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Random matrix theory has proven very successful in the understanding of the spectra of chaotic systems.
Depending on symmetry with respect to time reversal and the presence or absence of a spin 1=2 there are
three ensembles, the Gaussian orthogonal (GOE), Gaussian unitary (GUE), and Gaussian symplectic
(GSE) one. With a further particle-antiparticle symmetry the chiral variants of these ensembles, the chiral
orthogonal, unitary, and symplectic ensembles (the BDI, AIII, and CII in Cartan’s notation) appear. We
exhibit a microwave setup based on a linear chain of evanescently coupled dielectric cylindrical resonators
allowing us to study all three chiral ensembles experimentally. In all cases the predicted repulsion behavior
between positive and negative eigenvalues for energies close to zero could be verified.
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Chiral systems are currently at the core of research in
topological systems in solid state physics [1] (e.g., topologi-
cal insulators, bulk-edge correspondence, Dirac materials
with chiral symmetry), (topological) photonics [2,3], and
microwave transport [4,5] (e.g., topological limiters). They
are all governed by the interplay of symmetry and dimen-
sionality of bulk and defects [6,7]. In this Letter we present
statistical results for gapless chiral systems described by
random matrix theory for the chiral symmetry classes.
Random matrix theory originally was developed by
Wigner, Dyson, Mehta [8,9] and others as a tool to describe
the spectral properties of chaotic systems. For time-reversal
symmetric systems the Hamiltonian H commutes with the
time-reversal operator T, HT ¼ TH, where T2 ¼ 1 for
systems without spin 1=2, and T2 ¼ −1 in the presence of
a spin 1=2 [10]. The three options (T2 ¼ 1, no T, T2 ¼ −1)
give rise to the three classical random matrix ensembles, the
Gaussian orthogonal (GOE), unitary (GUE), and symplectic
(GSE) one, respectively. Further there may be a chiral
symmetry, i. e., an operator C anticommuting with H,
HC ¼ −CH, again with the two options C2 ¼ 1 and
C2 ¼ −1. Such a symmetry exists, e. g., for the Dirac
equation [11]. All possible combinations of (T2 ¼ 1, no T,
T2 ¼ −1) and (C2 ¼ 1, no C, C2 ¼ −1) yield a total of nine
random matrix ensembles. Together with the last remaining
option (no T, no C, but CT) one finally ends up with the
tenfold way [12,13].
For the GOE there is an abundant number of realizations,

see Sec. 3.2 of Ref. [14], but for the GUE the number of
experiments is still small [15–17]. The GSE has been
realized only recently by us in a peculiarly designed
microwave network mimicking a spin 1=2 [18].

For the new ensembles systematic random matrix studies
are still missing though there are a lot of studies of systems
showing chiral symmetry [19]. In the present work a
microwave study of the chiral relatives of the classical
ensembles is presented, the chiral orthogonal (chOE), the
chiral unitary (chUE), and the chiral symplectic (chSE)
ensemble (the BDI, the AIII, and the CII in Cartan’s
notation). We omit the ‘G’ in the notation, since the
ensembles studied by us are partly not Gaussian.
For a chiral symmetry particles and antiparticles are not

really needed. Sufficient is a system consisting of two
subsystems I and II with n and m sites, respectively, and
interactions only between I and II, but no internal inter-
actions within I or II. The Hamiltonian for such a situation
may be written as

H ¼
�

0 A

A† 0

�
; ð1Þ

where the diagonal blocks belong to the two subsystems,
and the off-diagonal blocks describe the interaction.
Hamiltonian (1) is chiral symmetric, since it anticommutes
with C ¼ diagð1n;−1mÞ. The characteristic polynomial of
H is given by

χðEÞ ¼
����E · 1n −A
−A† E · 1m

���� ¼ En−mjE2 · 1m − A†Aj; ð2Þ

where an elementarymatrix transformation has been applied.
Equation (2) has a number of important implications: (i) For
n > m there are μ ¼ n −m zero eigenvalues. They do not
depend on the interaction between the two subsystems and
can only be destroyed by lifting the chiral symmetry. (ii) All
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other eigenvalues appear in pairs Ek and E−k ¼ −Ek
(k ¼ 1; 2;…). (iii) For energies far fromE ¼ 0 the statistical
properties of the chiral ensembles approach those of the
classical ones, but close to E ¼ 0 the eigenvalues E1; E2;…
feel the proximity of their partners E−1; E−2;…, resulting in
an oscillatory modulation in the density of states ρðEÞ and a
possible repulsion of the nonzero eigenvalue pairs close to
E ¼ 0 [20,21]

ρðEÞ ∼ jEjαþμβ; ð3Þ

where β is the universality index known already from the
classical ensembles (β ¼ 1, 2, 4 for the GOE, the GUE, and
the GSE, respectively), and α ¼ β − 1 for their chiral
relatives [19].
The main building blocks for our experimental realiza-

tion of the chiral ensembles are dielectric cylindrical
resonators (h ¼ 5, r ¼ 3.8 mm) with an index of reflection
of n ¼ 6, see inset in Fig. 1 (bottom). They are placed
between aluminum bottom and top plates separated by a
distance of H ¼ 11 mm.
There are two types of resonance modes, the trans-

verse magnetic (TM) and transverse electric (TE) one.
In the experiment we used the lowest TE mode with

magnetic field parallel and electric field perpendicular
to the cylinder axis. As the resonators were not perfectly
equal, the mean eigenfrequency ν0 ¼ 6.880 GHz spread by
about 3 MHz corresponding to 20% of the linewidth. In
the experiment ν0 corresponds to the energy zero and ν − ν0
to the energy. As ν0 is below the cutoff frequency
νcutoff ¼ c=ð2HÞ ¼ 9.369 GHz, where c is the velocity
of light, the resonators are evanescently coupled allowing
to vary the coupling strength via the distance. For further
experimental details refer to Refs. [22,23]. Reflections S11,
S22 and transmissions S12, S21 have been measured in the
range 6.7 to 7.0 GHz using a vector network analyzer
(Agilent 8720ES).
For the realization of the chOE the setup shown in Fig. 1

(bottom) is used. Up to five resonators are placed in a row.
The resonances are excited by a bent antenna placed close
to the leftmost resonator. Figure 1 (top) shows typical
reflection spectra for N ¼ 2, 3, 4, and 5 resonators obtained
by removing one resonator after the other from the right.
The chiral symmetry is clearly evident from the spectra. For
N > 5 it became more and more difficult to extract all
resonances. Furthermore localization effects eventually
became important.
The situation can be mapped onto a Hamiltonian with the

eigenfrequencies of the resonators in the diagonal, the
coupling constants in the secondary diagonals, and zeros
everywhere else. Ordering row and columns with odds sites
first and even ones second, the Hamiltonian takes the
structure (1). For N ¼ 2 the eigenfrequencies are given by
ν� ¼ ν0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ Δ2=4

p
, where Δ is the difference of the

eigenfrequencies of the two unperturbed resonators, and a
the coupling constant due to the evanescent coupling. From
this measurement the relation of the coupling constant aðdÞ
to the resonator distance d and its inverse dðaÞ can be
extracted. Figure 1 (bottom) shows the eigenfrequencies for
a two-resonator system in dependence of their distance.
Such two-resonator measurements have been used for a
calibration of the coupling constants in terms of the
distance.
For the chOE some hundred resonator arrangements with

different distances dðaÞ have been measured, where the
coupling constants a have been drawn from the Gaussian
distribution

pβðaÞ ∼ aβ−1e−
a2

2σ2 ; ð4Þ

with β ¼ 1, and a cutoff at the maximal available coupling
constant amax ¼ 102.56 MHz. With σ ¼ 0.354amax this
means a truncation of 0.5 percent of the area in the tail
of the distribution. For N ¼ 2 and 3 the A matrix is
completely filled, thus the resulting ensembles are
Gaussian. For increasing N A contains more and more
zero matrix elements. These ensembles hence are no longer
Gaussian resulting in a modification of the details of the
ensemble averaged density of states [24]. Figure 2, left

FIG. 1. Top: Spectra for a linear chain with N ¼ 2, 3, 4, and 5
dielectric cylinders. Bottom: Eigenfrequencies for a two reso-
nator system in dependence of their distance, used to calibrate the
coupling constant a in terms of the distance. The dashed line
denotes the center of gravity of the two eigenfrequencies. The
inset shows the used setup. The top plate has been removed for
the photograph.
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panel, shows the resulting ensemble averaged density of
states ρðν − ν0Þ for linear chains of lengths N ¼ 2, 3, 4,
and 5.
For N ≤ 5 the zeros of the characteristic polynomial (2)

can be obtained as roots of quadratic equations. It remains a
Gaussian average over the coupling constants to calculate
the ensemble averaged density of states [24]. The dashed
lines in Fig. 2, left panel, show the analytical expressions
for ρðν − ν0Þ. For odd N a delta peak at ν ¼ ν0 is predicted,
and a linear repulsion of the eigenfrequencies, see Eq. (3).
For even N there should be no repulsion.
All these features are found in the experiment. There is

only one small mismatch resulting from the fact that
eigenfrequencies of the resonators are not identical, but
differ by some MHz. Furthermore, the eigenfrequency of
the leftmost resonator is detuned by the nearby antenna.
This results in a hole in the distribution at ν ¼ ν0 forN ¼ 2,
and to a smaller extent also for N ¼ 4.
Each nonzero element in the diagonal block of the

Hamiltonian (1) destroys the chiral symmetry. This may
be due to next-nearest neighbor contributions, or by
different site energies as in the present situation. This
shortcoming is unavoidable: Even if the eigenfrequencies
of the isolated resonators were identical they are detuned
by the presence of the other ones. A manifestation of
this detuning is the shift of the center of gravity of the
two-resonator spectrum observed for small distances, see
Fig. 1 (bottom).

Perturbation of the chiral symmetry results in
two imperfections: (i) Shift of the center of gravity of
the spectrum, (ii) A left-right asymmetry between the
“positron” and the “electron” part of the spectrum. For
the linear chain with an odd number of elements this means
in particular that the zero energy peak is smeared out.
In addition the repulsion behavior is distorted as is evident,
e. g., from Fig. 2, left panel, for N ¼ 3.
Therefore we studied in addition another quantity,

the two-point correlation function ρþ1;−1ðΔνÞ giving the
probability density to find a frequency distanceΔν between
the states ν1 and ν−1. Because of the chiral symmetry
ρþ1;−1ðΔνÞ is, up to a factor of 2, identical with the ensemble
averaged density ρ1ðν − ν0Þ of state 1. Figure 2, right panel,
shows the results, together with the random matrix expect-
ation. To accentuate the repulsion behavior, the integrated
pair correlation function Iþ1;−1ðΔνÞ ¼

R
Δν
0 dν0ρþ1;−1ðν0Þ is

shown in the inset in a log-log plot. For all cases the expected
behavior is verified. For odd N the agreement between
theory and experiment is nearly perfect. Only for the lowest
shown Δν values small deviations appear. Here the number
of realizations entering is below ten and the results
are no longer statistically trustworthy. For even N the
deviations are somewhat larger, again a manifestation of
the fact that the eigenfrequencies of the resonators are not
identical.
Since the zeros of the characteristic polynomial (2)

depend only on the moduli of the coupling constants but
not their phases, a convenient way to realize chUE and chSE
statistics would be to reuse the same experimental setup and
to only take a modified function for the coupling constants,
again Eq. (4), but now with β ¼ 2, 4 for the chUE and the
chSE, respectively. We preferred a more ambitious approach
and studied systems really having a broken time reversal
(β ¼ 2) or symplectic symmetry (β ¼ 4).
In our realization of the chUE the break of time reversal

symmetry was achieved by means of circulators, which
had been used already for this purpose previously [18].
A circulator is a microwave device with three ports, where
waves entering via ports 1, 2, 3 exit through ports 2, 3, 1,
respectively. The inset of Fig. 3 (bottom) shows the setup.
Now the resonators are at fixed distances of 85 mm, too
large for a direct coupling which is achieved instead by
means of circulators. The resonances had been excited by
loop antennas placed on top of the resonators requiring a
height H ¼ 16 mm.
Figure 3 (top) shows typical spectra for N ¼ 2, 3, and 4

resonators. Unfortunately, the circulators introduce a con-
siderable broadening making an analysis difficult. There-
fore, the harmonic inversion technique has been used,
allowing for an analysis of the spectra also for overlapping
resonances [25–28]. The deviations between the original
and the reconstructed spectra are hardly seen, demonstrat-
ing the reliability of the technique. For N > 4 a reliable
analysis of the spectra was no longer possible.

FIG. 2. Left: Ensemble averaged density of states of the chOE
for N ¼ 2, 3, 4, and 5. The dashed lines correspond to the
theoretical expectation. Right: Two-point correlation function
ρþ1;−1ðΔνÞ for the chOE. The inset shows the integrated two-
point correlation function Iþ1;−1ðΔνÞ in a log-log plot.
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Since the circulators introduce directionality, the cou-
pling constants are complex. A Gaussian distribution of the
real and imaginary parts results in a distribution p2ðjajÞ
[see Eq. (4)] for the modulus, and a uniform distribution for
the phase. The phase could be varied by attaching different
terminators to the third port of the circulators. Again a two-
resonator measurement was used to relate the distance
between circulators and resonators to the coupling. The red
symbols in Fig. 3 (bottom) show the result for an open-end
terminator attached. The shift of the center of gravity of the
two resonances is large, comparable to the splitting. For
short-end terminators (blue dots) the effect is even more
dramatic. Therefore we refrained from varying the phases
by attaching different terminators to the circulators and
used only the open-end terminators. But even here for small
circulator distances the shift of the center of gravity turned
out to be too large.
Therefore, only distances d ≥ 2 mm were used corre-

sponding to amax ¼ 4.47 MHz, with σ ¼ 0.288amax. The

results are shown in the left column of Fig. 4. Though there
are significant deviations in detail, the general features of
the theoretical predictions are correctly reproduced. For
N ¼ 3 and 4 the center of gravity of the spectra had been
adjusted individually by less than 1 MHz. This shift is
caused by a detuning of the eigenfrequencies of the inner
resonators due to the presence of the second circulators, an
effect not accounted for by the calibration. All these
deficiencies drop out for the two-point correlation function
ρþ1;−1ðΔνÞ. Therefore, for this quantity the whole d range
depicted in Fig. 3 could be used. The results are presented
in the right column of Fig. 4. The dashed lines correspond
to the theoretical expectations for the unperturbed systems.
The inset, showing the integrated two-point correlation in a
log-log plot, illustrates that for the chUE, too, the expected
repulsion behavior is reproduced.
Recently we realized the Gaussian symplectic ensemble

in a microwave graph mimicking a spin 1=2 [18]. The main
ingredients had been two subgraphs, complex conjugates of
each other, coupled by a pair of bonds with a phase shift of
π in one of the bonds and no phase shift in the other one.
These ideas may be taken over one to one to the present
situation. The minimal configuration needs four resonators,
1, 1̄, 2, 2̄, see Fig. 5 (left). Resonators 1 and 2, and
resonators 1̄ and 2̄ are coupled by circulators with opposite
sense of propagation thus making the two subsystems
complex conjugates of each other. Resonators 1 and 2̄, and
resonators 1̄ and 2 are coupled by cables with a length
difference of 1.762 cm corresponding to a phase difference
of π at ν ¼ ν0.
Though four resonators are involved, the configuration

corresponds to N ¼ 2, where the resonators with and
without bars mimic the two spin components. The corre-
sponding characteristic polynomial is given by

χðEÞ ¼ jE · 1 −Hj ¼ ðE2 − jaj2 − jbj2Þ2: ð5Þ

FIG. 3. Top: Reflection spectra for the chUE forN ¼ 2, 3, and 4
dielectric cylinders. The symbols denote the positions of the
resonances extracted by the harmonic inversion (HI) technique.
The solid lines in dark colors correspond to the measurement, the
superimposed dashed lines in light colors to the reconstruction
using the HI results. Bottom: Eigenfrequencies for a two
resonator system, coupled by a circulator with an open-end
(red) and a short-end (blue) side port terminator, respectively, in
dependence of the distance. The dashed line denotes the center of
gravity of the two eigenfrequencies. The vertical green line
denotes the lower limit of the distances used for the histograms in
the left column of Fig. 4. The inset shows the used setup.

FIG. 4. As Fig. 2, but for the chUE.
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There are hence doubly degenerate eigenvalues at

Eþ1;−1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ jbj2

q
: ð6Þ

The four-resonator system thus shows both the chiral
symmetry, with Eþ1 and E−1 ¼ −Eþ1 coming in pairs,
and the symplectic symmetry, with the characteristic
Kramers doublet structure of the spectrum.
Again the harmonic inversion technique was used to

analyze the spectra. Figure 5 (right) shows the distance
distribution of the two Kramers doublets, where the
distribution function p2ðjajÞ [see Eq. (4)] was used both
for jaj and jbj (with amax ¼ 7.13 MHz and σ ¼ 0.322amax).
Hence, Eq. (6) implies a cubic repulsion of Eþ1 and E−1, in
accordance with Eq. (3). This repulsion is perfectly
reproduced in the experiment.
An extension to larger N values seem hardly feasible.

Each additional pair of resonators would mean four more
bonds and a corresponding increase of absorption. Therefore
we have to be content with this demonstration for N ¼ 2.
Concluding, we could verify the expected repulsion

behavior for all three chiral ensembles experimentally. For
this demonstration neither relativistic electrons nor graphene
are needed, simple lattices of evanescently coupled dielectric
resonators are sufficient for the fundamental studies of chiral
systems. They allow in particular for a straightforward
rearrangementof thegeometryneeded for ensemble averages,
an approach hardly possible for any other method.
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