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Abstract

The housing stock of Chile is responsible for 15% of its total final en-

ergy consumption and so its Government is regulating the construction of

dwellings. However, there is a need to establish models to help govern-

ments determine sensible guidance. This paper presents the Chilean Housing

Archetypes AiR quality Model (CHAARM) and a stochastic framework for

predicting uncertainties in indoor pollutant concentrations, ventilation and

infiltration rates, and associated energy demand during the heating season.

Pollutant sources are PM2.5 emitted by cooking and unflued heaters present

in 80% of houses.

CHAARM predicts that 66% of dwellings have a daily mean PM2.5 con-

centration below the WHO 24–hour guideline value of 25µg/m3, even if their
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windows are always closed. Houses are not found to be airtight and 60%

have Q50 > 10 m3 h−1 m−2. Dwelling ventilation and infiltration heat loss

is estimated to be 0.25–42.3 MWh with 90% confidence, and to account for

at least 15% of the estimated total energy demand of the stock. Therefore,

many houses require remediation measures to improve their airtightness and

to reduce their annual space heating demand. However, to avoid negative

health effects from exposure to PM2.5, kitchen ventilation, such as a cooker

hood, should be installed and unflued heaters should be replaced.
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Highlights

• A probabilistic model and modelling framework to evaluate a housing

stock is presented

• Uncertainties are predicted for exposures to PM2.5, ventilation rates,

and energy losses

• PM2.5 emission rates and envelope leakage affect exposures the most

1. Introduction1

A person’s total exposure to airborne pollutants is a function of their time2

spent, and the concentrations found, in different micro-environments [1]. On3

average, people in countries like the UK and USA spend most of their time in4
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their own houses [2, 3] and so pollutant concentrations in dwellings may have5

a greater influence on total personal exposures than outdoor concentrations.6

The need to reduce the energy demand and equivalent carbon emissions7

(CO2e) of dwellings can lead to unintended consequences [4]; for example,8

decreasing ventilation or infiltration rates can be detrimental to indoor air9

quality. Therefore, this phenomenon must be accounted for when interven-10

tions are applied to stocks of houses to avoid negative health effects at a11

population scale.12

Methods for studying indoor air quality and the energy demand can be13

classified into two groups. Firstly, direct methods include monitoring or field14

measurements using personal or stationary equipment, and biomonitoring15

using biomarkers. Secondly, indirect methods comprise modelling and simu-16

lation techniques. Indirect approaches are often preferred to direct methods17

because they are less invasive and cost and time prohibitive than monitoring18

[5].19

Although the indoor air quality and energy demand of a stock of houses20

can be modelled with a high level of accuracy [6], there are inevitable uncer-21

tainties in predictions. These are a function of the model itself, the hetero-22

geneity of studied scenarios, and the random variation in inputs value, either23

due to lack of knowledge or natural randomness. Distributions of outputs can24

be generated that account for the uncertainty in model inputs when models25

are used with an appropriate statistical framework [7, 8], and the use of rep-26

resentative buildings can be used to reflect the variability between different27

groups [9, 10]. Additionally, sensitivity analyses can be used to determine the28

nature of the relationships between each of the inputs and the outputs, and29

3



to identify those that are the most important [7, 8]. Finally, the predictions30

can then be used to direct future research when sensitive inputs are of low31

quality, or to investigate the effectiveness and consequences of interventions32

[10, 11]. These techniques can be applied to any housing stock where there33

is sufficient data to generate archetypes.34

Chile is a South American country whose territory traverses at least nine35

different climates [12], and whose >6 million houses have characteristics that36

vary according to the local weather conditions and the availability and af-37

fordability of building materials and energy resources. The variability of the38

Chilean housing stock has been studied previously and a series of representa-39

tive archetypes have been developed by dividing the stock into groups where40

houses share similar properties, and each group weighted so that it represents41

a proportion of the whole stock1 [13].42

Logue et al. [14] evaluated the health impacts of a range of indoor pollu-43

tants in dwellings and identified fine particulate matter with a diameter of44

≤ 2.5µg/m3 (PM2.5) as the most harmful by an order of magnitude. Cook-45

ing has been identified as an important source of PM2.5 in houses all over46

the world [15, 11], although its effects have not yet been investigated widely47

in Chilean houses. Additionally, 80% of Chilean houses use stoves for space48

heating, where 42% are fuelled by wood, 24% by bottled LPG, propane, and49

butane gases, and 10% by paraffin. The high use of wood is attributable to50

cultural and historical reasons, and to its low cost when compared to gas or51

electricity[16]. The remaining 20% of houses do not have a specific heating52

1The code is available under a creative commons license from DOI:

10.13140/RG.2.2.16242.15041
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system, using either charcoal, electricity, or solar energy [17]. Many stoves53

are unflued and so their contribution to total exposure is thought to be sig-54

nificant during the heating season [18]. It is clearly important to quantify55

how cooking and heating stoves affect the air quality in Chilean houses, and56

to understand how potential remediation measures, such as trickle vents, or57

opening windows, might help to dilute PM2.5.58

To do this, a wide ranging field survey is required. However, in the short59

term, a model of the Chilean housing stock could be used to predict uncer-60

tainty in pollutant concentrations that can be compared against international61

benchmarks [19] and used to identify potential impacts on population health.62

This paper continues the work of Molina et al. [13] by developing the63

Chilean Housing Archetypes AiR quality Model (CHAARM). CHAARM is64

used to predict uncertainties in indoor pollutant concentrations, ventilation65

and infiltration rates and their associated energy demand, and the sensitivity66

of the model to its inputs. Its outputs can then be used to guide future67

interventions and field surveys.68

The CHAARM model, its inputs, and statistical framework are described69

in Section 2 and a flowchart is shown in Figure 1. Section 3 presents and dis-70

cusses its predictions, and Section 4 evaluates the sensitivity of CHAARM’s71

predictions to its inputs.72

2. Developing CHAARM73

Stock models create a framework that can be used to evaluate and develop74

regulations and interventions for buildings, and the estimated outcomes can75

be compared against suitable indicators. Given the level of detail and quality76
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of available data, this investigation is limited to ventilation, infiltration, and77

pollutant transport; see [13]. Indoor air quality is generally worse during the78

heating season because occupants choose to preserve their thermal comfort79

and minimize energy costs by closing their windows to minimize ventilation.80

Therefore, the models are simulated for the astronomical winter period be-81

tween June 21st and September 21st. There are no reported measurements82

of window opening behaviour in Chilean houses at the stock scale. Therefore,83

two extreme scenarios are considered: (i) an all windows open scenario and84

(ii) an all windows closed scenario.85

2.1. Model of ventilation, Infiltration, and pollutant transport86

CONTAM [20] is a freely available multi–zone indoor ventilation and pollu-87

tant transport tool that models airflows between a building and its external88

environment, and between its zones. It has been validated by comparing89

its performance against other modelling tools [21], against measurements in90

controlled environments [22], and against field studies [7]. It has been used91

to model different types of building [23] and for evaluating input parameters92

[24] and pollutant concentrations [25, 26, 27]. CONTAM is selected over other93

tools because it can include multiple pollutants, multiple sources and sinks,94

and has 12 different emission and removal models. Therefore, many different95

species can be modelled simultaneously giving a more detailed representation96

of the indoor air.97

CONTAM is not a dynamic thermal model and so indoor air temperatures98

must either be specified (see Section 2.3) or CONTAM must be coupled with99

a dynamic thermal model, such as EnergyPlus [21]. A dynamic ther-100

mal model can provide some predictive advantages [28], but the material101
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properties required to model heat transfer in Chilean houses are unknown.102

Therefore, CONTAM is used in isolation.103

Molina et al. [13] identified 496 common Chilean archetypes and the104

parameters required to describe them, showing that there is a law of de-105

preciating returns when increasing the number of archetypes to increase the106

representativeness of the stock. Increasing the number of archetypes also in-107

creases the modelling and computational time and so a trade–off is required.108

We modelled eight archetypes in CONTAM to represent 35% of the national109

stock, which is predicted to be a medium representation of the stock by an110

effect size statistic [29]. The CONTAM models were manipulated using be-111

spoke R code2. An example model of an archetype is shown in Figure 2a,112

which gives the layout of the first of the eight archetype, and in Figure 2b,113

which shows its implementation in CONTAM graphical user interface. For114

brevity, the details of each archetype are not given here, but an in–depth115

discussion of their parameters can be found in [13]. Rooms are represented116

as well–mixed zones indicated by squares, and airflow paths are indicated by117

diamonds. A well–mixed zone is a zone with discrete temperature, pressure,118

and contaminant concentration—where emissions are from a point source119

and instantaneously and homogeneously mixed [20]. Model inputs are de-120

scribed in Section 2.2. The procedures used to explore uncertainty in both121

the archetypes and their inputs, and to extrapolate predictions to the entire122

Chilean housing stock, are described in Sections 2.7–2.9.123

2 The R code is available under a creative commons license from DOI:

10.13140/RG.2.2.12641.04963.
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2.2. Dwelling parameters124

Dwelling properties, such as window opening area and opening sched-125

ules, are considered to be variables and were manipulated by the code. For126

simplicity, each archetype has fixed room volumes and floor areas, but the127

properties of each airflow path are variables. The models were simulated128

probabilistically to estimate uncertainty in predictions.129

2.2.1. Airflow paths130

Windows are modelled as sash types with a rectangular cross–section and131

a fixed cross–sectional area using the one–way orifice equation following [7,132

20]. Open internal doors are modelled using the two–way flow two–opening133

model following [20], with a discharge coefficient of 0.78 [30] and its relative134

elevation is at the bottom of the door [7, 31]. Closed doors are modelled by135

a one–way flow power law as rectangular sections with a discharge coefficient136

of 0.68 and a flow exponent, n, of 0.5 [32].137

In Chile, wall mounted extractors fans commonly have a minimum airflow138

rate of 48 l s−1 in kitchens and 14 l s−1 in bathrooms and so these rates are139

applied here uniformly. All bathrooms have an extractor fan and a window.140

Kitchens have an extractor fan and an air vent with an area of 100 cm2 to141

help dilute combustion gases and comply with Chilean Standard DS No. 66142

[33]. Fans operate for both window opening scenarios according to fixed143

schedules; see Section 2.6.1.144

All façades are assumed to be uniformly porous and the pressure dis-145

tribution over vertical surfaces is assumed to be linear [8, 34]. Airleakage146

paths (ALPs) are modelled using a power law model and flow exponents are147

sampled from a normal distribution truncated between 0.5 and 1, N (0.651,148
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0.077), following [35]. Distributions of air permeability, Q̇50 ( m3 h−1 m−2),149

have been derived for each geographic region and grouped by climatic zone;150

see Section 2.2.2 and Figures 5a and 5b. A value of air permeability is applied151

to each ALP as a function of surface area and the number of ALPs located152

in each wall. Party walls are assumed to be impermeable.153

A single ALP is located in the floor and ceiling of each room [8], although154

the lower floor of each archetype is considered to be impermeable because155

they are assumed to be solid; see Section 2.2.2. However, the ALPs remain156

in the model so that they can be applied if they are required in the future.157

Each wall of a room has three ALPs located in at its foot, mid–point and158

top [34]. Blower door test simulations at 50 Pa were used to validate each159

model.160

2.2.2. Envelope air permeability161

There are important differences in construction practices in houses built162

before and after 2008 (see [13]) and the groups are expected to perform163

differently. Therefore, two different distributions of air permeability were164

developed; one for each construction period.165

Three is very limited data for Chilean houses and so the U.S multivariate166

regression model [36] is used to predict a distribution of Normalised Leakage,167

NL, for Chilean houses built either before or after 2008, using the empirical168

data presented in [13] and following the procedure used by Chan et al. [36].169

Here, the natural log of NL is given by170
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ln(NL) = βarea · Area+ βh ·H + βyear · Iyear+

βLI · ILI + βe · Ie + βcz · Icz + βfloor · Ifloor (1)

where Area is the house floor area (m2), H is the house height (m), I year is171

the house construction year category, I LI , and I e is the energy performance172

corresponding to low–income (LI) and energy efficient houses respectively,173

I cz is the climate zone, and I floor is the air leakage of the house floor.174

Data for Chilean houses is used when they are known; for example, floor175

area and climate zone. The I terms are assigned a value that best represent176

the stock, or a value of 1 if true or 0 if not, where appropriate.177

The distribution of floor areas is estimated using the number of rooms178

and their floor areas given in [13]. Here, only the median, 79 m2, is retained179

as the best measure of central tendency. Building height is assumed to be180

3 m (2.5 m + 0.5 m for roof space), following [36].181

Due to the differences in construction practices and standards between182

Chile and the U.S. and the lack of information on the prevalence of energy ef-183

ficient houses in the stock, ILI and Ie are assumed to be 1 and 0, respectively,184

so that they are considered to be equivalent to low–income U.S. houses. βfloor185

is set to assume that all houses have a concrete slab due to the lack of reliable186

data.187

Climate was one of the most influential parameters in the Chan model.188

The International Energy Conservation Code (IECC) classification is used to189

match the Köppen classification [12] for Chilean and the USA climate zones,190

and to associate a βcz with each region; these are given in the Supplementary191
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Materials. In order to find the βyear coefficient that best fit the empirical192

data, all estimates of β given in [36] are retained except for βyear. The193

results of βyear (SE) for houses built before and after 2008 are 3.490 (0.719)194

and 1.469 (0.845), respectively.195

To obtain a national distribution, floor areas for each climate zone were196

sampled in sets using the Monte Carlo method. The accuracy of the predic-197

tion improves with the sample size, and so the sample was increased incre-198

mentally by the size of each set until the absolute differences of the mean199

(µ) and standard deviation (σ) between one set of samples and the previous200

set was less than 1e−6. To compare two bands of construction year, two201

different data sets are used; one for old houses and one for new. The model202

predicts NL 95% CI [9.91− 106.59] for old houses and 95% CI [1.39− 15.90]203

for new houses. Figure 3 shows both distributions.204

To generate separate distributions of NL for each climate zone, the same205

method is conducted by sampling random values from the normal distribution206

of each β coefficient shown in [36].207

Finally, a comparison between the NL distributions predicted by the208

model and the empirical data presented in Molina et al. [13] is carried out to209

evaluate the performance of the model; see Figures 4a and 4b. For old houses,210

linear regression between the measured and predicted indicates a strong or211

high correlation (coefficient of determination R2 of .62 and a correlation co-212

efficient R of .79 [37], 95% CI [.70 − .85]). Similarly, NL predictions for new213

houses have R2= of .57 and a R of .75, 95% CI [.66 − .83].214
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2.3. Indoor environment215

Indoor air temperatures must be specified but there are no studies of in-216

door air temperatures found in Chilean houses of sufficient quality. Therefore,217

they are sampled from a normal distribution of N (21.1◦C, 2.5◦C), following218

Shipworth et al. [38] who determined these values from measurements made219

in a representative sample of 196 English dwellings, and because it is used220

elsewhere [8]. It is clear that there is significant uncertainty in this param-221

eter, that these temperatures are likely to be different from those found in222

Chilean houses, and that they may overestimate them. Therefore, the ap-223

propriateness of its application is discussed generally in Section 3 and the224

sensitivity of the model to indoor air temperature is tested in Section 4.225

Air temperatures are constant and identical in each room and so they are226

not included in the daily and weekly schedules; see Section 2.6.1.227

2.4. Outdoor environment228

Chile is divided into 15 geographical regions. The latitude and longitude,229

altitude, and the main climatic zone for each regional capital city are used230

as the location of each modelled archetype.231

Weather data is obtained from Meteonorm files [39] and used to represent232

each region for the heating season. Atmospheric pressure (Pa) is calculated233

as a function of the altitude of the nearest capital city following [40].234

The meteorological wind speed is modified by the location of each house235

and calculated following [40]. Because the terrain type is unknown, it is236

randomly sampled as a function of an urban to rural ratio [13]. Wind pressure237

coefficients, Cp, are calculated using the Swami and Chandra model [41],238

following [8, 7]. House orientation is an unknown and so is assumed to be a239
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uniform random variable between 0◦ and 360◦. The sensitivity of the model240

to orientation is tested in Section 4.241

2.5. Pollutants242

Cooking and space heating have been identified as primary sources of243

PM2.5; see Section 1. Both the background and internal initial concentrations244

are assumed to be zero so that only the contribution of indoor sources to the245

total exposure are estimated.246

CONTAM requires an emission rate and a deposition rate for all pollutants,247

and an emission rate schedule when they are not emitted continuously.248

This study only accounts for the dynamic processes of aerosols and gases249

associated to emissions from primary sources and their deposition onto in-250

door surfaces. Losses are also possible through purpose provided openings,251

exfiltration, and mechanical extract fans without recirculation.252

It is important to model the potential loss of indoor particles due to253

their deposition onto, or their reaction with, indoor surfaces. Therefore,254

a probability distribution of deposition rates reported in the literature are255

sampled from a normal distribution of 0.39 ± 0.16 ( h−1) [42], truncated at256

the origin.257

Finally, we do not account for outdoor PM2.5 and so they do not con-258

tribute to indoor concentrations. The consequences are discussed in Sec-259

tion 3.260

2.5.1. Emission rates from cooking261

A synthetic cumulative distribution function of emission rates is devel-262

oped to model the uncertainty in the emission rates from cooking. Data from263
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four studies [43, 44, 45, 46] reporting PM2.5 emission rate means and stan-264

dard deviations, or an emission rate for an individual test, is combined using265

bootstrapping by assuming that each rate is equally likely. This distribution266

can be updated in the future as more data becomes available.267

Cooking emissions need to be matched to the daily activities of occupants.268

Therefore, meals are classified into two groups: emissions from toasting bread269

are classified as breakfast, and all other eating activities are classified as main270

meals.271

The distribution of emission rates for main meals (N = 15, 650) has µ̃ =272

2.56 mg min−1, σ = 4.4 mg min−1, and 90% CI [0.047 − 15.2] mg min−1. The273

breakfast distribution (N = 4, 165) has µ̃ = 4.32 mg min−1, σ = 7.42 mg min−1,274

and 90 % CI [0.072− 21.77] mg min−1. Emission rates are assumed to be con-275

stant during each cooking event [15].276

2.5.2. Emission rates from heating277

Six common types of heaters are used in Chile that burn gas, paraffin,278

and wood [18]. Their PM2.5 emission rates into the indoor environment have279

been measured by [18]; see Supplementary Material for emission rates and280

distribution in the stock. The prevalence of each type of heating fuel varies281

across the country [13] and so the emission rate is assumed to be a constant282

determined by the fuel type and measurements, following the probability of283

presence of each heater type allocated by region; see Supplementary Material.284

The total number of heating hours per day corresponds to those where the285

outdoor temperature is below 16◦C, an equilibrium temperature commonly286

used to derive degree–days. This is calculated using the Meteonorm 7.0287

weather files [39]. If the indoor temperature in unheated houses is assumed288
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to be approximately 3◦C above the external temperature, following [8], then289

the average time the indoor temperature is below 16◦C during the winter290

season can be calculated and is given in the Supplementary Material.291

2.6. Occupancy and activity data292

The duration of emissions and activities in houses is derived from the293

2015 ENUT national survey [47, 13]. Heating and cooking activities are294

derived for week days and weekends. Nationwide, cooking activities have295

a mean duration of 1 h 06 min on weekdays and 1 h 12 min at weekends.296

Average sleep durations are used nationally but are also given regionally in297

the Supplementary Material.298

ENUT allows activities to be related to different room, such as cooking299

to the kitchen or sleeping to the bedroom, so that the total time spent in300

each room can be calculated. The ratio of the time a household spends in301

the kitchen, bedroom, and family room is 10 : 38 : 52, respectively. A similar302

ratio has been used by modelling studies[10] and to adjust exposure estimates.303

The application of occupancy patterns is discussed in Section 2.8.1.304

2.6.1. Activity schedules305

Archetypes occupants generally comprise 2 adults and 0–3 children; see306

[13]. In the example shown in Figure 2a, the household comprises 2 adults307

and 2 children. A fixed daily schedule is developed for each room and source308

using the data presented in Section 2.6 to account for the use of different309

rooms and to calculate occupant exposures.310

Sleep duration follows the national average and is applied to the entire311

Chilean population. Consequently, sleeping is scheduled from 11:00 pm to312
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6:21 am for weekdays and from 12 am to 7:57 am for weekends.313

Meal preparation is assumed to have a duration of 1 h on week days and314

1 h at weekends. Meals are eaten immediately after cooking and last for an315

hour.316

The kitchen fan is considered ON when cooking a meal and remains on317

for one hour while the meal is eaten. The Bathroom fans is considered ON318

during showering and dressing. These activities are informed by ENUT [47].319

The heater is considered to be ON from 7 am, and functions for the same320

number of hours every day during the winter season. The heating duration321

is a function of location; see the Supplementary Material.322

Bedroom doors are open during the day and closed at night. The kitchen323

door is closed except when cooking following [48]; see Section 2.6.1. Doors324

are never partially opened.325

2.7. Sampling method326

The sampling method follows that described by [7, 8, 11]. The model re-327

quires input variates that are specified deterministically, or are described328

by discrete or continuous probability distributions. They are applied to329

CONTAM, which then predicts pollutant concentrations at time intervals of330

10 minutes during the winter season. These are used to calculate the winter331

average concentrations in the kitchen, bedrooms, and in the family room,332

which are weighted by the daily time the cook householder spends in each333

of them using the room ratio defined in Section 2.6 to give a room–weighted334

average (RWA) pollutant concentration. The RWA is then used to check335

for convergence. By systematically varying the variates and running multi-336

ple simulations, distributions of output variables are generated that quantify337
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uncertainty in them.338

There are 8 probabilistic inputs: Block aspect ratio, ∆ temperature, rel-339

ative north, air permeability, n exponent, PM2.5 deposition rate, breakfast340

emission rate, and cooking meal emission rate. The values of each probabilis-341

tic input are obtained using Latin Hypercube Sampling (LHS) and bespoke342

R code2 [49]. LHS is used because it improves the stratification of a sam-343

ples over the probability space [50] and reduces the number of simulations344

required to reach convergence. They generate a value between 0 and 1 for345

each input, which are then applied to their inverse cumulative distribution346

functions (CDF) to generate an input.347

Ten sets of these input variates are chosen at a time, following [7]. The348

total sample size increases incrementally by the set size. After each set of349

predictions is made, the overall µ and σ of the RWA for all sets of samples350

are calculated. When the change in µ and σ from the addition of one set of351

samples to the next is ≤ 0.5% the total number of samples is deemed to have352

converged, and the stopping criteria met. This stopping criterion is chosen353

to reflect the lower limit of accuracy of a good Indoor Air Quality (IAQ)354

sensor following [8]. Simulations were run for each of the 8 archetypes in355

the 15 geographic regions for the window scenarios until they converge. This356

gives 8 × 15 × 2 = 240 sets of converged data.357

2.8. Post processing the model predictions358

Three metrics are computed from the predictions, median ventilation359

rates, total PM2.5 exposure levels, and total airflow heat losses, giving a360

CDF for each output for each of the 15 geographic regions. To determine361

national CDFs, such as Figure 6, a bootstrapping technique is used to sample362
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from the regional CDFs weighted by the proportion of the stock located in363

each region.364

2.8.1. Exposure analysis365

An indirect approach is used to quantifying exposures by predicting in-366

door pollutant concentrations over time in each room, and by making as-367

sumptions about occupant behaviour; see Section 2.6. Average hourly PM2.5368

concentration profiles for winter and the contact times of the cook house-369

holder are used for the exposure assessment, following the population–weighted370

method of [42]. Composite hourly concentration profiles are used to produce371

time–weighted averages (TWA) based on the behaviour of the cook house-372

holder. For example, bedroom concentrations are used when the occupants373

are asleep, bathroom concentrations when washing, kitchen concentrations374

when cooking, and living room concentrations at all other occupied times.375

2.8.2. Ventilation and heat loss376

Hourly average and median airflow rates were calculated for each dwelling377

by combining infiltration and ventilation rates. The associated heat loss as378

a function of time, H(t) (kW), is then calculated to be379

H(t) =

∫
V̇ (t) · ρ(t) · c · ∆T (t) · dt (2)

Here, V̇ (m3/s) is airflow rate, ρ (kg/m3) is the mean of the indoor and380

outdoor air densities, c (kJ/kg/K) is the specific heat capacity of air, and ∆T381

(K) is the difference between the indoor and outdoor temperatures when the382

indoor temperature is greater, otherwise it is assumed to be 0◦C. Equation 2383

is integrated over the winter to estimate the total heat loss, H (kWh).384
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2.9. Sensitivity analysis385

The model is non-linear and the distributions of inputs vary. Therefore,386

it is difficult to state a priori the types of relationships that exist between387

the model inputs and outputs and their strength. Thus, a global sensitivity388

analysis (SA) is used to test the dependence of the three outputs on the389

twelve inputs. However, a fundamental requirement of the SA is that all the390

tested inputs are independent of one other, and so any that are themselves391

correlated are combined. Therefore, nine inputs are used directly and three392

are scaled using house characteristics to avoid multicollinearity.393

All inputs and outputs are unique for each house, except for the heater394

emission rate and envelope area to volume ratio because they relate to a395

specific household appliance and archetype, respectively. To compute repre-396

sentative values for the wind speed, the median wind speed scaled at house397

height is used (see Section 2.4), and ∆T is the difference between the indoor398

air temperature and the median outdoor temperature.399

We follow the method of Jones et al.3 [8, 7], which tests for linear, mono-400

tonic, and non-monotonic relationships between the inputs and outputs. The401

tests for linear relationships are: (i) Kendall’s τ rank, (ii) Pearson’s r prod-402

uct moment correlation coefficient, and (iii) linear regression. Monotonic403

relationships are tested using: (iv) Spearman’s ρ rank correlation coefficient,404

(v) rank-transformed standardised variables. Non–monotonic relationships405

are tested using: (vi) Kolmogorov–Smirnov and (vii) Kruskal–Wallis quantile406

tests.407

3The code was used under a creative commons license and obtained from DOI:

10.13140/RG.2.2.21670.88644
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Depending on the statistical method, the test coefficients are useful for408

identifying the inputs that are more important (two or more sample-comparison409

methods), more related (by using correlation-based methods), and/or con-410

tribute the most to the outputs (using the regression-based models); see [7]411

for a more detailed description of each test and the procedure. The methods412

applied estimate the total effect of each element of an input on each element413

of an output, where the hypothesis is that there is a relationship between an414

input and an output.415

The input and output data are not transformed, and all outliers are re-416

tained. Data for both window scenarios are merged and are tested together.417

Coefficients and p–values are obtained for each test, and the inputs are ranked418

according to the magnitude of the coefficient. The p–values can be used to419

determine whether a result is statistically significant at a predefined level of420

significance. We use a 5% level herein.421

2.10. Statistical tests422

Most statistical tests present a coefficient and a p–value, which indicates423

the probability of obtaining results at least as extreme as those obtained424

during a test, assuming that the null hypothesis is true. The null hypothesis425

is a general statement that there is no relationship or association between426

groups. CHAARM generates a significant number of data points, see Sec-427

tion 3, which can make a p–value meaningless because the probability of428

significance increases with the sample size [51]. Furthermore, the 5% signif-429

icance threshold used herein (see Section 2.9) is arbitrarily, and so we focus430

on the nature and the magnitude of any effect [52] where possible.431

To test the occurrence of an effect in the the medians of categorical vari-432
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ables between archetypes and regions a Kruskal–Wallis H test is applied,433

where the null hypothesis is that all samples originate from the same pop-434

ulation. Then, post–hoc pairwise multiple comparison tests are used to de-435

termine the location of the difference and to identify which pair of samples436

differ significantly, following [53]. A Levene statistic is used to test the homo-437

geneity of variance using medians; the null hypothesis is that the variances438

in different groups are equal [53]. And finally, effect sizes are used to identify439

the magnitude of the difference between two samples, following Ferguson [29]440

and using Cohen’s d. Effect sizes are useful and objective estimates of the441

magnitude of an effect that is not influenced by the sample size, thus pro-442

viding a better measure of the magnitude of the effect between two samples443

[54, 53], and so they are used to identify groups that need to be assessed sep-444

arately. Thresholds are used to label the effects where d< 0.2 corresponds445

to a negligible effect size, 0.2≤d< 0.5 to a small effect size, 0.5≤d< 0.8 to446

medium effect size, 0.8≤d< 1.3 to a large effect size, and d≥ 1.3 corresponds447

to a very large effect size.448

The coefficient of variation, CV , is the quotient of the standard deviation449

and the mean, σ/µ. It is a descriptive statistic used to measure the variability450

of any value and can be used to compare different distributions because it is451

dimensionless.452

Values of kurtosis and skewness are used to characterize the variability of453

the data and to identify a central value that best describes it. Kurtosis is a454

measure of the size of the tails relative to a normal distribution. The kurtosis455

for normally distributed data is three but is adjusted to zero using an excess456

kurtosis, and is applied here. Therefore, data with high kurtosis has large457
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tails and a large number of outliers. The skewness for normally distributed458

data is zero and positive values indicate data that are right–skewed with a459

long right tail.460

3. Model predictions461

Approximately 2, 100 simulations were required per archetype per sce-462

nario to achieve convergence. They are aggregated over hourly, daily, sea-463

sonal, periods so that they can be compared against relevant benchmarks.464

Table 1 gives a summary statistics at the national scale for the two window465

opening scenarios over the winter period. The 90% confidence intervals show466

the lower and upper limits of the predicted exposure levels, ventilation rates,467

and heat loss, and exclude those that are unlikely to occur. The coefficient468

of variation, CV , (see Section 2.10) shows that winter exposures are more469

variable than the ventilation rates or heat loss, and the difference in varia-470

tion between the windows closed and windows open scenarios is similar for all471

outcomes. The lowest variability is seen in ventilation rates for the window472

open scenario (CV = 0.50) because increasing opening areas increases the473

magnitude of the smallest airflow rates more than the highest, whereas the474

largest is variability in exposures for the window open scenario (CV = 1.85)475

because the higher airflow rates increase dilution and so the magnitude of476

the smallest exposures decreases substantially more than the largest.477

Table 1 gives skewness and kurtosis statistics (see Section 2.10) for the478

three outcomes, which indicate that their distributions are all positively479

skewed and heavily–tailed. This suggests that the use of the median, in-480

stead of the mean, is more appropriate for policy–making or benchmarking.481
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Figure 6 shows CDFs of predicted daily mean PM2.5 concentrations nation-482

ally. This graph can be used to visualise the boundaries of the Chilean483

problem and to see the maximum impact of window opening behaviour on484

hourly exposures.485

Table 2 presents a statistical summary of the predicted median expo-486

sures and ventilation rates by archetype for the windows closed scenario.487

Archetype properties are given in Table 4 of the Supplementary Material488

of [13]. Figure 7 shows the distributions of the median hourly exposures489

to PM2.5; the concentrations that occupants are exposed to half of the time.490

Median hourly exposures for the windows closed scenario are generally higher491

in archetypes representing newer and more airtight houses. This is unsur-492

prising given the significant difference in the distributions of NL between493

old and new dwellings; see Figure 3. Conversely, the windows open scenario494

shows that there are negligible differences between archetypes, and exposures495

will be close to ambient concentrations. This indicates that ventilation via496

windows and fans is independent of the archetype, and that windows are an497

effective mitigation method against exposure to PM2.5 emitted by heaters498

and cooking, although not necessarily a pragmatic one.499

Levene and Kruskal–Wallis tests are used to compare predictions by500

archetype and by region. All tests are found to be significant with p� .001501

and p � .05, respectively, indicating that there is a significant difference in502

the variances of predictions for each archetype and region, although we note503

the problems when interpreting p–values described in Section 2.10. Effect504

sizes are calculated using median values and Cohen’s d thresholds and show505

high variability in effect size (negligible, small, medium, and large) between506
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pairs of archetypes and regions, and for the two window scenarios. Thus, the507

statistical significance of the tests, and the magnitude of the effects, generate508

confidence in the use of the archetypes for analysing different types of house.509

It shows that it would not be appropriate to aggregate the entire Chilean510

housing stock into a single archetype. Some negligible effects sizes are seen511

between some neighbouring regions for the three outcomes (exposure, ven-512

tilation rate, and energy demand), suggesting that they could be joined by513

proximity and analysed together. This amalgamation would save time and514

computational resources. It also means that interventions can be targeted at515

all houses where similar consequences should be expected. All test statistics516

are given in the Supplementary Material.517

3.1. Exposure518

Generally, PM2.5 concentrations are found to be high, especially in the519

kitchen during cooking periods, but also in the living room and bedrooms.520

Doors are assumed to be open when cooking activities are taking place, which521

will contribute to the spread of pollutants. The impact of door opening on522

indoor air quality should be an area of future research.523

To obtain a more representative estimation of occupant exposures to in-524

door PM2.5, TWAs are used over RWAs; see Sections 2.8.1 and 2.7. RWAs525

are found here to be around 20% lower than TWAs confirming that there is526

a significant difference between the two metrics. A TWA is dependent on an527

occupant’s presence in each room over time. An analysis of activity patterns528

is required to develop TWAs that account for actual occupant behaviour and529

to answer related social research questions. Here, this pattern is assumed to530

be the same for all houses because there is no understanding of uncertainty531
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in this parameter.532

The limits of the mean TWA PM2.5 winter exposures for the two window533

scenarios are 6.61 ≤ µ ≤ 134.47µg/m3 and bound the mean values of expo-534

sure predicted by Das et al. [7] for the English stock. Das et al. considered535

kitchen windows to be open between 0.01–10 times the during of the cooking536

period, giving µ = 12.7µg/m3, σ = 12.6µg/m3, and P50= 8.0µg/m3. Al-537

though this is reassuring, these values are not directly comparable because538

Das et al. weighted the hourly concentrations they predicted for each room539

by their volume to calculate a mean dwelling concentration for the heating540

season.541

The World Health Organization (WHO) recommends that mean PM2.5 con-542

centrations in ambient air are less than 10µg/m3 per year and 25µg/m3 per543

day [19]. These guidelines are also applicable to the indoor environment be-544

cause there is not yet any convincing evidence of a difference in the hazardous545

nature of particulate matter from indoor and outdoor sources [55]. Here, the546

WHO guideline daily mean value is used to determine the acceptability of IAQ547

[56], although we acknowledge that outdoor PM2.5 would contribute to the548

indoor concentration and that our evaluation systematically underestimates549

total the total exposure to PM2.5 and that any future evaluation of health550

effects using CHAARM would have to account for this. However, the dif-551

ference is not a simple addition of indoor and outdoor PM2.5 because the552

transfer of outdoor PM2.5 is dependent on the penetration coefficient of a553

building’s fabric, a non—dimensional parameter between 0 and 1 that rep-554

resents its filtering effect [57, 11, 58]. Nevertheless, Figure 6 shows that 34%555

of Chilean dwellings are predicted to have unacceptable daily PM2.5 con-556
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centrations if their windows are closed at all times, and so their occupants557

have an elevated risk of experiencing negative health outcomes, such as tra-558

cheal, bronchial, and lung cancers, Chronic Obstructive Pulmonary Disease,559

ischaemic heart and cardiovascular diseases, and lower respiratory infections.560

The remaining dwellings must keep their windows open all winter, when in-561

door concentrations will tend towards outdoor PM2.5 concentrations because562

the penetration factor is 1, or be leaky when outdoor PM2.5 will have a lower563

effect on indoor PM2.5 because the penetration factor is between 0.7 and 0.9564

[11].565

3.2. Ventilation and total heat loss566

Figure 8 shows that a ventilation rate of >13 h−1 is required to ensure that567

95% of the stock is below the WHO’s guideline daily mean value of 25µg/m3.568

However, the associated energy demand is predicted to be 33.4 MWh for the569

winter season, which is cost and carbon prohibitive. Clearly, it is sub–optimal570

to prescribe a single ventilation rate for all houses to meet the WHO PM2.5571

guideline value. Table 1 shows that 13 h−1 can never be achieved by infiltra-572

tion alone and so some window opening is always required. Then, the WHO573

guideline value can be achieved in around 50% of dwellings. Providing general574

ventilation is not always enough, and so removing pollutant sources, such as575

gas, paraffin, and wood heaters, or installing and using targetted ventilation,576

such as cooker hoods (also known as range hoods), are important remediation577

measures that can help to simultaneously provide acceptable air quality and578

minimize energy demand. The use of cooker hoods has not been considered579

by CHAARM because there is little information about their implementation580

in Chilean homes and about their capture efficiency, a metric that describes581

26



their ability to extract pollutants before they mix in the kitchen. However,582

as this information becomes available, it is straightforward to implement in583

CONTAM by following the method of O’Leary et al. [11].584

A ventilation rate of 0.5 h−1 is threshold rate used by some European585

countries because some negative air quality related health effects are thought586

to increase below it, although there is significant uncertainty in this value587

[8]. Hourly ventilation rates for the windows closed scenario are predicted588

to be < 0.5 h−1 39% of the time, which is less than the estimated times for589

dwellings in the USA (57% of the time), England, and Beijing. This is partly590

because the US and Chinese studies do not consider the use of mechanical591

ventilation in bathrooms and kitchens, but also because because Chilean592

houses are less airtight; see Figure 5. However, it does suggest that Chilean593

dwellings need more air during the winter than is provided by a combination594

of infiltration and bathroom and kitchen fans. If the Chilean government was595

to seek to reduce the energy demand of its stock by increasing its airtightness,596

the proportion of houses with a mean winter airflow rate of ≤ 0.5 h−1 will597

inevitably increase and could cause negative health effects unless additional598

ventilation is provided.599

Table 1 shows that the heat loss in a Chilean house during the winter is600

estimated to be 0.25 ≤ H ≤ 42.3 MWh with 90% confidence. It is possible to601

determine the uncertainty in the mean energy demand of all 5.8 m Chilean602

dwellings [13] attributable to airflow in winter using the distribution of energy603

demand. This is done by repeatedly sampling from it in sets of 5.8 million604

until the mean of the means is normally distributed [59]. The mean total605

heat loss attributable to airflow is estimated to be 8.2 TWh for the windows606
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closed scenario and 124.0 TWh for the windows open scenario.607

The Chilean Technology Development Corporation (CDT) [60] estimates608

the total energy demand of the housing stock to be 53.8 TWh per year, and so609

the windows closed and windows open scenarios account for 15%–230% of the610

estimated total, respectively. These values are broadly plausible given that611

the scenarios explore extreme conditions. However, the windows open sce-612

nario is the least plausible because occupants are unlikely to simultaneously613

heat their houses and leave their windows permanently open, which explains614

the significant over–estimation of energy demand for this scenario. A field615

survey is required to understand the window opening behaviour of occu-616

pants. Furthermore, CHAARM’s energy demand predictions do not account617

for the efficiency of heating systems because their stock–wide distribution is618

unknown, and so they are not directly comparable with the CDT value. If it619

was possible to predict the primary and secondary energy required to provide620

space heating, the range for the two scenarios would increase significantly.621

This calculation has been done by Jones et al. [8], who explore the windows622

closed scenario without fans for the UK housing stock. They estimate that623

infiltration is responsible for 11–15% of UK housing stock energy demand624

and account for the efficiency of heating systems. Removing the fans from625

the CHAARM model would reduce the lower limit, but only slightly because626

they run infrequently. Accounting for the efficiency of heating systems would627

increase the lower limit significantly. Directly applying a UK stock–average628

heater efficiency of 76% increases the lower limit to 20%, indicating that629

Chilean dwellings have higher infiltration rates that UK dwellings.630
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4. Model Sensitivity631

The assertions made in the previous sections about the CHAARM’s pre-632

dictions are dependent on the assumptions made in Section 2. Therefore, the633

SA described in Section 2.9 is used to determine the relative importance of its634

inputs. Tables 3–5 rank the inputs for each test, but the test statistics used635

to determine the ranks and their p–values are given in the Supplementary636

Material. A rank of 1 indicates the most sensitive input, and Table 3 shows637

that PM2.5 winter exposures are most strongly correlated with the PM2.5638

emission rate from cooking, followed by the permeable envelope area, Aperm,639

and the heater emission rate. Table 4 shows that ventilation rates are most640

strongly affected by Aperm and ∆T. And finally, Table 5 shows that the total641

heat loss is also most sensitive to Aperm, but ∆T is the second–ranked input,642

and dwelling air permeability Q50 is the third.643

There is uncertainty in PM2.5 emission rates from cooking because they644

are a function of many factors [15]. Although empirical data from North645

America and Europe was used to derive a PDF of emission rates, it is im-646

possible to say whether it is representative of PM2.5 emissions from Chilean647

cooking without corroborative measurements. Nevertheless, the importance648

of this metric to exposure suggests that cooker hoods should be installed in all649

new Chilean houses and should also be installed in any existing house whose650

airtightness is improved. The cooker hood should extract cooking pollutants651

directly outside and should not recirculate [11]. The PM2.5 emission rate of652

heaters that burn gas, paraffin, and wood is also an important determinant653

of exposure, and so they should be targetted for removal from Chilean houses654

in the near future. Table 2 shows that they should not be installed in new655
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homes.656

The Aperm parameter may differ from the thermal envelope area if the657

floor is solid and if party walls are assumed to be impermeable; see Sec-658

tion 2.2.1. Here, all party walls are assumed to be impermeable and all659

ground floors solid. Party wall permeability can only be determined by660

guarded zone blower door tests [34]. These are non–standard tests that are661

rarely conducted and, to the best of our knowledge, are not mandated by662

the regulatory authority of any country. This will remain an uncertain pa-663

rameter, although the effects of party wall impermeability could be tested in664

the future using CHAARM by following the method of Jones et al. [8]. The665

ground floor type should be added to the Building Permit database for new666

houses, and be a recorded parameter in future surveys of existing dwellings;667

see [13].668

Indoor air temperature was highlighted as a parameter with high un-669

certainty in Section 2.3. Its magnitude affects the ventilation rate and is670

incorporated into the ∆T parameter of Equation 2 to predict total heat loss,671

H. Tables 4 and 5 show that the ventilation rate and H are both sensitive to672

∆T and so empirical data is urgently required. Recently, the Chilean govern-673

ment released a database of measurements of indoor air temperatures made674

in nearly 300 homes [61], which will be processed and incorporated into a675

future version of the model.676

The air permeability of houses is discussed in Section 2.2.2 and shows677

that there are limited measurements of air leakage rates in Chilean houses678

because they are not yet a legal requirement, although this is expected to be679

changed in the near future. Field work is required to measure the airtightness680
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of the most common archetypes.681

Finally, Section 2.4 shows that dwelling orientations are unknown, but682

the SA shows that all 3 outputs are insensitive to it at stock scale, which is683

consistent with [31, 7], and [8]. However, coupling CONTAM with a dynamic684

thermal model might show a different effect in the outcomes.685

The understanding of the CHAARM model provided by the SA and the686

discussion of its outputs (see Section 3) shows that there are many areas687

that should be improved by gathering more data. Furthermore, the outputs,688

in the form of probability distribution functions, are useful tools that policy689

makers can use to make informed decisions about the energy demand of690

Chilean houses and its relationship with indoor air quality.691

5. Conclusions692

This paper presents the Chilean Housing Archetypes AiR quality Model693

(CHAARM) and a stochastic framework for predicting uncertainties in in-694

door pollutant concentrations, ventilation and infiltration rates, and their695

associated energy demand during the winter season. Pollutant sources are696

PM2.5 emitted by cooking and gas, paraffin, and wood heaters. Outdoor697

PM2.5 are not considered and so the exposure analysis is restricted to indoor698

PM2.5, leading to a systematic underestimation of total exposures. Because699

window opening behaviour in Chilean houses is not understood, two extreme700

scenarios are considered; a windows open at all times scenario and a win-701

dows closed at all times scenario. A distribution for each output is produced702

for each scenario. They show that 66% of Chilean dwellings are predicted703

to have a daily mean PM2.5 concentration below the WHO 24 hour guideline704
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value of 25µg/m3, even if their windows are closed at all times. This suggests705

that most houses are not airtight. This is confirmed by a synthetic distri-706

bution of air permeabilities for houses built before 2007, representing 66%707

of the stock, which shows that over 90% of them have Q50 > 10 m3 h−1 m−2
708

(95% CI [9.91−106.59] m3 h−1 m−2). Therefore, many of these houses require709

remediation measures to improve their airtighness and reduce their annual710

space heating demand. However, to avoid negative health effects from ex-711

posure to PM2.5 from cooking and heaters, cooker hoods should be installed712

and the heaters should be replaced.713

Ventilation provided by windows and fans is found to be independent of714

dwelling archetypes and an effective mitigation method against exposure to715

PM2.5 emitted by heaters and cooking, although not necessarily a pragmatic716

one. Moreover, a recent study has shown that there is a law of diminishing717

returns in the relationship between effective area and opening angle, which718

may influence the impact of window opening related inputs to the three out-719

comes [62]. Heat loss in a Chilean house during the winter is estimated to720

be 0.25 ≤ H ≤ 42.3 MWh with 90% confidence, and to account for 15%–721

230% of the estimated total energy demand of the housing stock, although722

this interval does not account for the collective efficiency of the heat sources.723

The implausibility of the windows open scenario makes the lower limit more724

likely, as people tend to keep windows closed during the heating season to safe725

energy. Note that this paper presents the two extreme scenarios. Although726

this binary assumption contributes to our understanding of the uncertain-727

ties in the three outcomes, it is clear that a better description of this and728

other inputs highlighted here would improve the representation of the actual729
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condition of the stock.730

CHAARM used 8 archetypes, which is found to be appropriate, and the731

stock cannot be represented by a single archetype. However, the model is732

a work in progress and will be updated as more data becomes available. A733

sensitivity analysis shows that there is a pressing need for knowledge of indoor734

air temperatures, dwelling air permeabilities, and occupant behaviour.735
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Tables744

Table 1: Statistical summary of winter PM2.5 exposures, ventilation rates, and heat

losses, nationwide. CV : coefficient of variation. Pn: nth percentile.

Exposures ( µg/m3) Ventilation rates ( h−1) Heat loss (kWh)

Statistic/Window Closed Open Closed Open Closed Open

Mean, µ 134.47 6.64 0.89 15.80 1283.85 19526.08

Median, P50 58.65 2.30 0.75 13.57 947.44 16681.37

Standard deviation, σ 210.28 12.26 0.79 7.91 1190.02 12556.3

90% CI [2.58; 548.72] [0.08; 29.81] [0.08; 2.40] [8.20, 29.75] [252.6; 3471.2] [5736; 42342]

P10 5.20 0.22 0.13 8.85 319.3 7614

P25 19.06 0.77 0.31 10.42 508.8 11053

P75 154.20 6.77 1.16 19.14 1624.5 24686

P90 367.06 16.94 1.84 24.75 2585.7 34295

CV 1.56 1.85 0.89 0.50 0.93 0.64

Skewness 4.12 4.26 2.17 2.47 3.00 2.18

Kurtosis 34.62 26.36 9.19 11.31 16.07 9.48
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Table 2: Statistical summary of median hourly PM2.5 exposures (µg/m3) and median

ventilation rates ( h−1) for the windows closed scenario aggregated by archetype ID.

See [13] for archetype details. Bold IDs indicates those built after 2007.

ID PM2.5 exposure (µg/m3) Ventilation rate ( h−1)

P50 µ σ P50 µ σ

27 2.75 9.94 9.14 0.8 0.9 0.3

36 2.22 6.12 5.90 1.1 1.0 0.3

91 2.81 12.68 11.88 0.7 0.7 0.2

100 1.09 4.24 4.32 1.0 1.0 0.3

275 17.52 25.46 18.45 0.1 0.1 0.0

35 0.99 5.44 5.31 1.0 1.1 0.3

19 4.10 11.76 11.02 0.8 0.8 0.2

284 7.61 16.20 12.68 0.2 0.2 0.1
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Figures745

Figure 1: Flow diagram of the CHAARM model.
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(a)

(b)

Figure 2: Archetype 27 (a) layout and (b) CONTAM model.

See [13] for archetype details.
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Figure 3: Cumulative distribution national of NL for old (green line) and new houses

(blue line).
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(a)
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(b)

Figure 4: Predicted normalised leakage (NL) distribution versus empirical data for (a)

old and (b) new Chilean houses. Boxplots show the residuals, with a µ̃ = −0.42 and

σ = 6.54 for old houses, and µ̃ = −0.086 and σ = 1.14 for new houses.
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(a)
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(b)

Figure 5: Predicted air permeability, Q̇50, grouped by climate zone and nationwide for

(a) old and (b) new Chilean houses. Legend numbers are geographic regions.
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Figure 6: Nationwide daily exposures to PM2.5 during the winter season.

Red dashed line, windows closed scenario; Blue, windows open scenario; Vertical dashed

line, the WHO’s 24 h guideline value.
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(a)
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(b)

Figure 7: Windows closed scenario. Distribution of the medians of: (a) hourly PM2.5

exposures; and (b) median hourly ventilation rates ( h−1) of all houses by archetype.

Dashed line, the WHO’s 24 h guideline value of 25µg/m3. See [13] for archetype details.
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Figure 8: P95 of the predicted winter exposures to PM2.5 (in green) and the total heat

loss (in dashed blue) versus the ventilation rates. Windows closed and open combined.

The gray dashed lines show the WHO’s annual recommendation of 25µg/m3 and the

related heat loss.
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