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Abstract 

Background and aims: The year 2019 marked the centenary for the publication of the Harris 

and Benedict equations for estimation of energy expenditure. In October 2019 a Scientific 

Symposium was organized by the European Society for Clinical Nutrition and Metabolism 

(ESPEN) in Vienna, Austria, to celebrate this historical landmark, looking at what is currently 

known about the estimation and measurement of energy expenditure. 

Methods: Current evidence was discussed during the symposium, including the scientific 

basis and clinical knowledge, and is summarized here to assist with the estimation and 

measurement of energy requirements that later translate into energy prescription. 

Results: In most clinical settings, the majority of predictive equations have low to moderate 

performance, with the best generally reaching an accuracy of no more than 70%, and often 

lead to large errors in estimating the true needs of patients. Generally speaking, the addition 

of body composition measurements did not add to the accuracy of predictive equations. 

Indirect calorimetry is the most reliable method to measure energy expenditure and guide 

energy prescription, but carries inherent limitations, greatly restricting its use in real life 

clinical practice.  

Conclusions: While the limitations of predictive equations are clear, their use is still the 

mainstay in clinical practice. It is imperative to recognize specific patient populations for 

whom a specific equation should be preferred. When available, the use of indirect 

calorimetry is advised in a variety of clinical settings, aiming to avoid under- as well as 

overfeeding. 

 

Keywords: energy expenditure; predictive equations; indirect calorimetry; energy 

requirements; nutritional prescriptions  
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1. Introduction 

J. Arthur Harris and Francis G. Benedict published their landmark study, entitled “A Biometric 

Study of Basal Metabolism in Man” in 1919 [1] and a shorter paper the previous year [2]. 

These were based on data gathered using “an apparatus for studying the respiratory 

exchange”, published a decade earlier (Figures 1 and 2) [3]. Data have been accumulating 

since, showing a good relationship between energy expenditure measured by indirect 

calorimetry and predicted energy expenditure using the Harris-Benedict equations in non-

obese normal volunteers and even more so in subjects with obesity.  

The European Society for Clinical Nutrition and Metabolism (ESPEN) organized a 

Scientific Symposium celebrating the centenary of the Harris-Benedict equations and an 

expert group met in Vienna, Austria on October 27 and 28, 2019. The group examined the 

development of predictive equations for the measurement of resting energy expenditure 

and the use of indirect calorimetry. It critically examined the clinical parameters influencing 

energy expenditure and the relevance and utility of using measured and predicted energy 

expenditure to direct nutritional therapy in adult patients of different ages, in different 

settings, and going through various disease processes. This position paper is based on 

presentations and discussions at the Vienna Symposium, along with a subsequent update of 

the literature. 

 

2. Historical landmarks 

Historical landmarks surrounding the science of measuring energy expenditure are 

summarized in Table 1 [1-10]. 

 

3. Energy balance 

Energy balance is the difference between intake and expenditure. About two thirds of 

energy expenditure is resting energy expenditure, which accounts for vital functions at rest. 

About 20-30% is activity-related, more in young active patients and less in older and more 

sedentary adults, while 5-10% is used for thermogenesis. Indirect calorimetry measures 

oxygen consumption and carbon dioxide production to calculate energy expenditure. Energy 

expenditure includes thermogenesis, which corresponds with the energy dissipated by 

metabolic processing of substrates (protein, carbohydrates, fat) and diet-induced 

thermogenesis (food, drinks). The type and rate of substrate utilization are reflected by the 

respiratory quotient (RQ), calculated by the division of carbon dioxide production by oxygen 

consumption (VCO2/VO2). This is different for each substrate: 1 for carbohydrate, 0.8 for 

protein, 0.7 for fat and approximately 0.85 for a combined diet. Optimally, indirect 

calorimetry should be used to provide measurements instead of predictive equations, 

making for a more exact energy balance. However, survey showed that as indirect 
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calorimetry was not available to 80% of nutrition staff members, only estimated values were 

used [11].  

 

4. The accuracy of predictive equations according to weight 

Predictive equations for resting energy expenditure are based on anthropometrics (weight, 

height, BMI or fat free mass), age, sex, disease-related conditions or combinations of these 

factors [1, 2, 12-15]. Estimations are generally considered accurate if they fall within an error 

range of 10% when compared with indirect calorimetry. Age affects prediction errors 

significantly, and the same holds true for extremes of weight or extreme disease states 

(tetraplegia, high fever, etc.). Ethnicity may also affect the accuracy of predictive equations, 

as demonstrated in a recent study among Chilean non-whites, in whom predictive equations 

generally performed poorly [16]. Looking at the predictive equations available currently, 

some take into account only anthropometric factors (sex, age, weight, height) [1, 2, 13, 15], 

while others require body composition assessment (FFM and/or fat mass) [14, 17-21]. 

Several equations use different adjustment factors according to age (e.g. Henry equation 

[12]) or BMI (e.g. Müller equation [14]). To evaluate the accuracy of predictive equations, 

measured resting energy expenditure (by indirect calorimetry) has been compared with 

predicted resting energy expenditure in health and in different clinical conditions. The 

Harris-Benedict equations perform reasonably well in those with obesity, being accurate in 

68.5% of patients with a BMI between 25 and 40 kg/m
2 

and 62.4% of patients with a BMI 

above 40 kg/m
2
 [22]. Surprisingly, the Bernstein equation [17], originally devised for patients 

with obesity, actually had the worst predictive abilities, with only 23% accurate predictions 

[22]. In a recent study, 33% of all predictions were inaccurate, with the best reaching only 

60% accuracy across weight groups [22]. Other studies have reported similar results [23, 24].  

Eighteen different equations were compared with indirect calorimetry in ventilated 

patients, and the mean error was 233-426 kcal/day [25]. Even the better functioning 

equations were accurate in only half of the patients, with both over- and underestimations. 

In this study, the World Health Organization (WHO) equations [15] performed best among 

the lean (BMI <18.5 kg/m
2
), while in patients with obesity (BMI >30 kg/m

2
) the Harris-

Benedict equations were the most accurate. Kruzienga et al. [26] found similar results in 

hospitalized patients, and advised that the WHO equations [15] should be used for those 

with a BMI <30 kg/m
2
 and the Harris-Benedict equations for those with BMI >30 kg/m

2
. 

However, these findings and recommendations are not unanimous. For example, Weijs [24] 

found the Mifflin equation [13] to be the most accurate among obese US adults, and no 

single equation was accurate among Dutch adults who with overweight or obesity, leading 

him to recommend the WHO equations [15] for overweight adults and the Lazzer equations 

[19, 21] for patients with obesity. 

 In healthy, normal-weight adults, the Harris-Benedict equations [1, 2] appear to be 

among the best equations to predict resting energy expenditure [22]. However, the accuracy 
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of the Harris-Benedict equations is reduced in older people [27] or in patients with low [22, 

26] or high BMI [22, 24]. Interestingly, in patients with obesity resting energy expenditure is 

decreased after major weight loss induced by bariatric surgery [28]. While energy 

expenditure remains proportional to body weight, estimation equations become less 

accurate (around 60% at best) in patients with obesity [29]. In this context, some equations 

[1, 2, 14, 30] exhibit a marked reduction in their accuracy to predict resting energy 

expenditure while others are more accurate [13, 19, 21, 29]. However, at least 50% of 

patients have an inaccurate prediction of resting energy expenditure irrespective of the 

equation used. As already mentioned,  a low body weight is also associated with inaccuracy 

of the Harris-Benedict equations [26]. In severely malnourished patients with anorexia 

nervosa, the most accurate prediction is around 45% [22], showing that predictive equations 

are not appropriate for the prediction of resting energy expenditure at extremes of BMI at 

the individual level. Moreover, acute and chronic diseases also affect energy needs and an 

activity factor has bee suggested. It was estimated at 1.5 for healthy subjects, 1.3 in acute 

and chronic illness and 1.1 in critical illness, but as these numbers are hypothesized rather 

than proven [31], their use cannot yet be generally recommended. However, the clinician 

may assume that total energy expenditure is reduced or normal in the various chronic 

illnesses, and is not elevated during illness. Nevertheless there are wide variations. In adult 

patients with head and neck cancer, Souza et al. [20] also showed that the Harris-Benedict 

equations exhibited a wide range of limits of agreement and thus proposed a new equation. 

In patients with lung, rectal, colon or pancreatic cancer, all tested predicted equations 

(including Souza-Singer equation [20]) show insufficient accuracy even if body composition 

factors were included [32]. Underestimation is all too common (15-20%) in patients with 

cancer [32] and predictive equations needs careful interpretation to avoid under- or 

overestimation of energy requirements.  

Hence, a tendency to prescribe fewer calories than required is noted in patients with 

obesity when using equations. The Harris-Benedict equations are [1, 2] still among the better 

equations for estimation of energy expenditure in healthy subjects, although its accuracy 

decreases in those with obesity or underweight, the acutely or chronically ill and the elderly 

(Figure 3) [22, 24, 26, 32-39]. Other equations may perform slightly better in specific 

populations [13, 15, 19, 21], but resting energy expenditure cannot be predicted accurately 

for each individual, and indirect calorimetry is recommended to evaluate energy 

requirements. 

 

5. Energy expenditure measured by oxygen utilization 

Energy is derived from hydrogen by metabolic processes that require oxygen. In a complex 

process, the protons that shuttle due to a gradient are the motor for adenosine triphosphate 

(ATP) generation from substrates. The transmembrane movement of protons back into 

mitochondria through the ATP-synthase then drives the production of ATP from adenosine 

diphosphate (ADP) [40]. 
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Direct calorimetry measures heat released from metabolic reactions, while indirect 

calorimetry measures utilization of oxygen and elimination of carbon dioxide. Fat yields 

more calories per gram utilized, resulting in a lower RQ. The likely cause is that glucose 

metabolism heavily relies on nicotinamide adenine dinucleotide (NAD), while metabolism of 

fat uses relatively more flavin adenine dinucleotide (FAD). It is worth noting that in terms of 

ATP production via oxygenation, glucose is the most efficient, yielding 120 kcal per liter of 

oxygen, compared with 100 kcal from fat. Energy metabolism consists of three steps: (1) the 

release of hydrogen from water and nutrients, (2) production of a proton gradient during cell 

respiration, and (3) production of ATP by consumption of this proton gradient. In practice 

what is actually measured is the amount of oxygen consumed for energy production. 

Measuring the amount of ATP produced is not yet possible.  

Organs utilize energy at different rates. Relative to their mass, the heart and the kidneys 

have the highest energy consumption, with the brain and liver following suit. Muscle, fat and 

bone lag behind. Resting energy expenditure is closely correlated with fat free mass (FFM). 

However, as the size of the body increases, the viscera contribute relatively less to the 

resting energy expenditure while the contribution of the muscle and fat grows. Age 

influences the relative contributions of the different organs as well. Although measuring FFM 

in critically ill patients to define the required amount of nutrients makes sense, very little 

evidence actually exists to support this approach, and FFM is mainly used to prescribe 

substrates in overweight and subjects with obesity. 

 

6. Body composition and predictive equations 

The human body may be divided into three compartments – FFM, fat and bone. FFM and 

bone are responsible for an energy expenditure of approximately 14.5 kcal/kg/day, while fat 

only requires about 4.5 kcal/kg/day [41].FFM is a heterogeneous compartment in terms of 

energy expenditure. Some components have higher metabolic rate than others. Gallagher et 

al. [41] report that muscles are responsible for about 22.5% of resting energy expenditure 

while muscles represent 50.4% of FFM. In contrast, heart, kidneys, liver and brain are 

together responsible for 58% of resting energy expenditure whereas these organs only 

represent 6.9% of FFM. During weight changes, the components of FFM, i.e. different 

organs, are not similarly affected and their energy demands are altered in different ways. 

For instance, in older people, muscle mass is reduced compared with young people while 

non-muscular FFM is not altered. Similarly, in patients with cancer, muscle mass decreases 

but tumor cells or metastases can increase REE of non-muscular fat-free mass. A few 

predictive equations such as the Bernstein [17], Müller [14], Huang [18], Lazzer [19, 21] and 

Owen [42, 43] equations incorporate FFM. It should, however, be interesting to investigate 

further whether new body composition-based equations, considering not only FFM but 

muscle mass and non-muscular FFM, are more robust in predicting resting energy 

expenditure. The available methods to assess body composition are described in Table 2. 
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The more readily available methods are discussed in detail, including their applicability in 

specific patient populations.  

Dual-energy X-ray absorptiometry (DXA) measures three compartments: fat mass, lean 

mass and bone mass. It is a fast and noninvasive method that exposes the patient to 

acceptable radiation doses (2-5 µSv). It also allows the measurements of segmental body 

composition, such as visceral fat mass and appendicular skeletal muscle mass. There is 

variability between different devices and manufacturers [44, 45], and hydration status 

influences results as well [46]. 

Bioelectrical impedance analysis (BIA) uses hand to foot surface electrodes, with several 

methods available of either single or multiple frequencies. It is also fast and noninvasive and 

provides raw electrical data- reactance, resistance and impedance. In fact, BIA only 

determines fluid related compartments, i.e. FFM, and this compartment may be further 

divided into body cell mass and extracellular mass. Fat is obtained by subtraction of FFM 

from body weight. Contrary to common belief, BIA does not directly measure fat mass. 

Several BIA equations are available. However, fluid status can have major effects on BIA 

readings [47], and the same is true for patient position [48]. Aside from phase angle 

measurements, it is probably inadequate for use in critically ill patients [49, 50]. 

Looking at the performance of DXA and BIA [51], DXA identifies higher fat mass than BIA. 

When both methods were compared according to BMI [52], larger variations were apparent 

at both extremes of BMI. As a result, it is not safe to clinically compare data from DXA and 

BIA, irrespective of which BIA equation is used. An analysis of the performance of the 

different equations to calculate FFM from BIA [53] suggests Sun’s equation [54] is the most 

appropriate for studies at the population level. In 2018, Tewari et al. [55] published a 

comparison of three methods for assessment of body composition, DXA, BIA and computed 

tomography (CT). Results were widely distributed, suggesting that variation between 

methods is high. 

Differences between DXA and BIA, manufacturers and devices must be taken into 

account and results should be interpreted accordingly. The approach should probably be 

longitudinal, as results might be confounded by factors such as hydration status.  

The addition of FFM to weight-based equations did not provide further advantage in 

overweight subjects, even when different methods for FFM measurements were used. This 

lack of added benefit was apparent in subjects with obesity [24] as well as those who were 

underweight (BMI <16 kg/m
2
) [22]. When patients with cancer were examined, equations 

using FFM were not among the better performing; a new equation, developed by Souza-

Singer et al. [20], was intended specifically for this population, but remains to be validated. 

As mentioned previously, weight-based predictive equations for resting energy expenditure 

show a decrease of accuracy during weight changes (underweight or overweight), with aging 

or during acute or chronic diseases. It is well established that body compartments differently 

affect resting energy expenditure. Indeed, FFM is the major determinant of resting energy 
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expenditure while fat mass influences resting energy expenditure only slightly. There is a 

close correlation between FFM and resting energy expenditure. CT is an interesting method 

to evaluate or diagnose reduced muscle mass but it is not appropriate to predict resting 

energy expenditure. Bernstein et al. [17] used total body potassium technique, while Müller 

et al. [14], Lazzer et al. [19, 21] and Huang et al. [18] used BIA. Mifflin et al. [13] used 

skinfold thickness and circumference approach and Owen et al. [42, 43] used hydrostatic 

weighing. Interestingly, some studies compared the accuracy of weight-based equations to 

body composition-based equations [22-24, 32]. In patients who are overweight and those 

with obesity, Weijs [24] reported that in the Dutch cohort (n=208) with body composition 

data, all tested body composition-based equations showed a decrease in accuracy of 

prediction when compared with weight-based equations, except for Bernstein equations 

[17]. In a large cohort of patients with grade I and II obesity (n=1735), the accuracy of 

prediction was not improved by body composition parameters, irrespective of the technique 

used to measure body composition (BIA or DXA), except for Müller equation [56]. Marra et 

al. [23] observed similar results. Concerning patients who are underweight, body 

composition-based equations did not exhibit better results than weight-based equations 

[22]. Similarly, in cancer patients, no improvement in prediction of resting energy 

expenditure was observed with body composition-based equations [32]. All these data 

suggest that body composition-based equations do not improve prediction of resting energy 

expenditure whatever the clinical conditions (overweight, underweight, chronic diseases).  

The ESPEN consensus statement from 2015 [57] identified three factors as having 

strongest agreement as related to malnutrition: weight loss, reduced BMI and reduced lean 

body mass. Most societies encourage using lean or FFM as a crucial phenotypic criterion for 

malnutrition. The Global Consensus for Diagnosing Malnutrition (GLIM) consortium [58, 59]. 

is an initiative to provide a consensus on the diagnosis and grading of malnutrition, and one 

of its goals is clinical guidance for severity grading on low muscle mass. Malnutrition may be 

graded according to severity as moderate/stage 1 and severe/stage 2 [58, 59]. FFM serves as 

an important criterion for this grading system, as low muscle mass is one of the three 

phenotypic criteria, alongside weight loss and low BMI. These are complemented by two 

etiological criteria: reduced food intake/assimilation and the presence of inflammation. FFM 

may be assessed by various methods. DXA and BIA as well as calf circumference have been 

incorporated into the severity assessment criteria, and the future may see the addition of 

others, such as ultrasound [60], CT at the L3 vertebral level [61] and the D3 creatine dilution 

test [62].  

 

7. Predictive equations and indirect calorimetry in critical illness 

When compared with measurements, there is a large variation in the accuracy of the Harris-

Benedict equations [1, 2], in relation to numerous variables, both inherent and acquired – 

genetics, muscle mass, hormones, medications, physical activity, dietary intake, etc. [63]. 

Even a century ago, Harris and Benedict [1, 2] considered regression equations as having 
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limited trustworthiness due to their high variation, and so regression equations should not 

be used to predict individual resting energy expenditure [2, 64]. Predictive equations may 

offer merely the illusion of accuracy and precision, and so indirect calorimetry should be 

used to measure resting energy expenditure whenever possible instead. Commonly used 

equations such as the Mifflin [13], Ireton-Jones [65] or Faisy-Fagon [66] equations, to name 

but a few, are not very accurate and one may also discover high variation between methods. 

It should be emphasized that an equation devised at a certain center may perform poorly 

elsewhere. Put together, even the best performing predictive equations reach an accuracy of 

only 50-70%. Using mean values may lead to very high rates of inaccuracy, with most 

patients receiving either hyper- or hypocaloric nutrition [36], without one universally 

applicable prescription. Even weight in itself carries many inherent problems in the ICU, 

including methods for its measurement/estimation or changes in fluid balance. Estimating 

energy expenditure at the extremes of weight is even less accurate. Different illnesses and 

disease states make quantification yet harder. Sepsis has varying effects on energy 

expenditure according to its phase, type and severity.  

Oxygen consumption (VO2) obtained from a pulmonary artery catheter, using a multiplier 

of 7, may estimate energy expenditure well. Carbon dioxide production (VCO2), easily 

obtained from the ventilator and using a multiplier of 8.2, is more readily available 

compared to VO2 [67], although it is definitely not optimal [68, 69]. Weir's equation [70] for 

energy expenditure, originally described in 1949, is  

Energy expenditure (kcal/day) = [(VO2 × 3.941) + (VCO2 × 1.11) - (urinary N2 × 2.17)]  

As the effect of protein metabolism, i.e. nitrogen, on this equation is very small, it is 

largely disregarded. This means using an indirect calorimeter, VO2 and VCO2 obtained from a 

ventilator in mechanically ventilated patients or using a canopy in spontaneously breathing 

subjects may be measured, and the almost exact energy expenditure (disregarding protein 

metabolism) can be calculated. As VO2 has a multiplier of 3.94 and VCO2 has a multiplier of 

1.11, errors in VO2 readings have four times more impact on the result compared with VCO2. 

If energy expenditure is calculated using either VO2 or VCO2 alone, a stable and known RQ is 

required. 

There are many conditions that may limit or prohibit the use of indirect calorimetry. Still, 

considering the negative impact of an accumulating energetic deficit [71], the accuracy of 

indirect calorimetry outweighs these disadvantages [72]. Practitioners need to become 

accustomed to this technology including the proper way to use it and how to cope with its 

limitations [73]. Different indirect calorimetry instruments come with their particular 

methods and pitfalls. Lastly, one must not forget the variation in protein as well as caloric 

needs across disease states. The benefits and limitations of indirect calorimetry and 

predictive equations are summarized in Table 3. 
 

8. Obesity 
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Resting energy expenditure increases with body weight, but activity energy expenditure 

does to a much lesser extent [74]. Evidence points towards higher activity energy 

expenditure in people with obesity for the same level of exercise, but this is offset by 

generally lower levels of activity [75]. When diet-induced thermogenesis was measured [76], 

the difference between subjects with and without obesity was negligible – only 4 kcal/day! 

As a result, we must be careful if crudely estimating it as 10% of total energy expenditure. 

Therefore, in patients with obesity: (1) basal/resting energy expenditure increases, (2) 

diet-induced thermogenesis decreases relatively, and (3) activity energy expenditure 

increases for the same exercise but decreases due to lower activity levels. Evaluation of total 

energy expenditure in the patient with obesity should take the level activity into 

consideration. 

 

9. The elderly 

In the elderly, activity energy expenditure is lower. Relative to body weight, resting energy 

expenditure is slightly elevated in lean subjects (BMI <21 kg/m
2
) [77], most likely due to 

reduced fat and muscle tissue and the relative contribution of organs with a high metabolic 

rate. Compared with indirect calorimetry, the Harris-Benedict equations performed well in 

elderly patients, and when measuring FFM, the Mifflin-St. Jeor equation [13] was even more 

accurate [77].Current ESPEN guidelines for nutritional support in the elderly [78] advocate: 

(1) Routine screening by systematic assessment, (2) provision of calories – 30 kcal/kg/day 

and protein – 1 g/kg/day, (3) targeting malnourished patients with specific calorie and 

protein goals, (4) specific recommendations for specific diseases, and (5) hydration – 

drinking 1.6 L/day for women, 2 L/day for men. 

In elderly patients hospitalized for various reasons, providing energy, protein and 

vitamin supplementation resulted in halving 3-month mortality rates [79]. In the EFFORT trial 

[80, 81], individualized nutritional support to 2,088 medical inpatients reduced mortality 

rates as well as the need for readmissions and improved functional capabilities. A key 

element to this success was the evaluation of energy requirements using the Harris-Benedict 

equations or indirect calorimetry. 

Multiple factors may interact to produce a catabolic response, in turn translating into 

poorer outcomes. These include disease-related malnutrition, with or without inflammation; 

frailty/gerasthenia; osteoporosis; and sarcopenia. Over 50% of older hospitalized patients 

display 2 or 3 of these syndromes concomitantly. Malnutrition may be related to an illness 

but may also present independently. It is postulated that the negative effects of disease with 

inflammatory components are greater than those of non-inflammatory nature (Table 4). It is 

of importance to recognize diseases with or without inflammation since this may affect REE. 

 

10. The surgical patient 
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Sir David Cuthbertson was the first to demonstrate in trauma patients that the direct injury 

to the tissue was not in itself the main cause for nitrogen loss [82, 83]. Nitrogen loss in urine 

peaked during days 3-8 following injury, the main source for which was breakdown of 

skeletal muscle. 

The response to surgical stress was described in ebb and flow stages. During the ebb 

stage, lasting minutes to hours, the metabolic rate goes down, with reciprocating decreases 

in oxygen consumption and temperature. The flow phase begins later and lasts days to 

weeks, characterized by elevations in the metabolic rate and protein catabolism as well as a 

tendency for water and sodium retention. These are followed by a convalescence phase 

which is anabolic in nature, during which the patient usually excretes excess water and 

sodium [84]. 

During the acute phase weight generally increases owing to fluid retention, goes down 

during the post-acute phase and again up during the anabolic convalescence phase due to 

increase in FFM. The need for nutritional therapy increases with duration of acute illness and 

if not systematically provided life-threatening severe malnutrition will develop. As some 

patients undergoing major abdominal surgery are unable to maintain sufficient food and 

water intake, and as they have increased rates of vomiting, they are particularly prone to the 

development of nutritional deficiencies [85]. While providing nutrition, care must be taken 

to prevent the refeeding syndrome that may send the patient into a state of multiple organ 

dysfunction, harming the heart, brain and liver and exerting many other deleterious effects 

[86]. 

In order to improve the applicability of predictive equations during these changes, 

factors often referred to as "stress factors" have been applied. An example is the Schofield 

adaptation of the Harris-Benedict equations: +10% for each 1°C elevation of temperature, 

+10% for diet-induced thermogenesis and +10 to 50% for stress. A different approach was to 

adapt for levels of activity, between -10% for a mechanically ventilated patient up to +40% 

for patients up around the ward [87]. However, all of these numbers are purely speculative 

with practically no proof for their utility. Not only severity and stage of illness but also 

medical treatment carries an effect on energy requirements [88, 89]. There is, therefore, a 

role for indirect calorimetry in selected patients. It seems very few patients require more 

than 2,000 kcal/day, above which the danger of overfeeding becomes serious.  

In the absence of available indirect calorimetry, the Ireton-Jones [45] or the Penn-state 

[90] equations are generally preferred in surgical or trauma patients, but estimates of 25-30 

kcal/kg/day may be used to begin with and then changes according to nutritional 

parameters. A recent study found that the resting energy expenditure did not vary greatly in 

the first few days following major abdominal surgery [91]. Only a third of the patients had a 

greater than 10% elevation in their REE, and as it seems energy requirements generally do 

not go up during the first few days after surgery, nutrition should be prescribed accordingly. 

When prescribing nutrition for the surgical patient, one must keep in mind there is currently 
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no high-quality published evidence that measurement of energy requirements to inform 

nutritional therapy in surgical patients impacts on outcome. 

  

11. Cancer 

In most countries, cancer rates are rising as life-span increases [92]. It has been shown that 

cancer exerts extensive metabolic effects [93], with the pooled effect of body mass loss and 

reduced survival in those patients [94]. Cancer cells influence different host tissues and 

organs, making it a systemic disease. Tumor stage and inflammation are key drivers of 

hypermetabolism. In patients with advanced cancer, those who lost more than 5% body 

weight had significantly lower survival rates [95-98]. Patients with cancer cachexia receiving 

nutritional interventions had better prognosis when compared with controls [99], and 

patients with cancer adhering to the nutrition and physical activity endorsed by the 

American Cancer Society had better survival when compared with those who did not [100]. 

ESPEN has published guidelines for nutritional therapy in this patient population, including 

delivery of energy 25-30 kcal/kg/day and protein 1-1.5 g/day. However, any guideline may 

not capture the short- and long-term fluctuations of energy expenditure and may lead to 

suboptimal support. A key driver of malnutrition is the hypermetabolic state of these 

patients, which is related to poorer outcomes and reduced response to therapy [101]. Large 

variability exists in this aspect, and assessment of energy expenditure is difficult. Muscle 

mass is a key factor, both in quantity (mass) and quality (fatty infiltration or myosteatosis), 

making the effect on total energy expenditure variable. Cancer therapies like chemotherapy 

and surgery are related to major changes in REE [102], and measurements of energy 

expenditure at a specific point in time may not reflect requirements at other times, making 

nutritional recommendations for these patients inherently inaccurate, as resting energy 

expenditure may be higher or lower than expected. Changes in FFM are also not indicative of 

changes in energy expenditure. Looking at different prediction equations, none seems to 

have a higher than 70% accuracy [32]. Indirect calorimetry will be more accurate but still 

carries the aforementioned hindrances. That said, recent studies were sufficiently powered 

to show that nutritional therapy improves outcomes in cachectic cancer patients, including 

increased survival rates [99]. 

 

12. Other morbidities 

Energy estimates in comorbidities tend to err on the higher side [103]. The exercise capacity 

of frail subjects is not necessarily related to energy expenditure. In this patient population, 

the Harris-Benedict equations will predict higher energy requirements than the actual 

numbers, almost certainly leading to overfeeding. 

Patients with cystic fibrosis consumed less calories during infectious exacerbations 

although their requirements were actually elevated. Patients suffering from acute 

exacerbations of chronic obstructive pulmonary disease consumed fewer calories as well, 
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although energy expenditure was 15% higher. A study on women with chronic obstructive 

pulmonary disease revealed that predictive equations were inaccurate when compared with 

indirect calorimetry in this population [104]. The situation is more complex in patients with 

heart failure, in whom complex interactions exist between metabolic processes are intricate, 

including reduced oxygen consumption and ATP production [105].Comorbidities, chronic 

illness and ageing often coexist and promote reductions in BMI and lean body mass. These 

changes may represent adaptations to the limited metabolic capacity of the circulatory and 

respiratory systems. 

 

13. The ESPEN approach 

Several ESPEN guidelines [78, 95, 98, 106-115] have explored the role of indirect calorimetry in 

the prescription of patients with various disease states and the salient features are 

summarized in Table 5 [1, 2, 13, 20, 32, 39, 78, 87, 95, 98, 101, 106-121]. 

The scientific approach towards nutritional care requires standardized sets of routines 

for both assessment and therapy. Indirect calorimetry requires technical and clinical 

understanding but allows for an actual measurement. Equations are mainly based on 

patient-related factors such as age, weight and sex, but their “one size fits all” concept can 

lead to significant errors. When used, the choice of the equation that would fit best is far 

from trivial, making their use less “complexity-free” than generally considered, while newer 

indirect calorimetry technologies are reducing the levels of complexity involved with their 

use. 

In the setting of acute illness, best embodied by critical illness in the ICU, the patient 

population is extremely heterogeneous, making generalizations difficult. Measurements may 

be complex as well, and due to rapid changes along the phases of critical illness, and the 

large variability presents a strong case for targeting measured values by indirect calorimetry, 

and if not available, energy expenditure calculated from oxygen consumption (VO2) or 

carbon dioxide production (VCO2) are preferred over predictive equations [106]. 

In chronic illness, the aim is to enhance the measurement of the resting metabolic rate in 

all patients in order to optimize nutritional care. The different alternative approaches to 

achieve this goal should be considered, according to feasibility aspects. But the objective is 

more complex than merely the assessment of resting metabolic rate. Physical activity and 

thermogenesis are two other components of total energy expenditure, and the 

determinants of total energy expenditure are numerous, including but limited to, FFM and 

fat mass, age, sex, genetic variables and the effects of hormones and the sympathetic 

nervous system. Algorithms for the diagnosis of malnutrition are available [58, 59], and 

should be followed routinely. Malnutrition may manifest as a variety of clinical phenotypes. 

In an age of the obesity epidemic, the patient with obesity and low muscle mass is becoming 

more common but is more difficult to diagnose, so particular attention should be paid 

towards measuring muscle mass. As the world’s population ages, age-related frailty is 
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affecting the lives of many. Frailty is related to weight loss, exhaustion, weakness, slowness 

and inactivity. These result in high rates of disability, increasing loss of independence and 

worse patient outcomes. The increases in frailty and obesity with low muscle mass are 

closely linked, owing to high caloric intake and reduced physical activity. Frailty should be 

diagnosed on ICU admission or during ICU stay [106], and treatment should be tailored 

accordingly, avoiding further preventable losses. 

ESPEN supports [58, 59] implementation of measurement or assessment of body 

composition and skeletal muscle mass to optimize nutritional care. Lack of awareness and 

suboptimal practice should be addressed by education and communication by releasing 

practical guidelines and making them easily accessible and easy to implement. This is an 

effort that mandates a partnership between nutrition experts with other healthcare 

personnel, patients, the general public and the policymakers. ESPEN is concentrating on the 

dissemination of practical versions of its guidelines, accessible and easy to understand by 

caregivers and the lay public. 

 

14. Conclusions 

The century-old Harris-Benedict equations [1, 2] remain the best available for the prediction 

of resting energy requirements in healthy, normal-weight individuals. However, those who 

need nutritional interventions the most, including older people, under- and overweight and 

those with chronic and acute diseases, are all patients in whom the accuracy of the Harris-

Benedict equation is reduced. The Harris-Benedict equations and other predictive equations 

are widely used in spite of low levels of accuracy ranging from 18% to 70%. Resting energy 

expenditure cannot be predicted accurately for each individual. Technology for indirect 

calorimetry continues to advance alongside growing recognition for the importance of 

assessment of body composition and resulting therapeutic adaptations, although so far 

technologies for the measurement FFM are far from perfect. FFM remains difficult to 

measure and variability is high. The best equations should be employed. These include, but 

are not limited to, the Harris-Benedict [1, 2], WHO [15] and Lazzer equations [19, 21] for 

patients with BMI below 30 kg/m
2 

and the Harris-Benedict [1, 2] and the Mifflin equations 

for patients with BMI above 30 kg/m
2
. Combinations of techniques to assess body 

composition should be explored to increase accuracy. While indirect calorimetry is becoming 

more affordable and practical, serving as a gold standard, different models should be 

compared to ensure accuracy. Gaps in knowledge and practice remain in the different fields 

of nutritional therapy. These include matters of accuracy and the failure of FFM in improving 

accuracy of predictive equations. In the field of nutrition, available tools are not many. As 

technology progresses, we should keep studying them in different scenarios and patient 

populations, gradually moving away from estimations and guesses towards actual 

measurements. 
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Legends for figures 

 

Figure 1: The apparatus used by Benedict [3]. Reproduced with permission from the 

publishers. 

 

Figure 2: The Harris-Benedict equations as described originally [2]. Reproduced with 

permission from the publishers. 

 

Figure 3: The accuracy of the Harris-Benedict equation for the estimation of energy 

expenditure in various patient populations, including under- and overestimations. Data 

derived from [22, 24, 26, 32-39]. 
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Table 1: Historical landmarks in the study of energy expenditure. 

Period/Year Scientist Scientific achievement Comments 

18
th

 century Antoine Lavoisier Insights into 

mechanisms of 

respiration and 

combustion. 

Recognized and 

named oxygen and 

hydrogen. 

1874 Pierre Paul Broca First predictive 

equation for ideal body 

weight [7]. Coined the 

term "ideal body 

weight". Took into 

account sex 

differences. 

The main concern at 

the time was the 

provision of 

sufficient nutrients 

to soldiers. 

1909 Francis G. Benedict The development and 

study of "an apparatus 

for studying the 

respiratory exchange" 

[3].
 

 

1919 J. Arthur Harris and 

Francis G. Benedict 

The publication of "A 

biometric study of 

human basal 

metabolism" [1, 2].
 

 

1929 onwards Max Kleiber The construction of 

respiration chambers 

research into energy 

metabolism in animals 

Energy "lost" was 

defined as energy 

expenditure, in fact a 

different term for 

ATP turnover. 
1961 The publication of "The 

Fire of Life" [6], 

summarizing these 

studies. 

1951 Alfred Fleisch The advent of indirect 

calorimetry, measuring 

heat production [5]. 

Heat production is 

comprised of resting 

and non-resting 

energy. Basal energy 

expenditure was 

found to decline with 

age in both men and 

women. 
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1959 and 1983 Metropolitan 

Insurance Life 

Tables 

The Metropolitan 

formulae describe 

three body frames and 

assume health issues 

accordingly. It should 

be noted that while 

height is an important 

factor, it varies less 

than weight across 

populations [8, 9].  

Actual body weight 

showed a 15 kg 

difference from body 

weight predicted 

using height from 

four different 

cohorts [10]. 

1980s Eric Jequier Studies into direct 

calorimetry, measuring 

heat dissipation, i.e., 

heat losses by 

conduction, 

evaporation, 

convection and 

radiation [4]. 

About 75% of 

oxidative energy 

consumption from 

generated ATP are 

channeled into heat 

production, while 

only 25% is used for 

work. 

Energy expenditure 

comprises of basal 

metabolism (~73%), 

thermogenesis 

(~15%) and physical 

activity (~12%). 
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Table 2: The main available methods for the assessment of body composition. 

Disadvantages Advantages  What is 

measured? 
Principle Method name 

Irradiation 

(albeit of a 

very small 

amount, 2-5 

µSv) 

 

Fast 

Noninvasive 

 

Three 

compartments: 

     -FFM 

     -Fat 

     -Bone 

X-rays with low- 

and high- 

photon energy 

Dual Energy X-

Ray 

Absorpiometry 

(DXA) 

Only two 

compartment 

(vs. three in 

DXA) 

Fast 

Noninvasive 

Affordable 

Two 

compartments: 

     -FFM 

     -Fat 

Generally 

requires surface 

electrodes, 

typically on 

hand and foot 

Raw electrical 

data is acquired: 

-Resistance  

-Reactance 

-Phase angle 

-Impedance 

Bioelectrical 

Impedance 

Analysis (BIA) 

Expensive 

Not available 

in most 

centers 

Fast 

Noninvasive 

 

Two 

compartments: 

     -FFM 

     -Fat 

Whole body 

densitometry as 

a hydrostatic 

weighing 

method 

Air Displacement 

Plethysmography 

(ADP) 

Irradiation 

(substantial) 

Applicable 

only for those 

in whom it 

indicated for 

diagnostic 

purposes 

Performed in 

most hospitalized 

patients for 

diagnostic 

purposes 

Assessment of 

fat and muscle 

areas 

Two 

compartments: 

     -Fat 

     -Muscle 

Performed at 

the level of the 

3
rd

 lumbar 

vertebra 

Computerized 

Tomography (CT) 

 FFM: fat free mass 
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Table 3: The advantages and pitfalls of indirect calorimetry and predictive equations 

 

 Indirect Calorimetry Predictive Equations 

Accuracy -High – considered gold standard. 

-High for both ventilators and 

canopies. 

-Up to 20% difference between 

devices. 

Only around 50% accuracy 

Generally, error around 250 kcal/day, 

but in large heterogeneous 

populations with dynamic courses 

they may be up to 1000 kcal/day! 

Cost Moderate. Between € 14,000 to 

30,000 for the device  

-€ 5,000 yearly for materials and 

maintenance. 

-cost of manpower. 

None. 

Ease of use -Less Time consuming in the new 

devices (5 minutes). 

-Requires experience and a 

technical understanding. 

-Require calibrations (less in newer 

devices). 

-Very easily used. 

-Require little training. 

-Easily incorporated into electronic 

medical records. 

Availability -Low 

80% of health professionals have 

no access. 

-10% have only occasional access. 

-In settings such as nursing homes 

or non-western countries access is 

even lower. 

Readily available for clinical use 

everywhere. 

Which 

parameter? 

Resting energy expenditure, VO2, 

VCO2, RQ 

Resting energy expenditure but also 

total energy expenditure. 

Tips -For precise and personalized 

medicine. 

-May improve patient outcome. 

-Should be followed with repeat 

measurements, optimizing energy 

balances. 

-WHO equation is probably best for 

patients with BMI <30 kg/m
2
. 

- Harris-Benedict is the equation of 

choice for BMI ≥30 kg/m
2
. 

-These should NOT be adjusted for 

over- or underweight. 

VO2: oxygen consumption. VCO2: carbon dioxide consumption. RQ: respiratory 

quotient.  
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Table 4: Examples of diseases that are related to malnutrition, divided according to whether 

they are of inflammatory or non-inflammatory nature. 

Disease-related malnutrition without 

inflammation 

Disease-related malnutrition with 

inflammation 

Stroke 

Dementia 

Parkinson's disease 

Anorexia nervosa 

Depression 

Malabsorption: 

   -Celiac disease  

   -Short bowel syndrome 

Cancer 

Chronic obstructive pulmonary disease 

Congestive heart failure 

Infections 

Trauma 

Critical illness 
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Table 5: Energy requirements recommended in various ESPEN guidelines. 

 

Comments Performance of 

predictive 

equations 

Proposed energy 

prescription 
Evidence for 

the role of 

indirect 

calorimetry 

i.e. should be 

preferred 

Patient 

population 

-Adequate nutrition 

per se does not 

increase tumor 

growth. 

- Hypermetabolic 

patients suffer 

more from cachexia 

[116]. 

- Elevated REE 

before 

chemotherapy 

increased drug 

toxicity and poor 

survival. 

Large variation 

in the 

performance of 

predictive 

equations of REE 

based on 

anthropometric 

parameters [32]. 

 

The Souza-

Ozório-Singer 

equation [20], 

using FFM and 

phase angle, may 

help improve 

resting energy 

expenditure 

estimation. 

Yes-  

REE is high in 

40% of 

cancer 

patients 

[101]. 

Cancer [95] 

Very limited data. Surgical patients 

are highly 

heterogeneous 

in both patient 

and disease 

parameters and 

variability is 

high. 

Rough estimates 

of 25-30 

kcal/kg/day and 

protein of 1.5 

g/kg/day (using 

ideal body 

weight) can be 

employed. 

No Surgery [98] 

If indirect 

calorimetry not 

available, VO2 

obtained from a 

pulmonary artery 

catheter or VCO2 

obtained from the 

ventilator give a 

better evaluation of 

REE than predictive 

The large inter-

patient 

variability and 

the low accuracy 

of weight-based 

equations merit 

careful 

interpretation. 

Risk of 

overfeeding 

during the first 

days, hypocaloric 

target of 70% of 

REE preferred 

gradually 

progressing to 

80-100% of 

energy 

Yes (grade B 

ESPEN 

recommenda

tion) 

Critically ill- 

ICU [106] 
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equations. expenditure [39]. 

 Protein target 

should be 1.5-2 

g/kg/day for 

adults and 1.5-3 

g/kg/day for 

children. 

 

The Toronto 

(adult) [117] and 

the Schofield 

(pediatric) [87] 

equations are 

advocated. 

Yes Major burns 

[107] 

Individual 

parameters should 

be applied, such as 

disease state and 

anabolic and 

catabolic factors. 

- Predictive 

equations 

perform poorly. 

- In stable 

patients on 

home parenteral 

nutrition, 

equations are 

still inaccurate 

for most [118], 

mostly leading to 

overfeeding. 

The caloric target 

should be 25-35 

kcal/kg/day. 

Yes Intestinal 

failure [108] 

IC should guide 

nutritional therapy 

whenever possible 

(Recommendation 

grade 0). 

Very scarce data. Weight-based 

equations? 
Yes Polymorbidity 

[109] 

-Indirect 

calorimetry is 

endorsed by 

ESPEN. 

-Patients with a 

sedentary lifestyle 

should receive 1.3 

times REE. 

- In liver cirrhosis, 

hypermetabolic 

patients show 

better outcomes 

[120]. 

Pooled together, 

the Harris-

Benedict [1, 2] 

and Mifflin [13] 

equations 

probably 

perform better 

than FFM-based 

equations in 

cirrhotic patients 

[119]. 

Harris-Benedict 

and Mifflin 

equations. 

Yes Liver disease 

[110] 
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Energy Expenditure 

is generally low, 

hence the risk of 

overfeeding may be 

substantial. 

Predictive 

equations 

generally have 

about 50% 

accuracy [121]. 

30 kcal/kg/day. No Geriatrics [78] 

Noninvasive 

ventilation 

generally reduces 

REE. 

 30 kcal/kg/day. Yes Neurlogical 

diseases [111] 

Should provide 

adequate food 

intake. 

No data. None available. No Dementia 

[112] 

The ESPEN 

guidelines currently 

under preparation. 

A stress factor 

should not be 

added, as it 

could expose the 

patient to 

overfeeding. 

The Harris-

Benedict 

equation could 

be used safely. 

 

Yes Kidney 

disease [113] 

ESPEN alongside 

ESPGHAN 

recommendations 

available for cystic 

fibrosis [114] and 

pediatric parenteral 

nutrition [115]. 

Adaptations for 

age. 

Schofield (in 

cystic fibrosis). 

No Pediatrics 

[114, 115] 
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