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Abstract 
Low-melting alloys, based on bismuth and indium, have found commercial use in 

soldering, safety devices, coatings, and bonding applications. In this respect, the accurate 

knowledge of their thermal properties such as melting and solidification temperatures, 

latent heat of melting, supercooling tendency, etc. is of large importance. In the present 

research, low-melting alloy with nominal composition Bi40In40Pb20 (at. %) was 

investigated by means of scanning electron microscopy (SEM) with energy dispersive X-

ray spectrometry (EDS) and by differential scanning calorimetry (DSC). Microstructural 

and chemical (SEM-EDS) analysis has revealed the existence of two coexisting phases in 

the prepared alloy, which was identified as BiIn and (Pb). Melting and solidification 

temperatures and the related heat effects were measured by the DSC technique. The 

solidus temperature obtained from the DSC heating curves was 76.3 °C and the solidus 

temperature obtained from the corresponding DSC cooling runs was 61.2 °C. The 

experimentally obtained results were compared with the results of thermodynamic 

calculation according to CALPHAD (calculation of phase diagram) approach, and a close 

agreement was noticed. 
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Introduction 

Low-melting point alloys (LMPA), which typically contain indium, bismuth, lead, 

and tin, melt at temperatures less than 100 °C. These alloys are required for a wide variety 

of applications, including step soldering, thermal fuse application, rapid prototyping, die 

casting, mercury replacement, thermal cooling, heating designs, and soft solder 

formulation [1]. They also represent promising candidates for metallic phase-change 

materials (PCMs) for thermal storage (TS) [2-3]. However, important thermophysical 

properties such as melting point, latent heat of fusion, specific heat capacity, and thermal 

conductivity for many low-melting alloys are still not entirely known [4]. 

The aim of the present study is an experimental and analytical investigation of the 

microstructure and melting behavior of the low-melting Bi40In40Pb20 (at.%) alloy. The 

composition of the investigated alloy was selected based on the phase diagram of the Bi-

In-Pb ternary system. According to the previous experimental investigations of Stel'mack 

et al. [5,6], the InBi-Pb vertical section is a quasi-binary system with eutectic reaction 

L→BiIn+(Pb) at 76 °C and eutectic composition close to 20 at.% of Pb. Microstructure, 

alloy composition, and coexisting phases in the solidified alloy were investigated using 

SEM-EDS while melting interval and heat of fusion were experimentally determined by 

DSC analysis. The obtained experimental results were compared with the results of 

thermodynamic calculation according to the CALPHAD approach. 

Experimental 
Ternary alloy with the nominal composition Bi40In40Pb20 (at.%) was prepared by 

melting weighted pieces of pure elements (Bi 99.999%, In 99.999%, Pb 99.99%, Alfa 

Aesar) in an evacuated quartz tube. The sample was heated at 600 °C for 30 min. The 

melt was stirred by shaking the quartz tube several times to ensure the homogenization 

of the molten alloy and slowly cooled inside the furnace. The total mass of the prepared 

sample was about 3 g, while the total mass loss was less than 1 mass%. 

TESCAN VEGA3 scanning electron microscope (SEM) with energy dispersive 

spectrometer (EDS) (Oxford Instruments X-act) was used for microstructural 

investigation. SEM-EDS analysis of the prepared ternary alloy was carried out at an 

accelerating voltage of 20 kV. Overall composition and compositions of coexisting 

phases were determined using EDS area and point analysis. All SEM images of the 

microstructures were taken on the polished surfaces of the studied alloy samples in 

backscattered electron mode. 

Phase transition temperatures and corresponding heat effects were determined by 

simultaneous thermal analyzer STA NETZSCH Jupiter 449. The sample weighing about 

40 mg was investigated by performing three heating/cooling cycles using the 

heating/cooling rate of 5 °C/min in the temperature interval from room temperature up to 

120 °C. The reference material was empty alumina crucible. Prior to DSC measurements, 

temperature and enthalpy calibrations were performed using the pure metal standards (In 

and Zn) under the measurement conditions. 
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Thermodynamic calculation 

Thermodynamic calculations of phase equilibria were carried out using 

CALPHAD (calculation of phase diagrams) approach [7]. The calculations were 

performed using optimized thermodynamic parameters from Boa and Ansara [8]. 

The solid phases from the constitutive binary subsystems considered for 

thermodynamic calculations of the Bi–In–Pb phase equilibria are listed with their 

respective crystallographic data [9] in Table 1. 

Table 1. Considered solid phases in the Bi–In–Pb ternary system with their 

crystallographic data [9]. 

Binary 

system 
Phase 

Phase name in the 

thermodynamic 

database 

Pearson 

symbol 

Strukturbericht 

designation 

Bi-In, Bi-Pb (Bi) RHOMBO_A7 hR2 A7 

Bi-In, In-Pb (In) TETRAG_A6 tI2 A6 

Bi-In BiIn BIIN tP4 B10 

Bi-In Bi3In5 BI3IN5 tI32 D81 

Bi-In BiIn2 BIIN_BRASS hP6 B82 

Bi-In, In-Pb α TET_ALPHA1 tI2 A6 mod 

Bi-Pb ε HCP_A3 hP2 A3 

Bi-Pb, In-Pb (Pb) FCC_A1 cF4 A1 

 

The resulting optimized phase diagrams of the constitutive binary systems Bi–In, 

Bi–Pb and In–Pb are shown in Fig. 1. 

  

a) 
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b) 

 

c) 

Fig. 1. Calculated phase diagrams of the constitutive binary systems based on 

thermodynamic parameters from Boa and Ansara [8]: a) Bi–In, b) Bi-Pb and c) In–Pb. 

In regard to previous studies [8] and respective data presented in Table 1 and Fig. 

1 we can see that in the Bi-In system (Fig. 1a) there are three stoichiometric compounds: 

BiIn, Bi3In5, and BiIn2. Additionally, there are also two solid solutions with almost no 

solubility [8], an In-rich tetragonal-A6, and a rhombo_A7 Bi-rich solid solution, as well 

as a tetragonal α A6 mod phase. 

In the Bi-Pb system (Fig. 1b) there is an fcc-A1 Pb-rich solution, an intermetallic 

hcp-A3 phase (-Pb3Bi), and a rhombo_A7 Bi-rich solid solution. There is one eutectic 

reaction at 125 oC and a peritectic reaction that occurs at 183.6 oC. In the case of In-Pb 

system (Fig. 1c) there are no intermetallic compounds, only three solid solutions: an fcc-
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A1 Pb-rich solution, an intermediate InPb- phase, and an In-rich tetragonal-A6 solution. 

Two peritectic reactions take place in the system, one at 172.5 oC and the other at  

158.1 oC. 

Calculated liquidus projection of the Bi-In-Pb ternary system from Boa and Ansara 

[8] with a marked composition of the eutectic alloy studied in the present work (point e1) 

is presented in Fig. 2. 

 

Fig. 2. Liquidus projection of the Bi-In-Pb ternary system from Boa and Ansara [8] 

with the marked composition of the eutectic alloy studied in the present work (point e1). 

Results and discussion 

Microstructural analysis 

The conducted microstructural and chemical analysis using SEM coupled with 

EDS has provided insight into the microstructure of the studied alloy, its overall chemical 

composition, and phase composition. Nominal and experimentally determined overall 

chemical compositions of the investigated alloy sample obtained by EDS area analysis 

are given in Table 2. 

 

Table 2. Nominal and experimentally determined overall compositions of the 

investigated alloy sample. 

Nominal composition (at.%) 

Experimentally determined 

composition with standard 

uncertainties (at.%) 

Bi In Pb Bi In Pb 

40 40 20 38.2±0.2 39.5±0.4 22.3±0.1 
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From the experimentally determined alloy composition presented in Table 2, the 

prepared alloy has somewhat higher Pb content and slightly lower contents of Bi and In 

compared to its nominal composition. 

SEM micrograph, illustrating microstructure of the investigated Bi40In40Pb20 (at. 

%) alloy, is given in Fig. 3. 

 

Fig. 3. SEM micrograph of the studied Bi-In-Pb alloy. 

Two coexisting phases can be easily distinguished in the presented microstructure 

(Fig. 3.), and they were both subjected to EDS point analysis. Experimentally determined 

compositions of the coexisting phases for the investigated Bi–In–Pb alloy are shown in 

Table 3.  

Table 3. Experimentally determined (SEM-EDS) compositions of coexisting phases in 

the studied alloy. 

Overall exp. 

composition (at.%) 
Phases 

Compositions of phases (at.%) 

Bi In Pb 

Bi38.2In39.5Pb22.3 

 

BiIn 

(Grey 

phase) 

49.3±0.1 50.7±0.1 0.0 

(Pb) 

Bright 

phase 

15.7±0.1 26.7±0.3 57.5±0.3 
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Following the obtained results of the EDS point analysis, the coexisting phases 

were identified. First, of the identified phases, which can be observed as the light phase 

in Fig. 3., represents (Pb) solid solution, and it contains a high amount of lead (57.5 at.%). 

The second, gray phase does not contain lead and has nearly the same concentrations of 

Bi and In. It represents BiIn intermetallic phase. In addition, from Fig. 3 can be noticed 

that the microstructure of the studied low-melting ternary alloy also includes a 

considerable amount of pores appearing as small dark spots. 

Thermal analysis 

The analysis of DSC results was done according to the literature recommendations 

regarding the interpretation of the heat flux DSC thermogram of metallic systems [10]. 

Solidus temperature was determined from the onset temperature of the DSC peak in the 

heating process. In the cooling process, the onset temperatures of both identified DSC 

peaks were considered as phase transition temperatures. 

During the heating stage of measurements, only one sharp DSC endothermic peak 

was observed (Fig. 4a). This peak represents the start of the melting-solidus for the 

studied alloy. The solidus temperature, obtained as an average temperature from three 

repeated heating runs, is 76.3 °C. In contrast, DSC cooling curves exhibit two exothermic 

peaks (Fig. 4b). The broad peak at higher temperature represents liquidus temperature i.e. 

start of solidification of (Pb) phase. The liquidus temperature, determined using DSC 

cooling curves, is 93.3 °C. The second, sharp DSC peak at lower temperature corresponds 

to the end of alloy solidification i.e. solidus. The average solidus temperature obtained 

from the three corresponding cooling runs is 61.2 °C. The average heat of melting 

obtained from the heating runs is 16.9 J/g, and the average heat of solidification obtained 

from the cooling runs is 16.3 J/g. 

 

a) 
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b) 

Fig. 4. Third heating-cooling cycle for the studied Bi-In-Pb ternary alloy: 

a) DSC heating curve; b) DSC cooling curve. 

Comparison between experimental results and the results of thermodynamic calculation 

Fig. 5 presents the calculated BiIn-Pb vertical section of the Bi-In-Pb ternary 

system with marked phase transition temperatures obtained from DSC heating and 

cooling measurements. According to the results of calculations, BiIn-Pb phase diagram 

is not quasi-binary because of the presence of a very narrow L+BiIn+(Pb) three-phase 

field. 

 

Fig. 5. Calculated BiIn-Pb vertical section with DSC results (▲ heating, ▼cooling). 
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Nevertheless, the calculated solidus temperature of the studied alloy is 76.0 °C, 

which is in excellent agreement with the experimentally determined value obtained during 

heating (76.3 °C). In contrast, the corresponding temperature value obtained during 

cooling (61.2 °C) is considerably lower. The observed difference between these two 

temperatures is most probably caused by the supercooling effect. Furthermore, from Fig. 

5 can also be seen that the experimentally observed liquidus temperature is in excellent 

agreement with the results of the calculation. 

Conclusion 
Low-melting alloy with nominal composition Bi40In40Pb20 (at.%) was studied in 

this work. The microstructure and chemical composition of the prepared alloy was 

investigated using the SEM-EDS technique. It was found that the microstructure of the 

alloy includes BiIn intermetallic compound and (Pb) solid solution phase. Experimentally 

determining chemical compositions (EDS) of the phases were compared with equilibrium 

phase compositions, and a reasonably close agreement was noticed. 

Phase transition temperatures were measured by means of the DSC technique. As 

expected, the melting interval of the studied alloy is considerably below 100 °C. The 

average solidus temperature of the heating runs was 76.3 °C and the average solidus 

temperature obtained from the corresponding cooling runs was 61.2 °C. The evident 

difference between the two temperatures was ascribed to the supercooling effect as the 

most probable cause. The Liquidus temperature determined from the DSC cooling curves 

was 93 °C. The average heat of melting obtained from the heating runs was 16.9 J/g, and 

the average heat of solidification obtained from the cooling runs was 16.3 J/g. When 

compared with the calculated phase diagram, the obtained experimental results show very 

close agreement and thus validate the used thermodynamic model. 
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