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The ability of titanium dioixide to split water into OH− and H+ species is heavily

dependent on the behaviour of defects in the crystal structure at or near the surface.

We present an in situ study of defect migration in rutile TiO2(110) conducted using

X-ray photoelectron spectroscopy (XPS). First, surface and subsurface defects were

created in the crystal by argon ion sputtering. Subsequent in situ exposure of the

defective crystal to liquid water healed the surface defects, whereas the subsurface

remained defective. The sample was then annealed while XPS was used to monitor

the concentration of titanium defects. At low annealing temperatures, Ti3+ was

observed to migrate from the subsurface to the surface. Further annealing gradually

restored the surface and subsurface to the defect-free Ti4+ form, during which the

changes in abundance of Ti1+, Ti2+ and Ti3+ defects are discussed.
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1 | INTRODUCTION

The production of hydrogen through photocatalytic water splitting is

an appealing next-generation energy technology with potential to pro-

vide a low-cost, sustainable and environmentally responsible fuel.1,2

For an overview of photocatalysis, we would direct the reader to one

of the many recent review articles on the topic.3–6 This paper dis-

cusses titanium dioxide, an attractive photocatalyst due to its chemi-

cal stability, abundance and nontoxicity and has been widely

considered as a candidate not only for water splitting7 but also water

purification8,9 and numerous other photocatalytic applications.10 Fur-

ther, titanium dioxide is well suited to being sensitised with dye mole-

cules to increase visible light absorption11 or can be doped to modify

photocatalytic properties,12 for example, stabilising reactive facets on

the surface of the catalyst.13 The catalytic activity of titania depends

heavily on the surface crystallinity. For anatase, the photocatalytic

activity can be tuned by the exposure of (101) and (001) facets, which

act as reduction and oxidation sites, respectively.14 The rutile (110)

surface, which although not as catalytically active as anatase, can be

used to split water and produce stoichiometric quantities of hydrogen

and oxygen.15

As part of the effort to develop suitable photoelectrodes for

water splitting, single-crystal surfaces have been extensively studied

in an attempt to better understand the fundamental surface chemistry

governing catalytic performance.16–19 The structure of the rutile tita-

nium dioxide (110) surface is shown in Figure 1. The bulk crystal con-

sists of sixfold coordinated titanium atoms and threefold coordinated

oxygen atoms, but at the (110) surface, there is additionally rows of

twofold coordinated oxygen, located at the bridge sites running in the

[001] direction and fivefold coordinated titanium.20,21 It is now well

understood that defects in the crystal structure play a critical role in

the photocatalytic performance of titanium dioxide. For example, the

defect-free rutile TiO2 surface does not dissociate/split water.22,23

Water splitting on the rutile surface is instead largely dictated by oxy-

gen vacancies in the rows of bridging oxygen atoms and is often

dependent on the nature and density of these surface defect

sites.24–27 The dissociation of a water molecule into H+ and OH−

occurs near an oxygen vacancy site where the OH group fills an
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oxygen vacancy (Vbridge) and the H binds to a nearby bridging oxygen

site (Obridge) forming an additional OH species on the surface. This

mechanism can be outlined as follows:

H2O+Vbridge +Obridge !2OHbridge: ð1Þ

Defects in TiO2(110) can be easily prepared by Ar+ ion sputtering,

which damages the crystallinity and preferentially removes oxygen

atoms from both the crystal surface and subsurface layers.28 The

resulting reduced titania mainly consists of two types of defect: oxy-

gen vacancies (missing atoms from the bridging oxygen rows) and tita-

nium interstitials (titanium atoms not assigned to a lattice point that

can move through the crystal).20 After sputtering, it is well known that

the defect-free rutile structure can be restored by annealing in vac-

uum. This process is entirely reliant on the mobility of the defects,

which can be explained through two mechanisms. First, during ‘oxy-

gen vacancy diffusion’, the undamaged crystal bulk supplies O2−

anions to the reduced surface/subsubsurface. Second, ‘Ti3+ interstitial

diffusion’ describes the bulk receiving excess Ti3+ species from the

surface/subsurface. In both cases, the migration of defects to and

from the bulk allows the defect-free rutile structure to be restored.28

Given the importance of defect chemistry on the catalytic activity

of titania, it is not surprising that the interaction between water and

defective titanium dioxide surfaces has been extensively studied using

an array of techniques.26,29-34 In particular, near-ambient pressure

X-ray photoelectron spectroscopy (NAP-XPS) is particularly well

suited having been used to study the role of oxygen vacancies as

water nucleation sites on rutile24 and anatase.35 Current understand-

ing is that oxygen vacancies on the surface of anatase migrate to the

subsurface35 where they are more stable and less reactive.36 Water

dissociation occurring on the surface is enhanced at sites above a

subsurface defect, which causes the binding to be more favourable.37

This differs from rutile where oxygen defects are more common on

the surface (compared with the subsurface), where they are stable

and tend to remain.35,38 Water dissociation on rutile occurs directly at

these surface oxygen vacancies.39 This difference, which has also

been studied computationally,40 is thought to explain the relatively

increased catalytic reactivity of the anatase polymorph compared with

rutile as the defects, which can trap photoexcited charge carriers, are

not so easily quenched by adsorbates, including water, if they remain

subsurface.

In this study, highly defective rutile TiO2(110) was prepared

by Ar+ sputtering; the surface of which was healed in situ by

exposure to liquid water in a NAP-XPS instrument. The resulting

combination of a defect-free surface and highly defective subsurface

is used as a platform for an XPS study of annealing-induced defect

migration.

2 | METHOD

Measurements were taken using a SPECS DeviSim NAP-XPS instru-

ment consisting of an ultra-high vacuum (UHV) preparation/analysis

chamber and interchangeable NAP cells that can be docked onto the

entrance of the Phoibos 150 NAP hemispherical analyser. Using this

arrangement, described elsewhere,41 samples can be transferred

between the NAP cell and the UHV chamber without breaking vac-

uum. The NAP cell used was equipped with a Peltier thermoelectric

heater/cooler providing precise control of the sample temperature, in

the � ±50�C range, via a proportional integral derivative (PID) control-

ler and a thermocouple mounted between on the sample plate

beneath the crystal.

A rutile TiO2(110) crystal (PI-KEM Ltd.) was cleaned in the UHV

chamber by rounds of 1-kV argon ion sputtering and 800-K annealing

F IGURE 1 The rutileTiO2(110) surface,
which in the defect-free form consist of
fivefold and sixfold coordinated Ti
environments (Ti(5f ) and Ti(6f )) with
corresponding twofold and threefold
coordinated oxygen environments (O(2f ) and
O(3f )). Examples of oxygen vacancies, both in
a bridging oxygen row and in the main crystal
structure, are highlighted alongside

correspondingTi defects
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until no evidence of contamination or surface defects were visible in

the XPS. The sample was then sputtered at 2 kV for 10min to create

a highly defective surface and subsurface. The crystal was then trans-

ferred into the NAP cell where it was cooled to 275 K before 6 mbar

of water (deionised using a Triple Red purification system and further

degassed by freeze pump thaw cycles) was introduced. This pressure

and temperature combination, corresponding to 100% relative humid-

ity, produced a liquid film of water on the surface. After liquid water

exposure, the NAP cell was pumped down and the sample returned to

the UHV chamber (base pressure in the low 10−10 mbar range) where

the sample was annealed in situ using an electron beam heater behind

the sample plate. The temperature during annealing was measured

using a thermocouple located at the edge of the sample plate (�3mm

from the edge of the sample).

XPS was measured with a pass energy of 20 eV in the UHV cham-

ber and 40 eV in the NAP cell. The geometry of the NAP cell allowed

measurement at normal emission (NE). Measurements in UHV were

taken at both NE (0�) and 70� grazing emission (GE). Monochromatic

Al Kα X-rays (hν = 1486.6 eV) were used for all measurements and the

binding energy scale was calibrated using the oxide lattice O 1s peak

previously measured to have a binding energy of 530.05 eV.42 Peak

fitting was performed using a pseudo-Voigt line shape with a fixed

Lorentzian width (0.3 eV) and variable Gaussian width after the sub-

traction of a Shirley background.43

3 | RESULTS AND DISCUSSION

Figure 2 shows Ti 2p XPS measurements of rutile TiO2(110) after

three successive surface preparations/modifications: ‘clean’ (after

UHV cleaning as described above), ‘sputtered’ (after 2-keV Ar+

sputtering) and ‘water exposed’ (returned to UHV after liquid water

exposure). The ‘clean’ spectrum shows a doublet attributed to Ti4+

with a trace of residual Ti3+ defects, which are visible as a shoulder at

the lower binding energy side of Ti4+.20 After sputtering, a complex

series of lower binding energy features are present in the spectra

(sputtered) extending down to �453 eV, which we have curve

fitted to four spin–orbit doublets attributed to lower Ti oxidation

states (Ti3+, Ti2+, Ti1+) formed by the removal of oxygen atoms

producing defects that extend nanometres into the surface.25,44 This

highly defective sample was subsequently exposed to liquid water

with the aim of healing the defects at the very surface of the crystal

(the in situ data collected during this process are included in the

supporting information). The resulting spectrum (water-exposed NE)

in Figure 2 shows that the additional Ti oxidation states decrease in

relative intensity. This preparation method repeatedly produced very

similar defect concentrations; measurements showing this repeatabil-

ity are included in the supporting information.

The surface sensitivity of XPS can be varied by changing the angle

of the sample with respect to the spectrometer.45 We predict the

escape depth of Ti 2p photoelectrons at NE (0�) and GE (70�) to be

�7 and �2 nm, respectively, calculated by considering the inelastic

mean free path (IMFP) needed to attenuate the substrate signal by

95% (method described elsewhere46). The NE and GE traces in

Figure 2 therefore indicate that the water-exposed surface is less

defective than the bulk as, when compared with the NE data, the

more surface-sensitive GE spectrum (water-exposed GE) shows fewer

defect states relative to the Ti4+. This conclusion is consistent with an

independent study where defects at the surface were healed more

readily than those subsurface.47 The defect states are not expected to

disappear completely in the GE spectrum presented in Figure 2 as the

calculated information depth is still �2 nm and it is assumed that

water exposure only heals defects directly accessible on the surface.

Annealing this ‘water-healed’ sample in UHV produces the data

shown in Figure 3, which provides information about how the defect

states change as a function of time and temperature. During the first

3 min of annealing, the defect states increase in intensity. After which

we see the defect concentration slowly diminish until the spectrum is

dominated by Ti4+, which has occurred by the time the temperature

approaches 700 K.

For better understanding, five individual spectra have been

extracted from Figure 3 at points labelled (a)–(e). These are plotted,

alongside the corresponding O 1s spectra, in Figure 4 where curve

fitting allows the spectral contribution of the different Ti oxidation

states to be determined. The peak located at 458.5 eV corresponds to

the Ti 2p3/2 of the Ti4+ oxidation state.48 The three peaks located at

457.2, 455.9 and 454.6 eV are attributed to theTi3+, Ti2+ and Ti1+ oxi-

dation states, respectively. The corresponding Ti 2p1/2 components

were determined in the fitting procedure; a fixed spin–orbit splitting

F IGURE 2 Ti 2p XPS of ‘clean’ (after UHV cleaning/annealing),
‘sputtered’ (after 2-keV Ar+ sputtering) and ‘water-exposed’ (after
liquid water exposure) surfaces where peak fitting tracks the
behaviour of theTi oxidation states. All three surfaces were
measured in normal emission (NE). Additionally, the ‘water-exposed’
surface was measured at the more surface-sensitive angle of 70�

grazing emission (GE)
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of 5.70 eV led to Ti 2p1/2 components with relative areas of 0.45 ±

0.03 compared with the corresponding Ti 2p3/2 components. The Ti3+,

Ti2+ and Ti1+ peaks are likely to be broadened with a rather complex

line shape due to multiplet splitting.49 We have opted to keep the

peak fitting as simple as possible and not modelled the multiplet split-

ting, which in reality will lead to an asymmetric broadening of theTi3+,

Ti2+ and Ti1+ on the higher BE side and the intensity of the multiplet

peak is likely very small in comparison with the main peak so likely

only makes a small difference to the quantitative analysis we present.

During the first �3min, the features attributed toTi3+ are observed to

grow during annealing as shown in Figure 4a,b. Beyond this point,

starting from t≈ 5min (Figure 4c, 490 K), the intensity of the lower

oxidation states has decreased and continues to decrease as time

elapses and the temperature increases.

The O 1s spectra in Figure 4 are fitted with three peaks. The peak

at 530.05 eV is attributed to lattice oxygen, whereas the features

located at 1.3 and 2.6 eV higher binding energy correspond to

adsorbed hydroxide and water, respectively. The relative positions of

these features are consistent with a previous study of a water-

exposed rutile TiO2(110) surface.24 The intensity of the adsorbed

hydroxide and water features remains comparable during the first two

spectra (a,b). In spectrum c, at t≈ 5min and T≈ 490 K, we start to see

a loss of absorbed water. By the fourth spectra d at t≈ 17min and

T≈ 620 K, the water is no longer observed and the OH peak has

started to diminish. Finally, by t≈ 38min and T≈ 700 K (spectrum e),

we see no hydroxide or absorbed water features. This is consistent

with previous measurements of water-exposed TiO2 surfaces showing

that hydroxide and adsorbed water do not desorb below 550 K.47 It is

noteworthy that we do not see a reduction of the hydroxide/water

features at lower temperatures perhaps implying that the water is not

playing a dramatic role healing any Ti3+ defects that may have

migrated to the surface, potentially as physisorbed water is not kineti-

cally active enough when compared with the gas and liquid phases,

which are known to heal defects.

Figure 5 quantitatively shows how the relative concentration of

the different titanium oxidation states changes during annealing (plot-

ted as a function of time and temperature). The plot has been split into

three regions, labelled A to C, to aid discussion. We do emphasise,

however, that the boundaries between these regions are likely not dis-

tinct and the mechanisms dominating the behaviour in the regions

may overlap. The entire experiment, where we healed the defective

surface through water exposure followed by tracking the defects

while annealing, was repeated with in situ XPS measurements at a

more surface-sensitive grazing emission angle. These data are included

in the supporting information for comparison, showing the same

trends in defect concentrations occurring at similar temperatures.

In region A, that is, during the first �3min, Figure 5 shows a

decrease in Ti4+ concentration with a corresponding increase in Ti3+,

whereas the contribution of lower oxidation states remains constant.

This implies that at low annealing temperatures, Ti3+ defects are likely

diffusing from the subsurface to the surface until the concentration

(A)
(B)
(C)

(D)

(E)

F IGURE 3 Normal emissionTi 2p XPS measured in situ during
annealing of ‘water-exposed’ rutileTiO2 (110). Horizontal lines
labelled (a)—(e) were extracted for detailed analysis in Figure 4

F IGURE 4 Left: Ti 2p spectra (extracted from Figure 3) where
peak fitting tracks the behaviour of theTi oxidation states during
annealing. Right: associated O 1s spectra highlighting the relative
change of lattice oxygen, hydroxyl groups and adsorbed water. All the
spectra were measured at normal emission
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gradient between the surface and subsurface is minimised as the Ti4+

reaches a minima at �3min.

In region B, between �3 and �6min, we observe that the Ti1+

concentration dramatically decrease, whereas the Ti3+ and Ti4+

increase proportionally. The Ti2+ component remains constant. This

could perhaps be consistent with progressive conversion of Ti1+! Ti2+

! Ti3+! Ti4+ if the Ti1+! Ti2+ and Ti2+! Ti3+ conversions have

comparable rates; alternatively, intermediate oxidation states may be

skipped. Regardless, region B represents a dramatic transition with an

activation energy corresponding to a temperature of �490 K where

Ti1+ is no longer stable.

In region C, beyond �6min, the Ti1+ concentration approaches

0%, the Ti2+ and Ti3+ begin to gradually and constantly decline at a

comparable rate, whereas theTi4+ increases accordingly (with a slower

rate than in region B). We attribute this regime to the gradual diffu-

sion of oxygen vacancies and Ti interstitials between the crystal bulk

and surface/subsurface layers eventually resulting in a essentially

defect free spectrum. Towards the higher annealing temperatures,

where the bridging oxygen atoms are no longer hydrogen terminated,

it is possible that residual water in the vacuum chamber may contrib-

ute to the healing of surface defects via the water dissociation mecha-

nisms discussed in Section 1.31,34,50

Although it appears notable that the rapid depletion of Ti1+

observed in region B is not observed for Ti2+ or Ti3+, it is worth

emphasising that the rate of heating is much greater at the start of

annealing; to an approximation, the temperature change during

regions A and B (�6min) is comparable with the �30min elapsed in

region C. The results presented here are therefore unable to separate

the effects of annealing temperature and time. We therefore suggest

that there would be great value in an investigation of the phenomena

observed here using an instrument designed for accurate

temperature-controlled XPS measurements to disentangle the ther-

modynamics from the kinetics and provide more accurate transition

temperatures. In addition, a similar study on anatase, where it is

favourable for defects to remain subsurface, would make an interest-

ing comparison.

4 | CONCLUSIONS

Defective rutile TiO2(110), prepared using Ar+ sputtering, was

exposed to liquid water, which hydroxylates the surface oxygen

vacancies created by sputtering. The result was a sample with a highly

defective subsurface coexisting with a defect free surface, providing a

platform for annealing-induced migration of titanium defects to be

studied using XPS. We observe at low annealing temperatures an

increase in Ti3+ concentration, which is attributed to migration of Ti3+

to the previously defect-free surface. A rapid and distinct depletion of

Ti1+ is observed around 500 K with a corresponding increase in Ti3+

quickly followed by Ti4+, which is tentatively explained by progressive

conversion of Ti1+ defects to Ti4+ via intermediate oxidation states. At

higher annealing temperatures, we observe the gradual depletion of

the remaining defects, likely through established titanium interstitial

and oxygen vacancy diffusion mechanisms. The experimental evi-

dence of defects migrating to the surface of rutile at low annealing

temperatures is an important consideration for the industrial applica-

tion of titania catalysts, and the methodology presented here provides

a useful tool for studying the kinetics and thermodynamics of defect

migration in a range of materials.
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