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Accurate and efficient identification of failure features of returned used mechanical components/parts is 

the prerequisite for adaptive remanufacturing. However, due to part-to-part variation, it is error-prone 

and ad-hoc to manual inspect each part with various defects. This paper proposes a failure feature 

identification method for adaptive remanufacturing. An innovative identification algorithm is developed 

to quickly identify the failure features which integrates point-clouds generation, fine-registration and 

Boolean calculation. For the identified features, hybrid tool path for adaptive remanufacturing can be gen- 

erated automatically. A turbine blade is taken as an example to demonstrate the efficiency and reliability 

of the proposed method. 
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1. Introduction 

Remanufacturing is regarded as a promising eco-friendly indus-

try that returns End-of-Life (EOL) products to a “like new” func-

tional state with a warranty to match ( Jones et al., 2012 ). It is

a sustainable manufacturing industry with great benefits subject

to environmental, social and economic gains ( Feng et al., 2016 ;

Sundin and Bras, 2005 ). 

However, remanufacturing is usually a complex procedure in-

cluding disassembly, cleaning, inspection, repair, test, and reassem-

bly. Among these processes, the inspection of the returned used

mechanical components/parts to identify failures is the prereq-

uisite for adaptive remanufacturing ( Errington and Childe, 2013 ;

Ridley and Ijomah, 2015 ). It is because that the identified failure

features not only influence the subsequent decision-making of re-

manufacturing strategy and process planning but also lay a founda-

tion for the subsequent implementation of adaptive remanufactur-

ing technologies including Additive Manufacturing (AM) to deposit

material and Subtractive Manufacturing (SM) to remove material.

Fig. 1 shows some failure features and their influences on reman-

ufacturing. For example, failure volume will influence the selection

of remanufacturing strategy as well as the remanufacturing cost

and time. In addition, the failure features of each returned defec-

tive part, which is the raw material for remanufacturing, exhibits
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reat uncertainties subject to failure location, failure mode, failure

olume, failure degree, etc. It is caused by different service oper-

tion environment, service life, and maintenance measures ( Kin et

l., 2014 ). Thus, due to part-to-part failure variation, each reman-

facturing part needs manual treatment separately and requires

ustomized remanufacturing strategy and process planning which

ainly depends on the skill level of the operators and their expe-

ience. The failure feature identification is still an error-prone and

d-hoc work which greatly limits the remanufacturing efficiency,

uality and success rate. There is a lack of deep understanding of

ailure features and an intelligent method for failure feature in-

pection, especially the quantitative analysis. This paper aims to

evelop an efficient method to identify failure features of returned

sed parts for adaptive remanufacturing. 

Due to the vital significance of failure feature identification

or remanufacturing, it has received increasing attention in re-

ent years. Du et al. (2017) proposed a failure mode analysis-

ased methodology for remanufactured machine tools. Wang et al.

2017) employed the Fault Tree Analysis (FTA) model to identify

ault features of used parts, based on which alternative remanufac-

uring process plans can be obtained. However, these studies only

nalyzed failure mode for used parts at the qualitative level. Fail-

re features of failure location, failure volume and failure degree

f the used parts arriving in the remanufacturing system have not

een discussed. 

To facilitate a quick and accurate acquisition of failure loca-

ion and failure volume of returned used parts, Reverse Engi-
under the CC BY-NC-ND license. 
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Fig. 1. Failure features and influences on remanufacturing. 
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Fig. 2. The framework of the proposed failure feature identification method. 
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t  
eering (RE) technologies are employed widely in recent years.

he three-dimensional (3D) model of the defective part is recon-

tructed in the form of 3D data. The identification of failure loca-

ion and extraction of failure volume can be achieved through reg-

stration and Boolean calculation by comparing the original Com-

uter Aided Design (CAD) model with the 3D model of the de-

ective part ( Santamaría et al., 2011 ). Gao et al. (2006) presented

 RE based adaptive restoration approach, namely polygonal mod-

lling, to recreate worn parts and extract repair geometry for the

uild-up process and machining process to remove weld bead.

ilson et al. (2014) developed a semi-automated geometric algo-

ithm based on Prominent Cross Sections (PCS) for repairing de-

ective voids that appear on gas turbine airfoils after extensive use.

ou et al. (2018) proposed an adaptive repair surface modelling

ethod for worn blades. It integrates restructuring welded surface

nd machining surface which can be utilized in Computer Aided

anufacture (CAM) system for the welding process and machining

rocess. Zheng et al. (2018) developed an algorithm for remanu-

acturing of damaged parts where Non-uniform Rational B-splines

NURBS) are employed to reconstruct the surface of the defective

art to extract failure volume. Feng et al. (2018) proposed a re-

air volume extraction approach for damaged parts in the field

f remanufacturing repair. These studies provided approaches for

dentifying failure locations and extracting the geometry repre-

entation of failure volume, however, little research is explored

o quantitative analysis of failure volume and failure degree. To

ffectively generate advisable decision-making of remanufacturing

trategy and process planning and thereby generate a hybrid tool

ath for adaptive remanufacturing, basic problems like quantitative

dentification for failure features of returned used parts need to be

olved. 

In addition, these methods above are mostly based on the re-

onstruction of NURBS surface or polygonal model which is a com-

lex and time-consuming process. Comparing the point-clouds be-

ween the original part and defective part directly provides a fea-

ible and more efficient approach to identify failure features in-

tead of reconstructing NURBS surface and polygonal model. With

he comparison results, failure volume and failure degree of var-

ous defects can be qualified accurately. Little studies have been

eported for failure features identification using point-clouds to

he best known of authors. With the purpose of identifying fail-

re features accurately and efficiently, this paper proposes a failure

eature identification method for adaptive remanufacturing, which

ombines point-clouds generation, fine-registration, and Boolean

alculation. For the identified failure features, the hybrid tool path

f AM and SM for adaptive remanufacturing can be generated au-

omatically. 
. Framework of failure feature identification method 

Fig. 2 shows the framework of the proposed failure feature

dentification method for adaptive remanufacturing. Point-clouds 

f the original model and defective model are generated and used

o quickly identify failure features including failure mode, failure

ocation, failure volume and failure degree. According to the identi-

ed failure features, operators can make advisable decisions on re-

anufacturing strategy and process planning quickly. For the iden-

ified defects, hybrid tool path of AM and SM can be generated to

emanufacturing the defective part back to a like-new status. The

rocedure of the proposed remanufacturing method is detailed in

he following sections. 

.1. Point-clouds generation 

With the rapid development of RE technology, it is easy to

btain the point-clouds to represent the geometry of the defec-

ive part. Common point-clouds generation technologies include

aser scanning, coordinate measurement machine, stereo scanning,

tructured light scanning. In this study, the point-clouds model is

enerated using structured light scanning and used directly for the

dentifications of failure features. Thus, there is no need to recon-

truct the surface or polygonal model which saves a lot of time and

abour. 

The CAD model of the original part is usually available and the

oint-clouds of the original model can be generated from the CAD

odel quickly. Firstly, the CAD model is converted to Stereo Litho-

raphic (STL) format, a mesh model with numbers of quadratic el-

ments can be generated to represent the geometry with a mesh

peration. As an important property of the mesh model, a number

f elements nodes can be obtained and converted to point-clouds

f the geometry model. It is noted that a finer mesh has more el-

ments as well as more nodes but costs more time and computer

esources. The degree of refinement of the mesh can be controlled

n MATLAB programming by setting different ‘Hmax’, ‘Hmin’ and

MeshGradation’ which mean maximum mesh edge length, mini-

um mesh edge length, and rate of mesh growth. For example, the

maller the ‘Hmax’, the higher the degree of refinement and more

oints. After the initial point-clouds generation, outliers whose dis-

ance to the center of mass of the point-clouds are more than three

imes the standard deviation are removed to form a filtered and

ore accurate point-clouds. 

.2. Fine registration of the point-clouds 

Once the filtered point-clouds have been generated successfully,

wo point-clouds of the original model and defective model need
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Fig. 3. Fine-registration of point-clouds of two models. 

Fig. 4. Slices of the point-clouds to identify failure location and volume. 
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A  
to be aligned for subsequent failure feature identification. In this

study, the Iterative Closest Point (ICP) algorithm which is a clas-

sic point-clouds matching algorithm is introduced to achieve fine

registration for the point-clouds of the original model and defec-

tive model ( Kersten et al., 2016 ; Marani et al., 2016 ). Let P r = ( x 1 ,

x 2 , …, x n1 ) and P n = ( y 1 , y 2 , …, y n2 ) be the point-clouds of orig-

inal part and defective part respectively. Through calculating the

nearest Euclidean distance, a corresponding point y i in P n can be

searched for a point x i in P r so that a point pair ( x i, y i ) can be de-

termined. Based on the matching point pairs, fine registration for

the two point-clouds above can be achieved through the following

four steps: 

• Step1 : Search the nearest point in the set of P n for each point

in the set of P r ; 

• Step2 : Calculate a transformation matrix M rn = [ R rn T rn ] to min-

imize Eq. (2) , where R rn is the rotation matrix and T rn is the

translation matrix, and k denotes the number of successfully

searched matching point pairs. 

• Step3 : Apply the M rn to the point set P n to obtain a new point

set P n ’ . 

• Step4 : Estimate the registration error between P r to P n ’ . If the

registration error is greater than the user-set threshold, replace

P n with P n ’ , and repeat step1 to step3 until complete. 

As can be seen in Fig. 3 , point-clouds of the original and de-

fective models are aligned after multiple iterations using the ICP

algorithm, which lays the foundation to compare these two point-

clouds for failure feature identification. The red point-clouds repre-

sents the original model and the blue point-clouds represents the

defective model respectively. 

2.3. Identification of failure features 

Once the fine registration of point-clouds has been achieved,

failure regions can be identified quickly and thereby to analyze

failure location, failure mode, failure volume, failure degree, etc.

using the developed failure feature identification algorithm. 

The boolean calculation is employed to identify the failure re-

gions of the defects where are represented by the point-clouds

located in the defective regions, namely missing point-clouds as

shown in Fig. 4 . Since the defective turbine blade is a 3D object,
wo cross-sectional integration analysis is carried out to analyze

he missing point-clouds for failure features. One cross-sectional

nalysis is for the X-Z cross-sectional to identify where is the fail-

re area and the other cross-sectional analysis is carried out along

-axis to identify the depth of the failure region. Before generating

he cross-sectionals along X and Y axis, users need to determine

he interval between two cross-sectionals, namely step x and step y 
e.g. 1mm), firstly. The number of cross-sectionals along X and Y

xis, namely Slice x and Slice y , can be obtained using Eq. (1) and

q. (2) , where length x and length y are the length and width of the

urbine blade respectively. The smaller the interval, the more slices

ill be generated, which in turn leads to more accurate calculation

f failure features. With the extracted missing-points and gener-

ted cross-sectionals, the coordinate value of the point-clouds can

e obtained to analyze the following failure features. 

• The most common failure locations are located at the tip, edge,

and surface of the turbine blade. It is easy to identify failure lo-

cation using the relative position between missing points with

original point-clouds. 

• Wear and crack are typical failure modes in turbine blades.

Currently, in this study, the failure mode can be identified as

“Wear” if the failure length and width are larger than the depth

simultaneously, otherwise, the failure mode can be identified as

“Crack”. 

• As for the identification of failure volume, the defective area in

the X-Z cross-section is firstly calculated by Eq. (3) and then the

failure volume can be calculated by Eq. (4) , where x max and x min 

means maximum and minimum x coordinates of the missing

points respectively, similarly, y max and y min means maximum

and minimum y coordinates of the missing points. Z original and

Z defective means the maximum and minimum value of z coordi-

nates of original point-clouds and missing points respectively

in each intersection line of the X-Z cross-sectional and the Z-Y

cross-sectionals. 

Sl ic e x = 

l engt h x 

ste p x 
(1)

Sl ic e y = 

l engt h y 

ste p y 
(2)

Slic e x = 

∫ x max 

x min 

(
Z original − Z de fecti v e 

)
dx (3)

V olume = 

∫ y max 

y min 

Area dy (4)

• Base on the failure mode and failure volume, the failure degree

can be quantified and scored like Table 1 shows according to

Wang et al. ( Ridley and Ijomah, 2015 ). 

.4. Decision-making and tool path generation 

After the failure features of the defects are obtained, opera-

ors can make advisable decisions on whether to remanufacture

he part or not. It is because that the remanufacturability of used

arts is associated with technical feasibility, economic feasibility

nd environmental benefits which are influenced by the identified

ailure location and failure volume. Based on the identified fail-

re features, an optimal remanufacturing process planning can be

enerated quickly. In addition, a reference case can be retrieved

nd reused using the identified failure features as key attributes

f there exists a remanufacturing case base, which in turn brings

reat savings in terms of time and labour. 

For the identified failure volume, hybrid tool path of adaptive

M and SM can be generated to repair the defects. SM tool path
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Table 1 

Quantified score of failure degree of wear and crack. 

Failure mode Volume of damage (mm 

3) Quantified score equation Quantified score interval [0,10] 

Wear 0 — 0 

0 < x < 50.0 q = 

x −0 
50 . 0 −0 

× 5 (0, 5) 

50.0 ≤ x < 100.0 q = 

x −50 . 0 
100 . 0 −50 . 0 

× 5 +5 [5,10) 

x ≥ 100.0 10 10 

Crack 0 — 0 

0 < x < 10.0 q = 

x −0 
10 . 0 −0 

× 5 (0, 5) 

10.0 ≤ x < 20.0 q = 

x −10 . 0 
20 . 0 −10 . 0 

× 5 [5,10) 

x ≥ 20.0 10 10 

Table 2 

Specific identified failure features of defects. 

Number of defects Failure location Failure mode Failure volume Failure degree 

1 Blade tip Wear 31.7672 3.2 

2 Blade surface Wear 65.0302 6.5 

3 Blade edge Wear 131.0857 10 
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Fig. 5. Identified results of failure features of the defective turbine blade. 
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such as milling tool path) is first generated to remove excess ma-

erial around the defects to form a regular and smooth surface. It

an be done with the aid of a CAM system, e.g. HyperMill, which

an not only simulate the repair process but also generate G-code

o drive CNC machine for actual material removal. Once the pre-

rocessed surface is obtained, AM tool path (such as laser direct

etal deposition tool path) can be generated to deposit material

n the defective region layer by layer so as to bring the defective

art back to the original geometry. Finally, SM operation (such as

rinding) is carried out again to finish the part surface so as to

eet the geometry size and accuracy requirement. 

. Implementation and discussion 

.1. Implementation and example 

The failure feature identification method for adaptive remanu-

acturing presented above is implemented by employing the soft-

are tool MATLAB R2018a and the used laptop for development

uns on Windows 10 operating system with 12GB RAM. A software

rototype for failure feature identification has been developed, in

hich the CAD model of the original part is input and then com-

ared with the point-clouds of the defective part after a serious of

rocesses of point-clouds generation, fine-registration and Boolean

alculation. Failure features including failure location, failure mode,

ailure volume and failure degree can be calculated quickly. 

A turbine blade is a kind of typical aero-engine part with com-

lex geometry. It is susceptible to wear or damage because of high-

emperature and high-pressure working environment. A defective

urbine blade with multi-defects is taken as an example to validate

he proposed method. 

Fig. 5 demonstrate the identified results of failure features

f the turbine blade. Three defects located in the blade tip,

lade surface and the blade edge respectively are identified accu-

ately which are represented with red point-clouds in the picture.

able 2 shows specific identified failure features of these three de-

ects. 

.2. Discussion 

Considering the relatively small geometry size of the blade, the

arameters of ‘Hmax’ and ‘Hmin’ is set to 0.5mm and 0.1mm re-

pectively and ‘MeshGradation’ is set to 1.5 after several times of

rial to obtain higher accuracy and cost less time at the same time.

he whole mesh operation is very quick which only takes 24.56

econds in current laptop configuration. The whole failure feature
dentification process for the illustrated turbine blade takes less

han 3 minutes which not only increases the traditional manual

nspection accuracy but also decreases the cost and labour at the

ame time using the proposed method. Accurate identification of

ailure features facilitates operators to make strategy and process

lanning for adaptive remanufacturing. The remanufacturing qual-

ty will be influenced by the uncertainty of RE technology, CNC

achining, and additive manufacturing. How to generate optimal

aterial removal tool path to form the regular surfaces consider-

ng material-saving and workability for AM operation simultane-

usly has not been discussed so far. The automatic generation of

he hybrid tool path for adaptive remanufacturing will also be an

mportant part of future work. 

. Conclusion 

Failure feature identification is a significant process for reman-

facturing. However, the failure feature identification is still an

rror-prone and ad-hoc work due to part-to-part variation. An effi-

ient method for failure feature identification is required to ensure

he remanufacturing efficiency, quality and success rate. This paper

roposed a novel failure feature identification method for adap-
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tive remanufacturing. The failure features such as failure location,

failure location, failure volume and failure degree of multi-defects

are identified quickly through processes of point-clouds generation,

fine registration, and Boolean calculation. The identified results fa-

cilitate the decision-making of remanufacturing strategy and pro-

cess planning as well as generation of the hybrid tool path for

adaptive remanufacturing. A defective turbine blade is taken as an

example to validate the effectiveness of the proposed method. 

The proposed method can be extended to the real application of

remanufacturing, enhancing existing remanufacturing technologies

and thereby creating more economic and environmental benefits. 
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