.20 89.48 105.21 183.66 

3 61.39 65.09 56.38* 69.63 58.37 66.12 56.38 61.37 135.26 135.26 146.12 197.38 

4 63.07 61.75 68.03 66.88 66.33 68.16 55.41* 60.50 128.81 72.49 94.97 153.45 

5 31.75* 48.60 36.84 54.92 32.78 36.84 36.35 41.44 100.79 155.22 159.88 148.10 

6 53.32 57.78 50.36 62.87 59.70 50.36 56.97 55.44 25.15* 126.46 129.54 141.01 

7 85.92 89.63 76.59 93.82 85.27 81.45 76.59 79.77 101.12 72.86* 86.48 182.98 

8 69.39 80.76 67.20* 85.40 71.97 72.43 67.20 71.78 124.52 135.88 146.80 186.83 

9 68.61 63.83 52.94* 68.92 73.33 78.05 52.94 58.03 123.36 148.78 154.93 188.30 

10 78.40 87.94 78.97 93.03 73.76* 79.65 78.97 79.79 97.56 129.90 134.94 178.04 

11 79.86 84.75 71.81* 85.19 83.47 78.78 71.81 74.60 97.56 125.02 136.69 186.52 

12 92.97 95.08 85.70* 96.15 94.60 89.42 85.70 88.26 107.82 134.39 148.15 189.76 

13 49.02 67.99 54.11 74.46 37.40* 54.11 54.11 57.81 101.12 157.14 161.68 148.35 

14 78.89 77.34 75.67 82.55 79.45 70.81* 75.70 72.04 131.99 115.18 123.36 191.58 

15 76.37 89.33 80.81 92.01 78.67 88.19 80.71 85.80 68.39* 143.62 146.89 149.81 

16 145.63* 157.29 149.26 161.94 146.78 150.72 150.56 155.65 163.04 158.11 162.92 205.11 

17 53.00 62.30 50.58 67.38 50.16* 54.13 78.36 52.44 93.30 128.81 136.69 178.03 

18 75.39 68.36 57.72* 72.99 75.76 76.48 57.72 59.50 125.02 127.51 140.05 197.78 

19 48.34 66.90 53.27 71.98 46.47* 52.35 53.43 57.44 81.59 131.62 138.89 162.95 

20 63.45 80.78 68.15 85.87 60.24* 66.73 68.15 71.74 62.73 131.05 136.12 161.40 

21 102.58 97.60 97.06 102.69 106.99 96.55* 97.06 98.23 110.19 131.05 144.95 195.01 

22 117.20 128.23 113.67* 133.32 119.67 121.43 113.67 118.72 118.82 121.47 136.69 191.84 

23 72.62 90.39 77.23 95.04 76.46 75.92 77.23 81.00 39.60* 121.47 117.78 161.44 

24 110.13 114.08 105.40 119.16 112.95 109.92 105.40 104.41* 125.51 120.18 136.00 195.23 

25 20.35* 40.70 25.44 45.79 20.35 25.44 25.44 30.53 149.87 89.48 112.11 149.49 

26 59.99 75.87 64.89 79.96 58.28* 62.19 64.89 67.28 93.87 134.39 139.47 168.07 

27 84.75 91.92 85.45 96.08 81.93* 83.92 85.45 86.59 106.71 141.86 147.86 184.38 

28 74.81 90.91 77.64 84.52 71.33* 77.90 77.64 82.20 108.18 154.91 157.85 166.10 

29 83.23 80.82 83.22 85.91 84.67 80.10* 82.36 83.71 147.20 124.02 138.30 195.66 

30 87.32 94.19 82.28 99.28 83.00 92.40 82.67 87.76 125.97 75.96* 97.26 171.82 

31 74.04 81.04 70.21* 85.64 80.97 77.39 71.88 71.91 122.90 142.95 147.48 192.40 

32 82.75 61.13 53.40 66.22 82.49 73.81 53.43 53.34* 107.45 89.75 105.88 189.07 

33 62.61* 74.07 66.94 77.28 70.80 82.36 64.88 69.96 110.19 128.81 136.69 176.96 

34 76.14 85.51 76.45 90.60 74.23 80.24 81.23 81.54 68.06* 142.27 147.48 150.34 

35 70.59 79.88 75.49 84.57 70.53 74.33 75.68 79.41 101.12 68.06* 91.29 157.21 

36 77.43 70.73 75.79 75.15 78.55 82.51 77.29 80.88 57.96* 111.74 110.29 157.75 

37 66.46 75.60 63.61 80.69 57.55* 63.61 70.71 68.39 86.48 154.54 155.68 138.10 

38 63.48* 82.52 68.42 87.60 64.07 68.06 68.57 73.15 136.57 149.01 156.65 190.35 

39 60.65 79.87 65.71 84.94 61.87 65.70 65.71 70.66 128.81 5.09* 33.04 135.25 

40 43.65 62.28 48.74 65.96 36.29* 48.42 48.74 53.51 39.45 131.99 137.70 142.01 

41 31.72 47.63 36.72 47.87 33.21 179.59 36.72 41.81 126.46 5.09* 39.96 133.65 

42 71.93 70.99 58.01* 76.08 67.78 74.49 58.01 61.59 120.18 144.73 154.08 185.09 

43 84.07 56.96 46.25* 57.74 83.59 266.65 46.25 49.25 104.19 81.59 94.42 190.32 

44 64.25* 83.54 69.05 88.56 66.69 69.05 68.88 73.80 144.73 90.27 106.54 155.89 

45 29.12 47.94 34.20 52.32 25.35* 34.20 33.28 38.37 97.56 152.83 157.85 143.93 

46 79.98 96.82 82.81 100.86 76.42* 84.90 82.81 87.87 137.22 100.47 114.81 176.50 

47 63.47 70.66 57.32* 75.75 61.26 63.10 57.32 60.91 68.06 116.93 130.53 174.48 

48 53.43 65.23 56.32 69.39 50.76* 55.23 56.32 60.32 138.42 136.57 149.52 193.73 
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Table 3.1: Summary of 'Best' Model using BIC 

 
Subject 162 152 142 Overall (see text) 

1 DFT DFT DFT DFT 

2 PT PT PT PT 

3 PT PT PT PT 

4 GS Max GS Max GS Max GS Max 

5 DFT DFT EU DFT/EU 

6 MaxMin MaxMin MaxMin MaxMin 

7 MaxMax MaxMax MaxMax MaxMax 

8 PT PT PT PT 

9 PT PT PT PT 

10 DFT DFT DFT DFT 

11 PT PT PT PT 

12 GS Min PT PT GS Min 

13 DFT DFT DFT DFT 

14 GS Min GS Min GS Min GS Min 

15 MaxMin MaxMin MaxMin MaxMin 

16 EU EU EU EU 

17 PT DFT DFT PT 

18 PT PT PT PT 

19 DFT DFT DFT DFT 

20 DFT DFT DFT DFT 

21 GS Min CEU GS Min GS Min 

22 PT PT PT PT 

23 MaxMin MaxMin MaxMin MaxMin 

24 Alpha GS Max Alpha Alpha 

25 EU EU EU EU 

26 DFT DFT DFT DFT 

27 DFT DFT DFT DFT 

28 DFT DFT DFT DFT 

29 GS Min GS Min GS Min GS Min 

30 MaxMax MaxMax MaxMax MaxMax 

31 PT PT PT PT 

32 PT PT Alpha PT/Alpha 

33 EU EU EU EU 

34 MaxMin MaxMin MaxMin MaxMin 

35 MaxMax MaxMax MaxMax MaxMax 

36 MaxMin MaxMin MaxMin MaxMin 

37 DFT DFT DFT DFT 

38 EU EU EU EU 

39 MaxMax MaxMax MaxMax Maxmax 

40 DFT DFT DFT DFT 

41 MaxMax MaxMax MaxMax MaxMax 

42 PT PT PT PT 

43 PT PT PT PT 

44 EU EU EU EU 

45 DFT DFT DFT DFT 

46 EU DFT DFT EU/DFT 

47 PT PT PT PT 

48 GS Min GS Min DFT GS Min 

 
Treatment 1: subjects 1 through 15; Treatment 2: subjects 16 through 32; Treatment 3; subjects 33 
through 48.  In the final column, bold indicates no conflict through the data sets. 
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Figure 3.2: An overall summary 

 

 Treatment 1 Treatment 2 Treatment 3 All treatments 

EU22 ½ 2 3½ 6 

CEU 0 0 0 0 

PT 5 4½ 3 12½ 

CPT 0 0 0 0 

DFT 3½ 5 3½ 12 

GS Min 2 2 1 5 

GS Max 1 0 0 1 

Alpha 0 1½ 0 1½ 

MaxMin 2 1 2 5 

MaxMax 1 1 3 5 

MinReg 0 0 0 0 

Hurwicz 0 0 0 0 

Totals 15 17 16 48 

 

                                                 
22 We note that Expected Value Maximisation is a special case of EU. Subject 25 clearly was simply maximising the 
Expected Value (albeit with the wrong probabilities) while subject 16 was close to doing so (and with probabilities 
close to the correct ones). We thank Edi Karni for pointing out these special cases.  
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Table 4.1: Predictive Ability in and out of sample (number is % correct) - Number of 
observations used for estimation 162 

 
subject EU CEU PT CPT DFT GS Min GS Max Alpha MaxMin MaxMax MinReg Hurwicz 

 In in in in in in in in in in in in 

1 96 99 98 99 96 95 98 98 94 77 77 72 

2 92 94 93 94 91 93 93 94 81 90 88 67 

3 93 95 95 96 93 93 95 95 80 80 77 62 

4 94 96 95 96 94 95 97 97 81 92 89 73 

5 98 98 98 98 99 98 98 98 89 70 70 67 

6 98 98 99 98 98 99 98 99 99 83 83 74 

7 85 87 89 90 85 87 89 89 87 92 89 67 

8 93 94 94 94 93 92 94 94 81 78 75 62 

9 92 98 98 98 92 92 98 98 84 75 74 64 

10 94 92 93 93 93 91 93 93 88 81 81 67 

11 90 95 94 95 89 91 94 95 88 82 80 65 

12 89 91 91 93 90 90 91 91 86 78 75 63 

13 99 99 99 97 99 99 99 99 89 70 71 67 

14 94 94 93 95 93 93 93 96 77 85 82 63 

15 90 93 90 92 89 89 91 91 93 76 76 70 

16 81 84 81 84 79 81 81 81 65 72 71 60 

17 94 98 96 98 95 96 96 98 90 80 79 67 

18 91 95 93 95 92 93 93 94 82 83 81 62 

19 94 94 94 94 94 94 94 94 90 78 77 68 

20 94 94 94 95 94 96 94 95 93 78 78 69 

21 86 88 88 90 86 88 88 88 85 80 77 62 

22 89 87 85 88 89 87 85 85 83 83 80 63 

23 95 95 95 95 95 95 95 95 97 83 84 72 

24 84 88 87 88 84 86 87 87 83 82 79 61 

25 100 100 100 100 100 100 99 100 72 90 86 68 

26 93 93 94 94 93 93 94 93 91 81 80 69 

27 91 94 92 93 91 92 92 92 86 73 72 65 

28 95 96 96 94 94 96 96 96 86 70 71 64 

29 91 92 91 92 90 90 92 92 75 81 79 63 

30 91 90 92 90 91 91 92 90 82 90 87 69 

31 93 96 94 96 93 92 94 95 85 78 77 64 

32 90 95 95 95 91 92 95 95 85 88 85 65 

33 95 96 94 96 94 93 94 94 86 80 79 69 

34 94 93 93 93 93 95 94 93 94 78 78 72 

35 93 94 93 94 93 96 93 96 88 94 90 69 

36 89 91 89 93 88 89 88 88 94 87 87 68 

37 94 94 94 94 94 93 94 94 90 73 74 71 

38 91 93 92 93 92 92 91 92 77 72 70 64 

39 92 91 90 91 90 90 90 90 81 100 98 74 

40 97 98 97 96 97 98 97 98 98 79 79 72 

41 99 99 99 99 98 98 99 99 81 100 97 74 

42 94 97 96 97 92 93 96 96 85 75 74 63 

43 91 97 97 98 91 93 97 97 89 93 90 67 

44 93 93 93 93 93 93 93 93 75 90 86 69 

45 99 99 99 99 99 99 99 99 90 71 71 67 

46 90 89 90 90 90 90 90 89 78 86 83 65 

47 93 95 94 95 93 94 94 94 92 83 81 68 

48 93 94 93 94 93 94 93 94 77 76 73 62 

average 92.63 94.06 93.52 94.25 92.40 92.90 93.54 93.81 85.46 81.58 80.00 66.83 
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Table 4.2: Predictive Ability in and out of sample (number is % correct)  

Number of observations used for estimation 152 

 
EU CEU PT CPT DFT GS Min GS Max Alpha MaxMin MaxMax MinReg Hurwicz  

subject in out in out in out in out in out in out in out In out in out in out in out in out 

1 96 100 99 100 97 100 99 90 96 100 95 100 97 100 97 100 93 100 77 70 78 60 73 65 

2 91 90 94 90 93 100 94 90 91 90 92 90 93 100 94 90 81 90 90 90 88 100 66 80 

3 93 80 96 80 97 80 96 80 93 80 93 80 97 80 97 80 79 100 79 100 76 90 61 75 

4 95 90 97 70 95 90 97 70 94 90 95 90 97 100 97 100 82 70 93 80 89 80 74 70 

5 98 100 98 100 98 100 98 100 99 100 98 100 98 100 98 100 89 90 70 80 70 70 67 75 

6 98 100 98 100 99 100 98 100 98 100 99 100 98 100 99 100 99 100 83 80 83 90 73 85 

7 85 90 90 80 89 80 90 80 85 90 86 80 89 80 89 80 88 80 92 100 89 90 66 85 

8 92 100 93 100 94 100 93 100 93 100 91 100 94 100 94 100 81 80 79 70 76 70 63 40 

9 92 90 98 100 98 90 98 100 91 90 92 90 95 90 98 80 84 80 76 70 74 70 63 70 

10 94 90 91 80 95 80 91 80 93 90 93 80 95 80 93 80 89 60 82 70 82 70 67 60 

11 89 100 95 100 93 100 95 100 89 100 91 100 93 100 95 100 88 90 83 70 80 70 65 65 

12 88 100 92 90 93 90 93 90 89 100 89 95 93 90 91 90 86 100 79 60 76 60 62 80 

13 99 100 99 100 99 100 97 100 99 100 99 100 99 100 99 100 88 90 70 70 71 70 66 69 

14 93 100 94 100 93 100 95 100 93 100 92 100 93 100 95 100 80 30 86 70 84 50 64 45 

15 89 90 91 100 89 90 92 100 89 90 88 90 89 90 89 90 94 80 76 70 76 70 70 75 

16 80 90 83 100 80 90 82 90 79 90 80 90 80 90 80 90 64 80 71 80 70 80 60 60 

17 95 90 97 100 96 100 97 100 95 90 97 90 92 100 97 100 90 90 82 60 80 60 67 55 

18 91 100 95 100 93 100 95 100 91 100 92 100 93 100 95 100 82 80 82 100 80 100 61 80 

19 94 90 95 90 94 90 95 90 94 90 94 90 94 90 94 90 91 80 79 70 78 70 69 50 

20 94 100 94 100 94 100 95 100 93 100 95 100 94 100 95 100 93 100 78 80 78 70 69 70 

21 86 100 90 80 88 90 90 80 86 100 88 90 88 90 88 100 85 90 80 90 76 90 61 80 

22 88 90 88 70 87 70 88 70 88 90 87 90 87 70 87 70 83 80 83 80 80 80 63 60 

23 94 100 94 90 94 100 95 80 94 100 94 100 94 100 94 100 97 100 83 90 83 90 71 85 

24 85 80 87 80 87 80 88 80 85 80 87 80 88 80 87 80 83 90 83 80 79 80 62 55 

25 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 71 80 89 100 86 100 67 80 

26 93 100 93 100 93 100 94 100 93 100 93 100 93 100 93 100 90 100 81 80 80 90 68 85 

27 90 100 94 100 91 100 93 100 91 100 91 100 91 100 91 100 86 90 74 60 73 60 65 65 

28 97 80 97 80 97 80 95 80 95 80 97 80 97 80 97 80 88 70 71 60 72 60 64 65 

29 90 100 92 90 90 100 92 90 89 90 90 90 90 100 91 100 74 90 81 80 78 90 63 70 

30 92 60 92 70 94 60 92 70 92 70 92 60 94 60 94 60 81 90 90 80 87 80 67 95 

31 93 100 95 80 94 90 95 80 92 100 92 80 94 90 95 90 84 100 78 80 77 70 63 80 

32 90 90 94 100 95 100 95 100 90 90 91 90 95 100 95 100 84 90 89 80 86 70 65 65 

33 94 90 96 100 94 90 96 100 94 90 93 80 94 90 93 100 86 90 81 70 80 70 68 75 

34 93 100 93 100 91 100 93 100 93 100 95 100 93 100 91 100 94 100 78 90 77 90 72 70 

35 93 100 94 90 92 100 94 90 92 100 94 100 92 100 94 100 88 80 93 100 90 90 70 55 

36 90 75 91 75 90 75 94 85 90 75 90 75 90 75 90 75 94 95 87 95 87 95 69 60 

37 95 90 94 100 94 90 94 100 95 90 94 90 95 90 94 100 90 80 73 80 74 80 71 65 

38 92 90 93 90 91 90 93 90 94 90 92 90 91 90 91 90 77 70 72 70 70 70 63 75 

39 89 100 91 100 89 100 91 100 91 100 89 100 89 100 89 100 82 70 100 100 98 90 74 75 

40 97 90 97 90 97 90 96 90 97 90 97 90 97 90 97 90 97 100 80 70 79 80 72 75 

41 99 90 99 100 99 90 99 100 99 90 99 90 99 90 99 90 82 80 100 100 97 90 74 80 

42 93 100 97 100 95 100 97 100 91 100 93 100 95 100 96 100 84 100 76 60 74 70 63 55 

43 90 90 97 90 97 90 97 90 90 100 74 85 97 90 97 90 88 100 92 100 89 100 66 70 

44 93 100 93 100 93 100 93 100 92 100 93 100 93 100 93 100 74 80 89 90 86 90 69 55 

45 99 100 99 90 99 100 99 90 99 100 99 100 99 90 99 90 89 90 72 50 72 50 68 50 

46 90 80 92 80 91 80 91 80 91 80 91 80 91 80 91 80 78 90 87 70 84 70 67 45 

47 93 90 95 100 95 90 95 100 93 90 94 100 95 90 94 100 93 80 84 80 81 80 68 60 

48 93 90 94 90 93 90 95 90 93 90 93 100 93 90 94 100 78 70 78 50 74 60 62 60 

average 92.44 93.02 94.17 91.98 93.52 92.19 94.25 91.56 92.35 93.23 92.35 91.77 93.46 92.19 93.75 92.81 85.44 85.73 81.90 78.65 80.15 77.60 66.69 68.00 
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Table 4.3: Predictive Ability in and out of sample (number is % correct)  

Number of observations used for estimation 142 

 
EU CEU PT CPT DFT GS Min GS Max Alpha MaxMin MaxMax MinReg  Hurwicz  

subject in out in out in out in out in out in out in out in out in out in out in out in out 

1 96 100 98 100 96 100 98 95 96 100 93 92 97 100 97 100 93 100 75 85 77 75 74 62 

2 92 85 94 95 92 95 94 95 92 85 92 85 92 95 94 95 80 95 90 90 87 95 66 77 

3 94 80 97 80 98 80 96 80 94 80 94 80 98 80 98 80 79 90 79 90 76 85 61 68 

4 94 95 97 85 94 90 97 85 94 90 94 95 96 100 96 100 81 80 93 85 89 85 73 80 

5 98 100 98 100 98 100 97 95 99 100 98 100 98 100 98 100 88 95 70 75 70 75 67 68 

6 98 100 98 100 99 100 98 100 98 100 99 100 98 100 99 100 99 100 82 90 82 95 73 80 

7 86 75 90 75 90 75 90 85 86 75 87 70 90 75 90 75 87 90 92 95 90 85 67 72 

8 94 95 93 100 94 100 93 100 93 95 92 95 94 100 94 100 82 70 79 75 76 70 65 40 

9 92 95 98 100 98 90 98 100 91 95 94 95 98 90 98 90 83 90 75 80 73 80 63 65 

10 94 95 90 90 95 90 90 90 94 95 92 90 95 90 93 90 89 80 81 85 80 85 67 65 

11 89 90 94 95 94 95 94 100 89 90 91 90 94 95 94 95 89 85 82 80 80 80 65 60 

12 92 80 94 85 94 80 94 80 92 80 92 90 94 80 95 80 87 85 80 65 76 65 62 68 

13 99 100 99 100 99 100 96 95 99 100 99 100 99 100 99 100 88 95 69 80 69 80 66 70 

14 92 100 94 95 92 100 95 95 92 100 93 95 92 100 94 95 80 60 85 85 83 75 63 60 

15 88 95 91 100 88 95 93 100 88 95 88 85 89 95 89 95 94 90 77 70 77 70 70 72 

16 81 80 82 75 82 75 83 75 81 80 81 80 81 80 81 80 64 75 69 90 68 90 58 70 

17 94 95 97 100 96 100 97 100 95 95 96 95 92 100 97 100 89 95 81 75 80 75 67 63 

18 92 95 96 90 94 95 96 95 91 95 92 95 94 95 95 90 82 80 82 95 79 95 61 72 

19 95 75 95 75 95 75 95 75 95 75 96 80 95 75 96 80 91 85 80 65 79 70 70 58 

20 94 95 95 95 94 95 95 95 94 95 95 95 94 95 94 95 94 85 80 65 80 65 70 65 

21 87 90 89 85 88 85 89 85 86 90 87 90 88 85 89 95 86 80 80 80 77 80 62 67 

22 88 90 88 80 86 80 88 80 88 90 87 90 86 80 87 80 83 80 83 85 79 85 64 55 

23 94 100 94 95 94 100 95 90 94 100 93 100 94 100 93 100 97 100 83 85 84 80 71 80 

24 86 80 87 85 87 80 87 85 85 80 86 80 87 80 87 85 82 90 83 75 80 75 63 48 

25 100 100 100 95 100 95 100 100 100 100 100 100 100 95 100 95 73 65 90 90 86 90 67 75 

26 93 90 94 95 94 90 92 95 93 90 94 90 94 90 94 90 89 100 80 90 79 90 69 72 

27 90 90 96 90 91 90 93 90 91 90 92 90 91 90 92 90 87 80 76 55 75 50 64 67 

28 96 90 96 90 96 90 94 85 95 90 96 90 96 90 96 90 87 85 71 65 72 65 64 65 

29 90 95 93 85 89 90 93 85 89 90 91 80 90 95 91 80 74 85 82 75 79 80 62 70 

30 93 65 93 65 95 65 93 65 93 65 93 65 95 70 95 70 80 95 91 80 88 80 67 82 

31 93 95 96 90 94 90 96 90 93 95 93 85 94 90 96 90 83 100 77 85 76 80 63 70 

32 92 80 95 75 94 80 95 75 92 80 92 75 96 85 95 80 87 70 90 75 87 70 65 65 

33 94 95 96 100 94 95 96 100 94 95 92 90 93 100 93 100 86 90 81 75 80 75 68 72 

34 93 100 93 100 91 100 93 100 92 100 94 100 93 100 91 100 94 100 77 90 76 90 71 72 

35 92 95 94 90 92 95 93 90 92 95 94 95 92 95 94 95 88 85 94 95 90 90 71 57 

36 91 73 93 77 91 73 92 73 89 73 91 73 90 73 91 73 95 88 86 98 87 93 70 58 

37 94 95 94 100 94 95 94 100 95 90 94 95 95 95 93 95 91 80 72 85 73 80 72 65 

38 92 85 94 85 93 85 94 85 94 90 94 85 92 85 94 85 78 65 73 65 71 65 63 67 

39 89 100 90 100 89 100 90 100 91 100 89 100 89 100 90 95 81 85 100 100 98 95 74 75 

40 96 95 97 95 96 95 96 95 97 95 97 95 96 95 97 95 97 100 80 75 79 80 71 80 

41 99 95 99 100 99 100 99 95 99 95 87 90 99 100 99 100 82 80 100 100 97 95 74 75 

42 93 100 96 95 96 100 96 95 92 95 92 100 96 100 96 100 84 95 76 70 74 75 64 58 

43 89 95 97 95 97 95 97 95 89 100 62 62 97 95 97 95 87 100 92 100 89 95 65 75 

44 92 95 94 95 94 95 94 95 92 95 94 95 93 95 94 95 76 65 90 85 87 80 70 55 

45 99 100 99 95 99 100 99 95 99 100 99 100 99 95 99 95 89 95 72 65 72 65 68 60 

46 90 85 92 90 91 90 91 90 92 85 90 85 91 90 90 90 77 85 87 75 85 75 67 53 

47 95 85 96 90 96 90 96 90 95 85 94 90 96 90 96 90 94 80 85 75 82 75 69 60 

48 94 90 96 90 94 90 96 90 94 90 93 90 94 90 93 90 77 75 78 60 75 65 62 58 

average 92.67 91.10 94.40 90.88 93.67 90.90 94.17 90.58 92.67 90.90 92.04 89.31 93.67 91.52 94.02 91.21 85.48 85.90 81.88 80.69 80.17 79.44 66.83 66.48 



Table 5: Doubtful Subjects 

 
BIC 162 BIC 152 BIC 142 predictions 

152 

predictions 

142 

Subject 

 

first 

model 

second 

model 

first second first second first second first second first second 

5 DFT EU 32.82 32.88 32.82 32.88 32.78 31.75 100 100 100 100 

12 GS 
Min 

PT 99.07 99.20 98.18 94.84 89.42 85.70 95 90 90 80 

17 PT DFT 50.92 54.67 50.59 50.17 50.58 50.16 100 90 100 95 

21 GS 
Min 

CEU 105.38 112.10 101.01 100.48 96.55 97.60 90 80 90 85 

24 Alpha GS 
Max 

122.88 125.01 110.14 106.84 104.41 105.40 80 80 85 80 

32 PT Alpha 66.37 70.23 65.64 69.54 53.40 53.34 100 100 80 80 

46 EU DFT 100.14 101.10 82.92 79.42 79.98 76.42 80 80 85 85 

48 GS 
Min 

DFT 61.40 64.90 60.29 62.10 55.23 50.76 100 90 90 90 
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Table 6.1: Models that outperform the 'best' model in terms of predictive ability 

Number of observations used for estimation 152 
 

subject 'best 

model' 

other models 

3 PT 

80 

MaxMin 
100 

MaxMax 
100 

MinReg 
90 

      

9 PT 

90 

CEU 
100 

 CPT 
100 

       

12 PT 

90 

EU  
100 

DFT  
100 

GS Min 
95 

MaxMin 
100 

     

15 MaxMin 

80 

EU  
90 

CEU 
100 

PT 
90 

CPT 
100 

DFT  
90 

GS Min 
90 

GS Max 
90 

Alpha 
90 

 

16 EU 

90 

CEU 
100 

        

17 DFT 

90 

CEU 
100 

PT  
100 

CPT  
100 

GS Max 
100 

 Alpha 
100 

    

21 CEU 

80 

EU  
100 

PT  
90 

DFT  
100 

GS Min 
90 

GS Max 
90 

Alpha 
100 

MaxMin 
90 

MaxMax 
90 

MinReg 
90 

22 PT 

70 

EU  
90 

DFT  
90 

GS Min 
90 

MaxMin 
80 

MaxMax 
80 

MinReg 
80 

   

24 GS Max 

80 

MaxMin 
90 

        

29 GS Min 

90 

EU  
100 

PT  
100 

GS Max 
100 

Alpha 
100 

     

30 MaxMax 

80 

MaxMin 
90 

Hurwicz 
95 

       

31 PT 

90 

EU  
100 

 DFT 
100 

MaxMin 
100 

      

33 EU 

90 

CEU 
100 

CPT  
100 

Alpha 
100 

      

37 DFT 

90 

CEU 
100 

CPT 100  Alpha 
100 

      

40 DFT 

90 

MaxMin 
100 

        

43 PT 

90 

DFT 
100 

MaxMin 
100 

MaxMax 
100 

MinReg 
100 

     

46 DFT 

80 

MaxMin 
90 

        

47 PT 

90 

CEU 
100 

CPT  
100 

GS Min 
100 

Alpha 
100 

     

 
The numbers are the percentage of correct predictions out of (estimation) sample. 
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Table 6.2: Models that outperform the 'best' model in terms of predictive ability 
Number of observations used for estimation 142 
 

subject 'best 

model' 

other models 

3 PT 

80 

MaxMin 
90 

MaxMax 
90 

MinReg 
85 

    

9 PT 

90 

EU  
95 

CEU 
100 

CPT  
100 

DFT  
95 

GS Min 
95 

  

11 PT 

95 

CPT  
100 

      

12 PT 

80 

CEU  
85 

GS 
Min 90 

MaxMin 
85 

    

14 GS Min 

95 

EU  
100 

PT  
100 

DFT  
100 

GS Max 
100 

   

15 MaxMin 

90 

EU  
95 

CEU 
100 

PT  
95 

CPT  
100 

DFT  
95 

GS Max 
95 

Alpha  
95 

16 EU 

80 

MaxMax 
90 

MinReg 
90 

     

17 DFT 

95 

CEU 
100 

PT  
100 

CPT  
100 

GS Max 
100 

Alpha 
100 

  

19 DFT 

75 

GS Min 
80 

Alpha 
80 

MaxMin 
85 

    

21 GS Min 

90 

Alpha 95       

22 PT 

80 

EU  
90 

DFT  
90 

GS Min 
90 

MaxMax 
85 

MinReg 
85 

  

24 Alpha 

85 

MaxMin  
90 

      

26 DFT 

90 

CEU  
95 

CPT  
95 

MaxMin 
100 

    

29 GS Min 

80 

EU  
95 

CEU  
85 

PT  
90 

CPT  
85 

DFT  
90 

GS Max 
95 

MaxMin 
85 

30 MaxMax 

80 

MaxMin 
95 

Hurwicz 
82 

     

31 PT 

90 

EU  
95 

DFT  
95 

MaxMin 
100 

    

32 Alpha 

80 

GS Max 
85 

      

33 EU 

95 

CEU  
100 

CPT  
100 

GS Max 
100 

Alpha 
100 

   

36 MaxMin 

88 

MaxMax  
98 

MinReg 93      

37 DFT 

90 

EU  
95 

CEU 
100 

PT  
95 

CPT  
100 

GS Min 
95 

GS Max 
95 

Alpha  
95 

38 EU 

85 

DFT  
90 

      

40 DFT 

95 

MaxMin 
100 

      

43 PT 

95 

DFT  
100 

MaxMin 
100 

MaxMax 
100 

    

46 DFT 

85 

CEU  
90 

PT  
90 

CPT  
90 

GS Max 
90 

Alpha  
90 

  

 
The numbers are the percentage of correct predictions out of (estimation) sample. 
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Table 7.1: Explanatory and Predictive ability 

Number of observations used for estimation: 152 
 
Pred → 
Fit ↓ 

EU CEU PT CPT DFT GS 
Min 

GS 
Max 

Alpha Max 
Min 

Max 
Max 

Min 
Reg 

Hurwicz Total  
Index* 

EU 3 1.33  0.33    0.33     5 0.60 

CEU 0.33 0   0.33   0.33     1 0.00 

PT 1.00 0.75 6 1.08 0.92 0.58  0.25 1.42 0.75 0.25  13 0.46 

CPT    0         0 0.00 

DFT  0.53 0.20 0.53 10  0.20 0.53 2.00    14 0.71 

GS Min 0.25  0.25   2 0.25 0.25     3 0.67 

GS Max       1  1    2 0.50 

Alpha        0     0 0.00 

MaxMin  0.50  0.50     4 1.00   6 0.67 

MaxMax          3  1.00 4 0.75 

MinReg           0  0 0.00 

Hurwicz            0 0 0.00 

Total 4.58 3.12 6.45 2.45 11.25 2.58 1.45 1.70 8.42 4.75 0.25 1 48  

 
*Index: ratio of the diagonal entry to the row total.  
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Table 7.2: Explanatory and Predictive ability 
Number of observations used for estimation: 142 
 
Pred → 
Fit ↓ 

EU CEU PT CPT DFT GS 
Min 

GS 
Max 

Alpha Max 
Min 

Max 
Max 

Min 
Reg 

Hurwicz Total Index* 

EU 3 0.25  0.25 1.00  0.25 0.25  0.50 0.50  6 0.50 

CEU  0           0 0.00 

PT 0.33 0.50 5 1.50 0.67 1.33   1.83 0.83   12 0.42 

CPT    0         0 0.00 

DFT  0.90 0.40 0.90 8  0.40 0.40 3.00    14 0.57 

GS Min 0.75  0.25  0.25 0 0.75 1.00     3 0.00 

GS Max       1      1 1.00 

Alpha       1.00 0 1.00    2 0.00 

MaxMin  0.50  0.50     3 1.00   5 0.60 

MaxMax         1.00 4   5 0.80 

MinReg           0  0 0.00 

Hurwicz            0 0 0.00 

Total 4.08 2.15 5.65 3.15 9.92 1.33 3.40 1.65 9.83 6.33 0.50 0.00 48  

 
*Index: ratio of the diagonal entry to the row total.  
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Figure 1: Ilustration of the DFT model 
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Appendix 1: The Experimental Instructions 

EXEC                    Centre for Experimental Economics at the University of York 

 

 
Welcome to this experiment. MIUR (the Italian ministry for the universities) has provided the funds 
to finance this research. Depending on your decisions you may earn a considerable amount of 
money which will be paid to you in cash immediately after the end of the experiment. This sum will 
be composed of the £10 participation fee plus your ‘earnings’ from a lottery. This latter could be a 
loss of £10, a gain of £10 or gain of £100.  You cannot walk away from this experiment with less 
money than that with which you arrived, though you might walk away with £20 more or with £110 
more. 
 
There are no right or wrong ways to complete the experiment, but the decisions that you take will 
have implications for what you are paid at the end of the experiment. This depends partly on the 
decisions that you take during the experiment and partly on chance. So you will need to read these 
instructions carefully. 
 
At the end of the experiment you will be asked to complete a brief questionnaire and to sign a 
receipt for the payment that you received, and to acknowledge that you participated voluntarily in 
the experiment. The results of the experiment will be used for the purpose of academic research and 
will be published and used in such a way that your anonymity will be preserved. 
 

 

Outline of the experiment 

 
You will be asked 162 questions. Each will be of the same type. You will be presented with two 
lotteries and you will be asked which you prefer. After you have answered all 162 questions, one of 
them will be selected at random, the lottery that you said that you preferred on that question will be 
played out, and you will be paid the outcome: if the outcome is a loss of £10 you will leave the 
experiment with the same as when you came; if the outcome is a gain of £10 you will leave the 
experiment with £20 more than when you came; if the outcome is a gain of £100 you will leave the 
experiment with £110 more than when you came. If you did not express a preference on the selected 
question then one of the two lotteries will be selected at random and played out. It is clearly in your 
interests to answer each question as if that were the question to be played out. 
 
 

The Bingo Blower 
 
You will have noticed a Bingo Blower in the laboratory. In this Blower there are balls of three 
different colours: pink, blue and yellow. The balls are constantly being blown about in the Blower. 
At the end of the experiment, when we come to play out your preferred choice on one of the 
questions, we will use this Bingo Blower to determine a colour: we will allow you to open the exit 
chute – this will lead to one ball being expelled. Obviously this expulsion will be done at random as 
there is no way that you can control the colour of the ball that emerges. The colour of the ball and 
the lottery that you chose on the question that was selected will determine your payment. 
 
 

The Questions 
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A sample question is illustrated in the Figure attached to these Instructions. In this figure, there are 
two lotteries – that on the left and that on the right. The lottery on the left would lead to a loss of 
£10 if the ball expelled was yellow, to a gain of £10 if the ball expelled was blue and to a gain of 
£100 if the ball expelled was pink. The lottery on the right would lead to a loss of £10 if the ball 
expelled was pink or blue and to a gain of £10 if the ball expelled was yellow. You have to decide 
for each question whether you prefer the lottery on the left or that on the right. You should indicate 
your choice by clicking on the box below the appropriate lottery. You will be given at least 30 
seconds to make up your mind and you cannot proceed to the next question until these 30 seconds 
have elapsed. The number of seconds left to make your decision will be indicated at the bottom of 
the screen. If you want more time, simply click on ‘STOP THE CLOCK’; then click on ‘RESTART 
THE CLOCK’ when you are happy to proceed. If the 30 seconds have elapsed and you have not 
taken a decision then ‘no decision’ will be recorded for that question. 
 
 

The end of the experiment 
 

After you have answered all 162 questions you will be asked to call over an experimenter. In front 
of him or her you will choose at random one of the questions - by picking at random a ticket from a 
set of cloakroom tickets numbered from 1 to 162. The computer will recall that question and your 
answer to it, and then you will play out your preferred choice on that question – in the manner 
described above. If you did not take a decision on that question then you will toss a coin to 
determine which of the two lotteries will be played out. You will then be asked to fill in a short 
questionnaire. We will then pay you, you will sign a receipt and then you will be free to go. Note 
that the experiment will take at least 81 minutes of your time. You can take longer and it is clearly 
in your interests to be as careful as you can when you are answering the questions. 
 
 

If you have any questions at any stage, please ask one of the experimenters. 

 

 
John Hey     Gianna Lotito     Anna Maffioletti 

 



 47 

 
  



 48 

Appendix 2: The Specifications 

 This appendix provides technical detail on the various specifications that we fitted to the 

data. We start with some notation. We denote the three possible outcomes in the experiment by x1, 

x2 and x3. Except for the CPT specification we normalise the highest to have a utility of 1 and the 

lowest to have a utility of 0; we denote the utility of the middle outcome by u. We denote the three 

colours by a, b and c. A lottery can be denoted by  

 1 1 2 2 3 3( , ; , ; , )L x S x S x S=  (1) 

Here Si is the state (one of , , , , , ,  and a b c a b a c b c a b c∅ ∪ ∪ ∪ ∪ ∪ ) in which the lottery pays out 

xi. 

 1. Expected Utility theory (EU) 

 In this subjects choose between lotteries on the basis of their expected utility, calculated on 

the basis of the subject’s subjective probabilities attached to the various states. The expected utility 

of the lottery L is given by 

 2 3( )EU L p u p= +  (2) 

where pi is the (subjective) probability of state i. If we use the notation that pi = P(Si) where Si  

denotes the state in which the lottery pays out xi, then we have  

 

( ) 0

( ) ( ) ( )

( ) ( ) ( )

( ) 1

a b c

a b a c b c

a b c

P

P a p P b p P c p

P a b p p P a c p p P b c p p

P a b c p p p

∅ =

= = =

∪ = + ∪ = + ∪ = +

∪ ∪ = + + =

 (3) 

where , and
a b c

p p p are the subject’s subjective probabilities for the three colours. In this model we 

estimate u, pa, pb and pc (subject to the constraint that 1
a b c

p p p+ + = ). 

 

 2. Choquet Expected Utility theory (CEU) 

 Here the Choquet Expected Utility of the lottery L is given by 

 23 3 23 3 3( ) (1 ) ( )CEU L w u w u w w u w= + − = − +  (4) 
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where wi is the Choquet capacity (or weight23) of state i. If we use the notation that wi = W(Si) 

where Si  denotes the state in which the lottery pays out xi, then we have, in order to satisfy the 

Choquet conditions, that 

 

( ) 0

( ) ( ) ( )

( ) ( ) ( )

( ) 1

a b c

ab ac bc

W

W a w W b w W c w

W a b w W a c w W b c w

W a b c

∅ =

= = =

∪ = ∪ = ∪ =

∪ ∪ =

 (5) 

Here , , , and
a b c ab ac bc

w w w w w w are the subject’s Choquet capacities (or weights) for the various 

possible states. In this model we estimate , , , , and
a b c ab ac bc

u w w w w w w . Note that there is no 

necessity that wde = wd + we for any d or e. That is, there is no necessity that the weights are 

additive (probabilities). Indeed this is the main difference between Expected Utility theory and 

Choquet Expected Utility theory.  

 

3. Prospect Theory (PT) 

 This is a preference functional ‘between’ that of EU and the Choquet Expected Utility 

functional. We should say at the outset that we are hesitant about the acceptability of this term being 

used in this context, but it seems appropriate. Prospect Theory (see Kahneman and Tversky 1979) 

envisages utilities being weighted by some function of the ‘true’ probabilities. If there are true 

probabilities of the various colours πa, πb and πc then Prospect Theory envisages them being 

replaced by f(πa), f(πb) and f(πc). If we denote these respectively by pa, pb and pc then we get this 

specification. It is precisely the same as the Expected Utility preference functional except for the 

fact that the ‘probabilities’ are not additive. In this model we estimate u, pa, pb and pc (but no longer 

subject to the constraint that 1
a b c

p p p+ + = ). We note that this preference functional may not 

satisfy dominance (though it does so in this context), unlike the Choquet preference functional, 

                                                 
23 We borrow this term from Rank Dependent Expected Utility theory, which has strong affinities with the Choquet 
Expected Utility theory. 
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which does. It could also be interpreted as a model in which the decision-maker has several possible 

probabilities for each of the three colours, and works with the minimum probability for each colour. 

 

 4. Cumulative Prospect Theory (CPT) 

 This is almost the same as Choquet Expected Utility theory except for the incorporation of a 

reference point. We take this to be a gain of £0 in the experiment. We normalise the utility function 

so that u(£0) = 0 and u(£110) = 1 and estimate u = u(£10). We also estimate t = -u(-£10). In other 

respects the theory is the same as CEU. We note that CEU is nested within EU. 

 

 5. Decision Field Theory (DFT) 

The Decision Field Model, as proposed by Busemeyer and Townsend (1993) is similar to 

EU except insofar as the error term is heteroscedastic. So the difference between two lotteries is 

valued exactly as in EU but the error variance is not constant. To define it we have to introduce 

some extra notation. Consider a choice between a Left lottery which yields outcomes L

a
O ,  L

b
O  and 

L

c
O in the states (colours) a, b and c respectively, and a Right lottery which yields outcomes R

a
O ,  

R

b
O  and R

c
O  in these states (colours). Then the difference between the two lotteries is evaluated, as 

in SEU, (using an obvious notation) by  

( ) ( ) [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]L R L R L R

a a a b b b c c c
V L V R p U S U S p U S U S p U S U Sε ε− + = − + − + − +  

where the error term ε has a normal distribution with mean 0 and variance given  by:  

2 2 2 2 2{ [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] }L R L R L R

a a a b b b c c c
s p U S U S p U S U S p U S U S V L V R− + − + − − −  

Here we estimate u, the (additive) probabilities and s. Note that this model has exactly the same 

number of parameters as EU but neither is nested inside the other. 

 

 6. Maximin Expected Utility Theory (GS Min) 
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 This is a special case of Alpha theory (described below) with the parameter α of that theory 

equal to 1. 

 

 7. Maximax Expected Utility Theory (GS Max) 

 This is a special case of Alpha theory (described below) with the parameter α of that theory 

equal to 0. 

 

 8.  Alpha Theory  

 In this theory, decision-makers are envisaged as thinking of the probabilities (of the various 

events) lying in some convex space. Denoting this convex space by P, each point in which 

represents a possible probability for each of the three colours (necessarily additive), then, according 

to this theory, the decision-maker chooses between lotteries on the basis of the maximum of  

 min[ ( )] (1 ) max[ ( )]
p P p P

EU L EU Lα α
∈ ∈

+ −  (6) 

The convex set P is individual specific. We parameterise that and estimate these parameters, in 

addition to the utility parameter u. However, the theory does not specify how it should be 

parameterised. We assumed that this convex space can be represented as a convex area within the 

triangle defined by the vertices (0,0), (1,0) and (0,1) in a space with the probability of colour a on 

the horizontal axis and the probability of colour b on the vertical axis. In order to make the convex 

space symmetrical as far as the treatment of the three probabilities were concerned, we 

characterised it as bounded by a vertical line at 
a

p , a horizontal line at 
b

p  and a line parallel to the 

hypoteneuse (with therefore a slope of -45º) such that 1 – pa  – pb = 
c

p . We estimate 
a

p , 
b

p  and 

c
p  along with the other parameters. We note that this convex space can take a variety of different 

forms. Clearly if it just consists of a single point then the Alpha model reduces to EU. 

 

 9. MaxMin 
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 In this, the decision-maker is presumed to follow the rule of choosing the lottery for which 

the worst outcome is the best. We assume that the rule is followed lexicographically, so that we get 

the following rule, where l1, l2 and l3 denote the three outcomes on one of the two lotteries, L, 

ordered from the worst to the best, and m1, m2 and m3 denote the outcomes on the other lottery, M, 

also ordered from the worst to the best: 

 

1 1

1 1

1 1 2 2

1 1 2 2

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

if  then 

if  then 

if  and  then 

if  and  then 

if ,  and  then 

if ,  and  then 

if ,  and  then 

l m L M

l m L M

l m l m L M

l m l m L M

l m l m l m L M

l m l m l m L M

l m l m l m L M

>

<

= >

= <

= = >

= = <

= = =

≻

≺

≻

≺

≻

≺

∼

 (7) 

We note that there are no parameters to be estimated in this model, though we do assume that the 

decision-maker ranks £100 as the best outcome, £10 as the second best and -£10 as the worst. 

 

 10. MaxMax 

 In this the decision-maker is presumed to follow the rule of choosing the lottery for which 

the best outcome is the best. We assume that the rule is followed lexicographically, so that we get 

the following rule, using the same notation as above: 

 

3 3

3 3

3 3 2 2

3 3 2 2

3 3 2 2 1 1

3 3 2 2 1 1

3 3 2 2 1 1

if  then 

if  then 

if  and  then 

if  and  then 

if ,  and  then 

if ,  and  then 

if ,  and  then 

l m L M

l m L M

l m l m L M

l m l m L M

l m l m l m L M

l m l m l m L M

l m l m l m L M

>

<

= >

= <

= = >

= = <

= = =

≻

≺

≻

≺

≻

≺

∼

 (8) 

Again there are no parameters to estimate. 
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 11. Minimax Regret
24

 (MinReg) 

 With this preference functional, the decision-maker is envisaged as imagining each possible 

ball drawn, calculating the regret associated with choosing each of the two lotteries, and choosing 

the lottery for which the maximum regret is minimized. Again there are no parameters to estimate, 

though it is assumed that there is a larger regret associated with a larger difference between the 

outcome on the chosen lottery and the outcome on the non-chosen lottery. 

 

12. Hurwicz 

In this the decision-maker is presumed to follow the rule of choosing the lottery for which a 

weighted average of the worst outcome and the best outcome is the best. As this rule implies some 

way of comparing outcomes, a utility function (characterised as in EU) is required. We estimate u 

along with the weight α attached to the worst outcome. 

 

                                                 
24 See Luce and Raiffa (1957). 


