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Abstract 

Recent work has highlighted the importance of the so-called “weathering crust” as a microbially 

and hydrologically active layer on glacier surfaces. However, this layer is yet to undergo 

investigation, with no estimates of water, microbial or nutrient fluxes through it to downstream 

freshwater and marine ecosystems. The mechanics of the weathering crust, and its role in transport 

and/or retention of particulate impurities at the glacier surface presents a research imperative. To 

investigate the eco-hydrology of glacier surfaces, this thesis presents a dataset collected at eleven 

sites in the Northern Hemisphere from the Canadian Arctic to the European Alps, collected 

between 2014 and 2016. To interrogate this dataset, the study develops and tests a novel logging 

piezometer which is used to calculate mean weathering crust hydraulic conductivity at all locations 

of 0.184 m d-1, equivalent to a sandstone, and meltwater velocities of 10-1 m d-1. This hydrologically 

poor aquifer, causes the storage of water at the surface for tens of day, providing an ideal medium 

for biogeochemical cycling. For microbial cell enumeration, a flow cytometry protocol is presented 

which is suitable for glacial environments providing accurate, reliable cell counts. Across the eleven 

sites, mean microbial cell concentration in weathering crust meltwater was revealed to be ≈ 104 

cells mL-1. It was unclear what controls exist upon cell concentrations in the weathering crust, 

however no links between weathering crust hydraulic conductivity, electrical conductivity or water 

temperature and cell concentrations were observed. Cellular particulate organic carbon flux (POC) 

form this active environment contributes a minimum of 1.1 Tg of cellular carbon per year to 

downstream freshwater and marine environments per year.  
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panel ii, the period of clear sky conditions in panel i has caused extensive sub-surface 
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decreases radiative energy flux and therefore total melt energy. By panel iii, cloud 

cover dominates, and SWR flux is reduced to nearly zero; turbulent fluxes dominate 

the energy available for melting. As a result, ice crystal size is not reduced like in 

panel i, and the weathered ice is stripped from the surface by melt, leaving a hard, 

glassy surface and ice of a greater density at the surface of the glacier. 
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2.3 Summary of aquifer and stream/lake interactions. a) a gaining stream (i.e. water is 

moved from the groundwater system to the stream, discharging groundwater); b) a 

connected losing stream (recharging groundwater); c) a disconnected losing stream; 

and d) a throughflow lake, both discharging and recharging groundwater. 
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2.4 Conceptual development of the weathering crust measured using the proxy of bulk 

density, of the weathering crust over a period of six days in the Arctic and European 

Alps. In the European alps, higher SWR receipt during daylight hours causes the 

weathering crust to develop more quickly than in the Arctic, whilst the converse is 

true overnight (where Alpine SWR receipt is zero). On day 4, the Alpine weathering 

crust reaches an equilibrium of maximal development (note that this is an indicative 

example only, not an empirical hypothesis). On day 5, a period of cloudy weather 
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Arctic.  
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2.5 a) Daily average insolation at the top of atmosphere as a function of season and 

latitude (Fu et al., 2015), with the two example locations and period of interest 

indicated. b-e) modelled incident radiation for hypothetical north and south facing 
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2.6 A conceptual model of water flow through the weathering crust. a) catchment-scale 

water flow, ultimately into supraglacial streams in topographic lows, where water is 

rapidly advected from the surface. Water is lost from the weathering crust via 

evaporation, with capillary action drawing water upwards in the unsaturated zone, 

and meltwater from the surface and subsurface infiltrates through the unsaturated 

zone to the water table, which fluctuates with recharge and discharge. The inset 
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indicates a fully developed weathering crust, comparable with Figure 2.3b. In this 

example, a cryoconite hole acts as a throughflow, gaining and losing water. 

Depending on the position of the water table, cryoconite holes may also gain or lose 

water to the weathering crust. Hypothesised density, porosity and hydraulic 

conductivity profiles are indicated; in the unsaturated zone water content controls 

hydraulic conductivity, and in the saturated zone, porosity is the key control. b) and 

c) indicate these profiles under different conditions: panel b a low water table in a 

developed weathering crust, and panel c a shallow, poorly developed weathering 

crust.   

2.7 Microbial habitats within the weathering crust. a) The surface and immediate surface 

within it, including surface algae, cyanobacteria in addition to cells in water films on 

ice crystals and those which have formed biofilms around ice crystals. b) the margin 

of a cryoconite hole, where pelagic microbes (primarily bacteria) can transfer 

through the hole walls with water movements. c) Deeper in the weathering crust, 

reduced radiation receipt is aligned with fewer phototrophic microbes. At depth, 

vein sizes between ice crystals are smaller, and microbes are mechanically filtered. d) 

The sediment layer of a cryoconite hole, bound by cyanobacteria with embedded 

bacterial cells. Phototrophs are found at the surface of this layer, where radiation 

receipt is greatest. Connections between microbes in the sediment and water phase 

of holes remain unclear.  
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3.1 Probe design and calibration. a) An image of a water-level probe including a 

centimetre scale. b) A cartoon schematic of the probe design. c) The wiring diagram 

for the probe circuitry, as indicated in Figure 3.1b. Probe voltage outputs at given 

water levels under specific water conditions, with the black line indicating a linear 

regression (r2 > 0.99) and the grey area a 95% confidence bound, for the typical 

supraglacial conditions (X) and for other variable conditions of electrical 

conductivity (d), suspended sediment load (e) and temperature (f). 
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3.2 The role of auger-hole drilling on the water table and idealised hydraulic head. The 

drilling and bailing of an auger hole causes a localised drop in the water table (with 

radius up to 2m) altering the hydraulic gradient indicated by the grey arrows. Note 

that the hydraulic gradient indicated by these arrows corresponds with the water 

table of the same line style, i.e. the dashed grey arrows represent the hydraulic 

gradient of the uninterrupted water table whilst the dotted arrows correspond with 

the modified water table. 
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3.3 Dynamic viscosity, µ, of water as controlled by temperature in the range -1 °C ≥ t 

≥ 20 °C (after Kestin, 1978). Note, the area of interest, 0.1 °C ≥ t ≥ 2 °C, aligning 

with observed auger-hole temperatures, is highlighted with a solid line. 
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3.4 A hemispheric location map of glaciers sampled within this study. Letter codes are 

identified within Table 3.1. 
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3.5 a) An idealised recharge curve. In panel b), each dashed line indicates the position 

of an idealised water table; during stage 1, anisotropic, pressure driven flow 

dominates due to the large hydraulic head generated by the presence of an auger-

hole (in black) generated sink in the water table. Through stage 2, this influence is 

reduced (although still prevalent) but influence of this false water head decreases as 

the hole fills (aligning with the non-linear stage in panel i). At stage 3, the water level 

in the borehole is equilibrated with the surrounding water table and recharge stops 

as the auger-hole becomes equilibrated with the surrounding weathering crust water 

table. 
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3.6 Change in K with auger-hole depth for a) FGBI and b) GRDS, indicating median 

for each site (solid vertical line) of 0.183 and 0.220 m d-1, respectively. Sample sizes 

(n) are noted on the right of the diagram. *Note one outlying point ≥ 1.5 m d-1. 
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3.7 Hydraulic conductivity of holes of 36 cm depth across all glaciers within the sample 

set, with latitudes displayed in degrees North of the equator. Sample sizes (n) are 

noted on the right of the diagram. * Note, the x axis is limited to 1.5 m d-1, with one 

outlying point above this limit at GBOS, with a value of 3.519 m d-1. 
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4.1 Ranges of cell and sediment concentrations for which EFM, FCM and qPCR exhibit 

acceptable accuracy (100 ± 25 %) and precision (≤ 20 % relative standard deviation) 

for the enumeration of glacial samples. Typical concentrations of cells and sediments 

in different glacial hydrological environments are highlighted; the supra-glacial 

hydrological environment category incorporates supraglacial streams, cryoconite 

waters and surface ice and ice cores. Shaded areas with dashed borders indicate that 

two enumeration techniques are suitably accurate and precise. Data compiled from: 

Amato et al., 2007; Anesio et al., 2010; Bartholomew et al., 2011; Bøggild et al., 2010; 

Collins, 1979; Foreman et al., 2007; Hodson et al., 2013; Irvine-Fynn et al., 2012; 

Karl et al., 1999; Mindl et al., 2007; Miteva et al., 2009; Priscu et al., 1999; Santibanez 

et al., 2016; Säwström et al., 2002; Skidmore et al., 2000; Stibal et al., 2015; Svensson 

et al., 2000. 
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4.2 Schematic demonstrating the automated process of “event” measurement using 

flow cytometry. In 4.2a∙i-iii, a single microbial cell, contained within the sample 

medium (dark blue; usually water) is entrained within the “flow core” and 

hydrodynamically focussed by the sheath fluid (light blue). Between i – iii, the cell 
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size (Mullaney et al., 1969) and internal cell complexity (Salzman et al., 1975) 
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different emission and excitation wavelengths. Signals are amplified by a 

photomultiplier tube (PMT), the sensitivity of which can be adjusted in the 
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which is not fully disaggregated, are above the optimal detection concentration, or 

for which the flow rate is set above the optimal rate. “Clumped” particles (either 

cell-cell, as in this example, or cell-clast/clast-clast or multiples thereof) occur in 

these situations and can be identified using the FSC-A and FSC-H signals (compare 

the signal graphs 4.2a∙iii and 4.2b∙iii; see Figure 4.4a). To reduce the number of 

clumped particles, further disaggregation, dilution or reduction of the flow rate can 

be undertaken. However, cells which are aggressively disaggregated may lyse, over-

diluted samples may fall below the detection rate of the instrument being used, and 

low flow rates increase the time taken to measure an appropriate sample volume 

(400 - 1500 μL).  
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4.3 Flow chart indicating sample analyses procedures, from a frozen sample to in-

software analysis. 1) Samples are defrosted at room temperature in the dark. 2) 2 × 

1 mL aliquots of sample are taken in a sterile flow hood. 3) One aliquot is stained 
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using SYBR Gold (1 × final conc.). 4) Experimental aliquots are stored in the dark 

at room temperature for up to 4 hours prior to measurement. 5) Measurement is 

undertaken in the order outlined using the Sony SH800-EC. 6) Data is analysed using 

the proprietary Sony software. Prior to stage 2 and 5, sample sand experimental 

aliquots were vortexed for a minimum of 30 seconds.  

4.4 Example gating procedure for samples containing cells and clastic sediment. 4.4a 

shows an example of a sample which would require further disaggregation or flow 

rate; non-clumped particles are shown in the green gate, with clumped particles in 

the blue gate (8.6 %) with a lower than expected FSC-H proportionally to FSC-A 

(note the remaining 0.66 % of events are off-axis). 4.4b indicates an unstained 

experimental aliquot, and 4.4c its stained pair. Increase in FITC-A signal is observed 

due to staining, as stained events migrate rightwards on this axis. Data point colours 

within the “Cells” gate indicate size, determined using calibration beads in the FSC 

channel (gate boundaries not shown for visual clarity). 
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4.5 Accuracy scores (%) as a function of sediment and cell concentration, considering 

the role of cell and sediment type. The grey section of each plot indicates the 100 ± 

25 % region of acceptable accuracy. 
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4.6 Accuracy scores as a function of CC-APC, highlighting the area of acceptable 

accuracy (100 ± 25 %, grey) and CC-APC enumeration threshold determined by this 

study. 
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4.7 Mean size distributions for cell events for cell only control samples (n = 48) and 

mixed media experimental samples (n = 359). Error bars represent ± 1 standard 

deviation. 
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4.8 Crossover regions of typical gates for cells and clastic sediment. The potential for 

masking of rare cell events by rare clast events is demonstrated by the intersecting 

gates for population extremes, one cause of under- and overestimation of cell 

concentrations, demonstrating the importance of tight gate positioning.  
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4.9 Ranges of cell and sediment concentrations for which EFM, FCM and qPCR exhibit 

acceptable accuracy (100 ± 25 %) and precision (≤ 20 % relative standard deviation) 

for the enumeration of glacial samples, considering the additions of this study (after 

Figure 4.1).  
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5.1 Cell concentrations in weathering crust (blue) and stream (orange) meltwaters for 

glaciers across the northern hemisphere (latitudes in brackets). Outliers are indicated 

with dots of corresponding colour, and sample numbers on the right align with the 

corresponding box. For GRKM, GRDS and GBOS, no stream samples were 

collected, and only one stream sample was collected at RMOS. Note that for all 

glaciers with ≥ 1 stream sample, interquartile ranges of cell concentrations in the 

weathering crust and stream samples overlap.  
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5.2 Cell size distributions for all samples and sub-samples including those with paired 

permeability measurements, and from weathering crust/stream meltwaters. Error 

bars show ± 1 standard deviation.  
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5.3 Cell concentration as a function of hydraulic conductivity at all sites, using a log-log 

scale. Glaciers are highlighted by colour, and the environment of sites (polar or 

alpine) is indicates using a triangles and circles respectively. No trends are apparent 

between these two variables across the dataset as a whole.  
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5.4 Cell concentrations as a function of hydraulic conductivity, with each sub-plot 

indicating a different glacier, as follows (n): a: PBSV (45); b: FFSV (4); c: FGBI (21); 
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d: SGSE (19); e: GRKM (17); f: GRDS (32); g: GBOS (7); h: RMOS (7); i: VFCH 

(243); j: HACH (48).  

5.5 Cell concentration as a function of permeability at all sites, using a log-log scale. No 

trends are apparent across the entire dataset, or when considered on a glacier-by-

glacier basis. 
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5.6 Cell size distributions using the mid-point of each size class as the diameter of the 

cells within it, note that the x axis breaks are defined by the sizes of calibration beads. 

The ≤ 1 μm class is attributed a diameter of 0.5 μm (as cells cannot have a diameter 

≤ 0) and the > 15 μm class is attributed a nominal diameter of > 15 μm given the 

lack of upper-bound. A linear interpolation is applied to the point data to generate 

the contour surface, r2 = 0.998. 
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5.7 Cell concentrations as a function of stream discharge, with each sub-plot indicating 

a different glacier, as follows (n): a: all glaciers (93); b: PBSV (7); c: FFSV (4); d: 

VFCH (53); d: HACH (29). 
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6.1 Map showing the location of Vadrec del Forno within Switzerland, and location of 

study site on the glacier. The location of recharge holes, stream gauging point (S) 

and water table array (A) in the context of immediate streams and rills are shown. 

Further information is given about each auger-hole in Table 6.1. 
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6.2 Digital elevation model (DEM) constructed for the VDS micro-catchment in July 

2017. Channels were mapped using the orthoimage generated in 2016; the VDS 

stream and its tributaries are mapped, as are the two adjacent major channels (OMC) 

and their corresponding tributaries. Note that some channel migration (< 5 m) is 

demonstrated between the mapped channels (August 2016) and implied channel 

locations from the DEM (July 2017). 

123 

6.3 Time-series of a) modelled ablation rate and cumulative ablation, b) Hourly-averaged 

modelled SWR and cumulative energy receipt from SWR, c) proportional 

contribution to melt of SWR and all other energy fluxes; d) air temperature; e) auger-

hole hydraulic conductivity for VFR 1-4; f) water table level at VFA and g) stream 

discharge at VDS. Trends are described in the main text.  
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6.4 1-minute averages of a) EC and b) temperature at VDS and in the auger-holes on 

DOY 188. Auger holes on the east of VDS are indicated with a circle, and those on 
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1. Introduction 

1.1 Background and context 

Glacier surfaces are changing on a global scale as a response to ongoing climatic change (Ming 

et al., 2012; Oerlemans et al., 2009; Tao et al., 2013) with increased rates of mass loss observed globally 

since the 19th century across small mountain glaciers (Dyurgerov and Meier, 2000) and the Greenland 

and Antarctic Ice Sheets (Rignot et al., 2011). Melt processes, occurring in the ablation zone, release 

stored “impurities” (Dancer et al., 1997), incorporated into glacial ice via snow deposition and 

firnification in the accumulation zone (Bøggild et al., 2010). These so-called impurities include clastic 

sediment “dusts”, black carbon, persistent organic pollutants, anthropogenic and natural radionuclides, 

and microorganisms including single and multi-celled eukaryotes, archaea and bacteria (Baccolo et al., 

2017; Edwards, 2015; Hodson, 2014; Lehmann et al., 2016; Łokas et al., 2016; Łokas et al., 2018; 

Segawa et al., 2013), which are supplemented with locally derived material deposited by aeolian 

processes (Fischer et al., 2007; Ruth et al., 2003; Tedstone et al., 2017; Wientjes et al., 2017). However, 

there is a lack of understanding of the provenance, fate and impacts of these impurities upon melt 

processes and biogeochemical cycling on the ice surface itself and within the proglacial environments 

to which they are exported. 

Presence of dusts and the accumulation and growth of distributed microbial communities and 

their humic by-products (Stibal et al., 2010) on glacier surfaces have been linked with albedo reduction 

(Musilova et al., 2016), further exacerbating the effect of increasing global temperatures upon glacial 

melt rates. The most pertinent class of impurities are distributed microbial communities, with recent 

work demonstrating that 73 % of spatial variability in the dark zone of the Greenland Ice Sheet can be 

explained by the presence of such microorganisms (Ryan et al., 2018). The ongoing emergence and 

dispersal of such impurities plays a key role in the future darkening and spatial expansion of both the 

Greenland dark zone and in the ablation zones ice masses around the globe, and is best exemplified 

by recently identified decadal-scale darkening trends in Greenland (Tedstone et al., 2017) and the 

European Alps, specifically Switzerland (Naegeli et al., 2019). However, there is currently limited 

understanding of the mechanics underlying the redistribution of impurities that have been liberated 

from melting ice. Determining the process(es) relating to the transport and residence time of dust and 

microbial cells across ice surfaces represents a critical research gap, essential to accurately constrain 

spatio-temporal patterns of albedo across ablation zones. 
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A hypothesised transport pathway for the redistribution of surface impurities is the weathering 

crust (Yang et al., 2018a), a near-surface porous aquifer up to 2 m thick (Irvine-Fynn et al., 2011), 

commonly found on ablating glacier surfaces. Acknowledgement of the weathering crust has 

challenged the hitherto commonly held assumption that meltwater and impurities are transferred 

virtually instantaneously from the point of production to supraglacial channels (Fountain and Walder, 

1998), where they are rapidly advected from the ice surface. Transport of microbial cells through the 

weathering crust is thought to be size-selective (Irvine-Fynn et al., 2012), linked with cross-sectional 

pore area between weathered ice crystals. This system demonstrates potential to both transfer and 

retain impurities, darkening ice surfaces by acting as a mechanical filter and influencing surface albedo 

due to the translucent nature of ice above it. Despite the recent surge in interest in supraglacial 

hydrology evident in the literature, (e.g. Gleason et al., 2016; Karlstrom et al., 2013; Karlstrom et al., 

2014; Mantelli et al., 2015; McGrath et al., 2011; Rippin et al., 2015; Smith et al., 2015; Smith et al., 

2017; St. Germain and Moorman, 2016; Yang and Smith, 2013; Yang et al., 2018b) a detailed 

understanding of the fundamental metrics of the weathering crust, and their variation in space and 

time is still lacking (Irvine-Fynn et al., 2011). Whilst recent work has been undertaken examining these 

variables and the potential short-term water storage capacity of the weathering crust (e.g. Cook et al., 

2015; Cooper et al., 2018), there remains a scarcity of porous media measurements, such as hydraulic 

conductivity, across a spectrum of thermal regimes and glaciated regions. 

Glacial environments have traditionally been considered too harsh for significant microbial life 

to occur. It has been considered that any such life was either dormant or functioning sub-optimally; 

given that to survive, organisms have to be at least tolerant to extreme cold, low nutrient availability, 

and seasonally variable UV radiation levels (Cameron et al., 2012; Goordial et al., 2013; Harding et al., 

2011; Larose et al., 2013). However, the presence of microbes in such environments is now well 

established (e.g. Anesio et al., 2017; Hodson et al., 2008; Larose et al., 2010; Laybourn-Parry et al., 

2012), with glacier surfaces worldwide containing an estimated 1025 to 1029 microorganisms (Irvine-

Fynn and Edwards, 2014; Priscu and Christner, 2004), an equivalent order of magnitude to tropical 

rainforest soils (Whitman et al., 1998). Despite such enumerative estimates, there is, to date, no widely 

accepted standard enumeration protocol for supraglacial samples (Miteva, 2008), fundamental for 

robust and reliable enumeration measurements to define how supraglacial microbes, interact with their 

surrounding environment and to examine microbial fluxes (Fredrickson and Balkwill, 1998).  
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The albedo-reducing potential of the microbes found on glacier surfaces is best exemplified by 

consideration of the direct effects, due to the production of pigments in response to high levels of UV 

irradiance and/or nutrient limitation (Cook et al., 2017). Pigment change to an existing surface 

population, the exposure (via melt-out) of a previously buried community, and the proliferation of 

cells as a result of biological growth all result in darker surfaces. Filamentous organisms, such as 

cyanobacteria, interact with sediment particles and ice crystals increasing the residence time of the 

former on the ice surface via the formation of cryoconite holes (Langford et al., 2010). Transient water 

storage within the weathering crust provides prolonged opportunities for biological processes 

including replication and biogeochemical cycling, but residence times of microbes within the 

weathering crust remain unexplored.  

As well as acting as a key control upon albedo, ice-surface microbial communities play vital 

roles in carbon and nitrogen cycling (Cook et al., 2010; Hodson et al., 2007; Telling et al., 2012a; Telling 

et al., 2012b), transforming labile inorganic nutrients, such as ammonium and phosphate, into organic 

forms (Anesio et al., 2009). On a global scale, glacier surfaces represent a poorly understood carbon 

(Hood et al., 2015) and nutrient reservoir. Due to the availability of liquid meltwater, photosynthetically 

available radiation, and relatively high concentrations of nutrients (Cook et al., 2016), ablation zones 

represent a glacial biodiversity hotspot supporting active phototrophic and heterotrophic (Christner et 

al., 2018) metabolism. At a regional scale, changes in glacier run-off may represent an important flux 

of labile, ecosystem-fertilising organic carbon to the supra-, en-, sub- and stream and marine pro-glacial 

environments (Musilova et al., 2017). Therefore, glaciers represent a key link between terrestrial and 

aquatic carbon fluxes. Whilst this proportion is small in the context of global carbon fluxes, glacier 

derived DOC is highly biologically available in contrast to other sources (such as vascular plants and 

marine algae), with 25-95 % metabolised in laboratory assays of microbial heterotrophs (Hood et al., 

2009; Singer et al., 2012). Establishing microbial delivery rates from the weathering crust to the 

efficient, channelised drainage pathway to proglacial environments requires greater understanding of 

microbial transfers across the ice-sheet surface where microbial cells are metabolically and 

reproductively active. 

Ultimately, the weathering crust will modulate meltwater and impurity fluxes to downstream 

environments from ablating glaciers and ice sheets. Widely assumed to be an important element of the 

biogeochemical budget (Cook et al., 2015; Irvine-Fynn et al., 2012; Rassner et al., 2016; Stevens et al., 

2018), few datasets examine microbial abundance, activity or transfers within the weathering crust. 
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Therefore, to characterise these surface changes and extraglacial nutrient fluxes, it is necessary to 

understand the changing input from glaciers, including how cells are stored, transported and exported 

through and across the supraglacial hydrological system. 

1.2 Research aim and objectives 

This thesis aims to examine the eco-hydrology of glacier surfaces, quantifying and exploring 

mechanisms and environmental variables controlling transport of water and microbial cells through 

the weathering crust found at the near-surface of ablating glaciers and ice sheets, and estimate the 

downstream delivery of carbon in the form of microbial cells to downstream environments from non-

Antarctic glaciers. To achieve this aim, five key objectives are defined: 

1. Develop and establish a protocol and instrument suitable for the calculation of hydraulic 

conductivity of the near surface weathering crust, applying existing groundwater knowledge and 

techniques. 

2. Characterise weathering crust hydraulic conductivity across a range of glaciers in a variety of 

climatic, latitudinal and geographic settings. 

3. Optimise the high-throughput method of flow cytometry (FCM) to ensure accurate and reliable 

cell counting in supraglacial environments, assessing uncertainties due to the influence of cell 

and sediment type and concentration. 

4. Quantify microbial cell concentration in weathering crust meltwater across an assortment of 

Northern Hemisphere glaciers using FCM and establish glacier-scale differences in cell 

concentration, highlighting potential controls upon it. 

5. Examine links between hydraulic factors and microbial cell concentrations to assess the extent 

to which the former influence the latter in time and space at Vadrec del Forno, a typical Alpine 

valley glacier located in the Swiss Alps. 

1.3 Thesis structure 

Chapter 2 reviews existing literature pertaining to the weathering crust, including its formation, 

hydrology and context within the wider supraglacial system in addition to consideration of fluid 

flow mechanics of porous media in terrestrial environments. The flourishing field of supraglacial 

microbiology is outlined, with the biogeochemical role of these microorganisms highlighted. Finally, 
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the established body of knowledge of microbial transfers and dynamics in terrestrial media is 

described. 

Chapter 3 was originally published in Hydrological Processes in 2018 (Stevens et al., 2018). This 

chapter describes the development and application of a novel piezometric probe to calculate 

hydraulic conductivity of the weathering crust at 10 ice masses across the Northern Hemisphere. 

Chapter 4 evaluates the application of flow cytometry to the supraglacial environment, using 

samples developed from laboratory cultures of cryospheric bacteria. An array of cell types, abiotic 

particle types, and concentrations of each are considered to establish criteria for which FCM 

provides an acceptable level of accuracy for cell enumerations in the weathering crust. 

Chapter 5 expands on the dataset presented in Chapter 3, by considering linkages between 

weathering crust hydraulics and microbial cell concentrations of the waters within it. The global 

dataset of microbial cell concentrations is substantially expanded, and carbon exports from the 

supraglacial environment is estimated to the year 2099. 

Chapter 6 considers the variables examined above at local scale, examining a micro-catchment at 

Vadrec del Forno, a Swiss Alpine glacier.  

Chapter 7 provides a discussion and summary of the key findings of the four experimental chapters 

(3-6), exploring the dynamics and implications of microbial cell transfer though the weathering 

crust.  

Appendix 1 presents exemplar data from Chapter 3 (Stevens et al., 2018). 

Appendix 2 was originally published in Frontiers in Microbiology in 2015 (Stibal et al., 2015). It is 

included within this thesis due to the contribution of the author regarding cell count method testing 

and can be considered a pre-cursor to Chapter 4 (evaluation and optimisation of flow cytometry 

for glacial samples). 

1.4 Author contributions to published and collaborative work 

Several chapters demonstrate contributions from a team of academic colleagues, which are 

outlined below. All initials refer to titled authors in the original manuscript(s), otherwise names and 
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affiliations are provided; for chapters which are not explicitly described usual supervisory contributions 

were provided by Tristram D.L. Irvine-Fynn (TDI), Andrew C. Mitchell (ACM) and Arwyn Edwards 

(AE) (all Aberystwyth University). 

Chapter 3: IS wrote the manuscript, with input from TDI, Phil Porter (PP, University of 

Hertfordshire), Joe Cook (JC; University of Sheffield) and ACM. All analyses and data processing were 

undertaken by IS. Fieldwork was undertaken by TDI, JC, AE, Martin Smart (MSm, University of 

Hertfordshire), and Brian J. Moorman (BJM, University of Calgary) in 2014; and IS, TDI, PP, and 

Andy J. Hodson (AJH, UNIS) in 2015. The study and equipment design were originally conceptualised 

by TDI, building on the original study of JC. Piezometers were constructed by Steve Norburn 

(University of Sheffield) and Dave Kelly (AU). 

Chapter 4: All laboratory work, analyses and data processing were undertaken by IS. Fieldwork 

was undertaken by TDI, JC, AE, MSm and BJM in 2014; IS, TI-F, PP, and AJH in 2015; and IS and 

MSm in 2016. 

Chapter 5: Fieldwork was undertaken by TDI, JC, AE, MSm, BJM, PP and AJH, as per Chapter 

3. All laboratory analyses and writing were undertaken by the author.  

Chapter 6: Data collection, processing and laboratory analysis was carried out by IS, excluding 

the remotely sensed imagery. Orthoimagery was collected and supplied by Thomas Holt (AU) and 

Morgan J. Gibson (AU). The DEM was supplied by Edward A. Roberts (previously AU) who 

undertook all data collection and processing, with support from Alun Hubbard (AU). 
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2. A Review of Supraglacial Hydrology and 

Microbial Ecology 

Supraglacial hydrology directly connects melt processes on the glacier surface to those of 

meltwater delivery to downstream systems, hence it is imperative to characterise this system to 

understand the response of glaciers and ice sheets within the context of changing global climate 

(IPCC, 2013). Current knowledge and models (e.g. Bougamont and Bamber, 2005) assume that 

friction limited surface flow determines the rate of transport of meltwater across the glacier surface. 

Comprehensive reviews of temperate (e.g. Fountain and Walder, 1998; Hubbard and Nienow, 1997) 

and non-temperate (e.g. Irvine-Fynn et al., 2011c) glacier hydrology, including en- and subglacial 

systems, incorporate this simple, rapid-response run-off model.  However, a porous surface layer, 

the so-called “weathering crust” (Müller and Keeler, 1969), develops on the surface of ablating ice 

masses and complicates this simple model (Figure 2.1). In addition to flow across and through the 

surface and near-surface, supraglacial water may be temporarily stored within components of this 

system (Jansson et al., 2003), including in the seasonal or perennial snow pack, within firn (e.g. 

Forster et al., 2014; Munro, 2011), the ablating ice surface (i.e. the weathering crust) (e.g. Cooper et 

al., 2018; Smith et al., 2017b), or surface meltwater ponds (e.g. Das et al., 2008). How meltwater 

drains through glaciers is critical to ice dynamics, runoff characteristics and water quality in glacially-

fed catchments (Milner et al., 2017), especially given the melt-out of organic (e.g. Battin et al., 2016; 

Hood et al., 2015; Singer et al., 2012; Wilhelm et al., 2013) and inorganic particulates deposited on 

ice masses since ~1850 by anthropogenic pollution (e.g. Bettinetti et al., 2016), which are ultimately 

transported into downstream freshwater catchments and marine ecosystems.  

Figure 2.1 a) A weathered ice surface at Vadrec del Forno (Switzerland) in July 2016, typical of a glacier 

surface which has been exposed to a period of clear-sky conditions. In contrast, panel b shows the smooth, 

“glassy” unweathered surface of Protektorbreen (Svalbard) in August 2015 following a four-day period of 

cloud cover, wind and heavy rain. 



2. Literature Review 

8 

This chapter will review the hydrology and microbiology of glacier surfaces, providing an 

outlook on contemporary knowledge pertaining to these interlinked systems. Initially, the roles of 

glacier thermal regime and melt processes shall be considered, which are both factors in weathering 

crust formation, development and degradation. Given the nature of the investigative techniques 

used to quantify weathering crust hydrology, the fundamental laws of porous media hydraulics 

determined in terrestrial media such as soils and rocks will be presented. The flourishing field of 

supraglacial microbiology will then be outlined, and comparisons drawn with similar terrestrial 

systems. The chapter will conclude with a hypothesised conceptual model based upon current 

knowledge of terrestrial systems and establish the research questions that will be investigated within 

this thesis.  

2.1 Thermal regime 

Thermal regime directly influences glacier hydrology, acting as a controlling factor upon the 

transfer of meltwater between the supra-, en-, and subglacial systems and the characteristics of the 

near-surface. A full review of the role of thermal regime upon supraglacial hydrology is beyond the 

scope of this thesis, with information herein linked solely with supraglacial processes. A full review 

can be found within Irvine-Fynn et al. (2011c). 

The key distinction between temperate and non-temperate (polythermal) glaciers is that the 

entirety of a temperate glacier is above the pressure melting point (PMP), whereas non-temperate 

glaciers contain ice both above and below this temperature in a multitude of spatial arrangements 

(Irvine-Fynn et al., 2011c; Pettersson et al., 2004). Regardless of large-scale thermal regime, a 

transient thermal layer is observed in the ablation zone, which varies in temperature seasonally. The 

transient thermal layer acts as a substrate for supraglacial hydrology and thus heavily influences its 

characteristics. During the winter, a cold wave penetrates down from the surface due to air 

temperatures consistently < 0 °C (Blatter and Hutter, 1991; Cuffey and Paterson, 2010). At this 

time, this layer is typically snow-covered, and as such is considered inactive in terms of ice 

hydrology, although may be subject to hydrological processes within the snowpack (see Bales and 

Harrington, 1995; Jansson et al., 2003). Higher (i.e. > 0 °C) air temperatures in the spring and 

summer drive ablation and increase the temperature of this layer to the PMP (Cuffey and Paterson, 

2010). For non-temperate glaciers, this layer is typically in the order of metres thick (e.g. Sobota, 

2009), bound at depth by “cold” ice below the PMP.  
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In contrast to cold ice, which does not contain any interstitial liquid and is effectively 

impermeable, temperate ice has an interstitial liquid content of ~ 9% (Pettersson et al., 2004). The 

polycrystalline structure of glacial ice facilitates vein development (Hambrey et al., 2004; Mader, 

1992; Nye and Frank, 1973; Nye, 1989) when above the PMP, forming void spaces and providing 

temperate ice with primary permeability (i.e. water flow between the crystal matrix) similar to that 

of granite (Jordan and Stark, 2001). Hence throughout the depth profile of a temperate ice mass, 

interstitial water is present. 

A non-temperate thermal regime generally results in less dynamic ice masses when 

contrasted to temperate ice masses. This is largely due to the prevailing climatic conditions which 

tend to be cold and dry, hindering the formation of surface structures such as crevasses and moulins. 

Coupled with typically lower ablation rates than their temperate counterparts, more pervasive and 

extensive channelised supraglacial drainage networks (Irvine-Fynn et al., 2011c; Rippin et al., 2015) 

are often evident on non-temperate ice masses. 

2.2 Surface energy balance and darkening 

2.2.1 An overview of melt processes 

Melt processes occurring in the transient temperate layer provide water to the glacial 

hydrological system and as such control the storage and discharge of glacial meltwaters (Jansson et 

al., 2003). Furthermore, it is important to consider the role of melt processes as they provide a 

proposed mechanism for the formation of the weathering crust (Müller and Keeler, 1969). An 

overview of surface energy balance is beyond the scope of this thesis, and for further detail Benn 

and Evans, (2010),  Cuffey and Paterson (2010) and Hock (2005) should be referred to. Surface 

meltwater production is controlled by energy balance (Equation 2.1), where QM is energy available 

to melt ice, α is ice surface albedo (0 ≤ α ≤ 1), SWRin is incoming shortwave radiation, LWRin
 is 

incoming longwave radiation, LWRout
 is outgoing longwave radiation, QH is sensible heat flux, QL is 

the latent heat flux, QR is the heat flux from rainfall and QG is the energy required to raise the 

temperature of the ice to melting point. By convention, energy inputs to the glacier surface are 

positive and outputs are negative. SWRin, LWRin and LWRout are referred to as the radiative 

components, whilst the remaining components, excluding QM and QG, are referred to as the 

turbulent components.  
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QM = (1 − α)SWRin + LWRin + LWRout + QH + QL + QR + QG     [Equation 2.1] 

Typically, most energy supplied to a glacier surface is in the form of radiation (≈ 77 % 

globally), although climate, location and meteorological conditions influence this balance (Willis et 

al., 2002). Net radiation is considered as two separate components, defined by wavelength: 

shortwave radiation (SWR), originating from the sun, and longwave radiation (LWR), which is 

thermal radiation of terrestrial or atmospheric origin. Albedo, or surface reflectivity, ranges from 

0.1 for debris-covered ice to 0.9 for fresh dry snow (Cuffey and Paterson, 2010), and acts as a 

significant control upon SWR receipt at the glacier surface. For an ablating ice surface albedo is 

typically ≈ 0.30, (Cuffey and Paterson, 2010), meaning that ≈ 70% of incident SWR energy provides 

energy for melt. At a local, catchment scale albedo can be highly variable due to debris cover, 

presence of cryoconite or surface meltwater, or ice crystal colour, size and structure and may locally 

enhance melting and affect drainage pathways (e.g. Adhikary et al., 2000; Rippin et al., 2015; 

Takeuchi et al., 2001a).  

Most melt models (conceptual or numerical) assume that all shortwave radiation is absorbed 

at the surface, simply ignoring the component of subsurface melt and its additional complexities. 

In part, this is because limited agreement exists regarding the portioning of SWR receipt between 

the surface plane and subsurface zone. Greuell and Oerlemans (1989) suggest that 36 % of 

shortwave radiation energy penetrates the near-surface, and using mean radiative: turbulent energy 

input ratios suggested by (Willis et al., 2002), it can be estimated that 19% and 28% of total melt 

energy is received beneath the ice surface in maritime and continental environment, respectively, 

driving weathering crust formation. 

Turbulent fluxes supply the remainder of energy for surface melt and are directly influenced 

by conditions within the ice-air boundary layer, ≤ 2 m above the glacier surface (Cuffey and 

Paterson, 2010). The temperature and humidity gradient between the ablating ice surface and this 

layer acts as a control upon the turbulent fluxes, as does the nature of the flow of air, its turbulence 

being determined by the wind speed, atmospheric stability and ice surface roughness. The latter of 

these factors further links directly with the channelised hydrology network, with rill and channel 

development promoting surface roughness in addition to micro-scale topography (Rippin et al., 

2015). 
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2.2.2 Albedo 

An understanding of albedo feedback processes is essential when considering and modelling 

ice melt and describing the climate of ice-covered regions. During the last 20 years, surface albedo 

of glaciers and ice sheets around the world has demonstrated a net-negative trend (e.g. Naegeli et 

al., 2019; Painter et al., 2013; Paul and Kääb, 2005; Paul et al., 2007; Tedesco et al., 2016). The most 

important factors controlling albedo is that of debris cover (Brock, 2004; Brock et al., 2000; Klok 

et al., 2003). Surface debris is incorporated to the ice surface from continental-scale atmospheric 

sources, often in snow and rainfall in addition to direct deposition (e.g. (Koch and Hansen, 2005; 

Paul et al., 2005; Zappa and Kan, 2007)); local-scale dust accumulations from valley sides exposed 

due to retreat and down wasting (Oerlemans et al., 2009); and melting of outcropping, debris-rich 

ice (e.g. Wientjes et al., 2011). Microbial activity on snow and ice surfaces can also contribute to 

albedo reduction, termed “bioalbedo” (Cook et al., 2017; Ryan et al., 2018; Tedstone et al., 2018; 

Williamson et al., 2019). For ice with debris cover ≤ 10 %, microscale inhomogeneities in ice crystal 

structure act as the fundamental control of albedo (Azzoni et al., 2016).  

Seasonal debris cover change can be exemplified on the Forni Glacier (Italy). In 2013, debris 

deposition upon the debris-free surface was ~6 g m-2 day-1 during the ablation season (Azzoni et al., 

2016). Similar darkening processes have been observed as a result of deposition of black carbon 

and dust in the snowpack in accumulation areas accelerating snow melt at high-elevation Asian 

glaciers (Brun et al., 2015; Flanner et al., 2009; Ginot et al., 2014; Yasunari et al., 2010); on the 

Greenland Ice Sheet (GrIS) (Dumont et al., 2014; Stibal et al., 2017; Tedesco et al., 2016; Tedstone 

et al., 2017); and in the Canadian Arctic (Mortimer and Sharp, 2018). 

Surface water, either from melt or precipitation, can directly or indirectly influence debris 

cover and distribution and therefore albedo. A decrease in albedo increases SWR receipt and hence 

melt rate, acting to provide greater meltwater volumes to the surface which then mobilise debris 

and can act to reduce surface albedo. However liberated debris is added to this system from ablating 

ice crystals, and ablating ice surfaces generally darken throughout the melt season (e.g. Adhikary et 

al., 2000; Brock, 2004; Klok et al., 2003). However, albedo is increased after rainfall events during 

which debris is removed from the surface, whilst reduced melt rates associated with rainfall lower 

debris input from ice liberation. For example, an albedo increase of 0.2 following rainfall has been 

observed in the European Alps, with albedo restored to its pre-storm values 1 - 4 days following 
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the rainfall event (Azzoni et al., 2016). Despite this understanding, the role of the weathering crust 

in the redistribution of debris and microbial cells across and through glacier surfaces remains 

unconsidered.  

2.2.3 Formation of the weathering crust 

The weathering crust forms because of sub-surface internal ice melt at as short-wave 

radiative energy penetrates the translucent ice surface (Figure 2.2). The attenuation of the 

penetration of shortwave radiation imposes a depth limit upon internal melting, forming a “photic 

zone” (Irvine-Fynn and Edwards, 2014) in the order of 10s cm thick. Hypothetically, this layer 

could extend in depth to an order of meters for optically clear blue ice as defined by Beer’s Law, 

which describes radiation decay as a function of depth (Oke, 1987). Radiation decay occurs because 

of reflection and refraction of radiation from ice crystals, microstructures and liquid water within 

veins between crystals (Hodson et al., 2013; McIntyre, 1984). Melt occurs preferentially along crystal 

boundaries (Nye, 1991) enlarging interstitial spaces and reducing bulk ice density (LaChapelle, 

1959). Heat flow in unsaturated air spaces between crystals further reduces crystal cohesion (Nye 

and Frank, 1973; Nye, 1991). In the weathering crust, bulk density increases non-linearly with depth 

depending on time-of-day (Schuster, 2001) and antecedent meteorological conditions (e.g. Müller 

and Keeler, 1969). A depth threshold occurs at which ice is essentially impermeable (Irvine-Fynn 

and Edwards, 2014), and as such the weathering crust can be considered a perched aquifer. In non-

temperate ice masses, this threshold is linked with the transient thermal layer, and the aquiclude is 

due to ice below the PMP with no interstitial melt water. For temperate glaciers, the aquiclude is 

comprised of essentially impermeable unweathered ice, which, despite the presence of interstitial 

meltwater, has a hydraulic conductivity equivalent to a granite (Jordan and Stark, 2001) and is 

therefore effectively impermeable. 

Maximal rates of weathering crust formation occur under clear-sky conditions, when SWR 

receipt is at its highest, whilst degradation occurs during periods of high cloud cover and rainfall 

(Müller and Keeler, 1969). Cloudy, wet conditions reduce or even eliminate sub-surface melting in-

line with SWR receipt reduction and promote refreezing of meltwater within pore spaces while 

simultaneously enhancing ablation of low-density ice via turbulent melt processes (Schuster, 2001). 

Whilst this thesis focusses on Arctic, sub-Arctic and Alpine settings, it is important to 

outline the different processes driving weathering crust formation in Antarctica. Here, low air 
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temperatures limit surface melting, with internal near-surface melting driven by the generation of a 

“solid state greenhouse effect” powered by SWR penetration (Brandt and Warren, 1993; Liston et 

al., 1999) resulting in solar heating of the near-surface. The disconnected supraglacial hydrology of 

 
Figure 2.2 A schematic diagram showing the development and degradation of the weathering crust in clear 

sky and cloudy conditions respectively. In panel i, clear sky conditions dominate and SWR receipt is high (as 

indicated by the yellow component of the melt energy bar, relative units). SWR penetrates the surface, causing 

melt of ice crystals at depth along the crystal boundaries. Due to attenuation and reflection of SWR at depth, 

melt rates decrease and a distinct depth-density relationship develops. In panel ii, the period of clear sky 

conditions in panel i has caused extensive sub-surface melting and a fully formed weathering crust. However, 

an increase in cloud cover decreases radiative energy flux and therefore total melt energy. By panel iii, cloud 

cover dominates, and SWR flux is reduced to nearly zero; turbulent fluxes dominate the energy available for 

melting. As a result, ice crystal size is not reduced like in panel i, and the weathered ice is stripped from the 

surface by melt, leaving a hard, glassy surface and ice of a greater density at the surface of the glacier. 
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Antarctica (e.g. Fountain et al., 2004; Hodson et al., 2013) prevents drainage of this meltwater which 

simply refreezes in situ (Hoffman et al., 2016; Hoffman et al., 2014) and has little impact on ablation.  

2.3 Supraglacial hydrology: an overview 

Water flow over exposed glacier surfaces and through the near surface can be considered 

as a function of ice permeability at two scales: primary permeability, which is water flow through 

intact ice and snow; and secondary permeability via channels, fractures and other passageways 

(Fountain and Walder, 1998). Intergranular ice drainage from the glacier surface to the bed was 

proposed by Shreve, (1972) and Röthlisberger (1972) and further developed by Nye and Frank 

(1973). However, veins between unweathered ice crystals are small, ≤ 0.7 mm (Nye, 1991), may be 

blocked by air bubbles (Lliboutry, 1996) and can close due to ice deformation and recrystallisation 

(Lliboutry, 1971). Morphologies of inter-crystalline spaces are veins at triple junctions, which 

intersect to form veins, and lenses between crystals (Mader, 1992; Nye, 1989). There is debate as to 

the volume of water this network is able to transport (see Lliboutry, 1996; Nye, 1997), however, for 

unweathered, englacial ice a permeability in the order of 10-18 m2, equivalent to granite, is suggested 

by with throughflow rates of 10-8 – 10-13 m s-1 (Jordan and Stark, 2001; Raymond and Harrison, 

1975), implying a very small rate of inter-crystalline water flow. As such, intact ice can be considered 

essentially impermeable, meaning that water will flow across the surface of it. Intergranular drainage 

and thus primary permeability of ice masses on a glacier-scale can be considered negligible. 

2.3.1 Channelised flow 

As non-weathered glacier ice is essentially impermeable, meltwater flows across the surface 

of ice masses due to secondary permeability in the form of channelised flow (Ferguson, 1973). 

Glacial hydrological systems are highly variable in space and time, depending on climate, thermal 

regime, and glacier geometry. They develop throughout the ablation season, transitioning from rills 

on the winter snowpack to a fully developed dendritic surface drainage system (Kostrzewski and 

Zwolinski, 1995). At the start of the melt season a proportion of meltwater frozen at the base of 

the snowpack forms superimposed ice (Müller, 1962) which can provide a significant contribution 

to the annual accumulation budget on Arctic glaciers (Wadham and Nuttall, 2002). This accentuates 

reduced permeability of non-temperate glaciers resulting in the accumulation of meltwater upon 

the surface during the early ablation season with snowmelt lakes representing a significant delay in 

seasonal runoff (Hodgkins, 2001). 
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The contrasting permeabilities of snow and ice mean that supraglacial drainage systems of 

each surface have significantly different characteristics. On wet snow surfaces, meltwater percolates 

down through the snowpack (Benson, 1996) and refreezing of this meltwater releases latent heat to 

the snowpack, accelerating its melt and removal from the glacier surface. Drainage of water through 

the snowpack develops into the formation of rills and subsequently channels as the melt season 

progresses and as water content increases, with discharge becoming more efficient over time 

(Jansson et al., 2003). Firn aquifers, observed in Greenland (e.g. Miller et al., 2017) and sub-Arctic 

locations (e.g. Schneider, 1999) also act to dampen runoff from the glacier surface by several days 

or weeks, storing water in a layer than can be several metres thick (Jansson et al., 2003; Schneider, 

2001). 

In the supraglacial ablation zone, regular spatial organisation of channels is common (e.g. 

Karlstrom et al., 2014; Knighton, 1985, 1981; Marston, 1983), as it is in terrestrial environments. In 

such environments, rill spacing is determined by the turbulent flow of open-channel hydraulics 

rather than the evolution of the erodible bed (Izumi and Parker, 1995). This is demonstrated in 

supraglacial channel spacing, which is inversely proportional to slope and friction (Mantelli et al., 

2015) with the dependency on slope a result of the reduction of bed-induced crossflow pressure 

gradient as slope steepens. When slope remains constant a greater coefficient of friction results in 

an enhanced response of the flow field to perturbations in the bed resulting from ice roughness. As 

such slope, meltwater depth and surface roughness are considered the primary controls upon 

supraglacial channel spacing (Mantelli et al., 2015).  

Theakstone and Knudsen (1981) suggest that the formation of glacial rills and channels 

provides further evidence that ice permeabilities are low and that an insignificant volume of 

meltwater is transmitted between ice crystals. However, Mantelli et al. (2015) argue that a weathering 

crust would not prevent the initiation of rills, rather that it would only occur once the weathering 

crust exceeds its transport capacity, resulting in surface flow of excess water. Similar processes are 

present in the model of stream formation for hillslopes; once the porous surface media (typically 

soil) becomes saturated or water input is greater than infiltration rates overland flow occurs, and 

sheet flow organises into rills (Lu and Godt, 2013). 

Supraglacial channel spacing is in the order of several metres on both non-temperate and 

temperate ice masses (see Karlstrom et al., 2014; Mantelli et al., 2015). The relevance of stream 

spacing to the hydraulic transmissivity of the weathering crust is that it governs the distance of 
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travel of a water molecule from the point of melt to the channelised system. Coupled with velocity 

of water transfer, distance from a point to the stream network defines the storage period of water 

within the weathering crust (Cooper et al, 2018; Smith et al., 2017; Smith et al., 2015). 

2.3.2 The role of the weathering crust 

To date, there is limited acknowledgement of the importance of the weathering crust as a 

mechanism through which meltwater may be transported {Derikx, 1973 #62;Wakahama, 1973 

#270;Larson, 1977 #146;Larson, 1978 #147;Irvine-Fynn, 2011 #122;Cook, 2015 #536;Munro, 

2011 #185}(Smith et al., 2017b). However, water retention within the weathering crust dampens 

the runoff response (Jansson et al., 2003; Munro, 2011; Shea et al., 2005), contrasting with the 

traditional view that surface runoff over glaciers is an efficient process (e.g. Fountain and Walder, 

1998).  For example, Munro (2011) suggests delays of 1 – 2 h between peak melt and peak stream 

discharge for a catchment with high stream density, and 7.5 – 12 hr for a catchment with one 

distinct channel. In contrast, Willis et al. (2002) report a ≤ 1 hr lag time, although throughout this 

study period rainfall and cloud cover were common, with associated low SWR receipt and as such 

the weathering crust was likely poorly developed. 

Meltwater transport velocities of 6.0 × 10-8 to 7.0 × 10-4 m s-1 (2.2 × 10-4 to 2.5 m hr-1) are 

suggested within the weathering crust by (Wakahama et al., 1973), measured using dye tracing 

techniques. The velocities reported, when considered with a channel spacing in the order of metres, 

align strongly with the longer response times suggested by (Munro, 2011). However, at shorter 

response times and/or slower velocities, it is unfeasible that the pulse of meltwater resulting in peak 

stream discharge is directly supplied from meltwater produced on the same day, implying piston 

flow and a short-term multiday storage of water within the weathering crust. For example, a water 

molecule transported at the lower quartile of the (Wakahama et al., 1973) velocities (i.e. 0.6 m hr-1) 

would take 16 hours to flow 10 m, excluding the time taken for meltwater to infiltrate into the 

weathering crust.    

This behaviour is similar from a hydrological perspective, to seasonal snow and firn, which 

are perched, unconfined aquifers that drain to otherwise impermeable ice (Fountain and Walder, 

1998). Snow and firn (densities of 200 – 300 kg m-3 and 400 – 830 kg m-3 respectively (Cuffey and 

Paterson, 2010)) have relatively large, well connected spaces between crystals. Snow has a 

permeability of 10-5 – 10-9 m2 (Albert and Perron, 2000; Thompson et al., 2016), whilst denser firn 
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is less permeable, 10-12 – 10-10 m2 (Forster et al., 2014; Koenig et al., 2014; Miller et al., 2017). Work 

undertaken in the snowpack, suggests highly heterogeneous percolation rates of meltwater 

(Campbell et al., 2006; Gerdel, 1954; Schneider and Jansson, 2004), which aligns well with the spatial 

and temporal heterogeneity observed by Cook et al. (2015b) in the weathering crust.  

Despite its role within the supraglacial system, the hydrological dynamics of the weathering 

crust remain poorly defined. Despite this, limited research efforts have been concentrated on near 

surface water flow, although more recent work has begun to focus on the weathering crust (Cook 

et al., 2015b; Cooper et al., 2018; Hoffman et al., 2014; Yang et al., 2018b). 

2.4 Fundamentals of groundwater hydrology 

It has been suggested by Campbell and Rasmussen (1973), Derikx (1973) and Sharp et al.  

(1998) that groundwater techniques are applied to examine water transfer through the weathering 

crust. However, despite this repeated call, there has been limited consideration of the wreathing 

crust using these methods. Therefore, with the aim of applying this body of knowledge to establish 

the fluid and impurity transport dynamics of the weathering crust, a brief review of the 

fundamentals of groundwater hydrology will be given herein.  

The precise route that water will take over or through a porous medium depends on the 

balance between the forces that drive water flow; and resistance to flow. Water flow is, at the 

fundamental level, defined by the hydraulic head (h) governed by gravity (g) and elevation head (z), 

occurring perpendicularly to lines of equal head. In a saturated groundwater system water pressure 

(P) and fluid density (ρw) must also be considered (Equation 2.2). 

h = z + 
P

ρw g
                    [Equation 2.2] 

Resistance to flow within porous media is measured using either hydraulic conductivity (K) 

or intrinsic permeability (κ), both of which decrease with increasing resistance to flow. Intrinsic 

permeability is a measure of the ability of a porous material to allow a fluid to pass through it, 

independent of the fluid, and is related to total porosity, defined as the ratio of void volume to total 

volume of a medium. Controls upon total porosity include the shape and size distribution of 

particles; in poorly sorted media, small particles can occupy void spaces between larger particles, 
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resulting in lower total porosity than would be observed for a well sorted medium (Brutsaert, 2005). 

However, not all pores meaningfully contribute to water transfer, and may be disconnected “dead 

ends” or be blocked by particulate impurities. Effective porosity can be an order of magnitude 

lower than total porosity in sedimentary rocks (Croff et al., 1985). 

Hydraulic conductivity additionally considers the degree of saturation, density and viscosity 

of the fluid flowing through the media. Typically, in the terrestrial environment, in saturated 

conditions hydraulic conductivity is proportional to intrinsic permeability. However, in the glacial 

environment water temperatures are close to 0 °C (Isenko et al., 2005), and given the inverse non-

linear relationship between water viscosity and temperature (Kestin et al., 1978) it is important to 

look beyond intrinsic permeability when considering water flux through the weathering crust. In a 

medium of equal intrinsic permeability, fluids of greater viscosity have lower hydraulic conductivity 

values, and vice versa (Freeze and Cherry, 1979). Hydraulic conductivity can be highly variable beyond 

levels common for other physical properties; it is known to vary over 13 orders of magnitude (10-

8 to 105 m d-1; Freeze and Cherry, 1979). Variations of several orders of magnitude are common in 

single aquifers (Lu et al., 2002), or even within single boreholes and hence in practice quantification 

of hydraulic conductivity to within an order of magnitude is typically acceptable (Younger, 2009). 

2.4.1 Darcy’s Law 

Hydraulic conductivity, despite having the same units as velocity, does not directly represent 

the flow rate of water through the porous medium, but rather is a coefficient of proportionality 

linking cross-sectional area (A), of the media, flow rate (Q) and hydraulic gradient, (i), and is 

described in Darcy’s Law (Darcy, 1856; Equation 2.3). Darcy’s Law assumes that a medium is 

saturated, and that fluid flow is laminar requiring suitably slow flow rates; in the presence of large 

conduits and steep hydraulic gradients this assumption may be violated (Younger, 2009). The 

presence of bubbles and varying water heads (and subsequently hydraulic potential) across capillary 

and vein networks in the weathering crust brings the use of Darcy’s Law into question (Lliboutry, 

1996), and hence evaluation of its application is necessary. However, Darcy’s Law is considered 

valid for unconfined, saturated media which exhibit these phenomena (Buckingham, 1907).  

Q = KiA     [Equation 2.3] 



2. Literature Review 

19 

The assumptions of Darcy’s Law are also violated at low flow rates (≤ 10-4 m d-1) and 

permeabilities (Miller and Low, 1963; Swartzendruber, 1968).  For example, at pore diameters 

≤ 10 µm the movement of water under the impulse of i is so slow that molecular diffusion becomes 

the more rapid and hence dominant flow mechanism (Younger, 2009). Other driving factors may 

also contribute significantly to flow at these low flow rates, including thermal, osmotic and electrical 

effects (Brutsaert, 2005; Cahill and Parlange, 1998).  There is no accepted universal theory given the 

complexity of controls of slow-flowing water within a porous medium, and as such it is 

pragmatically preferable to accept Darcy’s Law when hydraulic conductivity is within typical 

magnitudes (Brutsaert, 2005) and assume that in these cases hydraulic head is the substantial driving 

force of water transport (Milly, 1984). 

When considering the transport of impurities, it should be noted that the velocity of a fluid 

within pores (pore velocity, v) of medium is not equal to the Darcy velocity, which assumes flow 

over the entire area of the porous medium. Clearly, fluid only flows in the pore spaces of the 

medium and the velocity within pores is therefore greater than the Darcy velocity, inversely 

proportional to proportion of the medium occupied by connected voids; i.e. the effective porosity, 

ne (Equation 2.4; Schwartz and Zhang, 2004). Hence when considering the transport of cells 

through the weathering crust, both hydraulic conductivity and effective porosity need to be 

considered. 

v =
Q

ne
         [Equation 2.4] 

2.4.2 Fracture flow: a question of scale? 

In rocks, structural features such as fractures exert a major influence on groundwater flow 

at micro, macro and regional scales (e.g. Whitehead, 1996). Presence of fractures does not 

necessarily mean that a pathway for fluid flow exists, fractures must be connected and free of 

blockages. However, in media with interconnected fracture networks, fractures often provide the 

main pathway for fluid flow. Porosity (and therefore intrinsic permeability) of fracture networks is 

directly proportional to fracture aperture and inversely proportional to fracture spacing (Romm, 

1966). For a single uniform fracture, hydraulic conductivity is proportional to the fluid properties 

(viscosity and density), gravity and the fracture aperture (b) (Equation 2.5). 
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K =  
ρwgb2

12μ
          [Equation 2.5] 

Fractures are rarely uniform, in which case Equation 2.5 is modified to incorporate a 

roughness parameter in the divisor as an increase in roughness of the fracture walls decreases its 

hydraulic conductivity. Furthermore, single fractures are rare within media, and fracture network 

flow usually requires a modelling approach to resolve. Practically, it is often not possible to consider 

flow through individual fractures or simple sets of fractures. If a medium is significantly fractured 

and considered from a great enough distance, the medium appears to be a porous medium. This 

“continuum approach” identifies that a clear threshold cannot be drawn between media which are 

“fractured” and “unfractured”, and as such it most practical to consider the medium at a scale at 

which a Darcian approach is suitable when large, single fractures are not identified (Schwartz and 

Zhang, 2004).  

2.4.3 Infiltration and unsaturated flows 

Infiltration is the process of downwards entry of water into porous media through the 

unsaturated zone to the saturated zone. In terrestrial systems, this is typically in the form of 

precipitation, but can also be comprised of snowmelt. Infiltration rate is sensitive to the rate of 

water addition to the surface, near-surface conditions and antecedent water content of the porous 

media, decreasing inversely with time during a water input event (Horton, 1933). Once the rate of 

the addition of water exceeds the infiltration rate, water will pond on the surface, initially in 

depressions, allowing overland flow to occur. Surface connected pores move water downwards, 

forming a “wetting front” in the unsaturated (vadose) zone of the medium, moving downwards at 

a rate determined by the hydraulic head, tension head and unsaturated hydraulic conductivity. Once 

the wetting front reaches the water table, water then joins the saturated zone and active flow system. 

In the unsaturated zone, defined as the zone in which the volume of liquid is less than the 

volume of void space, flow mechanics are complicated by the presence of two fluid phases (usually 

air and water). In a similar manner to the saturated zone, the unsaturated zone can be characterised 

in terms of hydraulic head (h), defined by the elevation head (z) and pressure head (ψ) (Equation 

2.6). Pressure head is negative in the unsaturated zone (ψ < 0, i.e. less than atmospheric pressure) 

positive in the saturated zone (ψ > 0), and zero at the water table. For this reason, the pressure 

head in the unsaturated zone is also referred to as the tension head, acknowledging the capillary 
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forces which bind water to solids and prevent water in partially saturated soils from flowing into a 

borehole (Schwartz and Zhang, 2004).  

h = z + ψ         [Equation 2.6] 

Hydraulic conductivity in unsaturated media is strongly dependent on the degree of 

saturation, the pressure head and capillary pressure. A medium with low water content (i.e. a mostly 

air-filled system) has a strongly negative pressure head, a large resistance to flow and therefore low 

hydraulic conductivity. Conversely, a medium near to saturation (ψ close to 0), hydraulic 

conductivity takes its maximum value. Water content is defined by the difference between the 

inflow and outflow rates of water.  Changes in water content via the processes of wetting and drying 

is characterised by a hysteric, non-linear relationship between pressure head and volumetric water 

content. At both large and small water contents, small changes in water content are linked with 

relatively large changes in pressure head, reflecting the fact that, at low water content, soils do not 

lose all their water (termed the residual water content). As volumetric water content approaches the 

residual water content, the water phase may be discontinuous through the media, and hydraulic 

conductivity will be virtually zero. Flow in this zone can be considered using a modified Darcy 

equation (Equation 2.7), using the Richards equation with appropriate conditions to give a field of 

pressure head (not shown; see Richards, 1931). Solutions to the Richard’s equation are modelled, a 

task for which many models exist such as HYDRUS 1D (Šimůnek et al., 1998; Vogel et al., 1996), 

2D and 3D (Šimůnek et al., 2008), TOUGH (Finsterle et al., 2012; Jung et al., 2017) and VS2DI 

(Healy, 2008), amongst others. 

Q =  −KψiA         [Equation 2.7] 

The direction of flow in unsaturated hillslopes is generally not well understood, in contrast 

to saturated, isotropic, homogenous hillslopes. In saturated conditions, flow is generally laterally 

downslope under the driving forces of gravity and constant pressure, which are governed by 

hillslope geometry, water input characteristics and hydrologic properties of the hillslope media. 

However, in unsaturated conditions the gradient of moisture content and therefore pressure 

potential plays a significant role, yielding spatially and temporally complex flow patterns. These 

patterns can include upslope lateral flow in addition to downslope flow, and downward vertical 

flow through the medium (Sinai and Dirksen, 2006). For flow patterns to be defined in the 

unsaturated zone of an isotropic and homogenous hillslope, the history of moisture content (i.e. 
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from field measurements) and recent rainfall intensity must be known (Lu et al., 2011), and is further 

complicated by anisotropy and/or heterogeneity. 

2.4.4 Capillary rise and vapour flow 

Capillary rise refers to the upward movement above the water table under the driving force 

of capillarity, which will cease at a certain height (hc), above which pore water exists in a continuous 

form. This upwards movement of water acts to resist infiltration. The height of capillary rise is 

directly rated to the suction at which a porous medium reaches the residual water content; those 

with fine particles have the highest capillary rise (clay soils in the order of decametres, silty soils the 

order of metres and sandy soils centimetres to decimetres (Lu and Godt, 2013)). As such, the height 

of capillary rise (mm) can be empirically linked with the particle size of the media at the 10 % and 

finer (D10) fraction (mm) (Lu and Likos, 2004; Equation 2.8). 

hc = −990 ln(D10) − 1540         [Equation 2.8] 

When considering a moist medium subject to a sustained humidity gradient at the ground 

surface, the rate, as well as the height, of rise becomes of practical importance; the humidity gradient 

acts as the main control and the rate of capillary rise can be estimated using the vapour flow theory. 

Fick’s law (Equation 2.9) can be used to describe vapour flow within a porous media or at the 

atmosphere subsurface interface, where vapour flow velocity (qv) is described as the product of the 

density of water vapour (ρv) and a vapour diffusion coefficient (Dv) of the media. The vapour 

diffusion coefficient can be estimated (Equation 2.10) using the air-filled porosity (na) and vapour-

free diffusion coefficient (D0), which ranges between 10-9 to 10-6 m2 s-1 for pure air. 

qv = −Dv∇ρv          [Equation 2.9] 

Dv =
2

3
naD0          [Equation 2.10] 

Water vapour density can be quantified using the ideal gas law (Equation 2.11), in which ωw 

is the molecular mass of water, R the universal gas constant, T temperature and uv vapour pressure, 

itself described for saturated conditions in Equation 2.12 (Tetens, 1930). Therefore, water flux 

through vapour near the surface of a saturated porous media can be given in Equation 2.13 (Lu and 

Likos, 2004), where λ is the latent heat of vaporisation (≈ 2.48 kJ g-1 at 10 °C).  
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ρv =
ωw

RT
uv          [Equation 2.11] 

uv = 0.611 e(17.27
T−273.2

T−36
)          [Equation 2.12] 

qv = Dvρv (−
∇RH

RH
+

∇T

T
−

λωw∇T

RT2
)          [Equation 2.13] 

Equation 2.13 demonstrates that vapour flows from areas of high humidity to low humidity, 

and from regions of high temperature to low temperature, with a counteracting flux to compensate 

for the contraction of and consequent increased vapour density in relatively low temperature air. 

2.4.5 Surface water interaction 

The process by which water leaves the ground flow system and returns to the surface is 

termed discharge. This includes outflow to rivers and lakes as seepage through the channel walls, 

and flow to surface springs, although a layer of relatively low hydraulic conductivity at channel walls 

or lake margins can complicate this process (Peterson and Wilson, 1988). Furthermore, streams and 

lakes can also contribute to groundwater recharge as well as discharge, and lakes can contribute to 

both groundwater discharge and recharge simultaneously, allowing for throughflow of groundwater 

(Winter, 1999; Figure 2.3). In the terrestrial environment, evapotranspiration is a key process in the 

loss of water from aquifers, but the lack of vascular plants in the supraglacial environment precludes 

water loss via transpiration.  

 
Figure 2.3 Summary of aquifer and stream/lake interactions. a) a gaining stream (i.e. water is moved from 

the groundwater system to the stream, discharging groundwater); b) a connected losing stream (recharging 

groundwater); c) a disconnected losing stream; and d) a throughflow lake, both discharging and recharging 

groundwater. 
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2.4.6 Non-fluid mass transfer in groundwater 

Non-fluid mass, such as sediment, cells or solutes can be transported through the 

groundwater system by advection, diffusion or dispersion, with the potential for modification of 

solutes by biogeochemical cycling or sorbtion onto the porous medium or sediment transported 

within the groundwater. In the case of advection (mass transport due to the flow of water) the 

direction and rate of transport coincides with the flow of groundwater; hence knowledge of the 

groundwater flow pattern implies knowledge about advective transport. For most practical 

problems, non-fluid mass will be transported at the pore water velocity (Equation 2.4). Diffusion 

(mixing caused by random motions in the solute) is incredibly slow as a mass transport process and 

is typically unimportant if water is flowing and is further hindered by collisions with the solid phase 

of porous media. Dispersion is the mixing of two fluids of differing compositions, spreading non-

fluid mass beyond the region it would normally occupy by advection alone. It is driven by local 

differences around the mean flow velocity, driven by local scale inhomogeneities and consequent 

hydraulic conductivities in the media. 

2.5 Microbiology of glacier surfaces 

Historically, a purely physical approach was applied to the study of glaciers despite the 

acknowledgement of glacier surface biota from expeditions dating back to the 1890s (Hodson et 

al., 2015). Snow and ice environments were considered irrelevant in terms of microbiology due to 

their low temperatures, high UV irradiation, low nutrients and low water availability (Maccario et 

al., 2015). However, a long overdue shift in perceptions has recently occurred. Rather than being 

considered as lifeless, ice is now considered to be “Earth’s largest freshwater ecosystem” (Edwards 

et al., 2014) and distinct biome (Anesio and Laybourn-Parry, 2012; Hodson et al., 2008). The 

influence of microbial processes within the terrestrial, aquatic and marine biospheres in shaping 

their habitats and influencing landscape scale processes is well recognised but has seen limited 

exploration within glacial systems (Cook et al., 2015a). Processes range from the biocatalysis of ice 

crystal formation (Georlette et al., 2004), albedo reduction at the ice-atmosphere interface (e.g. 

Takeuchi et al., 2001a), microbe-mediated subglacial weathering (e.g. Mitchell et al., 2013) and 

biogeochemical cycling (e.g. Cameron et al., 2012; Lutz et al., 2016) including the fixation of 

atmospheric carbon (e.g. Cook et al., 2016b; Koziol et al., 2018).  
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The extent of the microbial glacial biome remains poorly defined, but estimates suggest a 

range of 4 × 1025 to 7 × 1029 non-eukaryotic (i.e. bacteria and archaea) cells are contained within 

glacial systems (Anesio and Laybourn-Parry, 2012). Cells are concentrated within interstitial 

meltwater at the near-surface (> 106 cells mL-1 in contrast to 102 - 103 cells mL-1 in glacial ice (Mader 

et al., 2006)), with ≥ 1026 globally (Irvine-Fynn and Edwards, 2014). This estimated cellular 

abundance is comparable with rainforest soils (1027) or the global oceanic photic zone (1025) 

(Falkowski et al., 2008). However, the knowledge of microbial abundance within glacial systems is 

only based on a low number of samples from easily accessible sites, and hence is less robust than 

those from other ecosystems (e.g. Whitman et al., 1998). This estimate is further complicated by 

the challenges presented by glacier samples with regards to the enumeration of microbes within 

them: glacier ice tends to have low microbial abundance and additionally includes mineral particles, 

to which cells may be attached. At present, epifluorescence microscopy (EFM) is suggested as the 

most reliable technique to overcome these issues and provide reliable estimates of microbial 

abundance (Stibal et al., 2015); however, this technique remains far from perfect with accuracies of 

<50% for samples with less than 103 cells mL. 

2.5.1 Sources of glacial microbes 

Microbial inoculation occurs from the release of microbes stored within ice as a product of 

ablation (Dancer et al., 1997), at an estimated rate of 1017-21 a-1 globally (Rogers et al., 2004). The 

initial source of microbial cells is within snow deposited in the accumulation season, with microbial 

cells retained during the process of firnification, ultimately becoming incorporated into the ice 

(Edwards et al., 2014), prior to this liberation. It is unknown whether such microbes are 

biogeochemically active, becoming re-animated after a period of dormancy, or are dead, and simply 

particulate organic carbon within the supraglacial system. Specifically considering the weathering 

crust, the redistribution of material in, mixing of/in and collapse of cryoconite holes can directly 

deliver cells and sediments. (Hodson et al., 2007; Irvine-Fynn et al., 2011b; Mindl et al., 2007; Stibal 

et al., 2012b). Hole collapse does not imply the immediate removal of material from the glacier 

surface as dispersed granules can a) initiate the formation of new holes (Takeuchi et al., 2001b) 

and/or could be retained within the weathering crust (Irvine-Fynn et al., 2011a; Irvine-Fynn et al., 

2012). 



2. Literature Review 

26 

Furthermore, aeolian transfer from ice-marginal habitats inoculates glacier surfaces with 

bacteria as glaciers are typically surrounded by debris sources which are fine enough to be deposited 

across the entire ice surface (e.g. moraine; Segawa et al., 2014). Significant inputs of this nature have 

been observed in Svalbard (Edwards et al., 2013b); which presents a similar glacial architecture (i.e. 

valley glaciers in surrounds with limited vegetation development) to Arctic Sweden. Similar delivery 

of microbiota to glacier surfaces is observed within the European Alps (Franzetti et al., 2017) and 

Greenland (Cameron et al., 2015; Musilova et al., 2015; Šantl-Temkiv et al., 2018).  

2.5.2 Stream and weathering crust meltwaters 

Within the weathering crust, the microbial community survive within a photic zone due to 

the genesis of meltwater and provision of photosynthetically available radiation (Edwards et al., 

2014; Irvine-Fynn and Edwards, 2014). As water mobility is limited within unweathered, ice so is 

cellular mobility (Price, 2007). The porous nature of the weathering crust potential facilities the 

translocation of cells, clastic sediment and solutes which may act as biological nutrients (Christner 

et al., 2018; Cook et al., 2015b) or as components of biogeochemical cycles either within the glacial 

or proglacial environments. However, the photic zone/weathering crust appears to represent 

somewhat of a logical paradox, as an ice mass ablates microbial biomass accumulates, rather than 

being eluted by meltwater (Irvine-Fynn et al., 2012). As such, glacier surface transport processes 

mediating the delivery of cells, biotic and abiotic material to downstream glacial, terrestrial and 

aquatic habitats are likely incredibly complex. Within streams, microbes are active, demonstrating 

nutrient retention and turnover (Scott et al., 2010). 

2.5.3 Cryoconite holes 

The most visually apparent microbial community upon the ice surface is cryoconite; 

microbe-mineral aggregates formed via mechanical and biochemical flocculation and found within 

small melt ponds ≤ 50 cm diameter (Cook et al., 2016a; Hodson et al., 2008). Cyanobacterial 

filaments and extra-cellular polymeric substances (EPS) bind granules, which have diameters 

≤ 100 μm (Langford et al., 2010). As relatively stable, nutrient-rich and well-illuminated 

environments they are areas of high microbial biodiversity upon the glacier surface (Cook et al., 

2010; Edwards et al., 2013a; Hodson et al., 2008; McIntyre, 1984; Wharton et al., 1985). Hole 

morphologies and biochemistry typically undergo constant evolution, only reaching a steady-state 
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equilibrium when sediment flux is zero, the substrate is uniform and radiation flux constant (Cook 

et al., 2015a).  

Aggregate motion within holes is controlled by local hydrological conditions (Irvine-Fynn 

et al., 2011b) and thermodynamic processes which maximize ecosystem productivity (Cook et al., 

2010). However, granule and cell motion between holes via the weathering crust remains unknown. 

The fate of cryoconite holes remains undetermined. They may “melt out” (i.e. ablation results in a 

re-equalisation of the surface with the hole base) or become disaggregated and collapse due to the 

encroachment of the active supraglacial hydrological system (Takeuchi et al., 2000) causing 

downstream redistribution of material (Irvine-Fynn et al., 2011b). 

It is important to note that these observations are skewed towards northern hemisphere 

systems which are exposed to the environment, allowing for influx of material, rather than the 

permanently lidded systems common in Antarctica (e.g. Fountain et al., 2004). In  contrast to those 

of other ice masses, Antarctic cryoconite holes often feature perennial ice lids, isolating them from 

gaseous, hydrological, microbiological and sedimentological exchanges with the environment, and 

interact with each other hydrologically through the frozen, permeable near-surface layer 

(MacDonell and Fitzsimons, 2008; MacDonell and Fitzsimons, 2012; MacDonell et al., 2016). 

2.5.4 Biogeochemical cycling and fluxes 

A microbiological approach compliments contemporary glaciological investigation 

strategies as the “poorly catalogued” (Rinke et al., 2013) microbiological population of glacial 

surfaces drives many biogeochemical cycles (Falkowski et al., 2008) in both glacial and non-glacial 

environments. Those processes which occur on glacier surfaces remain poorly characterised, 

despite an increasing recognition of their importance within biogeochemical cycling on a global 

scale (e.g. Anesio et al., 2009; Cameron et al., 2012; Hodson et al., 2007; Hodson et al., 2005; Hood 

et al., 2015; Wadham et al., 2013).  

Ice-surface bacterial communities play vital roles in carbon and nitrogen cycling (Cook et 

al., 2010; Hodson et al., 2007; Segawa et al., 2014; Telling et al., 2012a; Telling et al., 2012b) 

transforming labile inorganic nutrients, such as ammonium and phosphate, into organic forms 

(Anesio et al., 2009) that ultimately contribute to the pool of ice-locked organic matter. For example, 
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in Arctic environments, prolonged residence times of cryoconite are associated with enhanced 

stability and periods of net carbon fixation (Cook et al., 2012; Hodson et al., 2007). 

On a global scale, such organic matter represents a poorly understood carbon reservoir 

(Hood et al., 2015). At a regional scale, climate-driven changes in glacier run-off may represent an 

important global flux of organic carbon, and glaciers represent a key link between terrestrial and 

aquatic carbon. For example, the Greenland Ice Sheet and mountain glaciers are major sources of 

particulate and dissolved organic carbon (POC and DOC respectively), exporting 1.97 and 

1.04 TgC a-1 (Hood et al., 2015), accumulated from primary production and aeolian deposition 

(Hood et al., 2009; Singer et al., 2012; Stibal et al., 2012a). In Greenland, half of glacially exported 

nitrogen is sourced from microbial activity within glacial sediment at the surface and the bed of the 

ice (Boyd et al., 2011; Telling et al., 2012b; Wadham et al., 2016) with similar processes also observed 

on valley glaciers (Hodson et al., 2008; Telling et al., 2011). Climate change contributes to these 

fluxes; approximately 13 % of annual DOC flux from glaciers to proglacial marine and terrestrial 

environments is a result of mass loss which is expected to accelerate over the next century (Bliss et 

al., 2014; Radić et al., 2014). Whilst this proportion is small in the context of global carbon fluxes, 

glacier derived DOC is highly biologically available in contrast to other sources, with ≤ 95 % 

metabolised in laboratory assays of microbial heterotrophs (Hood et al., 2009; Singer et al., 2012). 

Annual global downstream transport of glacial cells is 3.15 × 1021 cells yr-1 (Irvine-Fynn and 

Edwards, 2014), which, whilst insignificant in terms of global cell flux (≤ 0.1%) may be important 

on a local scale. Traditionally, deglaciating catchments are viewed as a classic example of primary 

succession (e.g. Chapin et al., 1994) which is likely to be challenged with increasing awareness of 

transport processes of biological material and cells from glaciers within glaciated catchments. 

Increased emphasis is being placed upon microbial processes within glacial forefields (Bradley et 

al., 2014; Schutte et al., 2009; Zumsteg et al., 2011) complementing the classical consideration of 

succession. The transport of active microorganisms from the glacier surface may impact the cycling 

on and quantities of carbon discharged from glaciers to proglacial environments, depending on 

their functional diversity (Anesio et al., 2009; Cook et al., 2012) and may affect dissolved organic 

matter (DOM) delivery to and microbial ecosystem structure of downstream environments (e.g. 

(Bhatia et al., 2013; Lawson et al., 2014; Musilova et al., 2017; Smith et al., 2017a)). 

The scale of worldwide ice loss creates a need to evaluate spectrum of these downstream 

effects on freshwater rivers (Hotaling et al., 2017), lakes and near-shore marine ecosystems. For 
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example, Hood et al. (2015) and Milner et al. (2017) call for a global census and continuous 

monitoring of key biogeochemical variables, adopting standard techniques to provide greater 

understanding of current and future regulating services of glacier-fed rivers. Microbial biodiversity 

and function in alpine headwaters have been largely unexplored, despite the between stream 

microbial communities and their general importance to biodiversity, ecosystem processes and 

biogeochemistry (Battin et al., 2016; Zeglin, 2015).  

The weathering crust and supraglacial streams are crucial transport pathways in glacial 

ecosystems, yet their role in the moderation of cell, particulate and solute fluxes remain unclear. To 

characterise these surface changes and nutrient fluxes, it is necessary to understand the changing 

input from glaciers, including how cells are stored, transported and exported through and across 

the supraglacial hydrological system. 

2.6 Eco-hydrology of non-glacial environments 

Eco-hydrology is defined as the interaction between hydrological and ecological sciences, 

and the impact of each system upon the other (Hannah et al., 2004). Microbial communities in non-

glacial environments are examined briefly herein as they present potential analogues with which to 

study glacial eco-hydrology. In the freshwater environment, water is important as both a major 

internal constituent of biota and as the environmental matrix. This is the case for the glacial system, 

but more conventionally studied analogous freshwater ecosystems include, rivers, terrestrial 

aquifers, snowfields, and seasonal lacustrine ice. The microbial ecology of seasonal and perennial 

sea ice is also examined, with potential analogues considered due to the low temperatures which 

exist. Many organisms can grow in extreme environments (Seckbach, 2000), with those that favour 

cold conditions termed “psychrophiles”. 

Limitations in the external concentrations of inorganic nutrients such as nitrogen and 

phosphorous, and organic carbon, occur widely in freshwater environments, especially in snow and 

groundwater aquifers, restricting growth of hetero- and autotrophic microorganisms. In the water 

column of most lakes and rivers, most bacteria are in a starvation-induced state of dormancy (Jones, 

1971). Freshwater bacteria have evolved a range of molecular and physiological mechanisms to 

survive under low nutrient conditions, blooming when nutrient availability increases (Menzel and 

Ryther, 1970; Morita, 1997). Temperature is another important factor that determines growth and 

survival of microorganism, and each organism has a characteristic range of temperatures which it 
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can inhabit with microorganisms found in environments from ≤ 0 °C to ≤ 100 °C (Willey et al., 

2008).  

2.6.1 Rivers 

The aquatic environment of both streams and rivers is dominated by continuous 

unidirectional flow with low retention time and no thermal or chemical stratification due to the 

turbulence associated with water flow. This limits development of the planktonic community which 

is rapidly advected downstream (Sigee, 2005). Hence, benthic algal and bacterial biofilms are 

particularly important, with filamentous green and blue-green algae important primary producers, 

responding rapidly to changes in water quality (Biggs, 1996), although such organisms can also be 

dispersed if entrained in the water flow., with an inverse relationship between velocity of river flow 

and immigration of organisms into benthic communities (McCormick and Stevenson, 1991), linked 

with a reduction in the rate of cell delivery as cells remain in suspension. Water velocity also acts as 

a determinant in nutrient supply to the benthic ecosystem (Biggs et al., 1998). 

2.6.2 Soil and rock aquifers 

Soils, and water enclosed in soil and bedrock aquifers represent extensive microbial habitats 

with bacterial concentrations in groundwater in the range 102 to 108 cells mL-1 (Madigan et al., 2015). 

Both media are similarly lacking in sunlight and are periodically or permanently anoxic.  

Soil is one of the diverse habitats known for microorganisms, with thousands of different 

prokaryotic species per gram (Torsvik et al., 1990). Despite substantial species variation dominant 

phyla are relatively constant (Madigan et al., 2015). Understanding of major controls of microbial 

community composition is soils has yet to be achieved, which can feed back into changes in soil 

and ecosystem processes (Schimel, 1995; Waldrop et al., 2000). Potential contributing factors 

driving differences in soil microbial communities include types and amounts of organic carbon and 

water (Sylvia et al., 2005), which are highly correlated with observed differences in community 

composition (Drenovsky et al., 2004). Organic carbon limits microbial communities in most soils 

(Aldén et al., 2001) and additions of labile organic material rapidly alter microbial communities by 

selecting for populations that are most competitive in terms of growth rates and ability to absorb 

nutrients. Water content influences communities both directly and indirectly through impacts on 

oxygen concentrations and nutrient availability (Bossio and Scow, 1998). In soils, microorganisms 
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can act to block pore spaces, reducing hydraulic conductivity and decreasing water infiltration rate 

(Seki et al., 1998). 

Microbial communities in subterranean systems are found at depths ≤ 200 m and 

demonstrate considerable physical diversity (Madigan et al., 2015). In groundwater, microorganisms 

can be motile (i.e. flagellated) by are more commonly present in biofilms bound to solid surfaces, 

including both litho- and heterotrophic organisms (Fredrickson et al., 1989). When concentrations 

of organic compounds are low, immotile bacteria have a competitive advantage (e.g. Kelly et al., 

1988), with the converse situation also the case; a greater proportion of motile bacteria are observed 

in highly contaminated systems (Ghiorse and Wilson, 1988). Predominant microorganisms are 

thought to be aerobic heterotrophs of the genus Pseudomonas, adapted to survive a range of adverse 

conditions including low nutrient concentrations, and are adapted to grow and survive at the 

extremes of organic carbon availability, with total bacterial counts in pristine aquifers directly 

correlated with organic carbon levels (Kazumi and Capone, 1994). 

Significant correlation has been observed between bacterial abundance and hydraulic 

conductivity (Levine and Ghiorse, 1990), with bacteria found to be more abundant in sand 

sediments than clayey sediment. This correlation may reflect the difficulty in colonisation of finer-

grained sediments, which mechanically filter finely grained organisms. Furthermore, media with 

greater hydraulic conductivity have larger fluxes of water, delivering nutrients and DOM to bacterial 

cells.  

2.6.3 Snow 

The snow surface presents challenging conditions for organisms living upon it; levels of 

irradiance, including the UV element of the spectra are high, nutrient concentration and 

temperatures are low, and periods of desiccation are common. Hence active phases are restricted 

to periods with water availability, with cells mainly dormant during an annual cycle. The most 

visually apparent form of microorganism in snow is coloured, so-called “snow algae”, which are in 

fact flagellated protozoa (belonging to the Phytomastigophora) and can reach concentrations of 

≤ 8.6 × 105 cells mL-1 (snow water equivalent) (Jones et al., 2001). Bacteria are also observed, even 

in the most extreme environments such as Antarctica where annual temperature ranges are -85 to -

13 °C, exhibiting growth in temperatures above -17 °C (Carpenter et al., 2000). Abundances range 
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between 600 (e.g. Liu et al., 2009) and 2 × 105 cells mL-1 (e.g. Amato et al., 2007), with deposition 

of cells connected to aeolian particulates (Chuvochina et al., 2011).  

 Snowpacks can act as control upon subglacial biogeochemical processes, with links drawn 

between recession of seasonal snow, subglacial drainage and the aeration of subglacial sediments 

driving a redox environment characterising subglacial microbiology and delivering nutrients and 

organic matter to the bed (Hodson et al., 2008; Tranter et al., 2005). Whilst such processes remain 

poorly defined for the supraglacial environment, with research focus on non-glacial snowpacks, it 

seems reasonable to consider that the melting seasonal snowpack may exert a similar influence at 

the beginning of the melt season. Despite limited liquid meltwater, nitrogen cycling during the 

spring melt period has been identified (Larose et al., 2013). Clay particles and dust are an important 

component of this biogeochemical cycle (Amoroso et al., 2009) acting to reduce the photolytic 

losses to the atmosphere (Björkman et al., 2014) enhancing the assimilation of nitrate into 

cryospheric ecosystems.  

Algal taxa within the perennial snowpack differ from those within seasonal snow found in 

the ablation area (Takeuchi, 2013). This is significant in terms of glacial melt processes due to 

differing controls upon algal blooms in each community and the influence of such algae upon 

albedo; this is especially of interest upon the Greenland Ice Sheet (Cook et al., 2012; Lutz et al., 

2014; Uetake et al., 2010; Wientjes et al., 2011; Yallop et al., 2012). It was suggested by (Takeuchi 

et al., 2015) that algal albedo reduction increased the melting rate of Glacier 31, Suntar-Khayata 

Mountain Range, Siberia by a factor if 1.6 - 2.6 when compared with clean ice. 

2.6.4 Lake ice 

Bacteria of diverse morphology, including filamentous forms ≤ 100 μm long, are found in 

seasonal ice on the surface of alpine lakes in abundances ≤ 1.6 × 106 cells mL-1 (Felip et al., 1995). 

The bulk of microbial activity is observed within surface slush layers, which was greater than that 

observed in the underlying lake waters. However, chlorophyll-α levels in the slush layer where five 

orders of magnitude lower than sea ice; between 0.22 and 0.50 μg L-1, indicative of an oligotrophic 

environment, highlighting the importance of allochthonous carbon and nitrogen to sustain net 

heterotrophy. Bacteria in the slush layer were mainly larger than 2.6 μm, whilst those in the lake 

water were small ≤ 1 μm (Alfreider et al., 1996). 
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2.6.5 Sea ice 

Sea ice covers approximately 7 % of the Earth’s ocean surface at its maximum extent 

(Vaughan et al., 2013) and hence represents a major microbiological ecosystem. Bacterial abundance 

can reach 2.0 × 106 cells m-2 (Laurion et al., 1995). Little is known about viruses in sea ice, except 

that most are bacteriophages (Gowing, 2003). The ice itself is a porous medium, with a permeability 

between 10-11 to 10-9 m2 (Eicken et al., 2002), equivalent to that of the weathering crust (Karlstrom 

et al., 2014). These pore spaces provide a habitat for a range of microorganisms (algae, bacteria, 

protozoans and viruses) which occupy ≤ 41 % of the surface area of brine-filled internal channels 

at 2 °C (Krembs et al., 2000). Channel morphology has major implications for food-web 

relationships within the ice, over half of the channels have a diameter ≤ 200 μm (≈ 50 % ≤ 41 μm), 

allowing microorganisms resident within them to escape grazing from larger predators, such as 

ciliated protozoans. However, these narrow channels are unfavourable for the transport of 

molecules vital for sustaining physiological function.  

In sea ice, chlorophyll-α concentrations (a widely applied estimate of biomass of 

photosynthetic communities) are ≤ 1000 μg L-1, supporting high level of photosynthesis and 

primary production. Low light is typically the limiting factor for photosynthesis, rather than nutrient 

availability. Furthermore, sea ice algae are adapted to deal with low-light conditions, which prevail 

during periods of snow cover; photosynthesis has been observed at irradiances of 

1 μmol photons m-2 s-1 (McMinn et al., 2007). 

2.7 The weathering crust: a conceptual model 

Despite some examination estimating bulk rates of meltwater transfer through the 

weathering crust, limited work has yet taken place to assess values of and controls upon crust 

hydraulic conductivity and permeability. The weathering crust is a potential location for the short-

term storage of meltwater (Irvine-Fynn et al., 2006; Larson, 1977, 1978)  and acts as a control upon 

near-surface drainage velocities (Munro, 2011; Schuster, 2001; Shea et al., 2005; Wakahama, 1978; 

Wakahama et al., 1973) providing a substrate vulnerable to rill initiation and development of 

channelised flow (Mantelli et al., 2015). Microscale weathering crust processes are linked with the 

development of macroscale supraglacial flow features (Karlstrom et al., 2014), indicating the 

requirement to further understand near-surface flow dynamics. 
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Flow through the weathering crust may act as a medium through which microbial cells, 

abiotic particulates and chemical species may be exported from storage in glacial ice via melt 

processes (Irvine-Fynn et al., 2012), subsequently influencing downstream catchments, seeding 

them with cells, organic material and nutrients such as carbon, nitrogen and phosphorus (Bagshaw 

et al., 2013; Hood et al., 2015; Milner et al., 2017; Singer et al., 2012; Wilhelm et al., 2013). 

Additionally, hydrological perturbance within the weathering crust influences in situ microbial 

communities (Edwards et al., 2011), and acts as a substrate for the development of cryoconite holes 

(Irvine-Fynn and Edwards, 2014), which are connected hydrologically with the weathering crust 

(Cook et al., 2015b). Whilst there is some understanding of water transport rates through the 

weathering crust, colloid and contaminant transfers remain unexplored. The following conceptual 

model will be used as a basis for examination of the eco-hydrology of this unexplored component 

of the glacial hydrological system.  

2.7.1 Formation, degradation and regional-scale variation 

The processes of formation and degradation of the weathering crust are intrinsically linked 

with its capacity to store and transfer water, cells, sediment and solutes within and through the 

supraglacial hydrological system. Formation processes are summarised in Figure 2.2, with melt at 

depth driving density and pore size changes. In clear-sky conditions, radiative fluxes provide the 

majority of energy for melt (≈ 70 %), 36 % of which penetrates the ice surface causing sub-surface 

melting (Greuell and Oerlemans, 1989). Weathering crust thickness increases to a maximal depth 

throughout the ablation season in at highly variable rates depending on synoptic conditions (Cook 

et al., 2015b). Considering a starting point where ice is unweathered (and has a density of ≈ 917 

kg m-3), ice crystals melt at their boundaries, decreasing crystal size and bulk density, conversely 

increasing pore size. Due to the non-linear extinction of SWR at depth in the weathering crust, this 

density-depth curve would also be expected to be non-linear (Figure 2.2). Throughout this 

formation processes, surface lowering will also occur, however at a lesser rate than suggested by 

traditional melt models which do not account for sub-surface melt. If synoptic patterns remain 

constant (i.e. clear, sunny conditions prevail), this system will reach an equilibrium state, where the 

weathering crust reaches a minimum bulk density and maximum thickness, where surface lowering 

rate is equal to that of the depth penetration of the base of the weathering crust.  
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Conversely, a cloudy and/or rainy period of weather, where radiative fluxes are 

proportionally reduced in comparison to turbulent fluxes, will cause degradation of the weathering 

crust. Low density near-surface ice can be easily ablated, whilst the downwards penetration of the 

weathering crust base ceases due to a lack of SWR receipt. This will increase the bulk density and 

decrease the thickness of the weathering crust. Furthermore, cooler air temperatures are commonly 

associated with such synoptic conditions, and if ≤ 0 °C have potential to promote refreezing of 

interstitial meltwater. In addition to synoptic-scale formation and degradation processes diurnal 

patterns in SWR receipt, linked with daylight hours, can be expected to drive weathering crust 

development on a shorter time scale. Using bulk weathering crust density as measure of the degree 

of weathering of near surface ice, this is demonstrated in Figure 2.4. 

On a regional to global scale, differing climatic settings would be expected to determine the 

rate of weathering crust development; demonstrating similar spatial patterns to those which govern 

SWR receipt, as this is key component which drives weathering crust formation. Firstly, continental 

environments, such as the European Alps, 

derive a greater proportion of melt energy from 

radiative fluxes than their maritime (such as 

Scandinavia) equivalents (Willis et al., 2002); as 

cloudy conditions are more common in the 

latter environments. Similar variation would be 

expected related to annual variations in 

synoptic conditions, such as summer with 

above average cloud cover. Therefore, in 

continental regions, weathering crust 

development would be expected to occur at a 

faster rate than maritime regions as more 

energy is available for melt at depth. 

Furthermore, the latitude of the glacier would 

be expected to influence weathering crust 

development, also as a function of both 

radiation receipt (Figure 2.5). In the mid-

latitudes, such as the European Alps, greater 

diurnal fluctuation in weathering crust 

 
Figure 2.4 Conceptual development of the 

weathering crust measured using the proxy of bulk 

density, of the weathering crust over a period of six 

days in the Arctic and European Alps. In the European 

alps, higher SWR receipt during daylight hours causes 

the weathering crust to develop more quickly than in 

the Arctic, whilst the converse is true overnight 

(where Alpine SWR receipt is zero). On day 4, the 

Alpine weathering crust reaches an equilibrium of 

maximal development (note that this is an indicative 

example only, not an empirical hypothesis). On day 5, 

a period of cloudy weather results in degradation of 

the weathering crust. Due to higher air temperatures, 

and therefore turbulent fluxes in the Alps degradation 

occurs at a faster rate than in the Arctic.  
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formation and degradation would be expected than at high latitudes (such as Svalbard) but greater 

average receipt of radiation at the high latitudes would be expected to correlate with faster 

weathering crust development, reaching the equilibrium phase more quickly. To a lesser degree, 

aspect may also play a role; in the northern hemisphere radiation receipt is reduced on north facing 

glaciers when contrasted with south facing glaciers, and as such weathering crust development 

would be slower.  



2. Literature Review 

37 

 

2.7.2 Weathering crust hydrology 

Acknowledgement of the WCA has challenged the hitherto commonly held assumption that 

meltwater is transferred virtually instantaneously from the point of production to supraglacial 

channels (Fountain and Walder, 1998). Comparing flow velocities in the weathering crust (10-8 to 

10-4 m s-1 Wakahama et al., 1973),  to supraglacial stream velocities that typically range from 10-2 to 

 
Figure 2.5 a) Daily average insolation at the top of atmosphere as a function of season and latitude (Fu et al., 

2015), with the two example locations and period of interest indicated. b-e) modelled incident radiation for 

hypothetical north and south facing glaciers in the Swiss Alps (2000 m asl) and Svalbard (100 m asl) (both 5 ° 

slope) using the model described in {Irvine-Fynn, 2014 #120}  between the 1st June and 31st August (b = 

Switzerland; north facing, c = Switzerland; south facing, d= Svalbard; north facing, e= Svalbard; south facing).  
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With the clear controls that local energy receipt, subsurface melt rates and disaggregation, and 

ice structure and crystal size have on the bulk and vein network density of the weathering crust, the 

flow of water is equally spatially and temporally varied. 

However, it should be noted that during periods of high meltwater input, the weathering crust 

itself will be subject to melting, changing its hydraulic conductivity. Cook et al. (2015b) reported 

water levels varied on synoptic and daily time scales, with water table height falling as SWR receipt 

increased and the weathering crust’s interstitial space enlarged, increasing hydraulic conductivity. 

Here, the assumption is that despite the increase in melt, driving water production at the surface, 

the relative magnitude of subsurface melting and increase in water transport capacity of the 

weathering crust offset the increasing water volume delivered to it. In this study, the water table 

returned towards the ice surface as reductions in SWR and meltwater heat flux cause the contraction 

of the pore spaces in the weathering crust via interstitial freezing of meltwater. However, given the 

latent heat released during the refreezing of interstitial meltwater (see Paterson, 1994), a period of 

freezing air temperature for hours or even days is unlikely to result in complete re-freezing of the 

liquid component of the weathering crust, but may cause  the overnight reduction of hydraulic 

conductivity on a diurnal scale. 

Discharge occurs from the weathering crust primarily via the transfer of meltwater to supraglacial 

streams, from where it is rapidly advected from the glacier surface to the en-, sub- and ultimately 

proglacial systems. Given the expected depths of the water table from the ice surface and the typical 

water levels in supraglacial streams, it is hypothesised that such streams will be of the gaining type 

(Figure 2.3). Regarding cryoconite holes, Cook et al. (2015b) assert that the water level in such holes 

is equal to the weathering crust, making them comparable to throughflow-type lakes. This presumes 

that the walls of the cryoconite hole are of equal hydraulic conductivity to the weathering crust 

surrounding it. Cryoconite holes may also be perched above the water table given their top-down 

formation (Gribbon, 1979) in a disconnected losing architecture. Such a hydrological arrangement 

would most likely occur during the process of cryoconite hole formation, when holes are shallow 

(i.e. ≤ 10 cm) and therefore above the water table.  In which case, water fluctuation within 

cryoconite holes would not be representative of water table fluctuation, rather input of meltwater, 

downwards drainage and evaporation within the hole. It should be noted that this arrangement is 

compatible with the fall in water levels during periods of peak melt observed by Cook et al. (2015b), 

increase in hydraulic conductivity would enhance the rate of water drainage through the weathering



2. Literature Review 

39 
 

 
Figure 2.6 A conceptual model of water flow through the weathering crust. a) catchment-scale water flow, 

ultimately into supraglacial streams in topographic lows, where water is rapidly advected from the surface. 

Water is lost from the weathering crust via evaporation, with capillary action drawing water upwards in the 

unsaturated zone, and meltwater from the surface and subsurface infiltrates through the unsaturated zone to 

the water table, which fluctuates with recharge and discharge. The inset indicates a fully developed weathering 

crust, comparable with Figure 2.3b. In this example, a cryoconite hole acts as a throughflow, gaining and losing 

water. Depending on the position of the water table, cryoconite holes may also gain or lose water to the 

weathering crust. Hypothesised density, porosity and hydraulic conductivity profiles are indicated; in the 

unsaturated zone water content controls hydraulic conductivity, and in the saturated zone, porosity is the key 

control. b) and c) indicate these profiles under different conditions: panel b a low water table in a developed 

weathering crust, and panel c a shallow, poorly developed weathering crust.   
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crust, and relatively high midday temperatures promoting evaporation from holes causing the water 

level to drop. Evaporative losses of water to the surface boundary layer, can also be expected, driven 

by a humidity gradient from the unsaturated zone of the weathering crust. Water drawn upwards 

by capillary rise is likely most susceptible to this process. 

Above the water table, the weathering crust will be analogous to the vadose or unsaturated 

zone observed in soils and groundwater systems. Meltwater, not only from the surface but 

throughout the depth profile of the ablating weathering crust, will either a) be added from melting 

ice in the saturated zone directly to the meltwater within the saturated zone, or b) undergo gravity-

driven infiltration through the unsaturated zone to the saturated zone. 

In the unsaturated zone, water migrates through water films surrounding ice crystals, and 

as a result of sensible and latent heat transfer associated with melting and refreezing at the crystal 

scale, driven by gravity and water surface tension. In this zone, hydraulic conductivity is driven by 

water content, which is highest at the surface, where the energy available for melt is at its greatest, 

and just above the water table where water is drawn upwards via capillary action. At the surface, 

unsaturated hydraulic conductivity is therefore driven by melt rate, positively correlating with water 

content, and at the water table by humidity and temperature gradients between the weathering crust 

and the ice surface. Hence, unsaturated hydraulic conductivity will be highest during periods of 

peak melt. Infiltrating meltwater travels downwards, driven by gravity, through this system until it 

reaches the saturated zone, described above.  

The lower vertical limit of the weathering crust is defined by an aquiclude which varies across a 

range of environmental settings. In Arctic environments, the hydrologically active zone is thermally 

defined by the transient thermal layer. At the base of this, ice is below the PMP and is essentially 

impermeable. In contrast, all ice in temperate glaciers is above the PMP. Without the presence of 

an extensive cold-ice layer, an aquiclude is generated via water pressure in saturated veins and lenses 

located upon grain boundaries (Lliboutry, 1996). This aquiclude is likely to respond to synoptic 

variation in pressure gradients, capillary forces and evaporation. 

2.7.3 Eco-hydrology of the weathering crust 

Microbial cells can be expected to be found in a multitude of habitats within the weathering 

crust (Figure 2.7). A depth gradient is observed with a dominance of phototrophic bacteria, algae 
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and cyanobacteria near the ice surface, where radiation receipt is highest. In contrast, reduced 

radiation receipt at depth would be expected to correlate with a dominance of heterotrophs. 

Controls on microbial concentrations can be expected to be availability of nutrients and water, 

replication rate and residence time, removal of cells via advective transport in meltwaters and viral 

controls. Previous work (e.g. Mader et al., 2006) report cell concentrations in interstitial melt water 

of ≤ 106 cells mL-1, and as such similar concentrations can be expected to be observed in weathering 

crust meltwater. Despite existing estimates, there is a lack of a single efficient, robust and repeatable 

counting technique for enumeration of cells in supraglacial environments.  

Advective cell transport and nutrient availability are hypothesised to correlate with hydraulic 

conductivity. Higher hydraulic conductivities are associated with greater pore water velocities, 

delivering water and nutrients to cells which are bound to ice crystals, either mechanically or in 

biofilms. In contrast, higher pore water velocities will be associated with increased transport rates 

Figure 2.7 Microbial habitats within the weathering crust. a) The surface and immediate surface within it, 

including surface algae, cyanobacteria in addition to cells in water films on ice crystals and those which have 

formed biofilms around ice crystals. b) the margin of a cryoconite hole, where pelagic microbes (primarily 

bacteria) can transfer through the hole walls with water movements. c) Deeper in the weathering crust, 

reduced radiation receipt is aligned with fewer phototrophic microbes. At depth, vein sizes between ice 

crystals are smaller, and microbes are mechanically filtered. d) The sediment layer of a cryoconite hole, bound 

by cyanobacteria with embedded bacterial cells. Phototrophs are found at the surface of this layer, where 

radiation receipt is greatest. Connections between microbes in the sediment and water phase of holes remain 

unclear.  
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of planktonic cells, particulate impurities and aggregates of these, transporting them through the 

weathering crust to the supraglacial stream network. A size-selective control will occur on the 

transport of pelagic cells, related to pore size; cells which are larger than the pores through which 

their transport path leads will become trapped, blocking the pore (reducing effective porosity) and 

darkening the near-surface of the ice. This is expected to be more common near the base of the 

weathering crust, where pore sizes are smaller than near the surface due to lesser radiation receipt 

and melting. Modal cell size observed in supraglacial streams is ≤ 2 μm (Irvine-Fynn et al., 2012), 

and as these cells are hypothesised to have been transported through the weathering crust, it would 

be expected that cell size distributions in the latter environment will be similar. Motile bacterial 

types are uncommon in the weathering crust (Christner et al., 2018), and active cellular movement 

is hence thought to be uncommon at best. 

Interaction between the planktonic cells and particulates of the weathering crust and 

cryoconite holes is unclear. Export of cells from cryoconite aggregates is more likely than sediment 

due to the critical competence required for their entrainment and the role of the weathering crust 

as a mechanical filter; large cryoconite floccules (≥ 100 μm; Langford et al., 2010) are unlikely to 

pass through the weathering crust, even if entrained. However, if water is free the move between 

cryoconite holes and the weathering crust unimpeded (as implied by Cook et al. (2015b), it would 

be expected that planktonic cells can be transported between the two, subject to the filtering 

conditions hypothesised above. Given that cryoconite holes are “hotspots” of microbial activity on 

glacier surfaces, it is expected that interaction between the sediment phase and water phase of the 

hole will result in an increased concentration of nutrients and planktonic cells in cryoconite waters 

when contrasted with the weathering crust. As such, plumes of enhanced concentrations of both 

would be expected downflow from cryoconite holes. 

Residence time within the weathering crust of planktonic cells is linked with the rates at which 

cells are transported through the system, and, when considering concentrations, with replication 

rate. Typical doubling rates of microbes observed in the weathering crust are the order of days 

(Anesio et al., 2010), and as such microbes which take this time to be transported through the 

weathering crust can be expected to replicate. Bioavailable nutrient inputs are intrinsically linked 

with cell replication rates as the former enables the latter and it is widely accepted that aquatic 

bacterioplankton growth is determined by the trophic state of the system (Pinhassi and Berman, 

2003). Glacier surfaces are nutrient-limited environments (Irvine-Fynn et al., 2012), and despite 
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phototrophic activity within the weathering crust (generating carbon and oxygen to drive 

heterotrophic metabolisms) (Säwström et al., 2002; Telling et al., 2010) consumers must acquire 

other vital nutrients released from melting surface ice and delivered by percolating meltwater. In 

nutrient limited Arctic freshwaters, nutrient-addition has been demonstrated to stimulate bacterial 

growth and doubling times, as has temperature (Säwström et al., 2007b). Therefore, in addition to 

residence time ample nutrients must be available for cells to replicate. If doubling does occur, cell 

concentration would be inversely proportional to distance from a sample point to a stream, as 

longer residence time would allow the time required for replication to occur if nutrient supply was 

not a limiting factor. This hypothesis is however complicated by the presence of bacteriophage 

viruses within the weathering crust (e.g. Bellas et al., 2013; Rassner et al., 2016; Säwström et al., 

2007a; Säwström et al., 2007b), which may also act to limit cell concentration.  

2.8 Research gaps and study direction 

Supraglacial hydrology is undergoing somewhat of a resurgence, based upon a re-emerging 

research interest in supraglacial melt processes, and technological advances such as the use of 

UAVs, improved remote sensing platforms and computer processing power. Coupled with the 

developing focus on supraglacial microbiology and transport of cells and impurities through and 

from glacier surfaces, and associated downstream impacts of this hitherto poorly considered carbon 

flux, this chapter highlights the following research gaps which will be addressed in this thesis: 

1. Whilst there are estimates of weathering crust hydraulic conductivities, little is known 

regarding the controls upon this beyond the theorised principles of radiation receipt as a 

driver for intercrystalline melt, density reduction and an associated increase in porosity and 

hydraulic conductivity. Furthermore, investigation needs to be undertaken to determine if 

the use of Darcy’s Law is the most appropriate technique in which to examine this layer. 

Therefore, Chapter 3 will develop and test a logging piezometer for the quantification of 

hydraulic conductivity within the weathering crust.  

2. It is hypothesised and seems reasonable that the hydraulic conductivity of the weathering 

crust is highly variable in both time and space. However, no studies have yet aimed to 

characterise the spatio-temporal variability of this layer, and role of ice mass characteristics 

and thermal regime upon it. Chapter 3 will investigate regional-scale variation in hydraulic 

conductivity of the weathering crust at a multitude of sites and climatic settings across the 
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northern hemisphere. Temporal and local-scale spatial fluctuations will be examined at one 

site, Vadrec del Forno (Switzerland) in Chapter 6. 

3. Transport of cells, particulate impurities, and solutes through the weathering crust from 

allo- and autochthonous sources remains poorly understood. Within the context of global 

climatic change and associated predicted melt rate increases of global glaciers, many 

contaminants archived within glacial ice are expected to “melt out” and become mobile. 

Understanding the transport mechanisms of these impurities is critical to ascertain their 

potential influence upon a) glacial biogeochemical cycles and microbial ecology and b) 

downstream interactions with proglacial and oceanic environments. Chapter 4 will develop 

a robust, accurate and repeatable technique for enumeration of cells in weathering crust 

meltwaters. Chapter 5 will apply this technique using samples at a multitude of sites and 

climatic settings across the northern hemisphere and aim to establish broad links between 

hydraulic conductivity of the weathering crust and planktonic cell concentrations, assessing 

the flux of cells and mass of cellular carbon from glacier surfaces. Chapter 6 will examine 

local-scale spatial and temporal trends in a supraglacial catchment on Vadrec del Forno 

(Switzerland).     

The near-surface weathering crust remains poorly understood despite the role it clearly plays 

within the transport of meltwater, biotic and abiotic particles within the supraglacial environment. 

It acts as a control upon microbial communities, biogeochemical cycling and surface albedo, yet 

many questions remain as to its role and controls upon these key variables which influence glacial 

melt, and down-catchment hydrochemistry and biology. Surface meltwater is the key vector for 

understanding the transfer of nutrients, cells and organic matter are transported through glaciers 

and establishing how they will respond to climate change. This thesis will begin to elucidate the role 

of the weathering crust and the supraglacial ecosystem. 
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3.1 Publication history 

This chapter was originally published in Hydrological Processes in 2018, following a poster 

presentation at AGU in 2016, and is reproduced here without addition or subtraction of material. Note 

that figure, table and equation nomenclature has been adjusted from the paper to ensure consistency 

throughout the thesis document. Author contributions to this paper are outlined in section 1.4, and 

supplementary data in Appendix 1. 

3.2 Abstract 

The hydrology of near-surface glacier ice remains neglected aspect of glacier hydrology despite 

its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological 

characteristics of this near-surface glacial “weathering crust”, we describe the design and operation of 

a bespoke capacitance-based piezometer that enables rapid, economical deployment across multiple 

sites and provides an accurate, high resolution record of near-surface water level fluctuations. 

Piezometer tests were conducted on the surface of ten northern hemisphere glaciers. Through 

application of standard terrestrial hydrology bail-recharge techniques, we derive hydraulic conductivity 

(K) values from 0.003 to 3.519 m d-1, with a mean of 0.185 ± 0.019 m d-1. These results are comparable 

to those obtained in other discrete studies of glacier near-surface ice, and for firn, and indicate that the 

weathering crust represents a hydrologically inefficient, aquifer. Hydraulic conductivity was positively 

correlated with water table height but negatively correlated with both altitude and cumulative short-
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wave radiation since the last synoptic period either of negative air temperatures or dominated by 

turbulent energy fluxes. The large range of K observed suggests complex interactions between 

meteorological influences and differences arising from variability in ice structure and crystallography. 

Our data demonstrate a greater complexity of near-surface ice hydrology than hitherto appreciated and 

support the notion that the weathering crust can regulate the supraglacial discharge response to melt 

production. The conductivities reported here, coupled with typical supraglacial channel spacing, 

suggest that meltwater can be retained within the weathering crust for at least several days. This has 

implications not only for the accuracy of predictive meltwater runoff models, but we also argue for 

biogeochemical processes and transfers that are strongly conditioned by water residence time and the 

efficacy of the cascade of sediments, contaminants, microbes and nutrients to downstream ecosystems. 

Since continued atmospheric warming will incur rising snowline elevations and glacier thinning, the 

supraglacial hydrological system may assume greater importance in many mountainous regions and, 

consequently, detailing weathering crust hydraulics represents a research priority since the flow-path it 

represents remains poorly constrained. 

3.3 Introduction 

Most glacial runoff occurs during the summer melt season and typically fluctuates according 

to diurnal energy balance oscillations (Hock et al., 2005). It has often been assumed that the snow-free 

glacier surface imparts minimal delay between meltwater generation and its delivery to englacial, 

subglacial and proglacial environments (Fountain and Walder, 1998). However, meltwater storage at 

an ablating glacier surface has been inferred from geophysical data (e.g. Irvine-Fynn et al., 2006; Moore 

et al., 1999) and meltwater budgets (e.g. Irvine-Fynn, 2008; Larson, 1978). Discrepancies in the timing 

and volume of modelled ablation and observed meltwater discharge have also been observed for snow-

free supraglacial catchments in alpine (e.g. Munro, 2011) and ice sheet (e.g. McGrath et al., 2011; 

Rennermalm et al., 2013) settings. Consequently, there has been a growing recognition of the glacial 

“weathering crust” (Müller and Keeler, 1969): the shallow (typically 0.01 - 2 m) layer of porous ice 

which typifies ablating glacier surfaces, which has been referred to as "honeycomb" or "coral" ice (e.g. 

Cutler and Munro, 1996; Zeng et al., 1984). Despite the recent surge in interest in supraglacial 

hydrology evident in the literature, (e.g. Gleason et al., 2016; Karlstrom et al., 2013; Karlstrom et al., 

2014; Mantelli et al., 2015; McGrath et al., 2011; Rippin et al., 2015; Smith et al., 2015; St. Germain 

and Moorman, 2016; Yang et al., 2016; Yang and Smith, 2013), a detailed understanding of the 
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hydraulic conductivity (K) and permeability (κ) of the weathering crust, and their variation in space and 

time is still lacking (Cook et al., 2015; Irvine-Fynn et al., 2011b; Karlstrom and Yang, 2016). 

The porous weathering crust ice layer develops as a function of three primary drivers: (i) 

subsurface melt caused by incident solar radiation (Müller and Keeler, 1969; Munro, 1990); (ii) heat 

flow within interstitial spaces that further contributes to declining ice crystal cohesion (Hoffman et al., 

2014; Mader, 1992; Nye, 1991), and (iii) kinetic energy and frictional heat transfers from water flow 

through interstitial flowpaths (Koizumi and Naruse, 1994). The depth of the weathering crust that 

develops during synoptic clear sky conditions is related to Beer's Law (Cook et al., 2015; Oke, 1987), 

which defines an exponential increase in bulk ice density with depth (LaChapelle, 1959) from ~300-

400 kg m-3 to 870-917 kg m-3 over length scales between a few centimetres to several decimetres or 

more (Brandt and Warren, 1993; Müller and Keeler, 1969; Schuster, 2001; Shumskii, 1964). Factors 

controlling the depth of weathering crust development include the coefficient of extinction of 

shortwave radiation (SWRin), itself governed by ice type, crystal size, impurity and air bubble content 

and their emergence rates, and the zenith angle, intensity and duration of solar radiation receipt. Clear 

skies lead to glacier surface energy balance dominated by radiative fluxes, which promote weathering 

crust growth, in some cases of stagnating ice to a depth in excess of 2 m (Fountain and Walder, 1998; 

Larson, 1977). Reduced incident radiation (e.g. due to cloud cover) and high precipitation cause 

turbulent energy to dominate the glacier surface energy balance, promoting surface lowering which 

reduces the thickness of the weathering crust (Müller and Keeler, 1969; Shumskii, 1964). Variations in 

the thickness and porosity of the weathering crust at synoptic and seasonal time-scales likely results 

lead to temporal and spatial variability in supraglacial hydraulic permeability, conductivity and 

meltwater storage potential. The dynamic properties of this near-surface porous media likely influence 

meltwater transfer, modulating the lag time between in situ meltwater production and associated runoff 

signals (Karlstrom et al., 2014; Munro, 2011).  

Hydraulic conductivities between 10-2 and 10-6 m s-1 (103 and 10-2 m d-1) for differing depths, 

sample times and general surface topographies have previously been measured for glaciers in Alaska 

and Norway (Larson, 1977; Theakstone and Knudsen, 1981; Wakahama, 1978; Wakahama et al., 1973). 

In contrast, theoretical estimates based on assumed values for near-surface ice properties suggest a 

permeability of ~10-10 m2 for the Llewellyn Glacier, Juneau Ice Field, Canada (Karlstrom et al., 2014). 

However, as (Theakstone and Knudsen, 1981) cautioned, rigorous comparisons of these types of data 

should not be made, due to marked contrasts in geographical location, climatic setting, glacier 
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morphology, and experimental methods. Rather, these limited observations emphasise the need to use 

a standardised approach to characterising glacier surface hydraulic conductivity across a range of study 

areas to understand the processes controlling shallow-subsurface glacier hydrology.  

In addition to controlling and modulating meltwater fluxes, the importance of weathering crust 

hydrology is of primary concern for understanding ice surface nutrient and sediment fluxes and 

supraglacial microbial ecology. Redistribution of fine supraglacial debris and dust across an ablating 

ice surface is commonly described (e.g. Adhikary et al., 2000; Hodson et al., 2007; Irvine-Fynn et al., 

2011a; Oerlemans et al., 2009; Porter et al., 2010), while hydrological flowpaths in the glacier near-

surface control the export of microbes and associated nutrients to extraglacial environments (Cook et 

al., 2015; Hotaling et al., 2017; Irvine-Fynn et al., 2012). The weathering crust is now recognised as an 

ecosystem in its own right (e.g. Cook et al., 2016; Cook et al., 2015; Hodson et al., 2008; Irvine-Fynn 

and Edwards, 2014; Stibal et al., 2012). The hydrological characteristics of the weathering crust 

influence microbial activity in cryoconite (Edwards et al., 2011; Hodson et al., 2007) and the increased 

residence time afforded by percolation within the interstitial voids of the weathering crust affords 

microbiota, fine inorganic and organic particles, dissolved nutrients and viruses opportunities for 

interaction and turnover in spite of the low growth rates and metabolic activities associated with cold 

environments (Rassner et al., 2016). Furthermore, legacy contaminant and particulate impurity 

transport through glacier systems (Bogdal et al., 2009; Hodson, 2014; Łokas et al., 2016) and their 

accumulation in down-stream environments (e.g. Bettinetti et al., 2016; Bizzotto et al., 2009; Bogdal et 

al., 2010) must be influenced by hydrological flow through the porous near-surface ice – a process 

which remains a contemporary research imperative (Grannas et al., 2013). For these reasons, with 

recognition of understanding the hydraulic conductivity of the weathering crust assumes significance 

in the hydrology, biogeochemistry, ecotoxicology and ecology of supraglacial systems. 

Therefore, to address the critical research gap weathering crust hydrological characteristics 

represent, we undertook the first multi-site study to assess hydraulic conductivity using a consistent 

methodology adapted from terrestrial hydrology. Traditional terrestrial hydrological techniques 

developed for groundwater investigations can be applied to glacial environments (e.g. Derikx, 1973; 

Sharp et al., 1998). Soil and bedrock aquifers are porous media with a depth-limited storage capacity, 

making their measurement techniques transferable to the analogous supraglacial weathering crust 

(Hodgkins, 1997; Irvine-Fynn and Edwards, 2014; Lliboutry, 1996; Nye, 1991). A novel electronic 

piezometer was used to monitor water levels and recharge rates in auger holes at high temporal 
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resolution to derive hydraulic conductivity (K) values. We describe the findings from eight valley 

glaciers distributed across the Northern Hemisphere, and two sites at the western margin of the 

Greenland Ice Sheet and elucidate potential drivers of weathering crust development and hydraulic 

properties. 

3.4 Materials and Methods 

To examine the hydraulic conductivity, K, of the glacial weathering crust we employed 

piezometer-based techniques adapted from those used to measure groundwater transfers (Amoozegar 

and Warrick, 1986; Freeze and Cherry, 1979). Recently, a similar approach has been used to examine 

the firn aquifer on the Greenland Ice Sheet (see Miller et al., 2017).  

3.4.1 Electronic piezometer design 

Capacitance piezometers have been well-described in the literature (e.g. Baxter, 1996; Reverter 

et al., 2007; Ross, 1983; Wilner, 1960). Here, a complementary metal-oxide semiconductor (CMOS) 

device (e.g. Texas Instruments, USA item TLC555CP) was configured in a circuit that acts as an 

oscillator with an output frequency determined by the capacitance of capacitor C1 and the resistance 

of resistor R2 (Figure 3.1a, Figure 3.1c). The capacitor was created using a 0.6 m length of 50 mm 

polypropylene tubing inside which was placed a 50 cm length of 1 mm aluminium angle and a looped 

0.25 mm (30 AWG) Kynar insulated silver-plated copper wire (Figure 3.1b). The Kynar wire is kept 

taut by anchoring the wire with a 3 mm nylon bolt at the top of the aluminium angle, and with a 25 

mm × 4 mm stainless steel extension spring secured with a nylon bolt at the base of the aluminim 

angle (see also Ross, 1983). Regular holes are drilled around the circumference of the tube along its 

length, to allow uninterupted ingress and egress of water. The frequency of the output signal scales in 

proportion to capacitance; as the water level rises capacitance is reduced, output frequency increases 

and vice versa. To reduce heat transfer between the device and ice surface, tubes are coated in adhesive 

silver foil. This foil cover was found to reduce the exposed tube temperatures by 0.5 °C when subjected 

to typical mountain environment conditions. The addition of a frequency to voltage convertor (e.g. 

Texas Instruments, USA LM2907N) produces a single-ended voltage output of between 1.0 and 2.8 V 

which, here, is logged using a battery-powered USB ‘Track-it’ Data Logger (Monarch Instruments, 

USA).  The circuitry and battery are housed at the top of the piezometer within the plastic tube and 

require minimal weatherproofing. The design of the circuit means that output frequency is independent 



3. K of Northern Hemisphere Glaciers 

50 

of supply voltage, therefore there is negligible variation to the output signal due to battery depletion, 

 

Figure 3.1 Probe design and calibration. a) An image of a water-level probe including a centimetre scale. b) A 

cartoon schematic of the probe design. c) The wiring diagram for the probe circuitry, as indicated in Figure 3.1b. 

Probe voltage outputs at given water levels under specific water conditions, with the black line indicating a linear 

regression (r2 > 0.99) and the grey area a 95% confidence bound, for the typical supraglacial conditions (X) and 

for other variable conditions of electrical conductivity (d), suspended sediment load (e) and temperature (f). 
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making the sensors well suited to deployment in remote environments where regular battery changes 

may not be possible. Piezometer output is close to linear (Figure 3.1d-f) and is not influenced by 

electrical conducitivity (EC), suspended sediment concentration (SSC) or temperature levels within the 

limits commonly observed in supraglacial environments. Calibration of individual piezeometers is 

simply a matter of recording voltage at a variety of known, incremental water levels and applying a 

linear function to the resultant datesets.  

3.4.2 Electronic piezometers: data processing 

Aquifer hydraulic conductivity (K) is commonly assessed using piezometer tests, which 

quantify the nature of hydrological recovery of an auger hole following a disturbance to the water level, 

either where auger holes are emptied (bail test) or artificially overfilled (slug test) (Amoozegar and 

Warrick, 1986; Freeze and Cherry, 1979; Moore, 2002). A notable issue with the application of slug 

testing in the glacial environment is caused by the low permeability (e.g. (Lliboutry, 1971; Lliboutry, 

1996; Nye, 1991) and density gradient (e.g. Müller and Keeler, 1969) of ice when compared with a soil 

aquifer for which the test was designed. By introducing additional water to an auger-hole, the water 

table would artificially rise, and water would flow 

through the unsaturated, higher porosity weathering 

crust, and likely result in an overestimation of in situ 

K. The bail-recharge method was considered more 

appropriate for use in the supraglacial environment, 

although water flow into the auger-hole occurs 

isotropically from three-dimensions as a ‘false’ water 

head is generated by the empty hole (Figure 3.2; 

Moore, 2002). However, by considering the rate of 

water level rise, this phenomenon can be eliminated 

mathematically with several solutions proposed, 

including the formulation by (Bouwer and Rice, 

1976):  

K =
Q ∙ ln⁡(

Re

rw
)

2π ∙ L ∙ y
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[Equation⁡3.1] 

 

Figure 3.2 The role of auger-hole drilling on the 

water table and idealised hydraulic head. The 

drilling and bailing of an auger hole causes a 

localised drop in the water table (with radius up to 

2m) altering the hydraulic gradient indicated by the 

grey arrows. Note that the hydraulic gradient 

indicated by these arrows corresponds with the 

water table of the same line style, i.e. the dashed 

grey arrows represent the hydraulic gradient of 

the uninterrupted water table whilst the dotted 

arrows correspond with the modified water table. 
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where Q is the water flow into the auger-hole (cm3 s-1), and the remaining length terms (all in 

cm) include L, the height of the well through which water enters, y is the vertical distance between the 

water surface in the auger hole and the equilibrium water table, Re is the effective radius over which y 

is dissipated, and rw is the radius of the auger-hole. For the equation to be valid, a single auger-hole is 

required, and it is specifically applicable to partially penetrating, unsealed wells in unconfined aquifers, 

such as the weathering crust. Q can be defined through knowledge of the auger-hole dimensions and 

the recharge rate detailed in the output from the piezometer as the water level recovers. Whilst Re can 

be determined empirically using axisymmetric node networks (Bouwer and Rice, 1976), the term 

ln(Re/rw) can be determined using an approximation given as: 

ln (
Re

rw
) = [

1.1

ln⁡(
h
rw

)
+
A + B ∙ ln⁡[(D − h)/rw]

L/rw
]

−1

⁡⁡⁡⁡⁡⁡⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ [Equation⁡3.2] 

for which D is the distance between the water table in the aquifer and the impermeable ice 

representing the base of the aquifer, and h the depth of the water in the auger hole (both in cm). A and 

B are dimensionless constants, determined using the ratio L/rw (see (Bouwer and Rice, 1976). One 

condition of the empirical approximation presented in Equation 4.2 is that 0 < (D-h)/rw ≤⁡6; if these 

conditions are not met, (D-h)/rw is adjusted to equal 6. 

Following the derivation of K, primary 

ice permeability () can be calculated, after 

Bear (1972): 

κ = ⁡K
μ

ρwg
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[Equation⁡3.3] 

where ρw is the density of water (taken 

as 1000 kg m-3), g is acceleration due to gravity 

(0.981 m s-2) and µ is the dynamic viscosity of 

water (in Pa S). Water viscosity is temperature 

dependent (Figure 3.3) and, in the range of 

interest characteristic for supraglacial water 

 
Figure 3.3 Dynamic viscosity, µ, of water as controlled 

by temperature in the range -1 °C ≥ t ≥ 20 °C (after 

Kestin, 1978). Note, the area of interest, 0.1 °C ≥ t ≥ 2 

°C, aligning with observed auger-hole temperatures, is 

highlighted with a solid line. 
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temperatures (< 2 °C; Isenko et al., 2005) it is useful to note that viscosities are 1.4 to 1.8 times that at 

20 °C.  

3.4.3 Hydrological data collection 

Bail-recharge tests were conducted at ten 

sites across the northern hemisphere cryosphere 

bridging a range of latitudes and climatic settings 

(Table 3.1; Figure 3.4). At Haut Glacier d’Arolla, 

Switzerland, and Fountain Glacier Bylot Island 

(HACH and FGBI, respectively), holes were 

drilled at strategic locations along transects or 

semi-randomised grids within a defined 

supraglacial micro-catchment, whilst on the K-

Transect of western Greenland (GRDS), nine 

holes were distributed across a 30 × 30 m grid. At 

other sites including those in Sweden (SGSE, 

RGSE), Austria (RMOS, GBOS), at the 

Greenland Ice Sheet margin (GRKM) and Svalbard (PBSV, FFSV) experiments were conducted 

opportunistically using glacier-wide randomised grid sampling or short transects over smaller, 

hydrologically active areas. 

At all sites, 36 cm deep auger-holes were drilled using a 5 cm diameter Kovacs drill. The auger-

hole depth enabled the upper 30 cm of the weathering crust to be examined, since there is a 6 cm ‘dead 

space’ at the base of the piezometer. Auger-holes were emptied using a biOrbTM manual syphon with 

a 5 cm nozzle head. The piezometer was inserted immediately, and recharge monitored at 2 s intervals. 

In cases where auger-holes were reused during a single day, ablation resulted in some widening of the 

uppermost 5 cm of auger-hole, but this had negligible influence upon the bail-recharge experiments 

due to the water table typically found ~14 cm from the glacier surface. The representativeness of the 

36 cm deep auger-holes is assessed in Section 3.1. 

Time-series of auger-hole water column height were converted to recharge water volume and 

corrected to account for water displacement arising from piezometer installation. Recharge curves were 

manually examined and divided into three distinct stages (Figure 3.5): (i) Stage 1 is a linear stage which  

 
Figure 3.4 A hemispheric location map of glaciers 

sampled within this study. Letter codes are identified 

within Table 3.1. 

 



3. K of Northern Hemisphere Glaciers 

54 
  

T
a
b

le
 3

.1
 S

u
m

m
ar

y 
o
f 
gl

ac
ie

r 
si

te
s 

sa
m

p
le

d
 w

it
h
in

 t
h
e
 s

tu
d
y.

 

F
u
rt

h
e
r 

re
fe

re
n
ce

 

H
ag

e
n
 e

t 
al

., 
1
9
9
3
; 

H
o
d
so

n
 a

n
d
 I
rv

in
e
-

F
yn

n
, 
u
n
p
u
b
lis

h
e
d
 

d
at

a 

H
ag

e
n
 e

t 
al

., 
1
9
9
3
; 

L
ie

st
ø
l, 

1
9
6
7
; 
R

u
tt

e
r 

e
t 

al
., 

2
0
1
1
 

St
. 
G

e
rm

ai
n
 a

n
d
 

M
o
o
rm

an
, 
2
0
1
6
; 

W
ai

n
st

e
in

 e
t 

al
., 

2
0
1
4
; 
W

h
it
e
h
e
ad

 e
t 

al
., 

2
0
1
3
; 
W

h
it
e
h
e
ad

 

e
t 

al
., 

2
0
1
4
 

B
jö

rn
ss

o
n
, 
1
9
8
1
; 

B
ru

gg
e
r,

 2
0
0
7
; 

B
ru

gg
e
r 

e
t 

al
., 

2
0
0
5
 

B
jö

rn
ss

o
n
, 
1
9
8
1
; 

B
ru

gg
e
r,

 2
0
0
7
; 
H

o
ck

 

an
d
 H

o
lm

gr
e
n
, 
2
0
0
5
; 

H
o
lm

lu
n
d
 a

n
d
 

E
ri

k
ss

o
n
, 
1
9
8
9
; 

Ja
n
ss

o
n
, 
1
9
9
5
 

Sm
it
h
 e

t 
al

., 
2
0
1
5
; 

va
n
 d

e
 W

al
 e

t 
al

., 

2
0
0
8
; 
va

n
 d

e
 W

al
 e

t 

al
., 

2
0
0
5
; 
Y

an
g 

e
t 

al
., 

2
0
1
6
 

C
lim

at
e
 a

n
d
 

th
e
rm

al
 r

e
gi

m
e
 

P
o
la

r 
m

ar
it
im

e
 

C
o
ld

 

P
o
la

r 
m

ar
it
im

e
 

C
o
ld

 

P
o
la

r 
co

n
ti
n
e
n
ta

l 

N
o
n
-t

e
m

p
e
ra

te
 

p
o
ly

th
e
rm

al
 

P
o
la

r 
m

ar
it
im

e
 

N
o
n
-t

e
m

p
e
ra

te
 

p
o
ly

th
e
rm

al
 

P
o
la

r 
m

ar
it
im

e
 

N
o
n
-t

e
m

p
e
ra

te
 

p
o
ly

th
e
rm

al
 

P
o
la

r 
m

ar
it
im

e
 

N
o
n
-t

e
m

p
e
ra

te
 

M
ax

 d
ai

ly
 

so
la

r 

ze
n
it
h
 (

°)
 

2
5
.2

 –
 

2
6
.5

 

2
8
.0

 

3
7
.2

 –
 

3
9
.5

 

3
3
.8

 

3
3
.1

 

3
9
.6

 –
 

3
9
.9

 

D
ay

lig
h
t 

h
o
u
rs

 

(d
e
ci

m
al

) 

2
4
 

2
4
 

2
4
 

1
6
.4

 

1
6
.1

 

1
8
.2

 –
 

1
8
.3

 

E
le

va
ti
o
n
 

(m
 a

sl
) 

5
 –

 7
0
0
 

6
7
5
 –

 

9
5
0
 

3
3
0
 –

 

1
1
0
0
  

1
0
7
0
 –

 

1
6
4
0
 

1
1
2
0
 –

 

1
7
3
0
 

≈
 6

3
0
 

A
re

a 

(k
m

2
) 

7
.6

0
 

3
.9

5
 

7
2
.0

 

3
.7

0
 

3
.1

0
 

- 

L
at

it
u
d
e
 

(°
N

) 

7
8
.2

4
 

7
8
.1

2
 

7
2
.9

5
 

6
7
.9

1
 

6
7
.9

0
 

6
7
.1

6
 

G
la

ci
e
r 

C
o
d
e
 

P
B

SV
 

F
F
SV

 

F
G

B
I 

R
G

SE
 

SG
SE

 

G
R

K
M

 

F
ie

ld
w

o
rk

 

P
e
ri

o
d
 

1
3
/0

8
/1

5
 

to
 

1
7
/0

8
/1

5
 

0
8
/0

8
/1

5
 

0
7
/0

7
/1

4
 

to
 

2
3
/0

7
/1

4
 

2
2
/0

8
/1

4
 

2
4
/0

8
/1

4
 

0
6
/0

8
/1

4
 

to
 

0
7
/0

8
/1

4
 

C
o
u
n
tr

y 

Sv
al

b
ar

d
, 

N
o
rw

ay
 

Sv
al

b
ar

d
, 

N
o
rw

ay
 

B
yl

o
t 

Is
la

n
d
, 

C
an

ad
a 

Sw
e
d
e
n
 

Sw
e
d
e
n
 

G
re

e
n
la

n
d
 

G
la

ci
e
r 

N
am

e
 

P
ro

te
k
to

rb
re

e
n
 

F
o
x
fo

n
n
a 

F
o
u
n
ta

in
 G

la
ci

e
r 

R
ab

o
ts

 G
la

ci
är

 

St
o
rg

la
ci

är
e
n
 

G
re

e
n
la

n
d
 I
ce

 

Sh
e
e
t 

(P
o
in

t 
6
6
0
) 

 



3. K of Northern Hemisphere Glaciers 

55 
  

T
a
b

le
 3

.1
 (

co
n
ti
n
u
e
d
).
 

F
u
rt

h
e
r 

re
fe

re
n
ce

 

Sm
it
h
 e

t 
al

., 
2
0
1
5
; 

va
n
 d

e
 W

al
 e

t 
al

., 

2
0
0
8
; 
va

n
 d

e
 W

al
 e

t 

al
., 

2
0
0
5
; 
Y

an
g 

e
t 

al
., 

2
0
1
6
 

A
b
e
rm

an
n
 e

t 
al

., 

2
0
0
9
; 
F
is

ch
e
r,

 2
0
1
0
 

A
b
e
rm

an
n
 e

t 
al

., 

2
0
0
9
; 
A

n
e
si

o
 e

t 
al

., 

2
0
1
0
; 
E
d
w

ar
d
s 

e
t 

al
., 

2
0
1
3
 

B
ro

ck
 e

t 
al

., 
2
0
0
0
; 

M
it
ch

e
ll 

e
t 

al
., 

2
0
0
1
; 

P
e
lli

cc
io

tt
i 
e
t 

al
., 

2
0
0
5
; 
W

ill
is

 e
t 

al
., 

2
0
0
2
 

C
lim

at
e
 a

n
d
 

th
e
rm

al
 r

e
gi

m
e
 

P
o
la

r 
m

ar
it
im

e
 

N
o
n
-t

e
m

p
e
ra

te
 

A
lp

in
e
 

co
n
ti
n
e
n
ta

l 

T
e
m

p
e
ra

te
 

A
lp

in
e
 

co
n
ti
n
e
n
ta

l 

T
e
m

p
e
ra

te
 

A
lp

in
e
 

co
n
ti
n
e
n
ta

l 

T
e
m

p
e
ra

te
 

M
ax

 d
ai

ly
 

so
la

r 

ze
n
it
h
 (

°)
 

4
1
.9

 –
 

4
3
.4

 

4
8
.8

 

4
7
.6

 

6
3
.0

 –
 

6
4
.5

 

D
ay

lig
h
t 

h
o
u
rs

 

(d
e
ci

m
al

) 

1
9
.5

 –
 

2
0
.6

 

1
2
.9

 

1
2
.9

 

1
4
.9

 –
 

1
5
.3

 

E
le

va
ti
o
n
 

(m
 a

sl
) 

≈
 1

1
0
0
 

2
4
6
0
 -

 

3
3
9
0
 

2
4
5
0
 -

 

3
0
0
0
 

2
5
5
0
 –

 

3
5
0
0
 

A
re

a 

(k
m

2
) 

N
A

 

1
.0

3
 

3
.1

7
 

6
.3

0
 

L
at

it
u
d
e
 

(°
N

) 

6
7
.0

8
 

4
6
.8

3
 

4
6
.8

2
 

4
5
.9

8
 

G
la

ci
e
r 

C
o
d
e
 

G
R

D
S
 

G
B

O
S
 

R
M

O
S
 

H
A

C
H

 

F
ie

ld
w

o
rk

 

P
e
ri

o
d
 

2
2
/0

7
/1

4
 

to
 

2
9
/0

7
/1

4
 

0
8
/0

9
/1

4
 

1
1
/0

9
/1

4
 

1
9
/0

7
/1

5
 

to
 

2
8
/0

7
/1

5
 

C
o
u
n
tr

y 

G
re

e
n
la

n
d
 

A
u
st

ri
a 

A
u
st

ri
a 

Sw
it
ze

rl
an

d
 

G
la

ci
e
r 

N
am

e
 

G
re

e
n
la

n
d
 I
ce

 

Sh
e
e
t 

(S
6
) 

G
ai

sb
e
rg

fe
rn

e
r 

R
o
tm

o
o
sf

e
rn

e
r 

H
au

t 
G

la
ci

e
r 

d
’A

ro
lla

 

 

 

    



3. K of Northern Hemisphere Glaciers 

56 

represents pressure driven recharge as a result of the artificial water head generated by the 

presence of the bailed auger-hole within the weathering crust; (ii) Stage 2 is a non-linear decreasing 

stage (i.e., recharge rate falls with time/rise in auger-hole water level), identified as representing a 

reduction in the influence of pressure-driven flow from three dimensions, and representing the flow 

of water through an undisturbed weathering crust (i.e., the idealised water table in Figure 3.2). Stage 3 

is a linear stage with a gradient of 0, at which point water in the auger-hole is equilibrated with the level 

of the water table in the surrounding weathering crust (Figure 3.5).  

Hydraulic conductivity, K, was calculated using Equations 3.1 and 3.2, where recharge rate 

derived from Stage 2 defines Q, and the stable water level at Stage 3 substituted for y. To ensure y ≠ 

0, the Stage 3 auger-hole recharge data was filtered and limited to 0.01 V below the voltage observed 

for the static equilibrium water table water depth. In the discrete cases where the auger-hole exhibited 

‘incomplete recharge’, either y was defined using a repeat or proximal measurement within 10 minutes 

of the curtailed measurement, or a mean water table depth for the specific glacier was used. 

In the absence of detailed weathering crust density profiles with depth, we parameterised D 

(Equation 3.2) to be 40 cm which ensured the ratio L/Rw equalled 14.4; consequently, following 

 
Figure 3.5 a) An idealised recharge curve. In panel b), each dashed line indicates the position of an idealised 

water table; during stage 1, anisotropic, pressure driven flow dominates due to the large hydraulic head generated 

by the presence of an auger-hole (in black) generated sink in the water table. Through stage 2, this influence is 

reduced (although still prevalent) but influence of this false water head decreases as the hole fills (aligning with 

the non-linear stage in panel i). At stage 3, the water level in the borehole is equilibrated with the surrounding 

water table and recharge stops as the auger-hole becomes equilibrated with the surrounding weathering crust 

water table. 
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Bouwer and Rice (1976)’s condition that for 7 < L/rw < 16, constants A and B (Equation 3.2) are 

defined as 2 and 0.25, respectively. The uncertainty related to this assumption was negligible: in cases 

where D exceeds 40 cm, there is no change in the estimated K, while if D-h was reduced to the smallest 

possible value within the piezometer’s measurement capabilities, there is an underestimate in K of only 

6.5%. To quantify the uncertainties that resulted from the manual definition of Stage 2 in the recharge 

curve, a subsample of 25 recharge curves were selected randomly, covering all glaciers and a 

representative range of recharge rates. By identifying potential errors in the location of the transition 

between Stages 1 and 2 in this subsample, uncertainty in the calculated K was estimated as ± 4.8 %, 

and again considered negligible. 

3.4.4 Ancillary data collection 

Automated weather stations (AWSs) were installed locally at all sites apart from GBOS and 

RMOS. In a few cases missing data was interpolated using data from the nearest alternative weather 

station. Where SWRin data was unavailable it was modelled (Irvine-Fynn et al., 2014) and a cloud cover 

correction applied using observations from local weather stations (see Greuell et al., 1997). Modelled 

data correlated well with measured values during the period for which directly measured SWRin was 

available (r2 = 0.81). Using these data, cumulative energy input (MJ m-2) from SWRin since the last 

freeze event (i.e. temperature < 0 °C) was calculated to explore the qualitative observations of Muller 

and Keeler (1969) regarding weathering crust development processes. For glaciers with full 

meteorological data, meltwater production (M) was modelled using a point-based energy balance 

model (Brock and Arnold, 2000) at all auger-hole sites for each glacier, with a modification applied to 

arctic glaciers to account for the high solar azimuth (Irvine-Fynn et al., 2014). 

3.5 Results 

3.5.1 Piezometer evaluation 

Firstly, to assess the representativeness of the 36 cm auger-holes, comparisons were made with 

proximate holes with depths of 16 and 26 cm at FGBI and GRDS, with additional 46 cm deep auger 

holes at the former site (Figure 3.6). Auger-holes were located within ~0.5 m of each other over a 

visually similar ice type, to minimise the influence of hole-to-hole disturbance and mitigate spatial 

variations in ice structure. Shapiro-Wilk tests highlighted the hydraulic conductivity data were not 
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normally distributed at either site. For FGBI, an independent samples median test highlighted no 

significant difference in median values of K between different hole depths (p < 0.05). However, a 

Kruskall-Wallis test indicated a difference in distribution of K values across the four-contrasting auger-

hole depth groups (p < 0.05), with the bounds of total ranges and interquartile ranges decreasing with 

an increase in auger-hole depth. Dunn’s post-hoc testing indicated that only the 46 cm and 16 cm 

groups were significantly differently distributed from each other (p < 0.05). Similarly, or GRDS, an 

independent samples median test indicated that median K was significantly different between the three 

groups (p < 0.05). A Kruskall-Wallis test indicated that distribution of K across the three depth groups 

was significantly different (p < 0.05), with Dunn’s post hoc testing indicating the presence of a pairwise 

significant difference in data distribution only between the 26 cm and 36 cm groups (p < 0.05). 

However, there is no significant difference between any of the depth groups and the overall median 

for GRDS.    

As there is no systematic significant difference between medians for auger-holes of 16, 26, 36 

and 46 cm in depth, any of these depths could have likely been selected as a methodological optimum. 

A shallow hole would require a smaller volume of water to fill and would enable a greater frequency 

of measurements to be recorded in a fixed period and may increase clarity of temporal trends, especially 

over a diurnal timescale. However, when the water table is low, shallow holes may be unsuitable as 

they may be perched above the water table, resulting in an inability to assess hydraulic conductivity. 

Conversely, a deeper auger-hole (e.g. 46 cm) would be unlikely to have such an issue but would take 

longer to fill reducing the frequency of K measurements. As such we recommend and adopted 36 cm 

   
Figure 3.6 Change in K with auger-hole depth for a; left) FGBI and b; right) GRDS, indicating median for each 

site (solid vertical line) of 0.183 and 0.220 m d-1, respectively. Sample sizes (n) are noted on the right of the 

diagram. *Note one outlying data point ≥ 1.5 m d-1. 
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as an optimum auger-hole depth as a compromise to maximise the frequency of data collection for 

assessment of weathering crust hydraulic parameters. 

To ascertain the repeatability of the bail-recharge method, rapid (< 15 minutes) repeat 

measurements were undertaken at four sites (PBSV, SGSE, GRKM and GRDS). All repeat 

measurements were recorded within a maximum 30-minute window to minimise any temporal 

variations in K. During these repeats, a constant equilibrium water table depth was assumed (range 

within ± 5 % of the mean) to prevent undesirable influence of a falling water table due to aquifer 

drainage upon K. Relative standard deviation (n = 19) across the four sites was 40.9%. Of note, the 

contrast in medians reported for varied auger-hole depths also all fell within this error associated with 

repeatability. Whilst this may appear initially to represent a high level of uncertainty in our estimates 

of K, typical ranges of K in groundwater studies cover a range of thirteen magnitudes (Freeze and 

Cherry 1979) and quantification of K to within one order of magnitude is usually sufficiently precise 

for most analyses (Younger, 2009). Our calculated relative standard deviation falls within this 

acceptable range, and as such, we are confident that our single-measure method provided suitably 

reliable and precise estimates of K within the weathering crust.  

3.5.2 Quantification of and controls upon K 

A total of 280 successful recharge experiments were conducted on 10 northern hemisphere 

glacier ablation zones. Twenty-five ‘unsuccessful’ experiments were reported in which holes were not 

refilled to > 6 cm depth; these were typically associated with cloudy and/or rainy conditions but had 

no clearly systematic cause and occurred randomly across all glacier sites.  Mean K across the eight 

field sites was 0.185 ± 0.019 m d-1 (SD = 0.310 m d-1, range = 0.003 – 3.519 m d-1). Mean permeability 

was 0.384 ± 0.060 m2 (with a range from 0.018 – 3.451 m d-1). Neither hydraulic conductivity nor 

permeability data were normally distributed (Shapiro-Wilk, n = 280 and 111, respectively, p < 0.05). 

Ranges and medians of K at each glacier plotted with site latitude as a variable (Figure 3.7) highlighted 

a potential relationship between latitude and K: a statistically significant, weak positive correlation 

existed between the variables (Spearman’s r = 0.140, p < 0.05, n = 280). 

To interrogate the environmental factors that may define K, specifically examining differing 

stages of weathering crust development, further non-parametric correlations were undertaken between 

K and potential explanatory variables. Such variables included water table height, as measured from 

the base of the 36 cm auger-holes according to the Stage 3 piezometer recharge records. The potential 
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for the water table to be influenced by the melt rate and ingress of surface water into the weathering 

crust was further considered by using site altitude and the energy balance model melt output (M) for 

the 1-hour time period preceding the observation of K as explanatory variables. Further, based on 

Müller and Keeler’s (1969) conceptual model of weathering crust development, cumulative SWRin 

receipt since (i) freezing, (ii) the previous rainfall event, and (iii) the period of dominant turbulent fluxes 

were calculated as variables. 

Freezing of interstitial meltwater is may reduce interstitial pore size and decrease the hydraulic 

conductivity of the weathering crust. However, given the latent heat released during the refreezing of 

interstitial meltwater (see Paterson, 1994), a period of freezing air temperature for hours or even days 

is unlikely to result in complete re-freezing of the liquid component of the weathering crust. However, 

it is important to note that such a cold wave propagates downwards (Irvine-Fynn et al., 2011b; 

Paterson, 1994), so any refreezing will occur in the less dense, more porous upper weathering crust 

and hence may have a greater influence on K than would be expected.  Rainfall events and cloudy 

periods, where turbulent fluxes dominate the energy balance equation (see Hock, 2005) are identified 

as crucial for “resetting” of the weathering crust surface (Müller and Keeler, 1969). Observations of 

summer rainfall are limited within our dataset, however we assume that precipitation, as measured at 

local AWSs, is in the form of rain either supported by in situ observations or as defined by air 

temperatures in excess of 4 °C. For the available data, two periods of rainfall were identified, one at 

HACH, comprising a 10-hour period of overnight rainfall (17 mm total) and another at SGSE/RGSE, 

   

 
Figure 3.7 Hydraulic conductivity of holes of 36 cm depth across all glaciers within the sample set, with latitudes 

displayed in degrees North of the equator. Sample sizes (n) are noted on the right of the diagram. * Note, the x 

axis is limited to 1.5 m d-1, with one outlying point above this limit at GBOS, with a value of 3.519 m d-1. 
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where 2.4 mm of rain fell in eight hours. Melt modelling data are used to determine the ratio of 

SWRin:turbulent fluxes at each glacier site, with a period of dominant turbulent energy flux (DTEF) 

defined as when > 50 % of energy for melt is supplied by turbulent fluxes for a duration of at least 

three hours. This duration is selected to ensure that the predominant weather pattern is that of a cloudy 

sky, rather than a low sun angle and high air temperatures which can occur during sunrise and sunset. 

Available meteorological data allowed for determination of this variable at GRDS, & SGSE/RGSE. 

For GRDS, two DTEF periods were observed, both between midnight (00:00) and 07:00 when the 

solar azimuth was low: total melt during the two periods was 1.71 and 0.57 mm water equivalent (w.e.). 

A more marked period of DTEF was observed at RGSE and SGSE, with a 37 and 39-hour DTEF 

period with 27.06 and 25.03 mm w.e. of melt respectively. With freezing, rainfall and DTEF periods 

being indicative of (at least partial) resetting of the weathering crust, cumulative SWRin should identify 

the subsequent increase in near-surface ablation, the disaggregation of ice crystals and increasing 

porosity and hydraulic conductivity. 

The following significant (p < 0.01) monotonic correlations are highlighted between K and the 

following independent variables (Table 3.2): a) negative correlation with cumulative SWRin since 

freezing; b) strong negative correlation with cumulative SWRin since previous DTEF period; iii) weakly 

negative correlation with altitude, c) strongly positive correlation with water table height.  

Similar analysis was undertaken for permeability (κ; Table 3.3) for PBSV and HACH located 

at each extreme of the latitudinal range of field sites within this study. Mean auger-hole water 

temperatures of 0.57 ± 0.02 °C and 0.17 ± 0.01 °C, and ranges of 0.20 – 0.90 and 0.10 – 0.40 °C, 

Table 3.2 Correlation matrix highlighting monotonic relationships with hypothesised controls upon hydraulic 

conductivity (K) of the weathering crust.  

Glacier n 
Cumulative 

SWRin 0 °C 

Cumulative 

SWRin precipitation 

Cumulative 

SWRin DTEF 
Elevation 

Water 

table 
Melt 

PBSV 54 0.398** - - -0.321* 0.547** 0.520** 

FFSV 9 - - - - 0.786* - 

FGBI 40 0.281 - - 0.173 0.375* - 

RGSE 12 0.272 0.272 0.272 0.203 0.835** -0.488 

SGSE 31 -0.050 -0.050 -0.050 0.428* 0.249 0.212 

GRDS 40a 0.209 - -0.133 (30) 0.123 0.639** 0.225 

GRKM 23 - - - - 0.352 - 

GBOS 7 - - - -0.40 0.809* - 

RMOS 7 - - - -0.378 -0.204 - 

HACH 57a 0.098 0.112 (19) - 0.168 0.306* -0.253 

All 280a -0.404** (234) 0.134 (62) -0.658** (73) -0.256** 0.710** -0.52 (129) 
a With missing cases or lacking data, in these cases n is noted in brackets. 

Values shown are Spearman’s r with significant values (two-tailed) marked. * p < 0.05; ** p < 0.01. 
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respectively. This yielded 

permeability values ranging 

over 3 orders of magnitude 

from 0.018 and 3.45 m2. 

However, with auger-hole 

water temperature data only 

available for two glaciers, our 

interpretations are limited. By 

estimating a mean water 

temperature for all other glaciers, any correlations with environmental variables would simple mirror 

those reported for K (see Equation 3.3 and Figure 3.3).   

3.6 Discussion 

Ablating glacier surfaces are characterised by a porous ice weathering crust which may 

influence meltwater, sediment, microbial cell and nutrient storage and transport (Edwards et al., 2011; 

Hodson et al., 2007; Irvine-Fynn et al., 2012; Stibal et al., 2012). Here, we have presented data from a 

low-cost capacitance piezometer which, to our knowledge, is the first comprehensive set of 

measurements across multiple glacier sites using a standardised methodology to describe K for 

weathering crust ice. 

3.6.1 Application of piezometers and Darcian flow model to the 

weathering crust 

The piezometer described provides high-resolution water level data. The application of the 

piezometer in supraglacial environments enabled quantification of the hydraulic properties of the 

weathering crust and was used to test the applicability of Darcy’s Law to the weathering crust. Darcy’s 

Law describes diffuse water flow through a homogenous porous media and is therefore not applicable 

where flow is confined to discrete conduits thought so-called ‘karstic flow’ (Moore, 2002). Karstic flow 

would cause the recharge curves to show step-changes where water suddenly enters a conduit 

(Hartmann et al., 2014). This characteristic or phenomenon in the recharge curves was not observed, 

indicating that flow through the weathering crust is effectively homogenous at the synoptic scale and 

that Darcy’s Law can be applied with confidence to weathering crust hydrology. 

Table 3.3 Correlation matrix highlighting monotonic relationships with 

hypothesised controls upon permeability (κ) of the weathering crust. 

Glacier n 
Cumulative 

SWRin 0 °C 
Elevation Water Table Melt 

PBSV 54 0.398** -0.321* 0.548* 0.519** 

HACH 57 0.093 0.171 0.304* -0.272 

All 111 -0.165 -0.291** 0.574** 0.415** 

n.b. Latitude and elevation are not considered as independent variables 

due to a lack of data. 

Values shown are Spearman’s r with significant values (two-tailed) 

marked. * p < 0.05; ** p < 0.01. 
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3.6.2 Hydraulic conductivity of the weathering crust 

At the ten sites examined across the northern hemisphere, mean weathering crust K was 0.185 

± 0.019 m d-1. This value is equivalent to those reported for sandstone (10-1 – 101 m d-1), or stratified 

clay soil (10-1 – 102 m d-1) (Bear, 1972) and hence, hydrologically, the glacial weathering crust can be 

considered as a poor, impervious aquifer. This also compares well, albeit an order of magnitude lower, 

to the recent 100 – 102 m d-1 estimates for the hydraulic conductivity of firn on alpine glaciers (e.g. 

Fountain, 1989; Schneider, 1999) and the Greenland Ice Sheet (Miller et al., 2017). Our K values are 

the same order of magnitude as those reported for ablating glacier ice by (Cook et al., 2015), and similar 

to the lower-order estimates given by previous site-specific studies (Karlstrom et al., 2014; Larson, 

1977; Theakstone and Knudsen, 1981; Wakahama, 1978; Wakahama et al., 1973). Our estimated ranges 

of weathering crust hydraulic conductivity still encompassed the values derived from Medenhall and 

Llewellyn Glaciers (Juneau Icefield, Alaska/British Columbia) despite the absence of such a maritime 

environment in the study sites reported here. 

The estimates of K in the weathering crust approaching that of sandstone or clay would see 

surprising given the degrading near-surface ice surface would suggest a higher porosity and potentially 

an increased hydraulic conductivity. However, hydraulic permeability and conductivity are also 

governed by the scale of and linkage between void spaces in a porous medium (Bear, 1972). Both the 

angularity of ice crystals and the immobile viscous water layers that surround them (Nye, 1991) reduce 

the hydraulic conductivity through, respectively, increasing micro-scale flowpath tortuosity and 

reducing permeability.  Water movement in the uppermost 2 m of a glacier is typically driven upward 

due to the near-surface water pressure gradient (Lliboutry, 1996) that can be influenced by 

meteorological conditions and is complicated further by the capillary force that retains and restricts 

water flow (Bear, 1972), allowing flow in opposition to the gravity- and slope-driven directions. 

Moreover, observations of local water tables identified in open cryoconite holes suggests that the water 

table is commonly several centimetres to three decimetres below the ice surface (Cook et al., 2016; 

Cook et al., 2015), and so K is retrieved for depths below the most porous surface ice. Combined with 

the near-surface density gradient, these mechanical conditions may in part explain the low K identified 

for the apparently porous weathering crust. Studies conducted in the 1970s and 1980s used contrasting 

methods, including dyes such as ink (Wakahama et al., 1973) and fluorescein (Theakstone and 

Knudsen, 1981). Ink and tracer dyes such as fluorescein and rhodamine are highly dispersive within 

water (Smart and Laidlaw, 1977); therefore, the use of dyes may result in an overestimation of K, as 
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the tracer will likely have dispersed through the sub-surface water column rather than acting 

conservatively and matching the water flow rate. (Theakstone and Knudsen, 1981) work focused on 

the quantification of meltwater flow rates through the supraglacial drainage network, and they only 

estimated the delay to flow caused by the weathering crust as a component of this. Despite this 

difference in emphasis, our upper estimates for K coincide with Theakstone and Knudsen’s median 

estimates, while difference compared to the K value reported for Medenhall Glacier (Karlstrom et al., 

2014) may simply be due to the particular environmental and climatic setting, solar radiation receipt 

and synoptic progress through individual melt seasons. 

One issue arising with the use of pumped wells (e.g. Larson, 1977) for the estimation of K in 

glaciological environments is that the technique requires the addition of water, which causes a local 

increase in water table height. As SWRin receipt decreases with depth in the near surface (Cook et al., 

2015) it is expected that pore size, permeability and K will also decrease. The inverse is also true, so by 

introducing a false rise in the water table, K is measured through more porous ice which is typically 

above the equilibrium water table and hence not necessarily describing K for the true transmission of 

meltwater at a given point in time and generating artificially elevated estimates of its value. To 

emphasise this assertion, our data show that an increase in water table height correlates with an increase 

in K and highlight the need to consider methods of describing hydraulic conductivity cautiously. 

3.6.3 Controls upon hydraulic conductivity of the weathering crust 

In the weathering crust, the mechanism for pore enlargement is hypothesised as the cumulative 

receipt of subsurface SWRin and internal melt of ice (Cook et al., 2015; Hoffman et al., 2014; Müller 

and Keeler, 1969). This is evidenced by the lower bulk density and greater intergranular pore space of 

the weathering crust when contrasted with un-weathered glacier ice (LaChapelle, 1959; Nye, 1991). 

This enlargement of inter-crystalline pores would result in an increase in hydraulic conductivities. 

Latitude is weakly positively correlated with K, Figure 3.7 indicates that the highest K values are 

observed in the 67 – 72 °N latitude band. The energy available for weathering crust development is 

constrained by latitude, typically with more intense SWin and higher summer season air temperature 

even at elevation in lower latitudes. However, this contradicts our findings, which suggest glacier ice 

dynamics and net ablation may also affect the formation of a weathering crust: glaciers exhibiting 

higher ice emergence rates may offset the evolution of a deeper porous surface layer, while enhanced 

rates of ablation and runoff may lead to an enhanced abundance of rills and streams which through 
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energy transfers and forming topographic variability can degrade the weathering crust and slow the 

vertical evolution and spatial extent of the weathering crust. Such hydrological disturbance may also 

be affected by glacier surface slope (e.g. Hodson et al., 2007; Mantelli et al., 2015; Rippin et al., 2015). 

However, these relationships are further complicated by regional climatology, synoptic meteorology 

and local altitude and topography (Barry, 2008). For example, summer cloud cover and precipitation 

are common in both the Alps (e.g. Rudolph et al., 2011) and Svalbard (e.g. Førland and Hanssen-

Bauer, 2000), and these conditions are known to reduce or minimise weathering crust development 

(Müller and Keeler, 1969). Shading by surrounding terrain will dictate SWRin receipt and influence the 

formation of a porous ice layer, while particularly in mid- and high-latitudes, as a consequence of solar 

geometry, glacier orientation and surface slope may become more influential. This further level of 

quantification is necessary to better constrain the supraglacial environment as a modulator of meltwater 

discharge both at the (sub)catchment scale and glacier scale. 

The analyses seeking to identify additional potential controlling factors on K in terms of 

cumulative SWRin receipt since any partial or complete ‘resetting’ of the weathering crust resulted in 

less intuitive conclusions. The negative correlations between K and SWRin since last freezing and 

DTEF periods indicated that as the weathering crust developed, there was a reduction in the hydraulic 

permeability. This was unexpected as low radiative and high turbulent energy transfers, such as cloudy 

periods, often including rainfall, have been anecdotally linked with weathering crust removal (Müller 

and Keeler, 1969) and hence such synoptic conditions were expected to be associated with lowered K 

as was evident from the ‘failed’ recharge experiments. Here, we suggest that the development and rise 

of a water table does not necessarily occur coincidentally with progressive ice crystal disaggregation; 

the rise in the water table may lag behind the creation of intergranular void space implying a low water 

table is associated with low K values. To support this argument is the observation that K is not 

correlated solely with melt which might be expected to increase the water table height and hence 

hydraulic conductivity. This implies that additional processes are occurring, which preclude any direct 

relationship between melt rate and K: for example, there could be refreezing at depth within the 

weathering crust and reduction of liquid water volume, or the low transmission rates incur delay as 

pore spaces are filled. Here, there may be analogies with the progress of the wetting front in a snowpack 

(e.g. Marsh and Woo, 1984) or infiltration to frozen soil (e.g. Gray et al., 2001), but to develop this 

level of process understanding would require further investigation. 
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The additional complexity hydrology itself may impact on defining K is best evidenced by the 

positive relationship between K and water table height. Observations from cryoconite holes suggests 

there is a variable water table height within the weathering crust both at sub-diurnal and synoptic time-

scales (Cook et al., 2015). These variations may arise from the bulk density increase with depth within 

the weathering crust, or because of a changing local base-level. Once the ability of the weathering crust 

to transport water is exceeded by the melt input the water table will rise into the increasingly more 

porous near-surface ice, and the piezometer derived K value increases. Hydraulic conductivity may, in 

this scenario, also rise if the base-level for the drainage pathway remains broadly the same due to the 

dampened response of the supraglacial stream network to peak melt (e.g. Munro, 2011; Smith et al., 

2015) and the hydraulic gradient increases. However, as weathering crust is drained as melt rates and 

associated water inputs reduce overnight, and the supraglacial stream base level drops, the water table 

and pressure head falls, hence K is reduced. Our feedback loop between meltwater input, water table 

height and K would explain why K and melt do not directly correlate as a response time is required, 

dependant on infiltration rate, for the water table level to rise. 

Our data from 10 glacier sites shows that K exhibited values over a range of four magnitudes 

(relative standard deviation of ~180%) and even upon individual glaciers there is a high local-scale 

variability (Figure 3.7). While the relationships described above provide some indications of 

conceivable causes in the variability in K values, there are clearly complex interactions between 

potential driving meteorological variables, which are problematic to disentangle without further study. 

However, one further aspect which influences the fabric of the weathering crust and hence the nature 

of the pores within is the microscale ice-structure, which is difficult to characterise and quantify and is 

not included within this dataset. Ice structure and fabric will directly condition pore size and shape, 

interstitial connectedness and tortuosity, and therefore likely influence the hydraulic behaviour of the 

weathering crust. Ice structure and fabric can vary across a range of length scales (see Hambrey and 

Lawson, 2000; Hudleston, 2015). Consequently, crystal size, packing and orientation may play an 

important role in defining the rate and location at which water is transferred through the weathering 

crust, by controlling potential pore size, shape and geometry once crystal boundaries are preferentially 

melted to form pores. Consequently, from the above discussion, the implication is that more surveys 

of K under variable but constrained environmental parameters, and over extended time-frames, are 

required to better define the primary drivers and rates of weathering crust development and its spatial 

and vertical extent.  
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3.6.4 Hydrological role of the weathering crust and relevance to impurity 

transport 

This study highlights a typically overlooked component of the supraglacial hydrological system: 

with near-surface glacier ice traditionally considered as essentially impermeable (e.g. Hodgkins, 1997) 

with an immediate hydrological response time (e.g. Fountain and Walder, 1998); our data emphasises 

the weathering crust as a hitherto neglected yet important aspect of supraglacial hydrology. The 

presence of a water table at depth below the ice surface emphasises the potential for short-term 

meltwater storage, retention and delay in runoff. We propose that as surface ice ablates during the 

ablation season, under clear sky conditions, the weathering crust develops (Müller and Keeler, 1969) 

and meltwater is routed through this near-surface layer. As our data show, meltwater flow through the 

weathering crust can be relatively slow, yet supraglacial stream discharge response to peak melt typically 

occurs within < 12 hours (Munro, 2011).  The hydraulic conductivities calculated here, coupled with 

typical < 10 m channel spacing upon glacier surfaces (e.g. Karlstrom et al., 2014), imply that a parcel 

of meltwater could remain within the weathering crust for a minimum of 68 hours.  

At synoptic and diurnal time-scales, we hypothesise that in response to the energy balance, 

additional ‘new’ meltwater enters the weathering crust causing the water table to rise, which positively 

influences K, and either overrides or displaces ‘old’ stored or retained meltwater. This type of water 

turnover is common for rainfall events in terrestrial environments (e.g. Brutsaert, 2005; Lu and Godt, 

2013). When melt production exceeds the infiltration rate of the weathering crust, or the water table 

rises to the surface, it would be expected that saturated sheet flow might occur over the surface; 

however, due to the complex nature of glacier surfaces, sheet flow is uncommon and was not observed 

during our observation periods, and drainage via rills and small streams evolves quickly (e.g. Mantelli 

et al., 2015).  However, the observation of K being dependent on water table elevation suggests the 

hydraulic properties exhibit a gradient with depth in the near surface and also spatially and temporally 

variable. Consequently, the proportions of meltwater that may be delayed at a variety of time-scales in 

their delivery to supraglacial rill and stream networks remain undefined.  

The presence of a near-surface aquifer on ablating glacier surfaces with a low hydraulic 

conductivity may also have significant implications for the transfer of impurities across exposed ice 

and affect biogeochemical cycling. Here, we argue that based on contemporary understanding there is 

a need for future research to explore a range of these potential affects. Considering the characteristic 
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and ubiquitous presence of fine inorganic dust (e.g. Oerlemans et al., 2009), microbes (e.g. Edwards et 

al., 2014; Hodson et al., 2008; Stibal et al., 2012) and other particulate impurities and contaminants 

(e.g. Hodson, 2014) on glacier surfaces, the poor hydraulic conductivity of the weathering crust may 

have important implications on the transport rate of such particulates. To date, there has been no clear 

or detailed assessment of the rates at which impurities are transferred over ablating ice surfaces. (Irvine-

Fynn et al., 2012) reported inefficient transport processes through and storage of microbial cells within 

the near-surface of an Arctic glaciers. Here, the low K values align well with such an assertion of 

inefficient water transfer. However, the relationship between impurity transport and K is unlikely to 

be a simple linear function due to the potential of the weathering crust to act as mechanical filter, 

preventing transfer of particles with diameters in excess of pore sizes, or bio- and physio-chemical 

processes resisting or accentuating impurity transport (e.g. Dolev et al., 2016; Jepsen et al., 2006; Jepsen 

et al., 2010; Mader et al., 2006). Therefore, fluctuations in the water table and of varied hydraulic 

conductivity at diurnal or synoptic time-scales, or over space, may be crucial in defining the character 

of impurities transported through or from a glacier’s surface. Indeed, recent work has suggested that 

water flux and the hydraulic delivery of dissolved nutrients within meltwater to surface microbial 

habitats may be a crucial influence for microbial community structure and activity (e.g. Dubnick et al., 

2017; Edwards et al., 2011), and controls downstream ecology and characteristics (e.g. Singer et al., 

2012; Wilhelm et al., 2013). Furthermore, when combined with typical in situ doubling times of the 

water-borne cryospheric microbial communities of < 60 days, and in some instances < 5 days (Anesio 

et al., 2010), and clear evidence of their capacity to influence nutrient cycling (Scott et al., 2010), the 

potential for the supraglacial weathering crust as a microbial habitat (Irvine-Fynn and Edwards, 2014) 

merits further investigation. Specifically, the retention of mineral dust and microbes within the 

weathering crust holds the potential to contribute to supraglacial biogeochemical cycles. For example, 

increased residence time within the weathering crust permits greater interactions between dust, dilute 

nutrients, low-density bacterial hosts and their viral parasites (Rassner et al., 2016). The hydraulics of 

the weathering crust, and the recognition of ‘old’ and ‘new’ meltwaters, may hold potential influence 

on the transfer rates for solutes and dissolved organic compounds or contaminants within the glacier 

system. However, the in-situ fate of supraglacial solutes, organic compounds and contaminants during 

the ablation season still remains poorly characterised.  

As both Grannas et al. (2013) and Hotaling et al. (2017) concluded, there remains a pressing 

need to better constrain the nature and variability of supraglacial hydrological flowpaths particularly to 

define their impact on contaminant and impurity transfer, microbial communities and biogeochemical 
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function both for glacier surfaces and glacier-fed ecosystems. This is particularly significant under the 

spectre of projected future changes to glacier and ice sheet runoff regimes (e.g. Bliss et al., 2014; Franco 

et al., 2013). In many glacierised regions, atmospheric warming, rising snowlines and expanding 

ablation areas may result in extensive supraglacial hydrology even as total glacier areas decline. 

Similarly, glacier thinning and cooling in higher latitudes (e.g. Delcourt et al., 2013; Irvine-Fynn et al., 

2011b) may also promote an increasing dominance of supraglacial hydrology. Consequently, 

understanding the influence that the weathering crust has on modulating supraglacial runoff and its 

characteristics is important to improve predictive hydrological models. This assessment of weathering 

crust hydrology presents a first step to better characterising this commonly overlooked supraglacial 

flowpath and exploring the controls that dictate spatial and temporal variation in hydraulic conductivity 

of near-surface glacier ice. 

3.7 Conclusions 

We present a robust but simple piezometer probe design that permits low-cost, high-

resolution, repeatable water level monitoring. The economical nature of the piezometer design, 

combined with its limited power requirements, make it ideally suited to spatially widespread 

deployment in remote locations and for hydrological applications beyond those described here. We 

describe a field methodology that allows spatially widespread monitoring of glacier weathering crust 

water level fluctuations at multiple sites. Data collected from a spatially extensive suite of field sites 

allows examination of weathering crust K, and we quantify a mean K of 0.185 m d-1 which is an 

equivalent value to sandstone and firn and therefore leads us to regard the weathering crust as a 

hydrologically poor, impervious aquifer that can delay water transfer through the supraglacial 

hydrological system and acting as a transient, multi-day storage reservoir within this network. This role 

as a regulator of meltwater egress has the potential to impact upon supraglacial sediment, impurity and 

biological budgets and associated basin-scale exports at a range of spatial and temporal scales. Such 

fluxes have consequent impacts upon the supraglacial ecosystem, through influencing the storage and 

transport of microbes, fine mineral grains, and associated nutrients or contaminants. However, our 

analysis demonstrates that the precise nature of the controls that drive the hydrological characteristics 

of the weathering crust are clearly complex and multi-faceted and, although water table height clearly 

exerts a fundamental control, investigation of the role of hyper-local ice structure and crystallography 

and consequent impacts on near-surface sedimentary- and eco- systems likely represents a fruitful 

avenue for further investigation.  
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4. Evaluation and Optimisation of Flow 

Cytometry for Glacial Meltwater Samples 

4.1. Introduction 

Enumeration measurements are fundamental to studying the microbiology of any 

environment and the interaction of microorganisms within and with it, providing the necessary 

basis for interpreting microbiological activity (Fredrickson and Balkwill, 1998). However, accurate 

and reproducible application of these techniques to the glacial environment remains challenging 

due to the presence of cell fragments (e.g. Irvine-Fynn et al., 2012), viruses (e.g. Rassner et al., 

2016), clastic sediment particles, and microbe-clast aggregates within meltwaters, alongside the 

requirement to store and transport samples from remote environments to a suitable laboratory (e.g. 

Barnett et al., 2016). The recent works of Stibal et al. (2015) and Santibanez et al. (2016) have 

sought to evaluate the application of existing cell enumeration techniques (including 

Epifluorescence Microscopy (EFM), Flow Cytometry (FCM) and quantitative Polymerase Chain 

Reaction (qPCR)) in the glacial environment, estimating accuracy of artificial samples comprised 

of known concentrations of cultured bacterial cells and clastic sediments, the outputs of which are 

summarised in Figure 4.1.  

Despite this work, there remains no widely-accepted standard enumeration protocol for 

such samples (Miteva, 2008), given that these evaluative studies do not present a protocol suited to 

the enumeration of cells found in glacial meltwaters from the sub- or supraglacial environments, 

including streams, cryoconite waters or the water found in the weathering crust. This is either due 

to: a) a limited scope of concentrations tested in the case of Santibanez et al. (2016) (who did not 

test samples containing ≥ 106 cells mL-1, or with clastic sediment loads aside from 10-1 g L-1); or b) 

due to unsatisfactory performance of the protocol in the case of (Stibal et al., 2015).  

Notably, the work of (Stibal et al., 2015) assessed three commonly applied techniques for 

environmental and laboratory microbial cell enumeration: epifluorescence microscopy (EFM) (e.g. 

Karl et al., 1999; Priscu et al., 1999; Säwström et al., 2002); quantitative polymerase chain reaction 

(qPCR) (e.g. Hamilton et al., 2013; Zarsky et al., 2013); and flow cytometry (FCM) (e.g. Irvine-

Fynn et al., 2012; Liu et al., 2006; Miteva et al., 2009; Miteva and Brenchley, 2005; Miteva et al., 

2004; Santibanez et al., 2016; Yao et al., 2008).  

Imaging techniques such as EFM (alongside light and electron microscopy) allows for 

direct visualisation of cells and aggregates in either two or three dimensions, and has been applied 



4. Flow Cytometry Optimisation 

72 

extensively for cell size, morphology and enumeration (e.g. Felip et al., 2007), but typically use small 

sample volumes (often as low as 0.1 μL), increasing uncertainty, are time-consuming and labour 

intensive, and are prone to operator error such as mis-counting. qPCR offers a faster, DNA based 

quantification method using fluorescence probes (Madigan et al., 2015). However, qPCR does not 

enable any examination of cell size or morphology, and inherently incorporates bias associated with 

all PCR-based methods and hence may not necessarily reflect the entire microbial ecosystem. 

Whilst conventional plating is an important detection method for microbial cells, it has been 

estimated that ≤ 1 % of microorganisms present can be detected using this method (Allen et al., 

2004). 

Considering the limitations of the above enumeration techniques, FCM demonstrates 

potential for the enumeration of microbial cells in glacial hydrological systems as a high throughput, 

robust enumeration technique (Irvine-Fynn and Edwards, 2014), but despite its potential has seen 

Figure 4.1 Ranges of cell and sediment concentrations for which EFM, FCM and qPCR exhibit acceptable 

accuracy (100 ± 25 %) and precision (≤ 20 % relative standard deviation) for the enumeration of glacial 

samples. Typical concentrations of cells and sediments in different glacial hydrological environments are 

highlighted; the supra-glacial hydrological environment category incorporates supraglacial streams, cryoconite 

waters and surface ice and ice cores. Shaded areas with dashed borders indicate that two enumeration 

techniques are suitably accurate and precise. Data compiled from: Amato et al., 2007; Anesio et al., 2010; 

Bartholomew et al., 2011; Bøggild et al., 2010; Collins, 1979; Foreman et al., 2007; Hodson et al., 2013; Irvine-

Fynn et al., 2012; Karl et al., 1999; Mindl et al., 2007; Miteva et al., 2009; Priscu et al., 1999; Santibanez et al., 

2016; Säwström et al., 2002; Skidmore et al., 2000; Stibal et al., 2015; Svensson et al., 2000. 
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limited application to supraglacial samples. However, data from FCM can be ambiguous due to 

lack of guidelines, controls and the subjective nature of gating strategies, especially when 

considering small cells near to the detection limits (Nebe-von-Caron, 2009) such as glacial 

prokaryotes prevalent in glacial environments (e.g. Franzetti et al., 2013; Musilova et al., 2015; 

Christner et al., 2018) which can exhibit diameters ≤ 1 μm (Irvine-Fynn et al., 2012). Therefore, 

this chapter develops an accurate and repeatable protocol with a functional range suited to 

enumeration microbial cells within supraglacial meltwaters (Figure 4.1), whilst quantifying the 

influence of compounding factors such as cell genus, sediment mineralogy and the type of fixative 

used, none of which are formally considered in previous work. 

4.2. Materials and methods 

4.2.1 Preparation of artificial samples 

To examine the accuracy of FCM as a microbial cell enumeration method for glacial 

meltwaters, artificial samples of known clastic sediment and bacterial concentrations were created. 

Two genera of psychrophilic β-proteobacteria, a subphylum typically prevalent in glacial samples 

(e.g. Cameron et al., 2012; Cameron et al., 2016; Edwards et al., 2014; Musilova et al., 2015), 

Polaromonas sp. and Janthinobacterium sp. were cultured in 0.5 × R2A (Reasoner and Geldreich, 1985) 

at 13 °C for a minimum of 10 days. Polaromonas sp. is a genus distributed globally across glacial and 

high-altitude environments including Antarctica, Greenland, the Himalaya, and European Alps 

(Ambrosini et al., 2016; Margesin et al., 2012) and it has been suggested that the genus is the 

dominant bacteria of glacial ice and sediment (Darcy et al., 2011). Janthinobacterium sp. has been 

observed in soils in maritime Antarctica and the Antarctic peninsula (Shivaji et al., 1991), as well as 

glacial sediments in the Karakoram (Rafiq et al., 2017). To extract cells from the growth media, 

isolates of each culture were centrifuged at 4000 G for 15 minutes and suspended in Type I 

Ultrapure water (Elga, UK). Isolates were subsequently enumerated using a Sony SH-800EC Cell 

Sorter (Sony Biotechnology, Japan) to establish concentration prior to dilution. Whilst this may 

generate issues of bias, for cell-only suspensions FCM is highly suitable for enumeration studies 

(Shapiro, 2003), including in aquatic samples (Wang et al., 2010). 

The clastic sediment component was comprised of multitude of different clast types, 

including a) supraglacial sediment from Robertson Glacier (Canada) and Haut Glacier d’Arolla 

(Switzerland); b) a non-location specific granitic rock sample and; c) single-mineral samples of 

quartz, calcite and olivine. To ensure size equivalence with typical particulates found in supraglacial 

meltwater (Chikita et al., 2001) and prevent blockage of the cell sorter (nozzle size: 100 μm), all 
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sediment was dry-sieved to ensure a maximum clast diameter of 63 μm. Clasts were furnaced at 

550 °C for 5 hours to combust all organic material (Mook and Hoskin, 1982) and then suspended 

in Type I Ultrapure water (Elga, UK) at the desired concentration(s). Clast suspensions were 

subsequently checked for cells using light microscopy after staining with SYBR Gold (Invitrogen, 

USA) (1 × final concentration) DNA stain to prevent contamination. 

These biotic and abiotic isolates were combined at a range of cell and clast concentrations 

designed to mimic those of glacial meltwaters (Table 4.1; Figure 4.1). All samples were left for ~24 

hours to allow for bacterial interaction with clasts as would occur in natural samples. To further 

examine the role of fixative type upon enumeration accuracy and reproducibility, a pilot study was 

conducted on 10 samples per cell-type using no fixative, glutaraldehyde and Sodium Azide, in 

addition to formaldehyde, before creation of the entire sample set. For this pilot study, sediment 

from Haut Glacier d’Arolla was used throughout. Concentrations ranged from 3.0 × 103 to 

1.3 × 105 cells mL-1 and 10-4 to 100 g L-1 respectively, with each sample produced in triplicate. 

Considering the outcomes of this preliminary study, remaining samples were fixed with 

paraformaldehyde (2 % w/v final concentration) and frozen at -20 °C for a minimum period of 

five days.  

 

Table 4.1 Isolate-particle matrix listing concentrations, sediment types and bacterial genera of artificial 

samples under examination. 

 Clastic Sediment Concentration (g L-1) 

0 0.001 0.01 0.1 1.0 

C
e
ll 

C
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n
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n
 (

ce
lls
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-1
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0.0 None None None HACH None HACH None All None All 

3.0 × 103 Pol. None Pol. HACH Pol. HACH - - - - 

4.3 × 103 Pol. None Pol. HACH Pol. HACH - - - - 

4.1 × 103 Pol. None Pol. HACH Pol. HACH - - - - 

5.9 × 103 Jan. None Jan. HACH Jan. HACH Jan. All Jan. All 

7.2 × 103 Jan. None Jan. HACH Jan. HACH - - - - 

1.0 × 104 Jan. None - - - - Jan. All Jan. All 

1.2 × 104 Jan. None Jan. HACH Jan. HACH - - - - 

1.8 × 104 Pol. None - - - - Pol. All Pol. All 

2.7 × 104 Both None - - - - Both All Both All 

2.9 × 104 Jan. None - - - - Jan. All Jan. All 

8.2 × 104 Pol. None - - - - Pol. All Pol. All 

8.4 × 104 Pol. None Pol. HACH Pol. HACH - - - - 

1.2 × 105 Pol. None - - - - Pol. All Pol. All 

1.3 × 105 Jan. None Jan. HACH Jan. HACH - - - - 

Genus abbreviations: Both = Polaromonas and Janthinobacterium; Pol. = Polaromonas; and Jan. = 

Janthinobacterium.  

Sediment abbreviations: All = all sediment types or HACH = Haut Glacier d’Arolla only. 
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4.2.2 Cytometric Protocol 

4.2.2.1 Flow cytometer and settings  

FCM measurements were undertaken using a Sony SH-

800EC cell sorter (Sony Bioscience, Japan), configured with 

three excitation lasers (405, 488 and 638 nm), and eight 

detectors, incorporating six fluorescence detectors, forward 

scatter (FSC) and back scatter (BSC, equivalent to side scatter, 

SSC, on other instruments). The wavelengths for the six 

fluorescence detectors are determined by the optical filter 

pattern (OFP) of the instrument, for this study the default 

pattern, OFP1, was used (Table 4.2). The instrument employs a 

disposable “Sorting Chip” with an optional nozzle diameter of either 100 or 130 μm, which 

influences the flow core size and flow rate, the latter also taking into consideration user-selectable 

“sample pressure”. This study used the 488 nm laser and a 100 μm sorting chip, enabling flow rates 

of 6 – 89 μL min-1; Sony do not provide data on flow core sizes. Sample acquisition and data 

analyses were performed using the proprietary Sony Cell Sorter Software, digitising scatter (height, 

width and area) and fluorescence (area only) parameters over a six-decade logarithmic scale (Figure 

4.2). Notable contrasts between the instrument and more commonly used cytometers (such as the 

BD Biosciences Accuri C6 (BD Biosciences, UK) and derivates) is the reduced data collection scale, 

use of BSC instead of SSC and the existence of a sorting chip within the instrument rather than a 

flow cell which requires periodic cleaning. The sorting chip was replaced, auto-aligned and 

calibrated daily, using 8-peak reference beads (Sony Biotechnology, Japan) as per the 

manufacturer’s instructions. 

Instrumental threshold settings are applied to allow for the removal background noise, 

comprised of low-level signals that occur within the electronics and stray light collected by the 

optics. Noise can also occur from the liquid phase of the sample under test and is inherent to all 

samples and cytometry as a technique (Shapiro, 2003). Once an event results in a signal above the 

threshold, an “event” is recorded (Figure 4.2). Setting of thresholds was undertaken for the FSC 

channel, with thresholds being instrument, environment, and sample-type specific, and were 

established using 1 μm size-calibration beads (Molecular Probes, USA) suspended in Ultrapure 

Water (Elga) ensuring enumeration of small particles whilst the threshold remained above the 

“noise floor”. Thresholding was undertaken in the FSC channel, set at 0.05 % with a gain setting  

Table 4.2 Fluorescence 

detectors for the Sony SH-

800EC configured using 

Optical Filter Pattern 1. 

Detector Wavelength (nm) 

FL1 525 ± 50 

FL2 585 ± 30 

FL3 617 ± 30 

FL4 665 ± 30 

FL5 720 ± 60 

FL6 785 ± 60 

FSC 488 ± 17 

BSC 488 ± 17 
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Figure 4.2 Schematic demonstrating the 

automated process of “event” 

measurement using flow cytometry. In 

4.2a∙i-iii, a single microbial cell, contained 

within the sample medium (dark blue; 

usually water) is entrained within the 

“flow core” and hydrodynamically 

focussed by the sheath fluid (light blue). 

Between i – iii, the cell passes the laser, 

which is either scattered at a small angle 

(typically 0.5 – 2.0 °); FSC, or an 

orthogonal (90 °) angle; BSC (aka SSC), 

which are crudely proportional to cell 

size (Mullaney et al., 1969) and internal 

cell complexity (Salzman et al., 1975) 

respectively. In this example, nucleic 

acids are stained using SYBR Gold, which 

is maximally excited at a wavelength of 

498 nm and emits maximally at 537 nm, 

measured in FL2 for the SH-800EC using 

OFP1 (Table 4.2).  Other stains will have 

different emission and excitation 

wavelengths. Signals are amplified by a 

photomultiplier tube (PMT), the 

sensitivity of which can be adjusted in the 

instrument settings. When intensity of 

the signal crosses the set threshold, an 

event is recorded. In this experimental 

set-up, FSC was used as the “trigger 

channel”, which means that once the 

threshold is crossed in this channel all 

parameters (FSC, BSC, FL2) of an event 

are recorded. 4.2b∙i-iii demonstrates the 

effects of a sample which is not fully 

disaggregated, are above the optimal 

detection concentration, or for which 

the flow rate is set above the optimal 

rate. “Clumped” particles (either cell-

cell, as in this example, or cell-clast/clast-

clast or multiples thereof) occur in these 

situations and can be identified using the 

FSC-A and FSC-H signals (compare the 

signal graphs 4.2a∙iii and 4.2b∙iii; see 

Figure 4.4a). To reduce the number of 

clumped particles, further disaggregation, 

dilution or reduction of the flow rate can 

be undertaken. However, cells which are 

aggressively disaggregated may lyse, 

over-diluted samples may fall below the 

detection rate of the instrument being 

used, and low flow rates increase the 

time taken to measure an appropriate 

sample volume (400 - 1500 μL).  
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of 1. Once established, thresholds were re-examined twice daily to account for instrumental drift; 

however, no adjustments were deemed necessary during sample analysis. 

4.2.2.2 Stain selection 

The nucleic acid stain used was SYBR Gold (Invitrogen, USA) at 1 × final concentration. 

SYBR Gold is an unsymmetrical cyanine dye, exhibiting > 1000 × signal enhancement when bound 

with nucleic acids, increasing the signal to background ratio enhancing the ability to discriminate 

between stained and unstained particles. When bound to double- or single-strand DNA, or to 

RNA, the quantum yield is ~0.6 (Tuma et al., 1999), comparing favourably to SYTOX green 

(~0.53) (Roth et al., 1997), used by Santibanez et al. (2016). In contrast, SYBR Green I, a 

monomeric unsymmetrical cyanine dye which has been widely used for microbial enumeration in 

aquatic ecosystems (e.g. Gasol and Del Giorgio, 2000), has a higher quantum yield for double-

strand DNA (~0.8), but lower for single-strand DNA and RNA (~0.4). (Invitrogen). Despite this 

apparent favourability of SYBR Green I, SYBR Gold is recommended as the most sensitive DNA 

stain for detection of small masses of DNA by the manufacturer, hence its application herein. 

4.2.2.3 Sample pre-treatment and analysis protocol 

The analysis protocol is summarised in Figure 4.3. Samples were defrosted at room 

temperature (see Santibanez et al., 2016) for further consideration of sample defrosting procedures) 

and vortexed for ≥ 30 seconds to disaggregate cell-cell and cell-clast agglomerations. Two 1 mL 

aliquots of each sample were taken in a sterile flow hood, with one of these samples stained within 

5 minutes using SYBR Gold (1 × final concentration). Both experimental aliquots were stored in 

the dark at 20 °C for a between minimum of twenty minutes and a maximum of four hours prior 

to enumeration to allow for complete staining and to prevent bleaching of the photosensitive stain. 

Experimental aliquots were analysed using the Sony SH-800EC described in section 4.2.2.1, 

using the 488 nm blue laser for sample excitation, with measurement in the FSC-A, FSC-H, FSC-

W, BSC-A and FL2 channels (Table 4.2). Unstained and stained experimental aliquots were 

measured in batches of four to prevent cross-over of stain with blank samples of Ultrapure water 

examined between batches to monitor cytometer cleanliness and background drift. An automated 

cleaning procedure was carried out between measurement of each experimental aliquot. 

Immediately prior to measurement, all experimental aliquots were vortexed for ≥ 30 seconds to 

ensure disaggregation of particles and even dispersal of cells throughout the suspension.  
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A minimum volume of 400 μL of sample was analysed at a flow rate which represented a 

compromise between short duration and ensuring the event rate remained within detection limits 

of < 20,000 events per second (eps), and ideally beneath the “optimal rate” of 10,000 eps. Low 

flow rates are typically used for dense cell samples to reduce co-incident events (Figure 4.2b) which 

are associated with under-enumeration of microbial cells, whilst higher flow rates can be used for 

samples with lower cell density (Gasol and Del Giorgio, 2000; Shapiro, 2003). Typical flow rates 

used herein range from 21 μL min-1 to 63 μL min-1, with minimum time periods for analysis of 400 

μL ranging from 19:02 to 4:29 minutes. Whilst flow rate is a critical parameter influencing cell 

detection (Shapiro, 2003), Santibanez et al. (2016) report negligible variations in cell concentration 

estimates using a flow rates between 14 and 66 µL min-1, presumably due to the low cell density of 

glacial cell samples. 

From FCM measurement data, microbial cells were discriminated from clastic sediments 

using a multi-stage gating technique, designed to eliminate non-nucleic acid containing material 

from counts, and examine the degree of flocculation of cells and clasts. Firstly, experimental 

aliquots were examined for the presence of aggregates. Comparison of FSC-A and FSC-H on a 

linear-linear plot can identify clumping; non-clumped events demonstrate a linear correlation (BD 

 
Figure 4.3 Flow chart indicating sample analyses procedures, from a frozen sample to in-software analysis. 

1) Samples are defrosted at room temperature in the dark. 2) 2 × 1 mL aliquots of sample are taken in a 

sterile flow hood. 3) One aliquot is stained using SYBR Gold (1 × final conc.). 4) Experimental aliquots are 

stored in the dark at room temperature for up to 4 hours prior to measurement. 5) Measurement is 

undertaken in the order outlined using the Sony SH800-EC. 6) Data is analysed using the proprietary Sony 

software. Prior to stage 2 and 5, sample sand experimental aliquots were vortexed for a minimum of 30 

seconds.  
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Biosciences, 2012) (Figure 4.4a). Samples which demonstrated significant clumping (≥ 5 % events) 

were re-vortexed and re-measured, which resolved the issue of excess aggregation in all cases. 

Secondly, to discriminate microbial cells, gating was undertaken using the BSC and FL2 channels 

on a log-log axes using gates determined via the comparison of stained and unstained sample pairs 

(Figure 4.4b and c).  By comparison of stained and unstained paired samples, non-nucleic acid 

containing material can be “gated out” and removed from the enumeration, reducing the possibility 

of overestimation of microbial cells (e.g. Irvine-Fynn et al., 2012)). Thirdly, events defined as being 

microbial cells were then analysed for size, using gates were determined using a non-fluorescent 

size calibration kit (Molecular Probes, USA) allowing the identification of microbial cells into seven 

size bins (≤ 1 μm, 1-2 μm, 2-4 μm, 4-10 μm, 10-15 μm and 15 ≤ μm). Beads were analysed as per 

the manufacturer’s instructions, with discrimination in the FSC channel. 

Cell concentrations in experimental aliquots were calculated as per Equation 4.1, and 

accuracy estimates as per Equation 4.2, where Ecells is the number of cell events, FR flow rate 

(mL min-1), FD flow duration (min), and CCobs and CCexp are the concentrations of cells measured 

 

Figure 4.4 Example gating procedure for samples 

containing cells and clastic sediment. 4.4a shows an 

example of a sample which would require further 

disaggregation or flow rate; non-clumped particles 

are shown in the green gate, with clumped 

particles in the blue gate (8.6 %) with a lower than 

expected FSC-H proportionally to FSC-A (note 

the remaining 0.66 % of events are off-axis). 4.4b 

indicates an unstained experimental aliquot, and 

4.4c its stained pair. Increase in FITC-A signal is 

observed due to staining, as stained events migrate 

rightwards on this axis. Data point colours within 

the “Cells” gate indicate size, determined using 

calibration beads in the FSC channel (gate 

boundaries not shown for visual clarity). 
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and expected to be contained within the sample respectively (mL-1). Note that “accuracy”, whilst 

reported as a percentage, is in fact a comparative value between cells expected and cells observed; 

and hence can exceed 100%. Mineral concentrations were not estimated via FCM; a multitude of 

sedimentary techniques exist for measurement of this variable if desired. 

CCobs (mL−1) =
Ecells

FD × FR
    [Equation 4.1] 

FCM accuracy (%) =
CCobs

CCexp
× 100     [Equation 4.2] 

4.3 Results 

4.3.1 Pilot study: effect of fixative on enumeration accuracy 

The pilot study exploring fixatives did not show any discernible difference in final cell 

concentration accuracy (< 5 % variation), and two ANOVA tests revealed that for each cell genera, 

there was no significant different in enumeration accuracy when using different fixative (p > 0.05, 

n = 40 in both cases). Paraformaldehyde was used for the entire sample set due to its recommended 

use within the literature for similar sample types (see (Duhamel and Jacquet, 2006)). Whilst no 

fixative could have been used as the recommended protocol, this was discarded as a solution due 

to the desire for long-term storage (i.e. ≥ 12 months) of environmental samples; the suggested low 

temperature limits for cold-adapted organisms are -12 °C for reproduction and -20 °C for 

metabolism (Bakermans, 2008).  

4.3.2 Enumeration accuracy  

Mean cell concentration accuracy for the entire dataset was 160.0 ± 16.4 % (n = 120); with 

a mean relative standard deviation of 10.3% for each triplicate sample set. However, prominent 

variations are observed within this dataset, with accuracies covering a range of 29.6 to 486.3 %. 

Janthinobacterium bearing samples demonstrated a higher mean accuracy of 180.4 ± 15.7 % in 

contrast to Polaromonas bearing samples with a mean accuracy of 139.7 ± 16.5 %. To further 

evaluate the role of cell genera in accuracy estimates, a two-tailed independent t-test indicated that 

genera does not significantly influence accuracy of FCM in cell enumeration at the 5 % significance 

level (p > 0.05, n = 120). Furthermore, the type of clastic sediment in the sample does not 

significantly influence the accuracy of microbial enumeration using FCM for samples containing 

10-1 and 100 g L-1 of sediment, as demonstrated by a one-way ANOVA (p = 0.928, n = 96). Only 
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samples containing 10-1 or 100 g L-1 of clastic particles were included to eliminate effects of 

sediment concentrations ≤ 10-2 g L-1, for which only HACH clasts were used. 

Clastic sediment concentration plays a key role in the determination of accuracy (Figure 

4.5); samples with an abiotic particle concentration ≤ 10-2 g L-1 do not exceed the region of 

acceptable accuracy except in the one instance, whereas the highest overestimates of microbial 

concentration occur and sediment concentrations of 10-1 and 100 g L-1. This phenomenon is less 

apparent in the case of cell concentrations, for which there is no clear trend. However, large 

overestimations of cell numbers are most prevalent at lower cell concentrations, with a maximum 

overestimation of a factor of ~5 for samples with 5.9 x 103 cells mL-1 of Janthinobacterium, 

highlighting the importance of the ratio between cell and sediment concentration in determining 

 
Figure 4.5 Accuracy scores (%) as a function of sediment and cell concentration, considering the role of cell 

and sediment type. The grey section of each plot indicates the 100 ± 25 % region of acceptable accuracy. 
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enumeration accuracy. This ratio, CC-APC (cells g-1, Equation 4.3), also acts to determine the 

accuracy of samples (Figure 4.6); the majority of samples with a CC-APC > 500 demonstrate 

acceptable accuracy scores, however it should be noted that many samples with CC-APC values ˂ 

500 also fall within this window, typically those of lower sediment concentrations. These criteria 

are observed across both cell genera, with no clear pattern linked with sediment type. 

CC − APC =
Cell concentration (cells 𝑚𝐿−1)

Sediment concentration (g 𝑚𝐿−1)
     [Equation 4.3] 

4.3.3 Cell size distribution 

Size distributions were successfully determined for all samples, alongside a series of cell-

only control samples (n = 48) (Figure 4.7). The modal size class is a cell diameter of 1 to 2 μm, 

comprising over 50 % of events in all cases, with 10 μm to 15 μm the least common class. 

Typically, artificial samples containing both cells and clasts have a greater proportion of events in 

the 4 to 10 μm class, and fewer in the < 1 μm range than the cell only controls. Note that whilst 

present, these differences are within the range of one standard deviation.   

Figure 4.6 Accuracy scores as a function of CC-APC, 

highlighting the area of acceptable accuracy (100 ± 25 %, 

grey) and CC-APC enumeration threshold determined by 

this study. 



4. Flow Cytometry Optimisation 

83 

4.4 Interpretation and Discussion 

4.4.1 Accuracy and precision 

This study reports a mean cell enumeration accuracy exceeding 100 % for samples 

containing ≤ 100 g L-1 of abiotic particles, with a relative standard deviation between triplicate 

repeats of ~10 %; however, when certain criteria are satisfied FCM can be applied to enumerate 

glacial samples to an acceptable degree of accuracy (and precision). Samples ≤ 10-2 g L-1 exhibit 

accuracies almost exclusively below 100 % (in contrast to samples which contain ≥ 10-2 g L-1 of 

sediment particles), implying that primarily cellular material is enumerated within the cell gate in 

these instances. At higher abiotic particle concentrations, samples with enumeration accuracies < 

100% are observed, but higher accuracy values > 150 % are found exclusively at abiotic particle 

concentrations ≥ 10-1 g L-1 (Figure 4.5). Regarding the role of cell concentration upon accuracy 

scores, no clear trend is observed for either Polaromonas or Janthinobacterium. Samples with an 

acceptable level of accuracy and precision are observed throughout the range of cell concentrations. 

As such, this study demonstrates that FCM is an appropriately robust technique for the 

enumeration of glacial cells when abiotic particulate load is ≤ 10-2 g L-1, regardless of cell 

concentration. At greater sediment loads, the technique should be applied with care and the 

following guidelines should be considered:  

• the ratio of cells and clastic sediments (CC-APC) should be examined; 

• utmost caution is required in gating strategy; 

• and the concurrent application of alternative enumeration techniques may be advisable. 

 
Figure 4.7 Mean size distributions for cell events for cell 

only control samples (n = 48) and mixed media 

experimental samples (n = 359). Error bars represent ± 

1 standard deviation. 
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4.4.2 Environmental applicability 

The cell concentrations tested herein align well with those of the supraglacial environment; 

contemporary observations suggesting 2 × 103 to 2 × 106 cells mL-1 in stream, cryoconite waters 

and surface ice in samples collected in Greenland, Svalbard, the European Alps and Antarctica 

(Amato et al., 2007; Anesio et al., 2010; Foreman et al., 2007; Hodson et al., 2013; Irvine-Fynn et 

al., 2012; Mindl et al., 2007; Santibanez et al., 2016; Säwström et al., 2002; Stibal et al., 2015). Note 

that this range of cell concentrations presented does not include the substrate found within 

cryoconite holes (which is included in Anesio et al. (2010)), only estimates from the water within 

the hole which is hydrologically connected to the weathering crust. Considering sediment 

concentrations, the methods presented herein are well suited to glacial surface environments, 

including supraglacial streams and glacier ice, with typical sediment concentrations of ≤ 10-2 g L-1 

(Skidmore et al., 2000); but could also be applied with caution in subglacial environments (≥ 10-1 

g L-1; Skidmore et al., 2000). Furthermore, under certain conditions of low sediment 

concentrations, FCM may also be suited to proglacial systems; for example, sediment 

concentrations as low as 2 and 5 × 10-2 g L-1 have been reported in Greenland (Bartholomew et al., 

2011) and the European Alps (Collins, 1979) respectively. Glacier thermal regime will influence 

proglacial sediment loads due to differential erosion rates, with cold-based ice masses yielding lower 

sediment perennially (Hodson et al., 1997), whilst warm based glaciers exhibit greater, but 

seasonally variable sediment loads which correlate positively with discharge (e.g. Stott and Mount, 

2007). Thus, caution should be applied with any potential study considering cell concentrations 

using FCM in proglacial streams, but the technique demonstrates for potential at cold-based 

glaciers and/or during periods of low proglacial suspended sediment load. Englacial samples also 

fall within this range of sediment concentration where FCM is suitable, with observed abiotic 

particle concentrations of ≤ 5 × 103 g L-1 in Greenland and Antarctica (Bøggild et al., 2010; Karl et 

al., 1999; Miteva et al., 2009; Priscu et al., 1999; Svensson et al., 2000). 

This study highlights a minimum ratio between cell concentration and abiotic particle 

concentration (CC-APC; cells g-1) for acceptable levels of cell enumeration accuracy using FCM. 

For cell enumeration accuracy to be satisfactory, CC-APC must ≥ 500. For the CC-APC criterion 

to be met, when sediment load is 10-2 g L-1, cell concentration must ≥ 5 × 103 cells mL-1, with cell 

concentration increasing with linear proportionality to sediment load. For example, a cell 

concentration ≥ 5 × 104 cells mL-1 is required when sediment load is 10-1 g L-1, and so on. 

Paradoxically, CC-APC cannot be determined without knowledge of the cell and sediment 

concentration, although with measurements of the latter the minimum cell number required for a 

CC-APC ≥ 500 can be calculated and considered in comparison with existing environmental 
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estimates of microbial cells. Whilst FCM is not suited to the calculation of sediment loads due to 

differing sizes, shapes density clasts, which prevents conversion from the commonly used g L-1 unit 

to a particles mL-1 unit, a two-order of magnitude difference was observed in clast counts for 

samples with differing particle loads. Samples with abiotic particle concentrations of 10-1 g L-1 

yielded a mean non-cell event count of 1.2 × 106 ± 2.2 × 106 mL-1 in contrast to 5.3 × 104 ± 

1.5 × 104 mL-1 for samples with a sediment concentration 10-2 g L-1. These non-cell event counts 

suggest that samples that may not meet the CC-APC criterion due to high sediment loads could be 

initially discerned via FCM and subsequently analysed for sediment concentration in an appropriate 

manner to ensure that the CC-APC criterion is met. It should be noted that whilst high confidence 

can be placed in FCM to accurately enumerate samples with a CC-APC ≥ 500, samples with CC-

APC values beneath this threshold may be enumerated to a satisfactory level of accuracy when 

sediment concentrations are ≤ 10-2 g L-1. 

4.4.3 Comparison with prior cell enumeration evaluations 

Throughput the entire range of samples examined herein, accuracy scores exceed those of 

other similar works by a factor of ~2 (e.g. (Stibal et al., 2015)), representing a development of FCM 

when applied to supraglacial environments and offering it as a reliable and advantageous alternative 

to the widespread EFM. However, an acceptable range of application for FCM to the supraglacial 

environment is suggested, that is for samples with an abiotic particulate load ≤ 10-2 g L-1 OR an 

APC-CC ≥ 5 × 105 (note that all samples with an abiotic particulate load of ≤ 10-2 g L-1 also satisfied 

the APC-CC criterion) for which accuracy scores are 83.6 ± 6.0 % (n = 36); an RSD of 7 %. This 

compares favourably to the work of (Stibal et al., 2015), who reported accuracies of 50 ± 16 % 

(RSD 32 %) for EFM, 18 ± 15 % (RSD 87 %) for FCM, and 32 ± 17 % (RSD 53 %) for qPCR 

for samples with concentrations equal to those examined herein. Note that the lower-end 

acceptable range of FCM, or ‘practical minimum detection limit’ is 102 cells mL-1 (Santibanez et al., 

2016), lower than the minimum cell concentration tested herein.  

Our accuracy scores with the determined acceptable range of application for FCM compare 

well with other environments, such as streambed (Amalfitano and Fazi, 2008), coastal (Lavergne 

et al., 2014) and lake (Duhamel and Jacquet, 2006; Tennant et al., 2013) sediments; sludge (Falcioni 

et al., 2006; Foladori et al., 2007; Frossard et al., 2016); and natural (Frossard et al., 2016) and 

agricultural (Bressan et al., 2015) soils, which report a range of cell yields (equivalent to our accuracy 

scores) of 83 – 93 % via FCM. In contrast, lower yields (64 %) were reported via plate counts 

(Bressan et al., 2015) and EFM (Duhamel and Jacquet, 2006; Lavergne et al., 2014); no figures 
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provided) than FCM. As such, this protocol falls within the window of an equivalent level of 

accuracy to other environments.  

We report a mean RSD of 7 % between triplicate replicates within the range of application 

for FCM. Similar work with triplicate samples by (Hammes et al., 2008) suggest an RSD of 5 % for 

water samples analysed by FCM, in contrast to plating (Allen et al., 2004), imaging (Vital et al., 

2007) (both > 10 %) and qPCR (2 – 10 %) (Boon et al., 2003; Wang et al., 2010). RSDs were > 

10 % for EFM, FCM and qPCR when applied by (Stibal et al., 2015); hence the protocol we 

describe gives satisfactory levels of precision. This protocol offers greater accuracy for supraglacial 

samples than other methods applied in the cryosphere to-date, and an equivalent level of accuracy 

and precision to those in other environmental samples containing sediment. Considering 

reproducibility, this protocol compares favourably with techniques applied for drinking water 

examination.  

4.4.4 Over- and underestimation of cell concentration 

Overall, this study presents favourable accuracy figures for the application of FCM to the 

supraglacial environment. However, both over and underestimation of cell concentrations are 

observed (Figures 4.5 and 4.6). Factors which influence accuracy scores are a) pre-analysis cell lysis 

and/or replication; b) imprecise gating procedures resulting in the inclusion of abiotic particles in 

the cell gate; c) stain efficacy; and d) aggregation of cells with each other, abiotic particles, or both.  

Replication is excluded as a mechanism for overestimation of cell populations due to the 

application of fixative to the samples. Formaldehyde is fast acting, preventing cell replication in 

substantially less than published population doubling times for cryospheric bacteria which are in 

the order of days (Anesio et al., 2010).  Cell lysis, whilst common in cryospheric environments due 

to viral action (Anesio et al., 2007; Säwström et al., 2007) is not thought to play a key role in the 

outcome of this experiment. Firstly, cell fragments would be expected to be smaller than intact 

cells; conversely Figure 4.7 shows greater proportion in mixed samples of larger events than cell 

only controls, with ~12 % fewer events in the ≤ 1 µm size class, and ~2 % fewer events in the 

modal 1 μm – 2 μm class, implying that cell lysis has not occurred in the created of the artificial 

samples. Secondly, fragmented or degraded cells exhibit a unique FSC/BSC footprint (Irvine-Fynn 

et al., 2012) which was not observed. As such, cell lysis and replication can be excluded as a cause 

of over and underestimation estimation of cell populations.  
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Abiotic particles located with 

the cell gate are the most probable 

cause of cell population 

overestimation. Conventionally, cells 

are discriminated from electronic 

background noise and abiotic 

particles via the use of nucleic acid 

stains; this study uses SYBR Gold 

(Invitrogen, USA). Despite staining, 

and the clear discrimination of the 

stained cell population in comparison 

to unstained samples, there is an 

overlap in the maximum extent of 

gates for stained cell-only samples 

and abiotic particle only samples 

(Figure 4.8). However, the crossover 

region is located on the extremes of 

each gated region, including only rare 

events limiting this effect, with at most tens of thousands (from hundreds of thousands to millions) 

of abiotic particle events counted within the cell gate. Overestimation is most prevalent at higher 

(100 and 10-1 g L-1) abiotic particle loads, as would be expected for this hypothesis. Furthermore, 

some lipophilic dyes can stain abiotic particles (Müller and Nebe-von-Caron, 2010) which may 

contribute to this phenomenon. Further contribution is made by intrinsic autofluorescence of 

particles and non-specific binding of stain to clay particles (Klauth et al., 2004; Morono et al., 2009). 

In all these cases, the quantum yield of nucleic acid stains is lower than if bonded to a nucleic acid; 

however large, stained clastic particles appear to fluorescence at an intensity akin to small cells with 

limited DNA (Figure 4.8).  

The primary cause of underestimation of cell enumeration is the formation of aggregates 

of cells with each other and clastic particles; bacteria commonly grow in colonies and biofilms in 

nature with only a small element observed as planktonic cells (Nadell et al., 2009; Pamp et al., 2009). 

The result of the formation of these aggregates is the reduction in the apparent number of cell 

events, as multiple cells are recorded as a singular cell event. It would be hypothesised that this 

phenomenon may occur more readily for Janthinobactium than for Polaromonas, as, in liquid 

environments, the species J. lividum forms extended biofilms via the production of 

 
Figure 4.8 Crossover regions of typical gates for cells and 

clastic sediment. The potential for masking of rare cell events 

by rare clast events is demonstrated by the intersecting gates 

for population extremes, one cause of under- and 

overestimation of cell concentrations, demonstrating the 

importance of tight gate positioning.  
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exopolysaccharides (EPS) during periods of cell stress (Pantanella et al., 2007) which is likely their 

dominant condition in the cold, nutrient poor cryosphere (Irvine-Fynn et al., 2012). However, no 

statistically significant links were observed between cell genera or sediment type on accuracy, 

indicating that whilst microbe-mineral interactions may differ dependent upon the cell genera or 

substrate, this study does not provide evidence to this end. 

Bacterial aggregate formation is also promoted by slow-acting -aldehyde fixation (e.g. 

glutaraldehyde), enabling cells to produce EPS, or other high molecular weight compounds, to 

protect themselves against such chemicals (Müller and Nebe-von-Caron, 2010). This phenomenon 

was, however, not apparent in the preliminary fixative study, with no difference in accuracy 

observed as a function of fixative type. Therefore, formaldehyde is identified as the preferred 

fixative; glutaraldehyde is prone to polymerisation, (Rasmussen and Albrechtsen, 1974) with a 

corresponding loss of antimicrobial activity (Gorman et al., 1980) and may not permeate all gram-

negative cells (Bullock, 1984); and ethanol fixation can cause elution of lipids in the cell membrane, 

altering cell structure (Salton, 1963) and preventing reliable cell-size analyses. Long-term storage 

requirements mean that the application of no-fixative does not represent a viable solution, as cold-

tolerant microbes may remain in a state of dormancy even at -80 °C. 

Cell-cell and cell-particle aggregation is the implied cause of the < 100 % accuracy scores 

for samples within the acceptable application window. The larger proportion of events in the 

2 – 4 μm and 4 – 10 μm size classes (Figure 4.7) indicates a presence of larger material than 

observed in the cell only samples; with a reduction of < 1 μm material indicating a net increase in 

size, hypothesised as the formation of aggregate material. As formaldehyde was added to both cell-

only controls and mixed-media samples this cannot have directly caused this size disparity, even if 

the fixative acted to alter cell size. Hence, this study interprets this shift in particle size as the 

formation of aggregates, which has potential to be reduced via disaggregation procedures. 

Disaggregation procedures are common in other environmental applications of FCM but 

are not without drawbacks. Techniques can be chemical or physical: sodium pyrophosphate (or 

other phosphate solutions (Riis et al., 1998)), polysorbate, Tween 80, Histodenz®, shaking, 

sonication (Boenigk, 2004; Buesing and Gessner, 2002) and centrifugation have been applied to 

isolate bacterial cells and virus-like particles from abiotic particles (Amalfitano and Fazi, 2008; 

Boenigk, 2004; Bressan et al., 2015; Duhamel and Jacquet, 2006; Falcioni et al., 2006; Foladori et 

al., 2007; Frossard et al., 2016; Lavergne et al., 2014; Tennant et al., 2013). Chelating agents such 

as sodium pyrophosphate weaken electrostatic and chemical forces attaching cells to particles and 

shaking and sonication releases cells entrapped in micropores (Müller and Nebe-von-Caron, 2010). 
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Whilst increasing cell yields, such detachment protocols can prove damaging to cells (Amalfitano 

and Fazi, 2008), and sonication has proven to cause disintegration of large proportions of E.coli 

cells (Foladori et al., 2007) as well as leading to the selective loss of filamentous organisms (Müller 

and Nebe-von-Caron, 2010) which are prevalent in cryoconite aggregates (e.g. (Langford et al., 

2010)). Therefore, these procedures were not tested due to the requirement to assess cell size, for 

which cells must remain intact. 

Stain efficacy is considered to play minimal role in this outcome of experiment. Primarily, 

a rightward-shift in events along the FITC (FL2) axis of the FCM output, covering the emission 

spectra of SYBR Gold (~525 nm), is clearly observed between stained and unstained samples 

containing both mixed media and cellular material exclusively. Secondly, SYBR Gold is considered 

more sensitive than many commonly used alternatives, such as ethidium bromide, DAPI and SYBR 

Green I and II for detecting DNA and RNA (Marie et al., 1997; Tuma et al., 1999), with previous 

successful application for bacterial and viral enumeration in marine environments (e.g. (Chen et al., 

2001; Shibata et al., 2006)). 

4.5 Conclusions 

This chapter presents a protocol for the enumeration of cells within supraglacial meltwater 

samples with potential to expand to analysis of low-sediment proglacial systems. FCM is reliable 

and faster than alternative methods previously tested within this environment (i.e. EFM and qPCR), 

and its application is key to the expansion of current microbial abundance datasets in this rapidly-

developing field and provides a fundamental basis for supraglacial microbiology studies. A key 

determinant of the accuracy of FCM for enumeration of these samples is the abiotic particulate 

concentration; the data herein indicates that this protocol is suitable for samples with a) abiotic 

particle concentration ≤ 10-2 g L-1, regardless of cell concentration (providing the cell concentration 

is above the detection limit of the instrument used, typically 102 cells mL-1) or b) the ratio of cells 

to clastic particles (CC-APC) is > 500 cells g -1. When the CC-APC is below this threshold, large 

clasts and smaller cells overlap on the FSC/FL2 output plot and sedimentary material is observed 

with the cell gate which causes overestimation of cell numbers. These criteria correspond with 

expected clastic sediment and microbial cell concentrations in supraglacial environments.  Cell 

genera and abiotic particle type do not appear to influence accuracy scores, and large particles (> 

15 μm) are observed in all samples implying the formation of aggregates for all abiotic particle and 

cell mixes.  
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When the accuracy criteria are met, FCM presents a viable, accurate and reproducible 

method of quantifying water-suspended cells in supraglacial environments and can be further 

expanded to the proglacial environment under certain conditions, if pre-analysis of sample 

sediment concentration is undertaken. This protocol provides mean cell enumeration accuracy of 

83.6 ± 6.0 %, comparing favourably with EFM and qPCR, in addition to previous trials of FCM 

(Figure 4.9). Therefore, the enumeration method presented is well suited to enumeration of 

cryospheric bacteria within surface samples allowing for the development of future research to 

examine microbial numbers and fluxes within the near surface of melting ice masses on a global 

scale. 

 
Figure 4.9 Ranges of cell and sediment concentrations for which EFM, FCM and qPCR exhibit acceptable 

accuracy (100 ± 25 %) and precision (≤ 20 % relative standard deviation) for the enumeration of glacial 

samples, considering the additions of this study (after Figure 4.1).  
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5. Microbial Abundance in Weathering Crust 

Meltwaters of Northern Hemisphere Glaciers 

5.1 Introduction and study design 

Meltwater is generated on glacier surfaces during the ablation season and is transported via the 

highly porous near-surface weathering crust ((Stevens et al., 2018; Chapter 3) before transfer to the 

supra-, en- and sub- glacial networks (Fountain and Walder, 1998) and subsequently downstream to 

aquatic and marine environments. Weathering crust meltwater provides an environment suitable for 

the support of active microbial communities (e.g. Hodson et al., 2015; Hodson et al., 2008). However, 

current cell enumeration estimates for supraglacial systems are based upon a limited number of samples 

in comparison with other ecosystems (e.g. Whitman et al., 1998). This chapter applies the FCM 

protocol developed in Chapter 4 to 11 glaciers located across the Northern Hemisphere, from the 

Greenland Ice Sheet to the European Alps to present enumerative estimates of cellular biomass in the 

weathering crust of ablating glaciers. Hydraulic conductivities, initially presented in Chapter 3, are 

considered as a potential control upon cell concentrations within the weathering crust. These cell 

concentrations are coupled with annual meltwater run-off modelling to 2099 (Bliss et al., 2014) to 

estimate cellular carbon, nitrogen and phosphorus flux from glacier surfaces to downstream 

environments; where such nutrients may seed ecosystem development in aquatic and marine 

environments into which glacial meltwaters drain (Battin et al., 2004; Bhatia et al., 2013; Hood et al., 

2015; Milner et al., 2017; Musilova et al., 2017; Wilhelm et al., 2013).  

This study was designed to expand upon the existing estimates of cell concentrations in near 

surface environments, utilising the high-throughput protocol tested in Chapter 4. Cell concentrations 

in the weathering crust are expected to be in the range 103 – 105 cells mL-1, equivalent to previous 

studies in similar environments (Table 5.1). 

 By associating these measurements with the hydrological examination of the weathering crust 

(Chapter 3), the study also aimed to draw broad-scale links between hydraulic conductivity and cell 

concentrations across the depth-profile of the weathering crust. Based on groundwater studies and the 

conceptual model outlined in section 2.7, it would be expected that cell concentration would increase 

with hydraulic conductivity. However, in supraglacial streams, the opposite phenomenon has been 

observed; increased discharge is correlated inversely with cell concentrations (Irvine-Fynn et al., 2012). 
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The explanation for this is that at low discharge, transport through the weathering crust is effective, 

whereas at high discharge, four process reduce cell transport rates: 

1. As discharge rises, larger interstitial flowpaths within the weathering crust may effectively 

capture flow, thereby reducing water flow in other areas of the weathering crust decreasing the 

areas contributing to cell entrainment, in a manner analogous to englacial hydraulics (e.g. 

Röthlisberger, 1972). 

Table 5.1 Microbial abundances observed in glacier environments. 

Glacier Country Habitat Cells mL-1 Method Source 

Borup Fjord 

Pass 
Canada 

Surface 

meltwater 
1.3 ± 0.2 × 104 

qPCR 
Trivedi et al., 2018 

Austre 

Brøggerbreen 
Svalbard 

Cryoconite hole 

water 
5.4 ± 1.6 × 104 EFM Anesio et al., 2010 

Midtre 

Lovénbreen 
Svalbard 

Cryoconite hole 

water 
2.9 ± 0.8 × 104 EFM Säwström et al., 2002 

Midtre 

Lovénbreen 
Svalbard 

Cryoconite hole 

water 
3.4 ± 1.2 × 104 EFM Anesio et al., 2010 

Midtre 

Lovénbreen 
Svalbard 

Supraglacial 

meltwater 
1.4 - 4.9 × 104 EFM Mindl et al., 2007 

Midtre 

Lovénbreen 
Svalbard Stream 2.0 ± 0.1 × 104 FCM Irvine-Fynn et al., 2012 

Midtre 

Lovénbreen 
Svalbard Shallow ice core 5.7 ± 0.3 × 104 FCM Irvine-Fynn et al., 2012 

Thule Greenland Shallow ice core 
3.7 ± 0.3 × 103 

3.4 ± 1.2 × 104 
EFM Stibal et al., 2015 

A.P. Olsen Ice 

Cap 
Greenland Shallow ice core 

3.2 ± 0.5 × 105 

4.7 ± 1.0 × 105 
EFM Stibal et al., 2015 

Kangerlussaq Greenland Shallow ice core 
3.9 ± 0.6 × 104 

6.7 ± 3.4 × 104 
EFM Stibal et al., 2015 

Qasimiut Greenland Shallow ice core 
6.2 ± 4.2 × 104 

4.3 ± 1.5 × 105 
EFM Stibal et al., 2015 

Tasiilaq Greenland Shallow ice core 
4.6 ± 1.1 × 104 

1.2 ± 0.5 × 105 
EFM Stibal et al., 2015 

Matanuska 

Glacier 

Alaska, 

USA 

Weathering 

crust water 
200 – 8.3× 103 EFM Christner et al., 2018 

Rotmoosferner Austria 
Cryoconite hole 

water 
4.1 ± 3.8 × 104 EFM Anesio et al., 2010 

Stubacher 

Sonnblickkees 
Austria 

Cryoconite hole 

water 
3.7 ± 1.4 × 104 EFM Anesio et al., 2010 

Patriot Hills Antarctica 
Cryoconite hole 

water 
1.3 ± 0.8 × 104 EFM Hodson et al., 2008 

McMurdo Dry 

Valleys 
Antarctica 

Cryoconite hole 

water 
4.4 ± 2.4 × 104 EFM Hodson et al., 2008 

McMurdo Dry 

Valleys 
Antarctica 

Cryoconite hole 

water  
4.6 ± 2.1 × 104 EFM Foreman et al., 2007 

Vestfold Hills Antarctica 
Cryoconite hole 

water 
260 ± 190 EFM Hodson et al., 2008 

Where two values are indicated, these are the maximum and minimum values observed by each study. 

Single values are means. 

Uncertainties are indicated where available.  
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2. At times of increased melt, the weathering crust becomes water-logged, and water pressures 

direct flow away from preferential flow paths reducing contributions from interstitial spaces to 

the meltwater which is transported to supraglacial streams. This pressure gradient is reversed 

at low melt, enhancing apparent particle transport through the porous media in a manner 

equivalent to the subglacial hydrological system (e.g. Hubbard et al., 199)). 

3. The particles themselves may impede transport and clog interstitial spaces within the 

weathering crust (see Mader et al., 2006), reducing the effective porosity and the numbers of 

particles transported.  

4. Nutrient starvation, linked with reduced hydraulic conductivity, has been demonstrated to 

enhance bacteria transport (Han et al., 2013). When nutrient starved, cell sizes are reduced 

(Cunningham et al., 2007; Sanin et al., 2003), increasing the transport potential (Mueller, 1996) 

as cells can move through smaller pores. Furthermore, starvation reduces the protein and 

polysaccharide content of extra-cellular polymeric substances (EPS) in Bacillus (Haznedaroglu 

et al., 2008), and may occur in other bacteria in the Firmicutes phylum (observed in the 

weathering crust, see Christner et al., 2018) and other phyla which may influence the ability of 

cells to form biofilms preventing their transport. 

Therefore, if hydraulic conductivity and cell concentrations are positively correlated, such as is 

observed in the groundwater system, this will be indicative of a simple system where increased pore 

water velocity delivers more nutrients to cells and increased rates of cell advection. This trend may 

only be apparent when each glacier sampled is considered individually, due to potential differences in 

microbial cell delivery controlled by regional scale differences in dust delivery and cell concentration 

in snow (although it should be noted that consideration of inoculation rates is beyond the scope of 

this study).  

If a negative correlation is apparent, it may be possible to elucidate if any of the four proposed 

mechanisms are occurring. In the case of 1, effective pathways will most likely be observed near the 

surface, where ice density is lowest and porosity and hydraulic conductivity greatest. The presence of 

effective flow near the surface can be identified using the height of the water table; the closer the water 

table to the surface, the greater efficiency of flow. As such, cell concentration would be expected to 

correlate negatively with water table height when considered for each glacier individually. In the case 

of 2 and 3, these phenomena cannot be observed using the piezometer method described in Chapter 

3. However, the implication of mechanical filtering may be demonstrated if cell concentrations within 
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streams are lower than in weathering crust meltwaters.  To assess 2, in-depth consideration of sub-

metre scale flow direction and water pressure is required, and to fully assess 3 consideration of the 

flow paths of individual particles is needed. If cells are nutrient starved by reduction in hydraulic 

conductivity (4), this will be apparent when considering cell size distributions with hydraulic 

conductivity and/or permeability as the dependent variable; lower hydraulic conductivities would be 

associated with smaller cells and greater concentrations of planktonic cells in weathering crust 

meltwater.  

5.2 Materials and methods 

5.2.1 Field sites and sampling strategy 

Weathering crust recharge and cell samples were collected at 11 sites across the northern 

hemisphere between 2014 and 2016, covering a range of latitudes and climatic settings (Table 5.2 

Figure 3.4). At Haut Glacier d’Arolla, Vadrec del Forno (both Switzerland), and Fountain Glacier Bylot 

Island (HACH, VFCH and FGBI, respectively), holes were drilled at strategic locations along transects 

or semi‐randomised grids within a defined supraglacial micro-catchment, whereas on the K‐transect 

of western Greenland (GRDS), nine holes were distributed cross a 30 × 30 m grid. At other sites 

including those in Sweden (SGSE and RGSE), in Austria (RMOS and GBOS), at the Greenland Ice 

Sheet margin (GRKM), and in Svalbard (PBSV and FFSV) glacier-wide randomised grid sampling or 

short transects over smaller, hydrologically active areas were applied. 

5.2.2 Hydrological data collection and processing 

Stream discharge was also recorded for PBSV, FFSV, FGBI, SGSE HACH and VFCH, with 

cell samples collected throughout the study period at the measurement point. At VFCH, measurement 

of discharge was undertaken using a Druck pressure transducer and Campbell CR1000 logger to 

measure supraglacial stream stage. Discharge was measured using salt dilution gauging, following the 

protocol outlined by (Hudson and Fraser, 2005) using 10 g of table salt, and a stage-discharge 

relationship established for the stream. At all other sites (PBSV, FFSV, FGBI, SGSE and HACH), salt 

dilution gauging alone was used, with electrical conductivity (EC) measured in the field. The 

relationship between salt concentration and EC was established in a laboratory experiment prior to 

each field season, using Millipore water at a temperature of 1 °C as a substitute for glacial meltwater. 
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A concentration-conductivity curve was constructed using a range of known masses of salt, covering 

an EC range that would be expected in a supraglacial stream, ≤ 6 μS cm-1 (see Collins, 1979).  

For calculation of hydraulic conductivity (K), 36 cm deep auger-holes of 5 cm dimeter were 

drilled using an ice auger (Kovacs Enterprise, USA) and a Makita 18V Combi Drill. Data collection 

and processing followed the protocol outlined in Chapter 3 (see Stevens et al., 2018). At PBSV, HACH 

and VFCH EC and temperature of borehole waters were measured using a combined Reed SD-4307 

probe at a depth representing a mid-point between the auger-hole base and water table, post microbial 

sample collection to prevent cross-contamination of samples. 

5.2.3 Meltwater sample collection and interrogation 

Post-recharge measurement, meltwater from recharge holes was collected from a mid-depth in 

the filled auger-hole using a syringe and plastic tubing. Meltwater within the hole entered from all 

depths within the weathering crust and was perturbed and mixed by removal of the recharge probe, 

so robust depth-specific sample collection was not considered possible. Prior to sample collection, the 

tubing and syringe were pre-contaminated three times using water from the relevant auger-hole before 

collection of the sample which was transferred to a sterile, 15 mL falcon tube in most instances. For 

some glaciers (GRDS, GRKM and SGSE), 4 mL tubes were used due to logistical limitations regarding 

the transport of large volumes (and hence masses) of sample. Stream samples were collected directly, 

prior to salt dilution gauging where applied, and stored in an identical fashion. Whilst on the glacier, 

samples were stored in the dark in contact with the ice, ensuring that temperature remained low. At 

the end of each day, samples were fixed with glutaraldehyde (collection in 2014 and 2015) or 

paraformaldehyde (2016) (both 2 % w/v final concentration). Samples were kept dark and frozen at -

80 °C upon return for the UK, a maximum of three weeks after collection. 

Samples were defrosted at room temperature and cell enumeration undertaken via flow 

cytometry (FCM) using a Sony SH-800EC (Sony Biotechnology, Japan) following the protocol 

outlined in Chapter 4. Size gates where distinguished using a non-fluorescent Flow Cytometry Size 

Calibration Kit (Molecular Probes, UK) as per the manufacturer’s instructions (see 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp13838.pdf for further information). 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp13838.pdf
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5.2.4 Carbon, nitrogen and phosphorus flux calculations 

Using cell concentrations and size distributions of cells within the weathering crust, coupled 

with regional scale glacier-run off modelling, carbon, nitrogen and phosphorus fluxes from glacier 

surfaces are calculated for a) geographic regions and b) globally. Whilst previously undertaken by 

(Irvine-Fynn et al., 2012), this work substantially expands the geographic scope of these flux 

calculations Only cells from the weathering crust are considered to avoid double counting and 

subsequent over-estimation of nutrient flux, as cells observed in-streams are expected to have been 

transferred through the weathering crust. To convert microbe fluxes to nutrient biomass, constant 

values can be used (see Lee and Fuhrman, 1987), but to account for variations in microbe size, biomass 

can be approximated using biovolume ratio or allometric methods which consider biovolume and use 

domain-scale scaling factors (c and a; Equation 5.1) linking mass (m) and cell volume (Vcell). For 

bacteria, c = 120 and a = 0.72 (Norland, 1993) and for algae, c = 109 and a = 0.991 (Montagnes et al., 

1994). However, this study does not aim to discern the types of cells sampled, even at the domain 

level, but based upon the conceptual model it is assumed that planktonic cells in weathering crust 

waters sampled are bacterial, and for simplicity a conversion factor of 5.6 × 10-13 g C μm-3 (Bratbak, 

1985) was used. Cellular carbon concentration was used to additionally calculate cellular nitrogen and 

phosphorus concentrations using known ratios of 50:10:1 (C:N:P), defined for a range of genera of 

aquatic bacteria (Fagerbakke et al., 1996). 

m = cVcell
a          [Equation 5.1] 

When converting diameter of a single axis to cell volume, it is important to consider the cell 

shape; the two primary prokaryotic morphologies are cocci (spheres) and bacilli (rods), but budding, 

helical, corkscrew, spirochete and filamentous morphologies are also observed (Madigan et al., 2015). 

This study will consider cells as both cocci and bacilli, indicating the maximum and minimum potential 

nutrient mass. It is expected that cells within weathering crust meltwaters are a combination of these 

morphologies, and actual nutrient estimates will be somewhere within this range. However, without 

detailed knowledge of cell morphology, this is impossible to quantify. For spheres, cell volume is 

calculated using Equation 5.2, where Vcell is the volume of an individual cell of radius r, defined using 

the mid-point of the size class into which it falls. For rods, Equation 5.3 is used, where length, L, is 

defined as the size fraction mid-point and cell width (w) is modelled based on standard bacterial 

geometries (Equation 5.4; Saccà, 2017). Cell volume was initially calculated for an individual cell each 
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size class for each shape. Equation 5.5 was then used to calculate the total cell volume for each site for 

each cell shape; CCsize is the concentration of cells in a given size class. Total size class volume (μm3 

mL-1) was calculated per-size class, which were added to obtain a total cell volume for each glacier 

using the mean cell concentration and size distribution. Cells in the ≥ 15 μm size class were considered 

to have radii of 7.5 μm. 

Vcell =
4

3
πrcell

3     [Equation 5.2] 

Vcell =
π

4
w2 (l −

w

3
)          [Equation 5.3] 

w = 0.888l + 0.111          [Equation 5.4] 

∑ VcellCCsize     [Equation 5.5] 

Mean nutrient concentrations were subsequently upscaled to the glacier run-off scale using 

data from Bliss et al., 2014). This work presents modelled run-off under the RCP 4.5 emissions scenario 

(see IPCC, 2013), accounting for glacier size change, to 2099. This modelled discharge is proglacial; 

however, melting at the bed of glaciers is negligible in terms of contribution to mass balance (Cuffey 

and Paterson, 2010), so it is assumed that all proglacial melt is provided from surface melt. Data within 

this work is provided by region, and glaciers sampled by this study are associated with the relevant 

region. However, some regions include multiple glaciers within this study, in which instance a weighted 

mean of mean nutrient concentration, based on sample number at each glacier, is used to provide the 

input nutrient concentration data for the region. For the global (excluding Antarctica) nutrient flux, a 

weighted mean of nutrient concentration based on sample number was used across all sites. The 

calculation of extraglacial nutrient export from weathering crust cells was undertaken by multiplying 

mean nutrient concentration for each region (and globally) by the corresponding meltwater flux (mL 

a-1). Note that this calculation excludes any modifications in the subglacial environment, and only 

considers the planktonic cells observed within a developed weathering crust as sampled within this 

study. It does not consider immobile cells which are attached to or incorporated within ice crystals, 

which may be advected from the glacier surface during synoptic conditions, such as extreme rainfall 

events, which degrade the weathering crust. As such, these calculations are likely to represent low-end 

or underestimates of bacterial nutrient flux from the supraglacial environment. 
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5.3. Results 

5.3.1 Microbial cell enumerations 

Total event counts were used to imply sediment loads, ensuring that the CC-APC criterion 

outlined in Chapter 4 was adhered to and suitable confidence could be applied to FCM cell 

enumerations. Sediment concentration was not directly measured. As outlined in Chapter 4, a sediment 

load of 10-1 g L was associated with a non-cell event count in the order of 106 mL-1. This was observed 

in eight instances (seven at GRDS, and one as SGSE), however CC-APC for each of these sites was 

≥ 5 × 105 and hence confidence can be placed in the accuracy of these analyses. All other samples also 

met the CC-APC criterion; cells with the lowest cell concentrations (the order of 103 cells mL-1) 

exhibited low non-cell event counts in the order of 103 mL-1.   

 Mean microbial cell concentrations in the weathering crust across all sites were 2.2 × 104 ± 5.5 

× 104 cells mL-1 (n = 763), equal to in-stream cell concentrations which were 

2.2 × 104 ± 3.0 × 104 cells mL-1 (n = 142). Note that ± uncertainties are reported as standard deviation 

of a glacier-scale dataset and represent the inherent variability of the data rather than implying the 

negative cell concentrations are possible or indeed plausible. When considered on a glacier-by-glacier 

basis (Figure 5.1), cell concentrations in streams and the weathering crust can be seen to occupy the 

same range in almost all cases, aside from at RMOS where only one stream sample was collected.  

Differences in cell concentrations between glaciers can be observed in the weathering crust 

(Figure 5.1; Table 5.3.), with a one-way ANOVA indicating a significant difference in mean cell 

concentrations between glaciers (p < 0.05, n = 763). Tukey’s HSD post-hoc testing revealed 

significant pairwise differences between GRDS and HACH, RMOS, SGSE, and VFCH, with GRDS 

having higher cell concentrations than all four sub-arctic and alpine valley glaciers in this study (2.9, 

3.9, 3.3 and 3.2 × 104 cells mL-1 respectively; in contrast to mean cell concentration for GRDS which 

is 4.7 × 104 ± 1.3 × 105 cells mL-1).  

The modal cell size class is 1 – 2 µm, containing 56 ± 9.1 % of cells enumerated (n = 905) 

(Figure 5.2). The second most common grouping is the ≤ 1μm group (≈ 19 %) followed by the 2 – 4 

μm group (≈ 14 %). As such, ≈ 75 % of cells have a diameter ≤ 2 μm, and 89 % ≤ 4 μm. Samples 

from the weathering crust and supraglacial streams demonstrate similar cell size distributions, with 

overlap of uncertainties (± 1 standard deviation). Measurements with associated permeability data  
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Figure 5.1 Cell concentrations in weathering crust (blue) and stream (orange) meltwaters for glaciers across the 

northern hemisphere (latitudes in brackets). Outliers are indicated with dots of corresponding colour, and sample 

numbers on the right align with the corresponding box. For GRKM, GRDS and GBOS, no stream samples were 

collected, and only one stream sample was collected at RMOS. Note that for all glaciers with ≥ 1 stream sample, 

interquartile ranges of cell concentrations in the weathering crust and stream samples overlap. 

 
Figure 5.2 Cell size distributions for all samples and sub-samples including those with paired 

permeability measurements, and from weathering crust/stream meltwaters. Error bars show ± 1 

standard deviation. 
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(n = 316), have similar cell size distributions to the entire dataset, and hence analysis of this 

sub-sample can be considered representative of the entire dataset when considering cell sizes.  

5.3.2 Links between cell concentrations and hydrology 

614 samples were successfully paired with matching hydrological data. This loss of data 

(n = 149) was attributed to incomplete record keeping and/or worn sample labels meaning microbial 

samples could not be paired confidently with hydrological data. When considered as an overall dataset 

(Figure 5.3), or on a glacier-by-glacier basis (Figure 5.4), no trend is apparent between hydraulic 

conductivity and cell concentration, or water table depth and cell concentration. No trends were 

observed between EC or temperature of weathering crust meltwater and cell counts for sites with 

available data (HACH, VFCH and PBSV; n = 316).  

Permeability values were available from VFCH, HACH and PBSV, with 316 paired samples. 

No relationship is demonstrated between permeability and cell concentration (Figure 5.5); which is 

reflected when considered at each individual glacier. Furthermore, permeability does not appear to 

affect the size distribution of cells, with similar cell size distributions observed across the entire range 

of permeabilities recorded (Figure 5.6). Given the lack of variation in cell size distributions shown in 

Figure 5.6, cell size distributions were not considered on a glacier-by-glacier basis. Considering 

Table 5.3 Microbial abundances observed by this study. 

Site Country Habitat Mean Cells mL-1 

FFSV Svalbard Weathering crust water 2.5 ± 2.6 × 104 

FGBI Bylot Island, Canada Weathering crust water 3.3 ± 4.1 × 104 

GBOS Austria Weathering crust water 1.4 ± 0.6 × 104 

GRDS Greenland Weathering crust water 4.4 ± 2.1 × 104 

GRKM Greenland Weathering crust water 1.6 ± 1.3 × 104 

HACH Switzerland Weathering crust water 1.8 ± 1.9 × 104 

PBSV Svalbard Weathering crust water 3.1 ± 3.4 × 104 

RMOS Austria Weathering crust water 7.9 ± 3.8 × 103 

SGSE Sweden Weathering crust water 1.4 ± 3.1 × 104 

VFCH Switzerland Weathering crust water 1.5 ± 2.0 × 104 

FFSV# Svalbard Stream 3.1 ± 2.2 × 104 

FGBI Bylot Island, Canada Stream 3.6 ± 4.0 × 104 

HACH Switzerland Stream 2.2 ± 2.0 × 104 

PBSV Svalbard Stream 2.6 ± 3.2 × 104 

RMOS* Austria Stream 2.8 × 104 

SGSE Sweden Stream 3.5 ± 0.9 × 103 

VFCH Switzerland Stream 1.5 ± 2.8 × 104 

Uncertainties stated are ± 1 standard deviation. 
#whilst both datasets are collected from Foxfonna, the weathering crust sites are from the dome, 

whereas the stream samples are from the lower outlet. 

*n = 1. 
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comparisons between in-stream samples and the weathering crust, no statistically significant 

differences can be observed between size class distributions in the overall dataset or when the data is 

considered by glacier, but some enrichment of smaller size fractions in stream samples is observed 

(Figure 5.2). 

For stream samples, 90 cell samples were successfully paired with discharge data. No 

correlations between discharge or cell concentration are apparent, either when considering the dataset 

as a whole, or on a glacier-by-glacier basis (Figure 5.7).  

  

 

Figure 5.3 Cell concentration as a function of hydraulic conductivity at all sites, using a log-log scale. Glaciers 

are highlighted by colour, and the environment of sites (polar or alpine) is indicates using a triangles and circles 

respectively. No trends are apparent between these two variables across the dataset as a whole.  
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Figure 5.4 Cell concentrations as a function of hydraulic conductivity, with each sub-plot indicating a different 

glacier, as follows (n): a: PBSV (45); b: FFSV (4); c: FGBI (21); d: SGSE (19); e: GRKM (17); f: GRDS (32); g: GBOS 

(7); h: RMOS (7); i: VFCH (243); j: HACH (48).  
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Figure 5.6 Cell size distributions using the mid-point of each size class as the diameter of the cells within it, note 

that the x axis breaks are defined by the sizes of calibration beads. The ≤ 1 μm class is attributed a diameter of 

0.5 μm (as cells cannot have a diameter ≤ 0) and the > 15 μm class is attributed a nominal diameter of > 15 μm 

given the lack of upper-bound. A linear interpolation is applied to the point data to generate the contour surface, 

r2 = 0.998. 

Figure 5.5 Cell concentration as a function of permeability at all sites, using a 

log-log scale. No trends are apparent across the entire dataset, or when 

considered on a glacier-by-glacier basis. 
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5.3.3 Carbon, nitrogen and phosphorus fluxes 

Between 2003 and 2099, annual cellular carbon flux from glacier surfaces in the five regions 

sampled in this study is between 3.4 × 108 kg a-1 and 1.1 × 109 kg a-1, depending on the shape of 

bacterial cells. Rod-shaped bacteria yield lower nutrient fluxes, around one-third of those for spherical 

bacteria. Excluding Antarctica, the regions sampled represent ≈ 30 % of modelled global glacier runoff 

over the next century, and as such further upscaling to a global scale implies carbon fluxes of 

1.1 × 109 kg a-1 and 3.6 × 109 kg a-1 from glacier surfaces. Detailed regional and temporal breakdown, 

and nitrogen and phosphorus fluxes can be seen in Tables 5.4 and 5.5, with trends linked with discharge 

fluctuations.  

  

  

Figure 5.7 Cell concentrations as a function of 

stream discharge, with each sub-plot indicating 

a different glacier, as follows (n): a: all glaciers 

(93); b: PBSV (7); c: FFSV (4); d: VFCH (53); d: 

HACH (29). 
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Table 5.4 Global total is calculated by comparison of run-off from regions as a proportion of total 

global runoff (excluding Antarctica) for spherical cells.  

Region 
C N P  C N P 

2003 – 2099 (kg a-1)  2003 – 2022 (kg a-1) 

Svalbard 1.7 × 108 3.5 × 107 3.5 × 106  1.6 × 108 3.2 × 107 3.2 × 106 

Arctic Canada (N) 3.7 × 108 7.5 × 107 7.5 × 106  3.0 × 108 5.9 × 107 5.9 × 106 

Greenland 5.3 × 108 1.1 × 108 1.1 × 107  5.0 × 108 1.0 × 108 1.0 × 107 

Scandinavia 8.7 × 106 1.7 × 106 1.7 × 105  1.2 × 107 2.4 × 106 2.4 × 105 

Central EU 5.6 × 106 1.1 × 106 1.1 × 105  8.4 × 106 1.7 × 106 1.7 × 105 

Total 1.1 × 109 2.2 × 108 2.2 × 107  9.8 × 108 2.0 × 108 2.0 × 107 

Global Total 3.6 × 109 7.3 × 108 7.3 × 107  3.8 × 109 7.7 × 108 7.6 × 107 

Region 2041 – 2060 (kg a-1)  2080 – 2099 (kg a-1) 

Svalbard 2.0 × 108 4.1 × 107 4.1 × 106  1.4 × 108 2.9 × 107 2.9 × 106 

Arctic Canada (N) 4.1 × 108 8.2 × 107 8.2 × 106  4.0 × 108 8.1 × 107 8.1 × 106 

Greenland 5.5 × 108 1.1 × 108 1.1 × 107  5.1 × 108 1.0 × 108 1.0 × 107 

Scandinavia 8.7 × 106 1.7 × 106 1.7 × 105  4.4 × 106 8.7 × 105 8.7 × 104 

Central EU 4.7 × 106 9.3 × 105 9.3 × 104  2.8 × 106 5.6 × 105 5.6 × 104 

Total 1.2 × 109 2.4 × 108 2.4 × 107  1.1 × 109 2.1 × 108 2.1 × 107 

Global Total 3.2 × 109 7.7 × 108 7.7 × 107  3.2 × 109 6.3 × 108 6.3 × 107 

Regions are split as follows: Svalbard: FFSV, PBSV; Arctic Canada: FGBI; Scandinavia: SGSE; 

Greenland: GRDS, GRKM; Central EU: GBOS, HACH, RMOS, VFCH. 

 

Table 5.5 Global total is calculated by comparison of run-off from regions as a proportion of total 

global runoff (excluding Antarctica) for rod-shaped cells.  

Region 
C N P  C N P 

2003 – 2099 (kg a-1)  2003 – 2022 (kg a-1) 

Svalbard 5.2 × 107 1.0 × 107 1.6 × 106  4.8 × 107 9.6 × 106 9.6 × 105 

Arctic Canada (N) 1.2 × 108 2.3 × 107 2.3 × 106  9.8 × 107 1.9 × 107 1.9 × 106 

Greenland 1.7 × 108 3.3 × 107 3.3 × 106  1.6 × 108 3.2 × 107 3.2 × 106 

Scandinavia 3.0 × 106 6.0 × 105 6.0 × 104  4.1 × 106 8.2 × 105 8.2 × 104 

Central EU 1.8 × 106 3.6 × 105 3.6 × 104  2.7 × 106 5.3 × 105 5.3 × 104 

Total 3.4 × 108 6.8 × 107 6.8 × 106  3.7 × 108 6.1 × 107 6.1 × 106 

Global Total 1.1 × 109 2.3 × 108 2.3 × 107  1.2 × 109 2.4 × 108 2.4 × 107 

Region 2041 – 2060 (kg a-1)  2080 – 2099 (kg a-1) 

Svalbard 6.1 × 107 1.2 × 107 1.2 × 106  4.3 × 107 8.7 × 106 8.7 × 105 

Arctic Canada (N) 1.3 × 108 2.6 × 107 2.6 × 106  1.3 × 108 2.5 × 107 2.5 × 106 

Greenland 1.7 × 108 3.5 × 107 3.5 × 106  1.6 × 108 3.2 × 107 3.2 × 106 

Scandinavia 3.0 × 106 6.0 × 105 6.0 × 104  1.5 × 106 3.0 × 105 3.0 × 104 

Central EU 1.5 × 106 3.0 × 105 3.0 × 104  8.9 × 105 1.8 × 105 1.8 × 104 

Total 3.7 × 108 7.4 × 107 7.4 × 106  3.7 × 108 6.7 × 107 6.7 × 106 

Global Total 1.2 × 109 2.4 × 108 2.4 × 107  9.9 × 108 2.0 × 108 2.0 × 107 

Regions are split as follows: Svalbard: FFSV, PBSV; Arctic Canada: FGBI; Scandinavia: SGSE; 

Greenland: GRDS, GRKM; Central EU: GBOS, HACH, RMOS, VFCH. 
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5.4. Interpretation and discussion 

5.4.1 Microbial cell enumeration and size distribution 

This chapter presents a sample set of 907 microbial abundances within glacier surface 

meltwater, vastly expanding the number of samples and geographic scope of other work to date. The 

data herein likely represent an underestimation of microbial cells within the weathering crust due to 

the sampling strategy applied. Samples collected from auger-hole recharge waters only enable 

examination of mobilised microbes, and hence those that are stored within the weathering crust (either 

individually or as a component of large cell-particle agglomerations) (Irvine-Fynn et al., 2012), or 

bound to and within ice-crystals (via ice binding proteins; Dolev et al., 2016) which comprise the 

weathering crust cannot be sampled using the methods applied here. Bulk sampling would enable the 

collection of such microbiota if complete concentration quantification was desired, but the destructive 

nature of this would prevent examination of change over time at-a-point. 

The mean microbial concentration presented herein (2.2 × 104 cells mL-1) in both the 

weathering crust and streams compares well with existing estimates for glaciers worldwide in near-

surface ice, surface meltwater and water within cryoconite holes (Tables 5.1 and 5.3). Interestingly, cell 

concentrations observed in the weathering crust at Rotmoosferner (Austria) are 80 % lower than those 

observed within cryoconite hole waters (Anesio et al., 2010), highlighting cell-enrichment in the water 

phase of cryoconite holes relative to the weathering crust. These cell concentrations are within the 

range observed for terrestrial aquifers (albeit at the lower end) of 102 – 108 cells mL-1 (Madigan et al., 

2015), and compare similarly to those found in snow, where cell concentrations range between 600 

(e.g. Liu et al., 2009) and 2 × 105 cells mL-1 (e.g. Amato et al., 2007).  

There is a statistically significant difference in mean microbial cell concentrations in the 

weathering crust at each glacier sampled in this study; with pairwise differences between GRDS and 

the Central European and Scandinavian glaciers, with more cells observed at GRDS. Given the lack 

of correlation between hydraulic conductivity, permeability, EC and temperature with cell 

concentrations, further work is required to ascertain the mechanism for this cell concentration 

differential. Inter-glacier scale variation in cell concentrations may be attributable to, a) nutrient input 

and bioavailability, b) cell replication rates, c) differential cell inoculation and d) frequency and intensity 
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of weathering crust degradation events. Exploration of these variables extend beyond the scope of this 

dataset, instead presenting avenues for further research. 

The modal cell size of 1 - 2 μm observed is larger than reported by (Irvine-Fynn et al., 2012), who 

observed a modal size of ≤ 0.5 μm and interestingly describe a bimodal distribution for both ice-core 

and stream samples with a secondary size peak at 0.9 - 3.0 μm. The apparent lack of smaller particles 

herein may be a result of a) increased flocculation in these samples or b) lack of ability to resolve 

smaller sized particles. Flocculation is excluded the analysis protocol applied (see Chapter 4 for further 

detail). The Sony SH800-EC used for sample analysis offers scatter resolution of ≤ 0.5 μm and hence 

should prove capable of resolving smaller particles. For absolute counts, thresholding was undertaken 

based upon fluorescence, negating this issue and ensuring complete counting of even small cells. 

However, size fractions were estimated using FSC given the use of non-fluorescent beads; notably the 

≥ 15 μm size fraction was calculated by elimination (i.e. containing all cells not included in another 

size gate). Hence it is possible that some particles exhibited fluorescence, and were counted as cells, 

but fell below the detection threshold for FSC due to their small size. Any cells exhibiting these 

characteristics would be counted as being ≥ 15 μm. Even if all cells classed in the ≥ 15 μm group 

where mis-categorised, the modal size group of this dataset would remain the 1 – 2 μm class (in this 

instance 23.8 % of cells would fall within the ≤ 1 μm group, still substantially below the ≤ 0.9 μm cell 

proportions reported by (Irvine-Fynn et al., 2012)). The size of cells moving through the weathering 

crust is dependent on two variables: a) the size of cells available for transfer, and b) the properties of 

the ice through which they are mobilised. 

Without knowledge of the phylogenetic affiliation of cells, it cannot be determined whether 

cells are diminutive “dwarf” cells (because of nutrient limitations) or stable cells with a small size 

phenotype (Irvine-Fynn et al., 2012). This study does not have data to further elucidate this 

relationship, and a combined study would represent an important step forward in weathering crust cell 

transport. More recent work suggests a typical weathering crust phylum-level breakdown as follows: 

Proteobacteria (with OTUs observed for Alpha-, Beta- and Gamma- classes) (39%), Cyanobacteria 

(22%) and Bacteroidetes (18%), Actinobacteria (9%), Armatimonadetes (2%), Acidobacteria (1%) and 

Deinococcus-Thermus (1%) [Christner, 2018 #975}. However, this level of cell identification is 

unsuited to suggesting a “typical” cell size, even for the Proteobacteria that can be identified to a class 

level. For example, aquatic unicellular cyanobacteria have been demonstrated to range in size from 1 

to 20 μm (Zehr et al., 2001). This highlights a clear research gap, more precise cell identification (for 
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example, to a genera level) is necessary to determine the community function of the cells within, and 

more pertinently, moving through the weathering crust and potential impact on downstream 

environments and biogeochemical cycling.  

5.4.2 Weathering crust hydraulics and cell transport implications 

The conceptual model of the weathering crust (section 2.7) and hypotheses outlined in section 

5.1 outline two possible scenarios, for positive and negative correlations between hydraulic 

conductivity and cell concentrations within the weathering crust. However, no such relationship is 

observed, with no correlation apparent between hydraulic conductivity and cell concentration when 

considering the entire dataset or glacier-scale relationships. When considering this dataset and applying 

it to assess weathering crust mechanics, it is important to firstly consider the sampling strategy. 

Meltwater samples for which cells were enumerated were collected from water discharged from the 

weathering crust into auger-holes, and hence only mobile planktonic cells are considered. It should be 

noted that there are no direct measurements of either cells bound to ice crystals (either in biofilms or 

via mechanical means), or planktonic cells which are “trapped” in pores which have a smaller diameter 

than themselves or are disconnected. However, the data presented here do demonstrate that cells are 

mobilised within weathering crust meltwaters, as evidenced by the presence of cells within the sampled 

waters. 

5.4.2.1 Cell transport 

Previous work has argued that the weathering crust appears to represent somewhat of a logical 

paradox, with the accumulation of microbial biomass occurring during the process of ablation (Irvine-

Fynn et al., 2012). One limitation of this study is that the cells enumerated only represent a component 

of those found on glacier surfaces, and hence only some elements of cell transport can be examined. 

Mader et al. (2006) report that in glacial ice, between 30 and 50 % of microbial cells are found in ice 

crystals, and the remaining 50 to 70 % are observed in interstitial melt water. At the near surface, 

(Irvine-Fynn et al., 2012) report reduced bacterial cell concentrations in supraglacial stream water when 

contrasted to near surface ice cores; stream concentrations are ≈ 15 % of ice core concentrations. The 

proposed mechanism for this reduction in cell concentrations through the transport pathway is that 

the weathering crust acts to remove cells from meltwaters via filtration or flow dynamics.  
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However, this apparent reduction in cell concentrations may in fact reflect the inclusion of 

cells bound to ice crystals in addition to those in interstitial meltwaters when measuring ice core 

concentrations, rather than the loss of cells to the weathering crust during transport. This is 

demonstrated by the data presented herein; the equivalent concentrations in weathering crust 

meltwaters and supraglacial streams implies that once entrained in weathering crust transport 

processes, cells are advected unhindered to supraglacial streams. Whilst there is no direct evidence of 

this occurring, the implied process is that cells within weathering crust meltwaters are efficiently 

advected through the medium without a change in concentration during this transport. To further 

examine this phenomenon and support this assertion, consideration of meltwater flowpaths and tracer-

based examination of particles is required to further understand how individual particles move and/or 

are entrained within the weathering crust.  

In the case of efficient advection, biological darkening of the near-surface throughout the melt 

season (Ryan et al., 2018; Tedstone et al., 2018; Tedstone et al., 2017), and biogeochemical cycling (e.g. 

Anesio et al., 2009) would be attributable to growth and replication of cells bound to ice-crystals in 

biofilms and filamentous cyanobacteria, with periodic removal of biologically darkened ice by synoptic-

scale weathering crust degradation events. However, this negates the possibility of any cell 

reproduction of planktonic cells within the weathering crust, or viral cell lysis which has been observed 

to occur in the supraglacial microbial biome (Rassner et al., 2016; Säwström et al., 2007). Considering 

reproduction, it is possible that advected planktonic cells are dead, and therefore unable to reproduce, 

highlighting the need to examine this phenomenon, which could be undertaken using live-dead staining 

protocols (Boulos et al., 1999), despite their potential flaws (Davey and Hexley, 2011). 

Alternatively, the rate of addition of cells to weathering crust meltwaters (increasing cell 

concentration) is equal their removal. Processes for removal including cells becoming stuck in pores 

(mechanical filtering; (Irvine-Fynn et al., 2012) or lysed by viruses. Addition of cells would occur via 

replication, as described above, the liberation of cells from ablating ice crystals (Dancer et al., 1997) 

and aeolian transport (e.g, Anesio et al., 2017). Clearly, this hypothesis recovers a range of mechanisms 

which require further investigation. Viral control rates require quantification, the occurrence and the 

potential for and proportion of mechanical filtering must be determined (via a tracer particle study) 

despite the implication of the results presented herein, and the delivery of cells to weathering crust 

melt waters from ice crystal melt and aeolian deposition must be examined in a detailed budgeting 

study at a single site. Doubling times of glacier surface microbes have been examined by (Anesio et al., 
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2010) for Alpine surfaces, but require consideration in parallel with the residence times of planktonic 

cells within the weathering crust. 

The nature of the hydraulic conductivity measurements undertaken here (i.e. and average 

across the depth profile) preclude detailed examination of flow dynamics. However, the presence of 

preferential flowpaths can be excluded. One mechanism to explain the apparent reduction in cell 

concentrations between near-surface ice and streams is that rising discharge is associated with the 

effective capture of flow by larger pathways. Given the depth-density relationship outlined in section 

2.7, efficient pathways, associated with larger pores, would be found near the surface. With a rise in 

water table, these efficient pathways would become saturated capturing flow and hence a negative 

correlation between cells and water table level, where a water table close to the surface would be 

associated with reduced cell concentrations, would be expected. However, no correlation was observed 

between water table depth and cell concentrations, and as such this phenomenon seems unlikely to 

occur. However, this does not consider the role of fracture flow, which may also act as an efficient 

transport pathway, capturing flow. 

5.4.2.2 Inter-crystal pore size 

This dataset demonstrates that at all sites, cells (and therefore particles) with a diameter of ≤ 

15 μm can pass through the weathering crust, implying the presence of pores of this size within the 

saturated layer of the weathering crust through which water flux is measured in this study. The dataset 

presented herein does not directly enable definitive identification of an upper size boundary for 

mobilised particles. The flow cytometer used, the Sony SH-800EC, can permit a maximal particle 

diameter of 100 μm through its fluidics system, and as no flow blockages occurred during sample 

analysis, it can be assumed that no particles ≥ 100 μm where present in the meltwaters collected. 

However, it is important to note that samples were intentionally disaggregated to enable accurate cell 

enumeration, so cell-cell and cell-particle aggregates ≥ 100 μm may have been present in the sample 

prior to pre-treatment. Therefore, these data indicate that pores of at least 15 μm must be present in 

the weathering crust but cannot elucidate a maximal pore size.  

The pore size suggested is substantially smaller than the maximum inter-crystalline vein size of 

10-3 m (1000 μm) suggested for “rotting” ice by Nye (1991). Considering the proposed formation 

mechanism for the weathering crust, a pore-size depth relationship would be expected, and larger pores 

may transport large particles may only be observed at close to the surface where crystal boundary melt 
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is greatest, in the unsampled unsaturated zone of the weathering crust. The sampling strategy applied 

here does not enable the consideration of depth variation of particle size transport capacity, as samples 

of cells were collected from meltwater obtained throughout the saturated depth profile of the 

weathering crust. In further assessing the transport capacity of the weathering crust, future studies 

should consider attempts to directly measure pore size throughout the depth profile of the weathering 

crust in both the saturated and unsaturated zones. Nuclear magnetic resonance imagery has been 

successfully applied to laboratory ice samples (Brox et al., 2015), but is logistically unfeasible to apply 

in a field setting, although appropriate ice exhumation techniques which maintain ice structure may 

enable this analysis to be carried out.  

Pore size acts as a control upon porosity in groundwater settings (Schwartz and Zhang, 2004), 

but in such an environment there is no empirical relationship between the two as the density of pores, 

dependent on crystal size also acts as a control (Bear, 1972). However, considering the conceptual 

model presented in section 2.7, porosity in the weathering crust is the result of widening of interstitial 

spaces between crystals  as they melt along their boundaries (Müller and Keeler, 1969) (Nye, 1991); 

and an increase in pore size implies and increase in weathering crust porosity. Porosity is not directly 

measured in this study due to the destructive nature of removing bulk samples, however permeability, 

itself a function of porosity is, and can be used to imply changes in pore size within the weathering 

crust. Permeability, and therefore porosity and pore size, appears to have no influence on planktonic 

weathering crust cell size distributions (Figure 5.7), with all cell sizes recorded mobilised at all measured 

permeabilities. The implication of this, coupled with considerations above, is that, to the 36 cm depth 

sampled, pore density acts as the control upon permeability and pore diameters exceed 15 μm, at least 

in part of the depth profile of the saturated zone. It should be noted that unweathered ice crystals are 

not a uniform size; structural features in glaciers, such as foliation, are defined largely by crystal size 

variation (Hudleston, 2015) and hence the influence of pre-weathering ice structure should be 

considered in future work regarding pore sizes and development in weathered ice.  

The assertion that even large cells, exceeding 15 μm in diameter, are mobilised through the 

weathering crust appears to be in direct contrast to the proposed mechanical filtration (Irvine-Fynn et 

al., 2012) and associated darkening of glacier surfaces commonly observed throughout the ablation 

season in the northern hemisphere (e.g. Tedstone et al., 2017). As mentioned above, the sampling 

strategy applied is only suitable to capture planktonic cells which move through the weathering crust, 

not those retained within it. Large eukaryotic cells, such as algae, are known to be retained on the 
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surface of the Greenland Ice Sheet (Ryan et al., 2018; Stibal et al., 2017), and larger colloids, such as 

bacterial-particulate aggregates, such as the early stages of cryoconite formation (Langford et al., 2010) 

may also retained within the weathering crust; note that the data presented herein is unable to place an 

upper bound on weathering crust pore size. Darkening may also be attributable to cells bound to ice 

crystals either mechanically or in biofilms. 

5.4.3 Supraglacial contribution to downstream nutrient fluxes 

This dataset allows for a conservative estimate of nutrient fluxes in the form of bacterial cells 

(a key component of particulate organic carbon, POC), but it should be noted that these calculations 

involve an extensive degree of upscaling and are subject to a range of assumptions and limitations. 

Firstly, modelled run-off from Bliss et al. (2014) is considered for RCP 4.5 only, associated with a 

“more likely than not” temperature rise of 2 °C (IPCC, 2013). In contrast, the highest emission 

scenario, RCP 8.5, is associated with a temperature rise of up to 4.8 °C by 2100. As glacier melt rates 

over the next century are strongly linked with temperature (and thus emissions scenarios), so is runoff. 

Melt and runoff is the key control upon the number of cells liberated and exported from glacier 

surfaces, and therefore POC flux from glaciers, therefore there is clearly large variance in POC estimate 

dependent on the emissions scenario considered. Any uncertainties in the hydrological modelling will 

also be reflected when estimating POC and nutrient flux. Changes in community composition and cell 

concentration on the glacier surface may also occur throughout the next century and cannot be 

estimated without understanding of controls upon them, which are currently lacking for ice-surface 

environments; although increasing temperatures have been associated with increased microbial activity 

in Arctic Tundra soils (Mikan et al., 2002). 

 The upscaling exercise undertaken here is based upon 11 sites across the northern hemisphere. 

Whilst the glaciers studied incorporate a range of climates and thermal settings, surface characteristics 

are markedly different from other glaciers found globally, such as debris covered glaciers prevalent in 

the Himalaya (e.g. Nakawo et al., 1999), which are not thought to  exhibit a weathering crust due to 

the presence of the surface debris layer. Furthermore, the potential for surface cover changes (for 

example, an increase in debris on European Alpine glaciers as surfaces lower and flatten in future due 

to mass loss) are not considered. The effect of this upscaling is best exemplified with sample volumes; 

converting < 1 L of cell samples to represent millions of litres will magnify any imprecision and 

uncertainty by vast amount. The robustness of this upscaling estimate could therefore be enhanced 
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with the collection of samples for unsampled environments, such as the Himalaya (or Patagonia or 

Alaska) and by increasing the number a volume of samples for which cells are enumerated.  

 The microbial cell concentrations presented herein exclude cells which are bound to ice 

crystals, which are possibly eluted from the glacier surface during weathering crust degradation events 

(such as rainfall). Without determination of the fate of such ice-bound cells, robust estimates of POC 

and nutrient flux cannot be made, however the values presented here, which exclude such cells, 

represent a minimum POC flux from glacier surfaces based on the assumption that the glacial 

discharges of (Bliss et al., 2014) occurs.  

The final limitation related to these calculations is that of cell shape. When considering the two 

assumed shapes, rods and spheres, the smaller cell volume associated with the former result in fluxes 

≈ one-third of the latter. To further refine this estimate, knowledge of the phylogenetic association of 

cells moving through the weathering crust, which would enable cell shape to be established, would 

enhance the reliability of these estimates. The limitations outlined above infer the calculated fluxes are 

likely to represent minimum estimates of carbon flux from glaciers over the next century, and as such 

the values calculated assuming rod shaped cells are used to reflect this. Therefore, the annual average 

estimate between 2003 – 2099 of extraglacial export of carbon is 1.1 × 109 kg C a-1 (1.1 Tg C a-1), 

nitrogen 2.3 × 108 kg N a-1 and phosphorus 2.3 × 107 kg P a-1.  

Hood et al. (2015) report POC export rates for the Greenland Ice Sheet and mountain glaciers 

of 1.89 Tg a-1, 1.7 times the POC export estimated herein. The carbon fluxes presented in this chapter 

are the equivalent of mobilising 0.05 - 0.11 % of the 1 – 2 Pg C stored within the aquatic biosphere 

per annum (Falkowski et al., 2000). The fluctuations in carbon export through the next century we 

report are attributable to changes in water flux, as constant cell concentrations are assumed. More 

pertinently, 44.6 % of this meltwater export is directly because of mass loss rather than annual cycling. 

This implies the liberation of long-term ice-archived nutrients from glaciers to downstream 

environments at a rate of 4.4 × 108 kg C a-1, 1.5 × 108 kg N a-1, and 1.5 × 107 kg P a-1. Furthermore, as 

runoff reduces due to glacier retreat, this annual supply of nutrients to the aquatic and marine 

biosphere reduces at the end of the next century, marking a substantial change in the availability of 

both carbon and other macronutrients and molecules in downstream environments. 
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5.5. Conclusions 

This chapter reports a mean weathering crust microbial cell concentration of 2.2 × 104 ± 5.5 

× 104 cells mL-1 with a modal size of 1 – 2 µm from a dataset of 763 samples collected from 11 glaciers 

across the Northern Hemisphere. Cell abundances vary on a glacier scale, with the highest abundances 

being observed in Greenland, and the lowest in the Central European Alps and Scandinavia. Equal 

concentrations of cells are observed in streams and the weathering crust, albeit within large ranges, and 

cells (and inorganic particulates) in excess of 15 µm diameter are mobilised within the weathered near 

surface of ablating ice masses. Therefore, no evidence is presented that the weathering crust acts as a 

mechanical filter, darkening glacier surfaces, but that further investigation is needed involving a) an 

intensive, catchment-scale study on a single glacier for an extended period incorporating a range of 

synoptic conditions and b) the application of conservative particulate tracers to the weathering crust 

to ascertain links between transport of microbial cells through it and (potentially) into supraglacial 

streams. Under this model, surface darkening of glaciers can be attributed to growth of cellular 

communities which are not mobilised in weathering crust waters, such as those bound to ice-crystals, 

throughout the ablation season. These values enable an conservative estimation of carbon (in the form 

of POC), nitrogen and phosphorus export from the supraglacial environment, albeit with numerous 

limitations, of 1.1 × 109 kg C a-1 (1.1 Tg C a-1), nitrogen 2.3 × 108 kg N a-1 and phosphorus 2.3 × 107 

kg P a-1, 1.7 times lower than existing estimates, but equivalent to the annual mobilisation of ≈ 0.08 % 

of carbon stored in the aquatic biosphere. Future evaluation of these fluxes should look to consider 

cells bound to weathering crust ice crystals, including their fate, and the morphologies of cells used to 

increase its robustness. 
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6. The Eco-Hydrology of the Weathering Crust in a 

Supraglacial Alpine Micro-Catchment  

6.1 Introduction and study design 

This chapter examines the supraglacial hydrology and ecology of a singular supraglacial micro-

catchment, applying a strategy akin to Munro (2011) and Willis et al. (2002), and aiming to further 

develop the work undertaken in these studies. Chapter 3 revealed no regional-scale links between the 

hypothesised control of SWR receipt and hydraulic conductivity in the weathering crust. Chapter 5 

revealed no links between hydraulic conductivity and cell concentration, but implied the presence of 

an efficient transport pathway, advecting planktonic weathering crust to streams. Therefore, this 

chapter aims to characterise links between energy balance, including sub-surface water and ice 

temperature, and weathering crust development over time, measured using the proxy of hydraulic 

conductivity, on a local scale, aiming to eliminate confounding variables such as unweathered ice crystal 

size. Density measurements are arguably a more applicable proxy measure of weathering crust 

development, as the process of near-surface weathering causes loss of ice mass without the loss of 

volume (section 2.7). However, undertaking density measurements of near-surface ice is a destructive 

process requiring the removal of a shallow core, precluding the repeat measurements to meet the other 

aims of this study. As such hydraulic conductivity, itself proportional to effective porosity which is 

empirically linked to density by Cooper et al. (2018), is used as a proxy measure for weathering crust 

development. To assess porosity, which is partially controlled by grain size in unconsolidated porous 

media (Schwartz and Zhang, 2004), ice crystal size measurements were attempted following 

completion of hydraulic conductivity measurements. It is hypothesised that hydraulic conductivity will 

increase with periods of high SWR receipt and reduce with periods of low SWR receipt when turbulent 

fluxes are more prominent. This is unlikely to present as a correlation on a simple scatter plot due to 

the hysteric nature of the relationship and relevance of preceding conditions, rather consideration of 

a time series is required (see Figure 2.4, p35 for a conceptual model of weathering crust development 

over time). 

A catchment-scale study is also well suited to test the assertion that weathering crust meltwaters 

are advected laterally to supraglacial streams, transporting planktonic cells efficiently through the 

surface. Examination of the surface and water table will enable the consideration of flow paths from-

a-point to the supraglacial stream network. Chapter 5 highlighted that planktonic weathering crust cells 
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are likely to be efficiently advected through the weathering crust once entrained within meltwater in 

the saturated layer, and as such the rate of transport can be described by the pore water velocity of the 

weathering crust. This study therefore is designed to couple cell concentrations with pore water 

velocities and transport pathways to establish residence time of planktonic cells within the saturated 

zone of the weathering crust. Calculation of pore water velocity requires knowledge of hydraulic 

conductivity, hydraulic gradient and effective porosity, which can be calculated using ice density. As 

ice density will not be measured directly for the reasons stated above, the modelling work of Schuster, 

(2001) will be used to calculate this variable. Concentration of cells bound to ice, mechanically or in 

biofilms, will not be considered. As for ice density, the sampling technique requires the removal of ice 

from the glacier surface, precluding repeat measurements and the assessment of the development of 

the system over time. 

6.1.1 A micro-catchment approach? 

Munro (2011) examined delays in supraglacial runoff from two microbasins of differing 

geometries on the Peyto Glacier (Canada), recording net radiation, wind speed, temperature, vapour 

pressure and supraglacial runoff on warm and sunny days. The study revealed a major difference in 

run-off time, a purposely delineated rhomboidal area demonstrated a delay time of 1 – 2 h, whilst in 

contrast a naturally delineated elongated area, aligned with microtopography, demonstrated delay time 

of 7.5 – 11.5 h. The hypothesised control upon drainage time was different flow connections in the 

weathering crust for the different shaped catchments, and the recommendation was made that the 

response time of the elongate catchment should be incorporated into hydrological glacier runoff 

models. A key point raised is that supraglacial microbasin work yields potentially useful results about 

the hydrological response of the ice surface to melt input and highlights the importance of measuring 

discharge at the stream outlet of the defined catchment, and to provide sufficient description of the 

weathering crust.   

(Willis et al. (2002) consider the effects of up-glacier retreat of the snowline on the spatial and 

temporal patterns of meltwater routing across a 0.11 km2 catchment on Haut Glacier d’Arolla 

(Switzerland) using a physically based model, considering catchment elevation, modelled melt rate and 

energy balance of radiative and turbulent fluxes. Melt was also directly measured using an ultrasonic 

depth gauge. Water was assumed to flow downslope to the catchment outlet, where discharge was 

measured using a Druck pressure transducer and a stage-discharge curve. These variables were assessed 
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over time with consideration of observing change associated with snowpack retreat, application of 

these techniques in the same fashion equally demonstrates the potential to examine weathering crust 

development. 

6.1.2 Weathering crust density modelling 

   Schuster, (2001) examines weathering crust processes on ablating glacier ice. Of interest in 

this study, is the modelled depth-density profile of a developing weathering crust, simulated using 

energy balance parameters. A column of ice with a 1 m2 surface area is divided into units of increasing 

thickness, such that each layer is twice as thick as the layer above it. As such, level one (L1) is 1 cm 

thick, level 2 (L2) is 2 cm thick (total depth 3 cm) and so on, with level 6 (L6) being 32 cm thick, a total 

column depth of 63 cm. It is assumed that beneath L6, a layer of ice of density 890 kg m-3 exists to 

infinite depth. The model uses five-minute energy inputs to determine melt and enable calculation of 

a depth-density profile. The required inputs include SWRin, net LWR, and turbulent fluxes to model 

melt at each layer, which are used to calculate the density of each layer allowing for consideration of 

density at the previous timestep. The work also presents example non-linear depth-density curves for 

a developing and degrading weathering crust, as described in section 2.7. 

6.2 Materials and methods 

Data collection was undertaken between the 1st and 25th July 2016 (DOY 183 – 207) at Vadrec 

del Forno, Valais, Switzerland (Figure 6.1; Table 6.1), located at 46.31 °N, 9.70 °E. The glacier has an 

area of 8.2 km2, and an elevational range of 2330 – 2850 m (Table 5.2). Detailed background regarding 

the geological setting and ice structure of the glacier can be seen in the work of (Jennings et al. (2014). 

All auger-hole sites are referred to as VFx herein, with x corresponding to the auger-hole number 

identified in Figure 6.1, whilst the stream gauging station is referred to as VDS.  A suite of metrics was 

recorded from a micro-catchment on the eastern side of the glacier relating to stream and weathering 

crust hydrology, samples for microbial analysis, meteorological data, orthoimagery, near-surface ice 

temperature, and ice crystal imagery. Two main sampling strategies were applied throughout the study 

period, both collecting hydrological data and microbiological samples:  

1. to examine spatial changes of these variables across the entire micro-catchment (DOY 

187, 188, 199, 200 and 202) (all VFRs) 

2. to examine temporal changes along a transect of VFR 1-4 (DOY 191 and 201). 
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Opportunistic sampling was applied on days with poor weather and logistical requirements 

that prevented a full day of fieldwork, to supplement the structured dataset. This includes data collected 

on DOY 198 (VFR 1, 2, 5 and 6) where slow recharge prevented more than two measurements being 

undertaken at each hole and samples collected at VFR14 (n = 1) and VFR22 (n = 2). 

 
Figure 6.1 Map showing the location of Vadrec del Forno within Switzerland, 

and location of study site on the glacier. The location of recharge holes, stream 

gauging point (S) and water table array (A) in the context of immediate streams 

and rills are shown. Further information is given about each auger-hole in Table 

6.1. 

 



6. Alpine Supraglacial Eco-Hydro 

121 

6.2.1 Meteorological conditions and ice temperature 

A HOBO automated weather station (AWS) was installed on the glacier surface, measuring air 

temperature (2 m above the surface), average wind speed and direction, wind gust speed, relative 

humidity and precipitation (via a tipping bucket) at 15-minute intervals throughout the study period. 

This record is, however, incomplete, with gaps in the dataset from 18:15 on DOY 193 to 9:45 on 

DOY 197, and 11:45 on DOY 204 to 9:30 on DOY 205. These breaks in the dataset are due to high 

Table 6.1 Auger-hole site information.  

Site 
Location 

(CH 1903) 

Elevation 

(m asl) 

Distance from 

stream (m) 

Surface 

slope (°) 
Notes 

VFS 
774230 E 

133302 N 
2556* - - Stream gauging site. 

VFR1 
774235 E 

133275 N 
2557.8 2.7 6.9  

VFR2 
774234 E 

133267N 
2558.4 5.9 4.7  

VFR3 
774231 E 

133260 N 
2558.8 11.7 5.6  

VFR4 
774232 E 

133254 N 
2559.2 6.6 5.0  

VFR5 
774237 E 

133267 N 
2557.7 3.1 5.6  

VFR6 
774241 E 

133259 N 
2558.0 3.2 4.1  

VFR7 
774245 E 

133251 N 
2558.6 2.7 4.6  

VFR8 
774247 E 

133247 N 
2559.4 4.0 6.4  

VFR9 
774230 E 

133261 N 
2558.8 1.7 7.6  

VFR14 
774178 E 

133303 N 
2555* - - Not in VDS catchment. 

VFR18 
774222 E 

133214 N 
2559.8 4.1 6.5 Coarse, clear ice in vicinity. 

VFR19 
774229 E 

133240 N 
2559.6 4.2 5.2 

Distributed surface debris in 

vicinity. 

VFR20 
774232 E 

133236 N 
2560.2 2.4 10.3  

VFR21 
774254 E 

133224 N 
2560.7 9.6 3.7  

VFR22 
774242 E 

133247 N 
2560.4 4.6 4.1  

VFR23 
774239 E 

133229 N 
2560.9 3.9 9.8  

VFR24 
774232 E 

133228 N 
2561.1 5.6 7.0  

n.b. VFR10-13 and 15-17 abandoned due to lack of recharge. 

Elevations are from the DEM (Figure 6.2) unless indicated as thus (*), where data is from a 

handheld GPS. 
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winds toppling the AWS and were identified in the record using periods of high windspeed which 

rapidly (i.e. within one measurement period) fell to 0 m s-1, coupled with anecdotal field observations.  

Maximum potential shortwave incident radiation (SWRin) was modelled as described by 

(Irvine-Fynn et al. (2014) using a cloud cover correction (see Greuell et al., 1997). Cloud cover was 

recorded at least thrice-daily during daylight hours, typically at 8:00, 12:00 and 16:00. Hourly averages 

of these data were used to model hourly melt rate using the model described by Brock and Arnold 

(2000), developed for Haut Glacier d’Arolla, also in the Swiss Alps and a similar size and geometry to 

Vadrec del Forno. For the melt model, albedo was set at a universal value of 0.29, typical of “slightly 

dirty ice” (Paterson, 1994). Roughness was set to the default value, 0.04 m, typical of an ablating alpine 

glacier surface. Proportional contribution to melt of SWR receipt at the surface and other fluxes (net 

LWR and the turbulent fluxes) were calculated from model output, as were cumulative SWR energy 

flux and cumulative melt throughout the study period. 

Surface ice temperature was recorded in proximity to VDS and VFA at nominal depths of 10, 

20, 30 and 40 cm using a Measurement Computing 5104 logger and TMC6-HD temperature sensors 

(calibrated by the manufacturer), logging at 10-second intervals. Probes were installed in 1 cm diameter 

holes drilled into the ice. Due to surface melting, temperature probes were periodically re-installed at 

depth between installation (DOY 198) and the end of the study period (DOY 207), often “melting 

out” onto the surface. 

6.2.2 Orthomosaic and DEM generation 

The orthomosaic was constructed using a DJI Phantom 3 quadcopter  to capture aerial imagery 

in August 2016, using the in-built camera at a flight altitude of 30 m. Images were recorded every 2 s 

at a 12-megapixel resolution with a 20 mm (35 mm equivalent) focal length and an aperture of f2.8 

Attempts to fly an alternate UAV, a 3DR X8 equipped with a Canon EOS M3 (24.2-megapixel, f3.5, 

18 mm/29 mm equivalent focal length), in July were unsuccessful due to a series of mechanical failures. 

Agisoft Photoscan was used to generate an Orthomosaic with a pixel size of 0.02 m, geo-located using 

a Leica dGPS and a series of ground control points. Image overlap was not adequate for the generation 

of a DEM using these data. Supraglacial channels were identified and mapped using ArcMap 10.5 at a 

1:100 scale. 
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A DEM (0.05 m pixel size) was generated 

in July 2017, using imagery collected by a fixed-

wing Skywalker X-8, equipped with a Sony A500 

20.1-megapixel resolution camera at a 16 mm focal 

length (24 mm equivalent). The DEM was 

constructed using structure-from-motion in 

Agisoft Photoscan, and initially georeferenced 

using Sentinel Imagery and feature-matching. To 

account for displacement of the DEM relative to 

the orthomosaic due to glacier flow, the 

geolocation of the DEM was adjusted to align with 

the orthomosaic collected 2016, using distinctive 

features thought to remain static on the glacier 

surface including large boulders (< 2 m) and 

distinctive stream features. The resultant DEM 

and stream network are shown in Figure 6.2. 

Attempts were made to collect data 

relating to ice crystal size by bulk-sampling of the 

weathering crust once the final bail-recharge 

experiment was complete. The adze of an ice axe 

was used to gently exhume intact crystals from the 

ice surface, which were then placed on a dark sheet 

for photographing using a Canon EOS 7Dmkii 

(20.2-megapixels, f5.6, 22 mm actual/35 mm 

effective focal length). Post-processing was 

undertaken using ImageJ via the “Analyze 

Particles” tool and a set scale established from 

including a ruler in the original photo. Final images 

had a resolution of ~3700 px m-1.  However, 

smaller ice crystals melted preferentially, resulting 

in data bias, and these data were not included in 

the final analyses. 

 
Figure 6.2 Digital elevation model (DEM) 

constructed for the VDS micro-catchment in July 

2017. Channels were mapped using the orthoimage 

generated in 2016; the VDS stream and its tributaries 

are mapped, as are the two adjacent major channels 

(OMC) and their corresponding tributaries. Note 

that some channel migration (< 5 m) is demonstrated 

between the mapped channels (August 2016) and 

implied channel locations from the DEM (July 2017). 
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6.2.3 Hydrological data collection 

For calculation of hydraulic conductivity, 36 cm deep auger-holes of 5 cm dimeter were drilled 

using an ice auger (Kovacs Enterprise, USA) and a Makita 18V Combi Drill. Data collection and 

processing followed the protocol outlined in Chapter 3 (see Stevens et al., 2018). Holes were reutilised 

throughout the study period and were re-drilled to a depth of 36 cm at the start of each day to minimise 

the effects of surface melting. Electrical conductivity (EC) and temperature of borehole waters were 

measured using a combined Reed SD-4307 probe at a depth representing a mid-point between the 

auger-hole base and water table, following microbial sample collection. 

Stream discharge was measured at VDS using the protocol described in Chapter 5 (section 

5.2.2). VDS was selected as a location into which water from the VFx sites was expected to drain into 

based on a field assessment.  EC and temperature were recorded at 2 second intervals between 9:30 

and 17:30 on the 6th July (DOY 188; note 2016 is a leap year) using a Reed SD-4307 logging 

conductivity meter (± 0.2 °C and 0.2 μS cm-1).  

To measure water table depths, an array of 10 modified piezometers (as described in Chapter 

3; Stevens et al., 2018) were installed in a 5 × 1 m grid adjacent to VDS (VFA; Figure 6.1).  Piezometers 

were modified to be powered by and output to the Campbell CR1000 used for logging at VDS. Voltage 

output was recorded every 10 minutes and subsequently converted to water table depth using a 

laboratory determined calibration curve. VDA probes were initially installed to a depth of 50 cm and 

were periodically reinstalled due to melt-out throughout the study period.  

6.2.4 Microbial sample collection and analysis 

Each hydraulic conductivity measurement was associated with a sample for microbial analysis. 

These samples were collected using a syringe and plastic tubing which were pre-contaminated by 

rinsing three times using recharge water before sample collection. Samples were collected from the 

meltwater collected in the recharge hole from a mid-point depth between the water table surface and 

auger-hole base. Periodic samples were collected directly from the stream gauging point (VDQ). 

Samples were stored in 15 mL Falcon tubes and fixed with Formaldehyde (2% w/v final) within eight 

hours of collection and stored in the dark and were frozen at – 80 °C upon return to the UK. Samples 

were defrosted gently at 4 °C, with the defrosting process finalised at room temperature whilst stored 
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in the dark throughout. Microbial cell concentrations and sizes examined using flow cytometry using 

the optimised protocol described in Chapter 4. 

6.2.5 Data processing 

6.2.5.1 Pore water velocities and water transport pathways 

Equation 6.1 (Schwartz and Zhang, 2004) was used to examine pore water velocity, v, to assess 

the transport rate of impurities in the weathering crust, assuming that impurities entrained within 

weathering crust meltwaters are advected. K is hydraulic conductivity, i hydraulic gradient, and ne 

effective porosity. 

v =
Ki

ne
     [Equation 6.1] 

Hydraulic gradient was calculated using the water table elevation above sea level, the length of 

the drainage pathway established via the DEM (measured to the nearest 0.1 m) and the elevation of 

the channel at the terminus of the drainage pathway. Drainage pathways were determined to be 

orthogonal to surface slope, terminating at their confluence with a mapped surface channel.   

Effective porosity (ne) was calculated using Equation 6.2 (after (Cooper et al., 2018)) using 

weathering crust ice densities, ρice. Ice density was not directly measured. As such, a weathering crust 

depth-density profile obtained for a weathering crust undergoing formation using figures available in 

the work of Schuster (2001). Density was calculated for saturated weathering crust ice for each auger 

hole. The level of the water table for each hydraulic conductivity measurement was used to determine 

the depth of the saturated zone from the surface, at depth d. The aquiclude was considered to be at 

63 cm depth after Schuster (2001). Bulk density for the weathering crust between d and 63 cm depth 

was calculated the depth-density profile of Schuster (2001). For example, for a water table 10 cm 

beneath the surface, the mean density of ice from 10 cm to 63 cm deep was determined, and this was 

subsequently to calculate effective porosity for each auger-hole measurement. 

ne = −0.97ρice + 0.89          [Equation 6.2] 

However, calculation of porosity involved a degree of assumption which cannot be quantified 

without further experimental work. This process only considers total primary weathering crust 
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porosity, which is defined by the ice matrix, and does not consider secondary porosity (in the form of 

fractures, regardless of formation mechanism, which could include cracking linked with thermal 

expansion and contraction (e.g. (Sanderson, 1978)), insolation driven pathway opening and, in the case 

of terrestrial systems, solution weathering and erosion) which has been observed in the weathering 

crust (Cook et al., 2015).   

6.2.5.2 Heat map creation 

Hydrological measurements and samples collected for spatial analysis were attributed a “time-

slice”, based on the time of day collected, to enable partial elimination of temporal variation. The time 

taken to collect measurements from 12 auger-holes took around three hours and could be repeated a 

maximum of three times daily. As such, three sessions are used: morning (AM; before 13:00), afternoon 

(PM; between 13:00 and 15:30) and evening (EVE; after 15:30). Heat maps of water table elevation, 

hydraulic conductivity, EC, weathering crust water temperature and cell concentration were created 

for DOY 187 (AM only), 188, 199, 200 and 202 using ArcMap 10.5 (ESRI). Failure of piezometers   

Water table depth from the ice surface, recorded via piezometer, was subtracted from the 

elevation of each auger-hole at the surface (Table 6.1) to generate a point-based weathering crust water 

table relative to sea level. These point data, along with the digitised stream network, were used generate 

a water table for the catchment via interpolation of point values from auger-holes using the 

hydrologically correct “topo-to-raster” tool, configured for spot data, included in the 3D Analyst 

package of ESRI ArcGIS 10.5.  

Inverse distance weighting (IDW), with streams and rills set as boundaries was used to 

interpolate weathering crust hydraulic conductivity, EC and temperature in space for each time-slice 

from point-data collected using recharge probes and the combined EC/Temperature meter.  A power 

of one was used for the IDW calculation, deemed most suited to interpolation of soil properties 

(Robinson and Metternicht, 2006). IDW was deemed to produce a superior output to kriging over 

decimetre scales for nutrient content in soils by Mueller et al. (2004) and hence was considered the 

most appropriate interpolation method. 
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6.3. Results 

6.3.1 Meteorological conditions and ice temperature 

Throughout the field campaign, prevailing meteorological conditions were as expected for a 

summer alpine period, with conditions generally clear and sunny with some development of afternoon 

cloud. Maximal daily temperatures were 10 – 15 °C, and daily minima 3 – 7 °C. However, this pattern 

was disrupted by the progression of a cold frontal system between DOY 194 and 197 which caused 

snowfall across the entire glacier surface to a depth of 15 cm from the evening of DOY 195 to midday 

on DOY 196. It should be noted that no AWS data was collected during this period. Ablation rates 

followed a typical diurnal pattern, with peak daily melt (10.2 mm we hr-1) occurring between 13:00 and 

16:00, depending on sky conditions. Lowest melt rates (< 1 mm we hr-1) are observed in the early 

morning, prior to sunrise, but do not reach zero due to turbulent fluxes. Meteorological data are 

summarised in Figure 6.3 (a-d). 

Near-surface ice temperature within the weathering crust was not successfully recorded. Probes 

were installed to depths of ≤ 50 cm between DOY 201 and 208 but were prone to melt out, and partial 

incursion of meltwater. Due to melt out, temperatures equal to, or exceeding air temperature were 

recorded and as such the data were deemed unreliable. 

6.3.2 Weathering crust and stream hydrology 

Hydraulic conductivity was successfully measured on 237 occasions at 15 auger-holes 

throughout the study period. On multiple occasions, recharge was insufficient to allow for the 

calculation of hydraulic conductivity. This occurred at VFR1-4 on DOY 197, VFR6 on DOY 198 at 

16:30, and VFR22 on DOY188 at 13:43 and 16:20. It is important to note that recharge was 

incalculable at these holes for differing reasons: at VFR6 the water table was too low (i.e. < 6cm from 

the hole base) to allow for recharge measurement given the limitations of the probes (Chapter 3). 

VFR22 did not receive any water flow during either attempt to measure recharge; it is important to 

consider the location of the site on a topographic high near two channels (< 2 m; Figure 6.1).  All 237 

hydraulic conductivity values are associated with microbial enumerations, and 232 are associated with 

electrical conductivity (EC) and auger-hole water temperature measurements. As per Chapter 5, no 

significant correlation is observed (i.e. p > 0.05) between cells and hydraulic conductivity (n = 237),  
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Figure 6.3 Time-series of a) modelled ablation rate and cumulative ablation, b) Hourly-averaged modelled SWR 

and cumulative energy receipt from SWR, c) proportional contribution to melt of SWR and all other energy 

fluxes; d) air temperature; e) auger-hole hydraulic conductivity for VFR 1-4; f) water table level at VFA and g) 

stream discharge at VDS. Trends are described in the main text. 
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permeability, EC, temperature (all n = 232). Furthermore, when considered on a per-hole basis, no 

significant correlations between microbial cell abundance and the hypothesised independent variables 

(hydraulic conductivity, permeability, EC and temperature) are apparent. No clear links are apparent 

between hydraulic conductivity, melt rate, the proportion of melt energy or stream discharge are 

observed in Figure 6.3, however low hydraulic conductivities on DOY 198 and 199 are associated with 

low air temperatures, including those which are < 0 °C overnight. 

As the snowfall event was associated with cloud cover and low temperatures, degradation of 

the weathering crust would be expected to occur, with associated reduction in hydraulic conductivity. 

Figure 6.3e indicates a reduction in hydraulic conductivity at VFR 1-4 following the snowfall event; it 

should be noted that measurements of hydraulic conductivity were attempted on DOY 197 but it was 

not possible to take measurements as the water level in the auger-holes did not reach the 6 cm 

minimum threshold within ≈ 5 hours. Hydraulic conductivity is statistically compared before and after 

the snowfall event using an independent t-test. Levene’s test for equality of variances demonstrated a 

statistically significant difference in variances between the before (n = 95) and after (n = 141) groups 

(p < 0.05). Hence, an unequal variances t-test was used, which showed that before the snowfall, 

hydraulic conductivity was statistically significantly lower (0.033 m d-1) than after the snowfall event 

(0.056 m d-1) (n = 236, adjusted df = 218, p < 0.05). Despite this broad trend, hydraulic conductivity 

on DOY 198 and 199, immediately following the snow is notably lower than on other days for VFR1-

4. 

A diurnal pattern is exhibited in the water table within the weathering crust at VFA10 (Figure 

6.3f), but variability is reduced from DOY 194 - 196, corresponding with the snowfall period. This 

pattern is less clear at VFA4. On days when a peak in water table occurs, the peak is observed between 

10:30 and 18:00, preceding peak melt on 9 out of 11 days by a mean of 119 minutes; and peak discharge 

by a mean of 164 minutes (n = 9), skewed by a value exceeding 7 h on DOY 188. On the two days 

where the water table peak follows peak melt and peak Q, it does so by a mid-point of 264 and 154 

minutes respectively (both n = 2). It should be noted that the second of these mid-points (the time 

difference between peak Q and the water table maxima) is comprised of two highly spread values, 20 

minutes and 288 minutes. In addition to the diurnal pattern, water table levels in the weathering crust 

at VFA4 and VFA10 exhibit a positive trend after DOY 196, indicating an upward movement of the 

water table. This trend is initiated following the snowfall event.  
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Stream discharge at VDS ranged from 0.0004 to 0.1098 m3 s-1 throughout the measurement 

period (Figure 6.3g). Peak discharge was observed between 11:30 and 17:40, a mean of 47 minutes 

after the peak melt rate (n = 12). As Figure 6.3g indicates, the highest discharge measured was on 

DOY 197, one day after cessation of snowfall. Unfortunately, meteorological data are lacking for this 

day due to AWS failure, but it should be noted that field observations the glacier surface was virtually 

clear of snow by the afternoon of DOY 197, and as such this high discharge can be linked with 

snowmelt. It should also be noted that discharge above the overnight baseline values was recorded 

during the snowfall event, implying the occurrence of melt processes. No correlation was observed 

between stream discharge and cell concentration (n = 53) 

Stream EC and temperature was recorded on DOY 188 between 9:28 and 17:33 at two second 

intervals (Figure 6.4). EC ranged from 0 to 1.2 μS cm-1, decreasing from 10:00 to 12:00, to > 0.6 μS cm-

1 and further reducing to a stable 0.3 μS cm-1 from 15:00 until the removal of the sensor. Temperature 

variation was minimal, between 0.1 and - 0.1 °C with the lowest temperatures observed between 11:45 

and 16:15. EC and temperature values from the weathering crust were also recorded and are compared 

with those in the stream. When considering EC, instrumental measurement uncertainties of ± 0.2 

μS cm-1 mean that it cannot be concluded with certainty that auger hole EC and stream EC is different 

for all holes excluding VFR8. EC was statistically significantly lower after the snowfall event 

(0.5 μS cm-1) (n = 231, adjusted df = 156, p < 0.05) higher (0.7 μS cm-1), as revealed by an unequal 

variances t-test. This test was selected as Levene’s test for equality of variances indicated a statistically 

significant difference in variances between the pre- (n = 95) and post- snowfall (n = 136) event groups 

(p < 0.05).  

Mean, minimum and maximum storage times of water in the weathering crust were calculated 

for VFR 1-9 and 18-20 (i.e. all holes with more than two measurements). It was assumed that water 

flowed downslope, orthogonal to contour lines (Figure 6.2) into VDS or one of its connecting rills. 

Mean velocity (n = 224) was 0.24 ± 0.49 m d-1, with a range of 0.01 – 3.35 m d-1. Mean effective 

porosity of the saturated zone of the weathering crust (estimated post hoc using modelled data from 

Schuster (2001) and Cooper et al. (2018) was 9.6 ± 0.6 %, equivalent to that of a sandstone (Freeze 

and Cherry, 1979). Mean transfer time of a parcel of water from an auger hole into a stream via the 

assumed flowpaths was 61.1 ± 225.6 days, but values were highly variable ranging from 0.5 to 2144.7 

days. Note that ± errors are given as ± 1 standard deviation, and despite implication of negative values 

these are clearly implausible.  
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6.3.3 Microbial concentration and size distribution 

Mean microbial abundance in the weathering crust was 1.5 ± 2.2 × 104 cells mL-1, ranging from 

1.2 × 103 to 2.2 × 105 cells mL-1, whilst mean cell concentration in the VDS channel was 

1.5 ± 2.1 × 104 cells mL-1, ranging from 8.6 × 102 to 2.2 × 105 cells mL-1 (Figure 5.1). Note that ± 

errors are given as 1 standard deviation and represent variability of cell concentrations rather than 

Figure 6.4 1-minute averages of a) EC and b) temperature at VDS and in the auger-holes on DOY 188. Auger 

holes on the east of VDS are indicated with a circle, and those on the west with a triangle. Instrumental uncertainty 

is ± 0.2 μS cm-1 and 0.1 °C for all measurements, error bars are not included for visual clarity. Therefore, it should 

be noted that the uncertainties associated with stream and EC measurements overlap for all holes aside from 

VFR8, for which uncertainties do not overlap with stream uncertainties for any of the three data points. For 

temperature, no uncertainty ranges for the stream and auger-holes overlap. 
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implying that a negative cell concentration is possible. As highlighted in Chapter 5, all samples meet 

the CC-APC criteria established in Chapter 4. To examine contrasts in microbial cell concentration 

due to the snowfall event, a t-test was used. Levene’s test for equality of variances did not demonstrate 

a statistically significant difference in variances between the pre- (n = 102) and post- 

snowfall (n = 149) event groups (p > 0.05).  The t-test showed that before the snowfall, cell 

concentrations were statistically significantly higher (2.0 ± 1.5 × 104 cells mL-1) than after the snowfall 

event (1.2 ± 2.12 × 104 cells mL-1) (n = 235, df = 249, p < 0.05). 

The modal cell size group for all samples was a diameter of 1 – 2 μm (Figure 6.5a and b). As 

in Chapter 5, no significant difference in size distribution was observed between the weathering crust 

and the stream. To further explore the effects of the snowfall event on hydraulic conductivity, cell size 

distribution before and after the event was contrasted in both the weathering crust and the stream. 

The hypothesis was that the degradation of the weathering crust, due to a drop in SWR receipt and 

refreezing of interstitial meltwater would reduce pore sizes and may prevent mobilisation of larger 

cells. However, no significant change in size distribution was observed as a result of the snowfall event. 

6.3.4 Spatial and temporal variation 

6.3.4.1 Diurnal-scale trends 

On DOY 191 and 201, a sampling strategy designed to examine temporal change across a 

transect was applied to auger-holes VFR1-4, which were examined at 13 and eight intervals 

 

Figure 6.5 Cell size distributions in a) the weathering crust and b) at VDS, highlighting change before and after 

the snowfall event. Error bars are ± 1 standard deviation. 
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respectively. These data are summarised in Figure 6.6. It is assumed that all sites drain into the VDS 

stream above the gauging site, and do not drain into each other, using the downslope flowline 

construction described above (see Figure 6.2). 

During DOY 191 and 201, all four auger-holes follow a similar pattern with regard in hydraulic 

conductivity, peaking in the afternoon between 14:00 and 16:00 (Figure 6.6). An equivalent pattern is 

observed in weathering crust permeability (Figure 6.7b). Notably, this pattern is not replicated in the 

discharge of the main channel. As per the spatial dataset, the location of each auger-hole (and hence 

its elevation) is the main factor in determination of relative water table with respect to all auger-holes. 

No clear trend is observed in EC. Considering changes in temperature, all four holes appear to respond 

in an identical fashion, with broadly similar temperatures which peak between 12:00 (noon) and 14:00. 

Microbial cell abundances do not exhibit any universal trend across the four auger-holes and channel 

on either of the temporal study days. On DOY 191, microbial cell abundances are of a similar 

magnitude at all sites. On DOY 201, VFR1 exhibits lower cell abundances than the other four sites. 

6.3.4.2 Spatial analyses 

Spatial variation of the water table (Figure 6.7), hydraulic conductivity (Figure 6.8), EC (Figure 

6.9), temperature and cell concentration were examined on DOY 187, 188, 199, 200 and 202. The 

position of the water table remained relatively constant throughout the study period, notably being 

primarily defined by the surface micro-topography of the glacier. Elevation differences between each 

auger-hole was in the order of metres, whilst water table depth within each hole varied on a scale of 

decimetres, hence micro-topography was the primary determinant of spatial variation in absolute water 

table height (above sea level). Water table elevation reduces from south-west to north-east, at a 

generalised dip direction of 343 °.A constant depth is presumed for porous weathering crust (Schuster, 

2001) crust (given equal melt across the 100 × 40 m sample area, which was equally unshaded), and as 

such can consider this water table surface as the hydraulic head surface and therefore flow direction 

of water within the weathering crust. Considering changes in time, which can be inferred from this 

data despite not being the focus of study design, an increase in water table elevation can be observed 

throughout all days with three time-slices (i.e. 188, 199, 200, 201) as demonstrated by the down-glacier 

shift of the red region containing the upper one-third of values.  

 The highest hydraulic conductivities were observed at VFR9 (0.3 – 0.68 m d-1) which is usually 

the site with the highest hydraulic conductivity (aside from DOY188 AM and DOY 200 AM). This  
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Figure 6.6 Hourly-scale fluctuation in water table depth, hydraulic conductivity, stream discharge, cell 

concentration, EC and auger-hole water temperature on DOY 191 and 201. 
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Figure 6.7 IDW interpolation of water table elevation in the weathering crust across the VFCH micro-catchment 

on DOY 187, 188, 199, 200 and 202.  
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Figure 6.8 IDW interpolation of hydraulic conductivity in the weathering crust across the VFCH micro-

catchment on DOY 187, 188, 199, 200 and 202. 
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Figure 6.9 IDW interpolation of EC in the weathering crust across the VFCH micro-catchment on DOY 187, 

188, 199, 200 and 202. 
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difference is increasingly exaggerated during the afternoon. At most sites during most time slices, 

hydraulic conductivity is commonly at the lower end of the observed range and increases from this are 

observed primarily on the western bank of the main channel.   

Weathering crust EC ranges from 0 – 3.1 μS cm-1 during the study period, with highest values 

observed on the eastern side of the main channel. When EC spikes are recorded (e.g. DOY 199 AM) 

they tend to persist and are observed, albeit in a weakened fashion, into the next time slice. Above 

average EC values are often observed at VFR 6 and 8, which do not appear to be hydrologically 

connected as indicated by the assumed flowpaths, orthogonal to the surface. No discernible spatial 

trends were observed for temperature or cell concentration of weathering crust meltwaters, which 

ranged from 0 – 1.8 °C. This highpoint was observed throughout the catchment during the study 

period.  

6.4. Interpretation and discussion 

6.4.1 Meteorological conditions, weathering crust formation and sub-

surface ice temperature 

Throughout the study period, meteorological conditions were typical of a European Alpine 

summer, with peak melting observed between 13:00 and 16:00, and falling overnight in parallel with a 

drop in solar radiation receipt. However, this “typical” weather pattern (e.g. Brock et al., 2010; Senese 

et al., 2012) was broken by a period of snowfall, covering the ablation area, enabling consideration of 

the effect of a summer snowfall event upon microbial transfer through the weathering crust. 

SWRin is proposed in the conceptual model (section 2.7) as the driving mechanism for the 

formation of the weathering crust (e.g. Müller and Keeler, 1969), providing a substantial (i.e. > 70 % 

of melt energy for European Alpine Glaciers) energy source to the glacier surface (Willis et al., 2002). 

Throughout the study period, SWRin provided 71.8 % of melt energy. However, a direct link between 

SWR receipt and weathering crust formation, measured using the proxy of hydraulic conductivity, is 

unclear (Figure 6.3 a-c, e). However, the role of subsurface SWRin
 penetration is well established (e.g. 

Irvine-Fynn and Edwards, 2014; Munro, 1990; Shumskii, 1964), as is its role in weathering crust 

formation (e.g. Müller and Keeler, 1969; Schuster, 2001). Therefore, it is proposed that the weathering 

crust at Vadrec del Forno has reached a quasi-steady state equilibrium (see Figure 2.4) throughout 



6. Alpine Supraglacial Eco-Hydro 

139 

DOY 183 (when the study began) to DOY 192, and from DOY 200 to DOY 203 (when the study 

ended). Considering the period DOY 182-192, at the start of this period the surface of the lower half 

of Vadrec del Forno had been snow-free for c. 1 month (personal communication from Fornohütte 

guardian) allowing for receipt of SWR, weathering the ice surface. Therefore, it is feasible that the 

weathering crust had reached a state of quasi-equilibrium by DOY 182 following the onset of the 

ablation season. Following the snowfall event on DOY 195/196, a marked reduction in hydraulic 

conductivity was observed in the VFR1-4 auger holes on DOY 197, 198 and 199 (Figure 6.3e), with 

hydraulic conductivities unmeasurable on DOY 197 due to a lack of auger-hole recharge. During this 

period, clear skies and low air temperatures (Figure 6.3d) resulted in almost 100 % of melt energy being 

provided by SWR. Following this period, hydraulic conductivities returned to their pre-snowfall levels, 

hence this interval is interpreted as a time of weathering crust formation, driven by SWR receipt. The 

implication of this is that development of the weathering crust on an ablating ice surface is rapid, 

occurring over timescale in the order of several days.  

The use of the hydraulic conductivity measurements presented herein do however not provide 

an entire overview of weathering crust development, as they only relate to the saturated zone of the 

weathering crust. On DOYs 197 to 200, this was ≥ 15 cm below the ice surface. Arguably, the 

unsaturated zone of the weathering crust, closer to the surface, is a critical element to consider in an 

exploration of formation processes of the weathering crust, as density change in this area is greater 

than at depth in the saturated zone (see Figure 2.3). Whilst the data presented here allow for the 

implication of SWR driving weathering crust formation in ≤ 5 days, future work should directly 

measure ice density-depth profiles during weathering crust formation to better constrain this 

mechanism. 

Due to frequent melt out of probes, sub-surface ice temperature was not reliably measured. If 

future work aims to elucidate a depth-temperature relationship within the weathering crust, 

temperature probes should be installed prior to the melt season and frozen within near surface ice. 

However, surface ablation will still result in probes melting out of the surface, at which point 

measurement should be ceased rather than attempting to reinstall the probes as this will generate 

flawed data as observed herein. To monitor the rate of melt out and hence probe depth within the 

near surface, surface lowering should be recorded, ideally using an ultrasonic depth gauge to provide 

a complete record (e.g. Willis et al., 2002).   
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6.4.2 Stream and weathering crust hydrology 

This chapter reports hydraulic conductivity at 237 sites within the micro-catchment. 

Additionally, “unsuccessful” attempts at measuring hydraulic conductivity occurred at VFR 1-4 on 

DOY 197 VFR6 on DOY 198 and VFR22 on DOY 188. On DOY 198, all recharge experiments 

undertaken took over 3 h to complete and mean hydraulic conductivity for all sites on this day was 

less than half the mean value observed (0.020 m d-1 contrasted with 0.047 m d -1). For VFR22, no water 

at all was observed in the auger-hole on either attempted measurement, despite average recharge 

throughout the day at all other sites recorded being broadly comparable with the average for the entire 

study (0.046 m d-1). VFR22 was located on a high point near (< 2 m) to two rills, implying that water 

did not drain through the hole and/or water table level was deeper than 36 cm from the ice surface. It 

should be noted that mean hydraulic conductivity is a quarter of the northern hemisphere average 

observed in Chapter 3 (0.185 m d-1) but compares well with the other temperate European alpine 

glaciers (see Figure 3.7).  

Water table elevation was continuously recorded at auger-hole throughout the study period at 

VFA10, with additional data recorded for four days at a second auger-hole during DOY 198 – DOY 

202 at VFA4. Water table height at these sites varies with melt, with a reduction in kurtosis during the 

snowfall period. Unfortunately, there is a paucity of meteorological data during this period, however 

this reduction in water table variation implies a reduction in melt, as would be expected.  After the 

snowfall event, the water table increases linearly (excluding diurnal variation). Such a change in the 

water table can be attributed to two potential factors, both linked with an increase in water storage 

within the weathering crust: a) an increase in water input to the aquifer, and/or b) a decrease in 

hydraulic conductivity, reducing the drainage of water. Paradoxically, there is no evidence for a 

decrease in hydraulic conductivity, alternatively the opposite situation prevails, and hydraulic 

conductivity demonstrates a statistically significant increase after the snowfall event. However, as 

demonstrated in (Figure 6.3e) and by the unsuccessful recharge experiments at VFR 1-4 on DOY 197 

and VFR6 on DOY 198, hydraulic conductivity was initially very low following the snowfall event 

before establishment of higher hydraulic conductivities leading to this statistically significant 

difference. 

An increase in water input to the weathering crust, associated with the melting of surface snow, 

would appear to present a key element in the increase in the water table height preceding the snowfall 
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event. Modelled melt does not consider the presence of the snow layer, which melted over a period of 

3 days adding water into the supraglacial hydrological system. The increase in water input (and transfer) 

is evidenced by the increase in stream discharge in the main channel from a peak of ~0.06 m s-1 to > 

0.10 m3 s-1 in the days following the snowfall event (Figure 6.3g). This water input must exceed the 

maximal output potential of the weathering crust, causing the water table to rise in an identical fashion 

to a storm event in a terrestrial environment (e.g. Lu and Godt, 2013). 

Mean pore water velocity in the weathering crust was 0.24 ± 0.49 m d-1, with a range of 0.01 – 

3.35 m d-1. This aligns with the lower end estimates of 0.052 to 60.5 m d-1 previously established at 

Medenhall Glacier (AK, USA) (Wakahama, 1978), but notably is slower. When coupled with the 

assumed drainage pathways derived from surface slope, mean transfer time of a parcel of water from 

an auger hole into a stream via the assumed flowpaths was 61.1 ± 225.6 days, but values were highly 

variable ranging from 0.5 to 2144.7, implying multiday storage of water within the weathering crust. 

Clearly, transport times in the order of thousands of days are unfeasible due to the period of the 

ablation season (typically 3 months, or ≈ 100 days for European Alpine glaciers; (e.g. Sicart et al., 

2008), which highlights the need to further examine the fate of particles subject to advective transport 

in such meltwaters.  

6.4.3 Hydraulic connectivity of the weathering crust and supraglacial 

streams 

Mean transfer time of a parcel of water from an auger hole into a stream via the assumed 

flowpaths was 61.1 ± 225.6 days, but values were highly variable ranging from 0.5 to 2144.7 days. 

These values imply that during the study period (26 days), water measured in each auger hole is not 

transported to the VDS stream in all cases. This value is double the minimum storage time of 34 hours 

suggested in Chapter 3 (Stevens et al., 2018), based upon stream spacing in the order of ≤ 101 m. 

However, these values are highly variable, and paradoxically other evidence suggests a link between 

the waters sampled in auger holes and the stream. 

The EC values recorded on DOY 188 (Figure 6.4a) indicate that, once instrumental uncertainty 

is considered, a difference in EC cannot be distinguished in the auger holes and the VDS stream, aside 

from for VFR8. This implies that water in the VDS channel has equivalent ionic concentrations to the 

water in the weathering crust, which coupled with the lack of other water sources implies that stream 
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water originates from the weathering crust, validating the assumption that water from auger holes 

VFR1-7, 18-21, 23 and 24 does flow into the VDS channel . However, this does not allow for 

implication of drainage time. The lack of spatial variation in EC (Figure 6.9) enables consideration of 

displacement flow, commonly observed in terrestrial environments (e.g. Lu and Godt, 2013). That is, 

the addition of water (via melt) may drive the transfer of water stored in the weathering crust further 

along the flowpath between a point and the stream, i.e. water added to the weathering crust is not 

immediately discharged from it, rather it replaces water which is simultaneously discharged. Given that 

EC shows little spatial variation, “old” waters discharged into streams can be expected to have ECs 

within the same uncertainty bounds as that observed in the auger holes. The close alignment of 

planktonic cell concentrations and size distributions in the stream and the weathering crust, and lack 

of spatial variation across the catchment, is further indicative of the same process.  

Further evidence for displacement flow is provided by the delay of 47 minutes which was 

observed between peak Q and peak melt. This value compares favourably with the 1 – 2 h delay 

observed on the Peyto Glacier (Canada; (Munro, 2011)), and ≤ 1 hr response observed at Haut Glacier 

d’Arolla (Willis et al., 2002). When coupled with the multiday estimates of the transfer of weathering 

crust water to the stream network, it is clear that 47 minutes does not provide ample time for most at-

a-point melt to reach the supraglacial stream network. As such, the implication is that “old” water 

stored within the weathering crust is responsible for the response of the stream to melting. Therefore, 

this 47-minute delay is interpreted as the time required for the weathering crust system to respond to 

meltwater addition. Considering the conceptual model (section 2.7), to provoke a response in the water 

transport system of the weathering crust, meltwater must infiltrate the unsaturated zone to reach the 

water table. This will then cause the water table to rise with an associated increase in hydraulic 

conductivity, driving interstitial water flow along the flowpath from a point (i.e. an auger hole) to a 

stream ((Stevens et al., 2018); Chapter 3). For a water table 10 cm below the surface, water velocity 

through the unsaturated zone is 12.8 cm hr-1, or 5.3 × 10-3 m d-1, lower than pore water velocities in 

the saturated zone of the weathering crust. This would be expected, supporting the validity of the 

above conclusions, as unsaturated hydraulic conductivities (and therefore pore water velocities) are 

lower than those in the saturated zone in terrestrial systems (see (Schwartz and Zhang, 2004), section 

2.4). 

Water temperatures within the weathering crust demonstrate no patterns in space or time and 

show no correlation with stream water temperatures (Figure 6.4b). There are no patterns observed in 
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space indicating that transfer of heat through the weathering crust does not occur due to the movement 

of plumes of warm water, and rather water stored within the weathering crust is heated and cooled by 

atmospheric changes with all auger-holes demonstrating equivalent temperature trends (Figure 6.4b 

and Figure 6.7). Notably, on DOY 188, water temperature within the weathering crust (< 1 °C) is 

substantially higher than in the main channel which never exceeds 0.1 °C (Figure 6.4b). The proposed 

mechanism for this is a difference in water velocity; within the weathering crust velocities are low 

(0.24 ± 0.49 m d-1) in contrast to supraglacial streams with velocities in the order of 10-1 m s-1 (e.g. 

Nienow et al., 1996). This relatively higher velocity of turbulent stream water results in conductive 

energy loss with the channel walls, evidenced by thermal incision (e.g. Karlstrom et al., 2013; Karlstrom 

and Yang, 2016). In contrast, the slow flow rates within the weathering crust mean that water is almost 

resident in-situ, with energy provided from incoming radiative and turbulent fluxes, and lost via 

outgoing longwave and turbulent fluxes, depending on surface meteorological conditions.  

The proposed water storage within the weathering crust presents a habitat for supraglacial 

microbes, with storage times providing a suitable residence duration for replication. Doubling times 

range from < 1 to 5 days in water on Alpine glacier surfaces (median 1.8 days) (Anesio et al., 2010), 

indicating that it could be expected for microbial abundances in the weathering crust of Vadrec del 

Forno to increase when advected through the weathering crust. Paradoxically, this contrasts with 

observations, with in-stream and weathering crust abundances being equal and spatial variation in cell 

concentration being non-existent. Therefore, this indicates the presence of an alternative limiting factor 

preventing microbial replication in the weathering crust; low EC values observed indicate a lack of 

ionic solutes, which includes key biological nutrients such as phosphate, potassium, magnesium and 

calcium. Alternatively, viral control has been observed in Arctic glaciers (Rassner et al., 2016) and may 

represent a biotic control upon weathering crust cell concentrations. It is also possible that planktonic 

weathering crust cells are dead, and therefore unable to replicate. To establish the occurrence of these 

process, further examination of specific nutrient concentrations, bacteriophage viral loads and the 

status of planktonic cells within the weathering crust is required. 

6.4.4 Other spatial and temporal trends 

Hydraulic conductivity is generally highest at VFR9. Assuming equal SWRin across the 

catchment (given minimal change in decimetre-scale slope, equal shading and similar debris cover), 

relatively increased pore size and density because of differential melt can be excluded as a mechanism 
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for this. Excessive water table elevation, also linked with increased hydraulic conductivity (Stevens et 

al., 2018); Chapter 3) is not observed, the water table relative to the surface at this site is equivalent to 

the mean value for the catchment. Alternatively, ice structure is deemed responsible for this spatial 

variation. Attempts were made to empirically measure ice crystal size with the aim of using this data to 

infer pore sizes, but the method applied was unsuccessful preventing the production of experimental 

data. However, observation of the ice structure in the field indicated that the ice at this location 

consisted of coarser crystals (see Jennings et al., 2014) than the other sites, which were poorly 

interlocking, and it is to this variation in ice-structure that above-average K values are attributed to, 

highlighting the importance of local-scale ice structure on hydraulic conductivity of the weathering 

crust. Water transfer through VFR9 is an order of magnitude greater than the catchment-wide average, 

which indicates that small areas of high hydraulic conductivity may represent a vital contribution the 

transfer of water through the weathering crust. 

6.5. Conclusions 

This chapter presents the weathering crust hydrology and microbial concentrations of a 

supraglacial Alpine micro-catchment on Vadrec del Forno, Switzerland. Evidence demonstrates that 

weathering crust development to a quasi-equilibrium state occurs within 5 days, measured by the proxy 

of hydraulic conductivity in the saturated zone. However, this study does not examine the development 

of the unsaturated zone, where most mass is lost, and density reductions are greatest. Future study 

needs to consider the development of the unsaturated zone following a “resetting” event, with the use 

of coupled depth-density measurements and meteorological data. 

Hydraulic connectivity of the weathering crust and channelised drainage system are evidenced, 

with support for a mechanism of displacement flow, where meltwater introduced to the weathering 

crust displaces stored water which is discharged to the channelised stream network. A 47-minute delay 

between peak melt and peak stream discharge is inferred as the time taken for meltwater to infiltrate 

through the unsaturated zone of the weathering crust before reaching the saturated zone and driving 

displacement flow. 

Mean water storage times in the weathering crust of 61.1 ± 225.6 days are reported but values 

were highly variable ranging from 0.5 to 2144.7 days, implying the potential for multi-season water 

storage in the weathering crust, with interstitial water refreezing during the accumulation season. This 

storage period provides ample time for planktonic cells to replicate, however observations do not 
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provide evidence of this occurring; it is unclear whether planktonic cells are nutrient starved, 

preventing replication, subject to bacteriophage control, or simply dead. Future work should look to 

establish the controls upon cell concentration within the weathering crust and apply multi-season tracer 

studies to better examine the storage and transport of cells, particulate impurities and solutes through 

the weathering crust. 
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7. Synopsis, Limitations and Recommendations 

for Future Study  

 

This thesis develops hydrological and microbiological methods and provides data from 

eleven sites across the northern hemisphere to examine the eco-hydrology of glacier surfaces; 

predominantly water flow and cell transport through the near-surface weathering crust. Hydraulic 

conductivity values, pore water velocities are measured and storage periods of water implied in this 

hitherto unstudied porous medium, with consideration given to the transport, storage and export 

of cells from the surface. However, many questions remain unanswered, presenting opportunities 

for future research. 

7.1 Review of study objectives 

As outlined in section 2.7, the research gaps investigated by this study were as follows: 

1. Whilst there are estimates of weathering crust hydraulic conductivities, little is known 

regarding the controls upon this beyond the theorised principles of radiation receipt as a 

driver for intercrystalline melt, density reduction and an associated increase in porosity and 

hydraulic conductivity. Furthermore, investigation needs to be undertaken to determine if 

the use of Darcy’s Law is the most appropriate technique in which to examine this layer. 

2. It is hypothesised and seems reasonable that the hydraulic conductivity of the weathering 

crust is highly variable in both time and space. However, no studies have yet aimed to 

characterise the spatio-temporal variability of this layer. 

3. Transport of cells, particulate impurities, and solutes through the weathering crust from 

allo- and autochthonous sources remains poorly understood. Within the context of global 

climatic change and associated predicted melt rate increases of global glaciers, many 

contaminants archived within glacial ice are expected to “melt out” and become mobile. 

Understanding the transport mechanisms of these impurities is critical to ascertain their 

potential influence upon a) glacial biogeochemical cycles and microbial ecology and b) 

downstream interactions with proglacial and oceanic environments.  
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7.2 Objectives 1 and 2: Quantification of and controls upon 

hydraulic conductivity 

This thesis has developed and tested a simple electronic logging piezometer for application 

in the supraglacial environment. The limited power requirements, low cost and robust design and 

demonstrate the potential for application in other remote environments in which high-resolution, 

repeatable water monitoring is required. However, the probe and methodology described herein 

(see Chapter 3 for full details) are only suited to the measurement of hydraulic conductivity in the 

saturated zone of porous media, and this limitation prevents the exploration of hydraulic 

conductivity and water transfer through the vadose zone of such media. Furthermore, the method 

is reliant on the assumption that flow is not captured by efficient pathways, such as fractures, and 

as presented is not able to examine heterogeneities in hydraulic conductivity across a depth profile. 

As such, future studies aiming to examine weathering crust development and controls upon it 

should look to directly measure mass lost in the near surface through density measurements paired 

with a full suite of meteorological data.  

 Data collected from a spatially extensive suite of field sites allows examination of 

weathering crust hydraulic conductivity, and this thesis quantifies a mean hydraulic conductivity 

for the weathering crust of 0.122 m d-1 across eleven northern hemisphere glaciers from 517 auger 

holes. Note that this figure differs from the one presented in Chapter 3, incorporating the 237 

measurements collected as Vadrec del Forno in 2016. This is an equivalent value to sandstone and 

firn, and as such the weathering crust can be considered a poor aquifer and demonstrates the 

potential of the weathering crust to modulate supra-, en-, sub- and proglacial stream discharge. 

The conceptual model (section 2.7) outlined the potential of SWR receipt as a fundamental 

control on weathering crust hydraulic conductivity, via the increase of interstitial pore size resulting 

from subsurface melt on ice crystal boundaries. However, no evidence is produced by this thesis 

to support this hypothesis; Chapter 3 indicated no correlation between SWR receipt and hydraulic 

conductivity following periods of energy balance dominated by turbulent fluxes or sub-zero air 

temperatures. One reason for this is that such events described in Chapter 3 may not have been of 

a suitable magnitude to fully “reset” the weathering crust, those attributed to resetting were limited 

to a period of hours (as opposed to days) where turbulent fluxes dominated the energy balance. 

Scenarios where air temperature was below 0 °C may not have acted to reset the weathering crust 

at all, and concurrent SWR receipt and the internal ice greenhouse effect (Hoffman et al., 2014) 

could have prevented refreezing at depth. In Chapter 6, a 2.5-day period of cold, cloudy weather 
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and snowfall demonstrates evidence of weathering crust reset, both by hydraulic conductivity 

values and observation of removal of weathered ice from the glacier surface (see Figure 2.1 for 

exemplar ice surfaces). In the proceeding days, energy input to the surface was almost entirely in 

the form of SWR an increase in hydraulic conductivity of auger holes was observed, with hydraulic 

conductivities returning to their pre-reset values within 5 days. As such, this is considered to 

represent a return to a quasi-equilibrium state (see Figures 2.2 and 2.4). However, due to the 

piezometer design, it is important to note that this only shows consideration of the saturated zone, 

and as such a study considering density change as a function of meteorological variability may 

demonstrate an alternative return period depending on processes in the unsaturated zone in which 

mass losses and density reduction via weathering is greater. 

The clearest control on hydraulic conductivity of the weathering crust was water table, as 

exemplified in Chapter 3. As the water table rises (recharge from melt exceeds discharge to 

streams), the saturated zone is extended upwards to incorporate ice nearer the surface, which is of 

a lower density and therefore has greater pore space and is less resistant to water flow. 

However, despite this analysis, it is clear that the precise nature of the controls that drive 

the hydrological characteristics of the weathering crust are clearly complex and multi-faceted. This 

study shows little to no consideration of ice structure, which may act as an important precondition 

to weathering crust development and hence hydraulic conductivity. Therefore, investigation of the 

role of hyper-local ice structure and crystallography upon near surface ice hydraulics likely 

represents a fruitful avenue for further investigation. 

7.3: Objective 3: Enumeration and transport of cells within 

the weathering crust 

Chapter 4 presents a protocol suited for application to the collection and enumeration of 

cells within weathering crust meltwater and supraglacial streams, with potential to expand to 

analysis of low-sediment proglacial systems. A key determinant of the accuracy of FCM for 

enumeration of these samples is the abiotic particulate concentration, and Chapter 4 indicates that 

this protocol is suitable for samples with a) abiotic particle concentration ≤ 10-2 g L-1, regardless of 

cell concentration (providing the cell concentration is above the detection limit of the instrument 

used) or b) the ratio of cells to abiotic particles (CC-APC) is > 5 × 105 cells g∙abioticparticles-1. 

Below this threshold, cell numbers are typically overestimated. 
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This method is applied to 763 samples from 11 glaciers across the northern hemisphere, 

revealing mean planktonic cell concentrations of 2.2 × 104 ± 5.5 × 104 cells mL-1 with a modal size 

of 1 – 2 µm. Planktonic cell concentrations vary on a glacier scale, with the highest concentrations 

being observed in Greenland, and the lowest in the European Alps and Scandinavia. 

Coupled with proglacial discharge modelling, these planktonic cell concentrations enable a 

conservative estimation of carbon (in the form of POC), nitrogen and phosphorus export from 

the supraglacial environment, albeit with numerous limitations, of 1.1 × 109 kg C a-1 (1.1 Tg C a-1), 

nitrogen 2.3 × 108 kg N a-1 and phosphorus 2.3 × 107 kg P a-1, 1.7 times lower than existing 

estimates, but equivalent to the annual mobilisation of ≈ 0.08 % of carbon stored in the aquatic 

biosphere. Future evaluation of these fluxes should look to consider cells bound to weathering 

crust ice crystals, which may be liberated from glacier surfaces during non-refreezing weathering 

crust degradation events and subsequently contribute to downstream nutrient fluxes. The 

morphologies of exported cells should also be considered, which is a fundamental assumption 

made in these calculations. 

The drivers behind this difference in cell concentrations remains unclear; it is apparent that 

weathering crust hydraulics measured herein are not a deterministic factor in the cell concentrations 

found within the weathering crust. It is notable that the highest microbial cell concentration 

observed in Greenland were observed near to the so-called “dark zone” (Tedstone et al., 2017), 

which plays host to photosynthetic, pigmented algae, in addition to dust and black carbon (Ryan 

et al., 2018). This area may act as a direct supply of planktonic cells and nutrients to the weathering 

crust and highlights that future studies should consider factors such as inoculation rates and 

nutrient concentrations as drivers of glacial scale variability of microbial concentrations.  

No evidence is presented that the weathering crust acts as a mechanical filter, darkening 

glacier surfaces. Equal concentrations of cells are observed in streams and the weathering crust, 

albeit within large ranges, and cells (and inorganic particulates) in excess of 15 µm diameter are 

mobilised within the weathered near surface of ablating ice masses. Under this model, surface 

darkening of glaciers can be attributed to growth of cellular communities which are not mobilised 

in weathering crust waters, such as those bound to ice-crystals, throughout the ablation season.  

Hydraulic conductivity values presented in Chapter 3 indicate that the weathering crust is 

a hydrologically poor, impervious aquifer that can delay water transfer to the supraglacial stream 

network acting as a transient, multi-day storage reservoir within this system. Further evidence is 

indicated for this in Chapter 6, which reports average, highly variable, water storage times in the 
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weathering crust of 61.1 ± 225.6 days, transferring meltwater from the point of melt to supraglacial 

streams via displacement flow. This storage period implies the potential for both multi-day and 

multi-season water storage in the weathering crust, with interstitial waters potentially refreezing 

during the accumulation season. This role as a regulator of meltwater egress has the potential to 

impact upon supraglacial sediment, impurity and biological budgets and associated basin-scale 

exports at a range of spatial and temporal scales. This storage period provides ample time for 

planktonic cells to replicate, however observations do not provide evidence of this occurring; it is 

unclear whether planktonic cells are nutrient starved, preventing replication, subject to 

bacteriophage control, or simply dead. 

Future work should look to establish the controls upon cell concentration within the 

weathering crust and apply multi-season tracer studies to better examine the storage and transport 

of cells, particulate impurities and solutes through the weathering crust. Live-dead staining 

protocols many reveal reasons for the apparent lack of replication of planktonic cells within the 

weathering crust. Consideration of biotic controls such as viral control, common in Arctic 

environments (Säwstrom et al., 2007a, 2007b) should be incorporated into such a study. Further 

investigation involving the application of conservative particulate fluorescence tagged microbial 

cells to the weathering crust in an intensive, catchment-scale study across multiple melt seasons 

may further reveal transport mechanisms, pathways and controls of cells, particulate impurities and 

solutes though the glacier near-surface. 

7.4 Summary 

This thesis advances techniques for the exploration of weathering crust eco-hydrology. It 

develops a novel logging piezometer which is used to calculate mean weathering crust hydraulic 

conductivity of 0.122 m d-1, equivalent to sandstone. Flow cytometry is presented as a fast, reliable 

and accurate tool for the quantification of supraglacial microbial cells, and herein is recommended 

as the “gold standard” for cell counting in supraglacial environments. These techniques were 

applied to characterise the eco-hydrology of the weathering crust, a hydrologically poor aquifer, 

which stores water at the surface for tens of days providing an ideal medium for biogeochemical 

cycling and replication for the ≈ 104 planktonic cells mL-1 that are transported through it by 

advection. However, this study provides no evidence of replication or biogeochemical cycling being 

carried out by these microbes. This active environment contributes 1.1 Tg of cellular carbon per 

year to downstream freshwater and marine environments. Given changing global climate and its 

impact upon glaciers (IPCC, 2013), controls upon the export of these nutrients from glacier 
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surfaces merit extensive further study. Despite retreating glacier termini, ablation areas are 

increasing in size enhancing the importance of the role of the eco-hydrology of glacier surfaces. 
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Appendix 1: Supplementary Material  

This appendix present eight exemplar recharge curves, selected at random, of hydraulic 

conductivity. Note that because of this selection method, not all sites are represented.  
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Appendix 2: Microbial Abundance in Surface Ice 

on the Greenland Ice Sheet  

The following manuscript was published in Frontiers in Earth Science in 2015. It represents a 

pre-cursor to Chapter 3, evaluating cell enumeration techniques and examining microbe concentrations 

in the near surface. 
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Microbial abundance in surface ice
on the Greenland Ice Sheet
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Ian T. Stevens 4, Jarishma K. Gokul 4, Morten Schostag 2, Jakub D. Zarsky 3, 5,

Arwyn Edwards 4, Tristram D. L. Irvine-Fynn 4 and Carsten S. Jacobsen 1, 2, 6
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Copenhagen, Denmark, 3Department of Ecology, Charles University in Prague, Prague, Czech Republic, 4Centre for

Glaciology, Aberystwyth University, Aberystwyth, UK, 5Centre for Polar Ecology, University of South Bohemia, České

Budějovice, Czech Republic, 6Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen,

Denmark

Measuring microbial abundance in glacier ice and identifying its controls is essential

for a better understanding and quantification of biogeochemical processes in glacial

ecosystems. However, cell enumeration of glacier ice samples is challenging due to

typically low cell numbers and the presence of interfering mineral particles. We quantified

for the first time the abundance of microbial cells in surface ice from geographically

distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods:

epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase

chain reaction (qPCR). In addition, we reviewed published data on microbial abundance

in glacier ice and tested the three methods on artificial ice samples of realistic cell

(102–107 cells ml−1) and mineral particle (0.1–100mg ml−1) concentrations, simulating

a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden

basal ice. We then used multivariate statistical analysis to identify factors responsible

for the variation in microbial abundance on the ice sheet. EFM gave the most accurate

and reproducible results of the tested methodologies, and was therefore selected as

the most suitable technique for cell enumeration of ice containing dust. Cell numbers in

surface ice samples, determined by EFM, ranged from ∼ 2 × 103 to ∼ 2 × 106 cells

ml−1 while dust concentrations ranged from 0.01 to 2mg ml−1. The lowest abundances

were found in ice sampled from the accumulation area of the ice sheet and in samples

affected by fresh snow; these samples may be considered as a reference point of the

cell abundance of precipitants that are deposited on the ice sheet surface. Dust content

was the most significant variable to explain the variation in the abundance data, which

suggests a direct association between deposited dust particles and cells and/or by their

provision of limited nutrients to microbial communities on the GrIS.

Keywords: glacier ice, microbial abundance, Greenland Ice Sheet, epifluorescence microscopy, flow cytometry,

quantitative PCR, multivariate analysis

Introduction

Glaciers and ice sheets cover 10% of Earth’s land area and contain distinct microbe-dominated
ecosystems that are highly sensitive to climate warming (see Hodson et al., 2008; Anesio and
Laybourn-Parry, 2012, for reviews). Microbes in glacial ecosystems play important roles in local
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and regional biogeochemical cycling processes (e.g., Foreman
et al., 2007; Hodson et al., 2007; Stibal et al., 2008a; Anesio
et al., 2010; Telling et al., 2012) and may contribute to glacier
ice melting (Takeuchi et al., 2001; Yallop et al., 2012). Measur-
ing microbial abundance in glacier ice and researching its spa-
tiotemporal variability and its controls is necessary to estimate
microbial growth and activity, as well as to estimate carbon stocks
and flows in glacial ecosystems, and future extrapolations of
these measurements are essential for the prediction of microbial
responses to changes in climate and anthropogenic influences in
the cryosphere (Stibal et al., 2012a).

Our knowledge of microbial abundance in glacier ecosystems
is, however, sketchy in comparison with other ecosystems (Whit-
man et al., 1998), since it is based on a low number of samples
from accessible glacier sites. As a result, our understanding of
the factors controlling microbial abundance in the ice is lim-
ited and current large-scale estimates of microbial biomass in
glacier ice are empirical and span many orders of magnitude.
For example, a recent study offered a first-order estimate of
between 1025 and 1029 microbial cells entombed in glacier ice
world-wide, and emphasized that elevated biomass is associated
with glacier surfaces and beds (Irvine-Fynn and Edwards, 2014).
Moreover, glacier ice tends to have a low microbial abundance,
and the microbial cells are typically mixed with or attached to
mineral particles. This poses a challenge for the cell enumeration
of most glacier samples, including cryoconite (surface debris),
which is a conglomerate of mineral particles, microbial cells and
organic matter (Hodson et al., 2010b; Langford et al., 2010), and
sediment-laden basal ice (Foght et al., 2004; Yde et al., 2010;
Montross et al., 2014).

Traditionally, epifluorescence microscopy (EFM) has been
used to enumerate microbial cells in aqueous and sediment sam-
ples, including glacier ice, and sediments (Karl et al., 1999; Priscu
et al., 1999; Abyzov et al., 2001; Säwström et al., 2002). This
method is labor-intensive and slow compared to flow cytometry
(FCM), which has previously been used for glacier ice microbial
abundance analysis (Karl et al., 1999; Yao et al., 2008;Miteva et al.,
2009; An et al., 2010; Irvine-Fynn et al., 2012). However, FCM is
sensitive to higher particulate loads, which may result in instru-
mentation blockages (Vesey et al., 1994) and underestimations
due to cell adhesion to abiotic particles (Amalfitano and Fazi,
2008). Recently, quantitative PCR (qPCR) has gained popularity
in glacier ecology studies as it allows for a combined analysis of
microbial abundance and diversity from the same nucleic acid
extract (Hamilton et al., 2013; Zarsky et al., 2013; Stibal et al.,
2015). However, due to differing numbers of gene copies in each
microbial species (Klappenbach et al., 2001), and the efficacy of
nucleic acid extraction (Krsek and Wellington, 1999) and ampli-
fication techniques (Lindberg et al., 2007; Albers et al., 2013),
caution must be exercised when converting qPCR results into cell
numbers.

The Greenland Ice Sheet (GrIS) is the largest ice body in the
northern hemisphere and hosts Earth’s largest seasonally melt-
ing glacier surface ice ecosystem (>200,000 km2 and expanding;
Hodson et al., 2010a; Fettweis et al., 2011). Microbial abundance,
diversity, and activity in snow and cryoconite in some portions on
the GrIS have been found to vary with distance from ice-free land.

This variability has been attributed to differences in environmen-
tal disturbances, sources of microbial inocula and nutrients, and
melt season duration (Hodson et al., 2010a; Stibal et al., 2010,
2012b, 2015; Telling et al., 2012; Cameron et al., 2015). However,
there are currently no data on microbial abundance in bare ice,
the dominant supraglacial environment in terms of volume and
area, and the factors that control it.

The aim of this paper is to quantify for the first time the abun-
dance of microbial cells in surface ice from geographically dis-
tinct sites on the GrIS and to identify factors responsible for its
variation. In order to obtain robust cell numbers, we tested all
three common methods of microbial enumeration (EFM, FCM,
qPCR) on artificial ice samples of known, and realistic, cell and
mineral particle concentrations prior to analysis of our samples.
We then used multivariate statistical analysis to test the signif-
icance of environmental characteristics and reviewed the pub-
lished data on microbial abundance in glacier ice in order to put
our results into context.

Materials and Methods

Sample Collection
Samples of Greenland surface ice were collected from the ice
sheet and an isolated ice cap between May and September 2013
from 14 sites at 7 geographically distinct locations (Table 1,
Figure 1). Most sites were in the vicinity of an established meteo-
rological station of the PROMICE network (http://promice.org)
and were named after the nearest settlement or geographical fea-
ture (THU, Thule; KAN, Kangerlussuaq; QAS, Qasimiut; TAS,
Tasiilaq; APO, A. P. Olsen ice cap). Additional samples of sur-
face ice were taken at “Dark Site” (DS), one of the darkest 5 km
pixels in optical satellite imagery after Box et al. (2012), and at
a site situated in the accumulation area near the topographical
divide of the southern ice sheet (Saddle). The sites were charac-
terized by their geographical position (the N andW coordinates)
and altitude which were measured by a hand-held GPS, surface
type (bare ice vs. multi year snow a.k.a. firn), and distance from
the nearest ice-free land determined in Google Earth using the
distance tool with a precision of 0.5 km. The regional climate
model HIRHAM5 was used to obtain additional climate data for
each site. This model provides realistic simulations of the climate
over Greenland, which are validated against observations from
meteorological stations at the coast and on the ice sheet (Lucas-
Picher et al., 2012). The data obtained from the model included
the number of days with a positive surface air temperature and a
positive surface energy balance (“melt days”) from the beginning
of the year until the day of sampling, and the time elapsed from
the last snowfall event at the moment of sampling (Table 1).

Ten surface ice cores (∼15 cm long) were extracted at each
site, except Saddle, using a small handheld drill and custom-built
stainless steel corers (∼20 cm2 surface area). The corers were
autoclaved and kept sterile in polypropylene bags prior to use.
The ice cores were transferred to sterile 750ml WhirlPak bags
(Nasco, USA). At Saddle, samples were obtained using a 9 cm
diameter Kovacs coring drill, using sterile autoclaved corers. A
deeper (220 cm) surface ice core was extracted at Saddle and cut
into sections 10–30 cm long. Saddle samples were taken in order
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TABLE 1 | Description of 2013 sampling sites at the surface of the GrIS.

Site name Position Distance to Altitude (m) Surface type Date (DOY) Days of Ts > Melt days Days since

ice-free land (km) 0◦C in 2013 in 2013 snow

THU_L 76◦23.991′N 68◦15.921′W 1.5 570 ice 12 Aug (224) 46 n.a. 11

THU_U 76◦25.181′N 68◦8.706′W 3 770 firn 13 Aug (225) 40 134 11

DS 69◦28.56′N 49◦34.838′W 18 956 ice 25 Jun (176) 15 n.a. 2

KAN_L 67◦5.798′N 49◦56.303′W 5 680 ice** 19 Sept (262) 90 189 7

KAN_M 67◦3.964′N 48◦49.356′W 42 1270 ice** 19 Sept (262) 38 158 2

KAN_U 67◦0.014′N 47◦1.162′W 112 1850 firn** 22 Sept (265) 9 190 5

QAS_L 61◦1.873′N 46◦50.91′W 1.5 310 ice 20 Aug (232) 124 164 47

QAS_U 61◦10.653′N 46◦49.042′W 12 890 ice** 20 Aug (232) 65 182 41

TAS_L 65◦38.46′N 38◦53.895′W 1.5 270 ice 27 Aug (239) 108 165 62

TAS_U 65◦41.975′N 38◦51.995′W 5 580 ice 29 Aug (241) 88 184 1

TAS_A 65◦46.864′N 38◦54.193′W 10 891 firn** 27 Aug (239) 68 n.a. 1

APO_L 74◦37.471′N 21◦22.507′W 0.5 644 ice*** 1 May (121) 0 n.a. 1

APO_M 74◦38.634′N 21◦28.110′W 0.5 874 ice*** 1 May (121) 0 n.a. 1

SADDLE 66◦0.033′N 44◦30.083′W 180/230* 2460 firn 8 Jul (189) 0 n.a. 1

DOY, day of year 2013; Ts, surface air temperature; n.a., data not available.

*Site is ca 180 km from the eastern edge and 230 km from the western edge of the ice sheet.

**Samples may have been affected by fresh snow due to high wind during sampling.

***Samples may have been contaminated due to breakdown of drilling equipment and additional handling.

FIGURE 1 | Map of sampling sites on the GrIS. Red dots represent sites in

the ablation area and blue dots in the accumulation area of the ice sheet. The

background clear sky end of melt season mosaic is by J. E. Box using MODIS

data from year 2011.

to compare microbial cell numbers of winter snow layers, from
2012 to 2013, with the summer 2012 refrozen melt layer (Nghiem
et al., 2012). All samples were kept frozen in insulated boxes
until transportation to Copenhagen where samples were stored
at−20◦C until analysis.

Cell Count Method Testing
Artificial ice samples were prepared using deionized water, quartz
dust, and a culture of Delftia acidovorans in order to simulate
glacier ice containing different amounts of debris and micro-
bial cells. Delftia is a genus of Betaproteobacteria often found
in glacial environments including surface ice (Zeng et al., 2013),
cryoconite (Stibal et al., 2015), and basal ice (Skidmore et al.,
2005). The water used (MilliQ, Millipore, USA) was checked for
microbial cells using EFM (see below). Quartz dust (2600mg
ml−1, particle size <63µm; Sigma-Aldrich, Germany) was fur-
naced at 550◦C for 5 h prior to use. The cell abundance of the
D. acidovorans culture used was determined by EFM immediately
before preparing the artificial ice samples. The dust concentra-
tions used were from 0.1 to 100mg ml−1, and the cell concentra-
tions used ranged from 102 to 107 cells ml−1, resulting in cell:dust
ratios between 1 and 108 cells mg−1, roughly equivalent to 0.2–
20,000,000 cells per dust particle. Samples containing no cells
and/or no dust were tested in parallel.

Accuracy A was quantified as

A = 1−

(
∣

∣Xm − Xe

∣

∣

Xe

)

(1)

where Xe is the expected abundance and Xm the measured value.
A can range between 1 (100% accuracy) and 0 (no cells or twice
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as many as expected), and it can assume negative values when the
measured abundance is more than twice as high as the expected
value; however, for better plot clarity negative A values were
manually corrected to 0. Standard deviations of triplicate mea-
surements, representing the reproducibility of the analyses, were
calculated and expressed as percentage of mean; values >100%
were manually corrected to 100% for better clarity in the contour
plots.

Greenland Ice Sample Analysis
Prior to analysis, ice samples from each location were pooled
together and placed in a pre-furnaced (550◦C for 5 h), foil-
covered beaker and allowed to melt at 4◦C. After melting,
subsamples for EFM (150ml) and FCM (15ml) were taken.
EFM enumerations were conducted immediately after subsam-
pling, whereas samples for FCM were fixed with paraformalde-
hyde (final concentration 2%) and stored at 5◦C until analysis.
From the remaining sample, 300ml was filtered through Sterivex
GP 0.22µm polyethersulfone filters (Millipore, USA) into acid
washed Duran bottles. The filters were subsequently used for
DNA extraction, while the filtered water was used for physico–
chemical analysis. pH and electrical conductivity (EC) were
measured using a Multi 3430 multimeter with a SenTix 940 pH
electrode and a TetraCon 925 conductivity cell (WTW, Ger-
many). Dissolved organic carbon (DOC) and total dissolved
nitrogen (TDN) were measured on a TOC-VCPH analyzer with
a TNM-1 nitrogen unit (Shimadzu, Japan). Nitrate (NO−

3 ) and
phosphate (PO3−

4 ) were analyzed by ion chromatography (IC)
using an IonPac AS 14 column (Dionex, USA). Ammonium
(NH+

4 ) was determined on a Fiastar 5000 analyzer (Gerber
Instruments, Switzerland). The detection limits, calculated as 3
standard deviations of procedural blanks, were 1.17mg l−1 for
DOC, 0.20mg l−1 for TDN, and 4.4µg l−1 for NH+

4 . No NO−

3
or PO3−

4 were detected in the procedural blanks and so 0.05 and

0.025mg l−1 were assumed to be the detection limits for nitrate
and phosphate, respectively, determined by previous testing. The
remainder of the sample was filtered through a pre-weighed GF/F
0.7µm glass fiber filter (Whatman, UK) in order to determine
the dust load. The filter papers were then dried at 105◦C for 5 h
and re-weighed, and the amount of dust normalized to filtrate
volume.

Samples were analyzed by EFM after staining with the DNA
stain acridine orange (AO). 10ml of sample was filtered onto a
sterile 0.2µm MontaMil black polycarbonate filter (Frisenette,
Denmark). Dried filters were placed in a Petri dish containing AO
(0.04% final concentration; Fluka, Switzerland) for 2min, then in
deionized water for another 2min, dried and mounted on micro-
scopic slides with immersion oil. More than 300 AO-stained cells
were enumerated on each slide with an Olympus BX50 epiflu-
orescence microscope (Olympus Optical, Japan) using the filter
block U-N31001 (Chroma Technology, USA). Blanks with no
cells were counted in parallel.

For FCM, samples were analyzed using a SH-800-EC cell
sorter (Sony Biotechnology, Japan) according to protocols opti-
mized for supraglacial meltwater. All samples were vortexed on
a Vortex-Genie 2 (Cambio, UK) for 30 s before each stage of
processing. Field samples and most artificial ice samples were
analyzed undiluted while artificial ice samples with dust con-
centrations of 10 and 100mg ml−1 were diluted 10- and 100-
fold with 0.1µm filtered deionized water, respectively, to prevent
potential blockage of the cell sorter sample tubing. To control
for autofluorescence and dust background, stained and unstained
aliquots were processed in parallel. For stained samples, 2µl of
10,000× SYBR Gold (in DMSO; Life Technologies, UK) stock
solution was diluted to 1ml in phosphate buffered saline (pH
7.4), and 1µl of this solution was used to stain 2ml of sam-
ple for 30min at room temperature (∼23◦C) prior to analy-
sis. The cell sorter was operated with samples interrogated at a

TABLE 2 | Physico–chemical characteristics of surface ice sampled on the GrIS.

Site Dust EC µS cm−1 pH Nutrient concentrations

g l−1 103 particles ml−1 DOCmg l−1 NO−

3
mg l−1 NH+

4
µg l−1

THU_L 0.10 70±3.4 4.0 ± 0.38 5.97 ± 0.09 3.0± 1.4 0.05 ± 0.05 25± 0.93

THU_U 0.29 81±13 2.5 ± 0.25 5.64 ± 0.20 1.6± 0.55 b.d. 23± 32

DS 0.51 146±38 2.8 ± 0.06 5.78 ± 0.09 1.1± 0.39* 0.02 ± 0.04* 18± 16

KAN_L 0.03 67±34 2.0 ± 0.12 5.83 ± 0.03 b.d. 0.07 ± 0.02 b.d.

KAN_M 0.08 47±10 2.0 ± 0.15 5.62 ± 0.08 0.36± 0.32* 0.06 ± 0.00 6.5± 5.7

KAN_U 0.01 39±5.7 1.9 ± 0.10 5.40 ± 0.04 b.d. 0.09 ± 0.03 b.d.

QAS_L 0.93 425±154 2.0 ± 0.10 5.82 ± 0.05 2.7± 0.51 b.d. b.d.

QAS_U 0.20 62±42 2.0 ± 0.15 5.65 ± 0.04 2.3± 1.1 b.d. 7.9± 3.3

TAS_L 0.35 122±50 1.9 ± 0.30 5.59 ± 0.19 b.d. b.d. 7.7± 13

TAS_U 0.18 62±17 1.7 ± 0.06 5.63 ± 0.03 b.d. b.d. 4.7± 4.5

TAS_A 0.20 46±11 2.4 ± 0.06 5.69 ± 0.08 b.d. b.d. 23± 13

APO_L 0.36 474±103 4.0 ± 0.12 5.73 ± 0.05 1.2± 0.72 b.d. 4.7± 8.1

APO_M 1.87 317±53 4.1 ± 0.46 5.53 ± 0.01 1.3± 0.74 b.d. 3.7± 6.4*

Mean ± st.dev.; n = 3, except dust weight (n = 1); b.d., below detection limit.

*Values below detection limit were treated as zeroes so the mean values shown can be below the respective detection limits.
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flow rate of 21µl min−1 for 30 s with 488 nm laser excitation
and fluorescence emissions in the 520–550 nm channel measured
along with forward and back scatter. Populations were gated
manually.

DNA was extracted from the Sterivex filters using the Power-
Water Sterivex DNA Isolation Kit (MO BIO Laboratories, USA),
following the manufacturer’s protocol. An unused Sterivex fil-
ter was extracted alongside the samples as a procedural con-
trol. Quantitative PCR of 16S rRNA genes was performed
using a CFX96 Touch system (Bio-Rad, USA). Reaction mix-
tures (20µl total) consisted of 1µl of template DNA, 10µl of
SYBR Premix DimerEraser (TaKaRa, Japan), and 0.6µl of for-
ward and reverse primers (10 pmol µl−1). The primers used
were 341F (5′-CCTACGGGAGGCAGCAG-3′) and 518R (5′-
ATTACCGCGGCTGCTGG-3′). The cycle programwas 95◦C for
30 s followed by 50 cycles of 95◦C for 30 s, 55◦C for 30 s, and
72◦C for 30 s. The reaction was completed by a final 72◦C elon-
gation step for 6min and followed by high-resolution melt curve
analysis in 0.5◦C increments from 72 to 98◦C. All qPCR reac-
tions were performed in triplicate and were prepared under DNA
free conditions in a pressurized clean-lab with a HEPA filtered air
inlet and nightly UV-irradiation. Standards of bacterial 16S rRNA
genes were prepared by extracting DNA from a serially diluted
culture of E. coli. The gene copy number of the highest standard
was 1.12 × 107 µl−1. The detection limits were 1.6 × 102 and
1.7 × 103 gene copies per µl of reaction volume for the artifi-
cial ice samples and the Greenland ice samples, respectively. Due
to the much diluted nature of our samples, potential inhibition
due to humic acid or other inhibitory compounds was considered
unlikely and was not evaluated.

Statistical Analysis
Multivariate statistical analysis was used to explain the varia-
tion in the data, as described previously (Stibal et al., 2012b). All

nutrient concentration and microbial abundance data were log
transformed prior to analysis and all data were standardized and
centered. Data below detection limit (b.d.) were treated as zeroes.
Redundancy analysis (RDA) with interactive forward selection
and 999 Monte Carlo permutations in an unrestricted mode was
used to explain the variation in the data. The p-values were cor-
rected for multiple testing using false discovery rate. All the anal-
yses were performed in the multivariate data analysis software
Canoco 5 (ter Braak and Šmilauer, 2012).

Results and Discussion

Microbial Cell Enumeration Testing
Accurate enumeration of microbial cells in glacial samples
with high debris contents is notoriously difficult due to the
problems associated with masking by debris and the difficulty
in obtaining adequate sample volumes (Foght et al., 2004;
Langford et al., 2010; Hodson et al., 2013). The results of
our artificial ice abundance measurements are illustrated in
Supplementary Figure S1. EFM gave the highest accuracies of
the three methods tested (up to 0.97), as well as the best repro-
ducibility (standard deviation down to 1.2% of mean). How-
ever, the accuracy values within the realistic ranges of cell and
dust concentrations were still low (between 0.15 and 0.23), and
were only higher (>0.75) in the samples with more than 104

cells ml−1 and without dust addition. In contrast, both FCM
and qPCR performed poorly, with all accuracy values below 0.7,
even in samples with no dust added, and poor reproducibility
(Supplementary Figure S1). No significant correlations between
the FCM and qPCR data, expressed as the percentage of the
respective EFM values and dust concentrations, were found (data
not shown). We acknowledge a potential bias in favor of EFM
since the expected values (Xe in Equation 1) were determined by
this method; however, this bias is probably small due to the high

TABLE 3 | Microbial cell/16S rRNA gene copy abundances in the surface ice samples from the GrIS determined by epifluorescence microscopy (EFM),

flow cytometry (FCM), and quantitative PCR (qPCR).

Site Microbial abundance

EFM (103 cells ml−1) FCM (103 cells ml−1) qPCR (105 copies ml−1)

THU_L 34± 12 22±7.9 4.5±1.3

THU_U 3.7± 0.29 15±16 0.46±0.39

DS 370± 38 5.8±3.9 200±8.7

KAN_L 3.1± 0.74 0.60±0.40 0.24±0.11

KAN_M 28± 5.2 b.d. 8.8±3.0

KAN_U 1.9± 1.2 0.19±0.44 0.29±0.14

QAS_L 1300± 82 26±22 260±120

QAS_U 110± 1.8 1.8±0.07 22±6.2

TAS_L 260± 83 5.3±2.1 140±5.3

TAS_U 74± 8.1 13±12 63±43

TAS_A 16± 2.5 1.2±0.58 17±2.2

APO_L 560± 39 71±77 110±24

APO_M 1900± 350 28±17 240±78

Mean ± st.dev.; n = 3; b.d., below detection limit.
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reproducibility of cell enumeration by EFM in a high-abundance
and dust-free bacterial culture.

FCM has a good history of application to glacier samples
(Karl et al., 1999; Yao et al., 2008; Miteva et al., 2009; An et al.,
2010; Irvine-Fynn et al., 2012); however, in this study its per-
formance was suboptimal relative to EFM. Three factors may
account for this. First, interference from dust particles is promi-
nent. While concurrent analysis of unstained samples has been
sufficient to mitigate against dust interference in supraglacial
meltwater (Irvine-Fynn et al., 2012), the higher sediment loads
which may be found in glacier ice may complicate analyses and
result in enumeration of undesirable “noise” particles, adsorption
of cells to dust particles or spurious abiotic autofluorescence. Sec-
ond, the number of cells analyzed per sample under the typical
flow rates and parameters used is small. This may compromise
the accuracy of counts. Third, the cell sorter used is unable to
measure side scatter, the preferred metric for the identification
of individual cell “events” (Irvine-Fynn et al., 2012). Use of for-
ward and back scatter may explain the underestimation of cell
counts in this study (Table 3), as cells adsorbed to dust parti-
cles or other cells are only recorded as a single event. However,
the inter-replicate reproducibility of FCM was relatively good. It
is clear that to realize the potential of FCM in high-throughput
robust enumeration of cells against higher backgrounds of dust
levels in glacier ice (Irvine-Fynn and Edwards, 2014), further
work to optimally deconvolve dust and cell populations is nec-
essary. Detaching cells from mineral particles may be required
prior to analysis, even though these techniques may only yield
80–90% efficiency (Amalfitano and Fazi, 2008).

While PCR is a useful tool in diversity studies, its suit-
ability for accurate quantification of cells in natural microbial
communities is limited by various biases. The fact that no cor-
relation was found between the qPCR/EFM abundance ratios
and the concentration of dust, the most likely source of poten-
tially inhibitory compounds, suggests that inhibition of PCR
polymerases (Lindberg et al., 2007; Albers et al., 2013) was not
a significant bias in the analysis of our ice samples. However,
other biases may have been at play, such as differential extraction
efficiencies for different microbial groups (Krsek and Welling-
ton, 1999) and different numbers of the ribosomal RNA operon
copies per cell (Klappenbach et al., 2001). Therefore, based on
our results, traditional EFM is recommended when accurate
numbers of microbial cells in ice samples containing dust par-
ticles are required, despite its laboriousness. Caution must still be
exercised not to overinterpret differences in abundance within an
order of magnitude.

Physico–Chemical Characteristics of Greenland
Surface Ice
Physico–chemical characteristics of the melted ice from the sur-
face of the GrIS are shown in Table 2. The dust load measured
by the filtration method was variable (0.01–1.9 g dust per liter
of melted ice, mean ± sd: 0.39 ± 0.51 g l−1), and consistent
with particle concentrations measured by FCM (39–474 particles
per ml; 150 ± 152ml−1), with two exceptions (QAS_L, APO_L;
Table 2). The highest dust load was detected in samples from

DS, QAS_L, and APO_M while samples from the Kangerlus-
suaq transect (KAN_L/M/U) were lowest in dust. Electrical con-
ductivity ranged between 1.7 and 4.1 µS cm−1 and pH ranged
between 5.40 and 5.97, with no obvious trends in the samples.
DOC ranged from <1.17 to 3mg l−1 while TDN was below the
detection limit of 0.2mg l−1 in all the samples. Ammonium con-
centrations were between <4.4 and 25µg l−1, while those of
nitrate ranged between <0.05 and 0.09mg l−1. Phosphate con-
centrations were below the detection limit of 0.025mg l−1 in all
the samples measured. The nutrient concentrations were similar
to those previously measured in surface ice on the GrIS (Telling
et al., 2012) and within the range reported from other glaciers
(Tranter et al., 2004; Bagshaw et al., 2007; Hodson et al., 2013).

Microbial Abundance in Greenland Surface Ice
Microbial abundances in the surface ice samples from the GrIS
were measured by the three methodologies (Table 3). Cell num-
bers within ice samples, determined by EFM, spanned three
orders of magnitude (from ∼ 2 × 103 to ∼ 2 × 106 cells ml−1).
The FCM analysis resulted in lower cell numbers (1.5 – 65%
EFM) in all cases except one (THU_U; 400%). The 16S rRNA
gene copy numbers determined by qPCR produced values of the
same order of magnitude as those measured by EFM, assum-
ing 5–10 copies per cell, except for the DS and TAS samples
where the qPCR values were an order of magnitude higher
than those determined by EFM (Table 3). The highest cell num-
bers were determined in samples from QAS_L, TAS_L, DS, and
APO. Unlike in the first three samples, the high abundances
in the APO samples were unexpected due to the early sam-
pling date and the fact that no liquid water was present in
the surface ice during sampling. Two possible explanations for
this result are, first, contamination due to a breakdown of the
drilling equipment and the necessity to handle the ice sam-
ples in a non-sterile way, and second, the high dust content
(Table 2).

FIGURE 2 | Microbial cell abundances in surface ice samples from the

GrIS determined by EFM plotted against the respective dust

concentrations in the samples. Note the logarithmic scales on both axes.
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FIGURE 3 | Microbial cell abundances and dust concentrations in

glacier ice samples. Blue oval represents samples collected in this study

and measured by EFM (see Figure 2); the remainder of the data was

compiled from the literature (see Table 4). Black frame represents the ranges

used for method testing in this study. Note that due to logarithmic scales on

both axes zeroes cannot be shown.

The abundances (103–106 cells per ml of melted ice) and
dust concentrations (0.01–2mg ml−1) determined in surface
ice samples in this study (Tables 2, 3; Figure 2) fit within the
ranges reported for glacier ice samples from around the globe
(Figure 3). Table 4 shows an overview of the published data of
cell abundances and dust concentrations in various glacier sam-
ples, including glacier snow and clean englacial ice with little dust
and few cells, microbe-rich surface ice and debris slurries, and
debris-laden basal ice with widely ranging cell abundances. These
differences suggest a role of particulates for microbial abun-
dance, which is further supported by the rich microbial com-
munity associated with cryoconite, where microbial abundance
may reach 106–109 cells g−1, as determined by EFM (Stibal et al.,
2008a, 2010, 2012b; Anesio et al., 2010; Hodson et al., 2010a;
Langford et al., 2010) and qPCR (Hamilton et al., 2013; Zarsky
et al., 2013; Stibal et al., 2015).

Figure 4 illustrates microbial abundances measured by EFM
in five sections of the 2.2m deep Saddle firn core, representing
winter snow from 2013 (18–42, 105–123, 130–147 cm) and 2012
(157–180 cm) and the 2012 summer melt layer between them at
147–157 cm depth. The abundance of cells in the 2012 summer
melt layer (14,000 cells ml−1) was an order of magnitude higher
than the other analyzed core samples, especially in comparison

with the immediately underlying and overlying snow layers (2400
and 3300 cells ml−1, respectively). It should be noted however
that, due to the small amount of sample volume available for
analysis and the expected low cell concentrations, few replicates
were measured and the differences are thus not significant. The
abundances fall in the range reported from snow on glaciers on
the Tibetan Plateau (0.7–700 × 103 cells ml−1; Liu et al., 2009)
and on the Antarctic ice sheet (200–5000 cells ml−1; Carpenter
et al., 2000), and are somewhat lower that those found in Svalbard
glacier snow (10–40×103 cells ml−1; Amato et al., 2007;Table 4).
They are also similar to cell abundances determined by EFM
in snow over sea ice in NE Greenland (0.8–3 × 103 cells ml−1;
Møller et al., 2013). The elevated abundance detected in the 2012
melt layer (Figure 4) may be a result of microbial growth during
the short melt event in July 2012 (Nghiem et al., 2012), as sug-
gested by Hell et al. (2013), and could represent a glimpse into the
warmer future of the ice sheet; however, more data are needed to
test this hypothesis.

Controls of Microbial Abundance in Surface Ice
on the GrIS
In order to explain the variation in the microbial abundance
data, a RDAwas performed with physico-chemical data (position
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along the N-S transect expressed as the N coordinate, altitude,
distance from the margin, surface type, days with positive sur-
face air temperature, days since last snowfall, and day of sampling
from Table 1; dust content, EC, pH, and nutrient concentrations
from Table 2) as the explanatory variables, and microbial abun-
dance data (Table 3) as the explained variables. Several analyses
were performed; first, with all the data available, and, subse-
quently, with some data removed due to their suspected lower
accuracy. The APO sample data were removed due to their
potential contamination, and the FCM abundance data were
removed due to the low accuracy and reproducibility shown in
the artificial ice experiments (Supplementary Figure S1). Data
from the Saddle ice core could not be used due to the absence of
the qPCR and FCM data and most physico–chemical data. The
removal of the FCM abundance data and APO samples from the
analysis resulted in a higher amount of total variability explained
(data not shown).

Analysis that ignored FCM data and APO samples explained
97.3% of the total variation in the data. Dust content was
the most significant variable, explaining 55.9% of the variation
(pseudoF = 36.7; p = 0.006), followed by surface type (ice vs.
firn; 14.6% explained, pseudoF = 13.9, p = 0.012), nitrate con-
centration (6.7% explained, pseudoF = 7.9, p = 0.027), and days
since last snowfall (5.2% explained, pseudoF = 37.3, p = 0.006).
Although the day of sampling was not a significant factor in this
analysis (pseudoF = 2.7, p = 0.20), it is essentially an arti-
fact of the sampling design, and, therefore, another RDA was
conducted with this parameter as a covariate, thus showing only
the results for the ecologically meaningful variables. This analy-
sis explained 96.2% of the total variation; dust content explained
41.8% of the variation (pseudoF = 20.1; p = 0.004), followed
by surface type (20.1% explained, pseudoF = 13.4, p = 0.007),
the N-position (10.8% explained, pseudoF = 10.1, p = 0.019),
and days since last snowfall (7.5% explained, pseudoF = 37.3,

TABLE 4 | Microbial cell abundances and dust concentrations in glacier snow, ice, and ice/debris mixture samples.

Sample type Location Cell count Cell abundance Dust/debris concentration References

method (103 ml−1) (mg ml−1)

Supraglacial snow Greenland EFM 2.4–15* 0.37* This study

Antarctica EFM 0.2–5 n.d. Carpenter et al., 2000

Svalbard EFM 0.03–40 n.d. Amato et al., 2007; Björkman et al.,

2014

Central Asia FCM 0.68–720 n.d. Liu et al., 2009

Surface ice Greenland EFM 1.9–1900 0.01–1.87 This study

FCM 0–71

qPCR 2.4–2600**

Svalbard EFM 200 n.d. Amato et al., 2007

FCM 57 n.d. Irvine-Fynn et al., 2012

Englacial ice Greenland FCM 20–7000 0–0.005 Svensson et al., 2000; Tung et al.,

2005; Miteva et al., 2009

Antarctica EFM 0.2–36 0–0.005 Karl et al., 1999; Priscu et al., 1999;

Abyzov et al., 2001; Antony et al.,

2012

Central Asia EFM 0.02–170 n.d. Zhang et al., 2008a,b

FCM 3.2–830 n.d. Yao et al., 2008; An et al., 2010

Cryoconite hole ice/water Antarctica EFM 0.26–79 n.d. Foreman et al., 2007; Hodson et al.,

2013

Svalbard EFM 4.5–100 n.d. Säwström et al., 2002; Mindl et al.,

2007; Anesio et al., 2010

Cryoconite slurry Antarctica EFM 40–3800 n.d. Foreman et al., 2007; Hodson et al.,

2013

Basal ice Greenland EFM 6–30× 104 up to ∼1600 Sheridan et al., 2003; Yde et al., 2010

Antarctica EFM 0.1–4.2 20–280 Montross et al., 2014

n.d., not determined.

*Data from the Saddle ice core 2013 winter snow layer (18–42 cm depth). **Assuming 10 16S rRNA gene copies per cell.
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FIGURE 4 | Cell abundance measured by EFM in the Saddle ice core.

The five sections used for enumeration are depicted by black frames. Values

are means ± st.devs. of three measurements (2013 winter snow top layer,

2012 melt layer) or two measurements (remaining samples).

p = 0.006). Figure 5 is an RDA biplot that illustrates the positive
correlations of microbial abundance and dust contents and days
since last snowfall, the negative correlation between cell numbers
and the N-coordinate, and the preference of microbial cells for
ice compared with firn. The relationship between dust content
and cell numbers in surface ice on the GrIS is also illustrated in
Figure 2 in which the EFM abundance data are plotted against
dust contents in all samples including those from APO and Sad-
dle, showing a positive correlation between dust and cell numbers
(R2 = 0.89 with all data used; R2 = 0.81 with APO samples
removed).

The variation in microbial abundance in the surface ice sam-
ples collected on the GrIS reflects the differences between the
sites and the important effect of local conditions on biological
processes in the supraglacial ecosystem. The lowest abundances

FIGURE 5 | Redundancy analysis biplot visualizing the effects of

environmental variables on the microbial abundance in surface

ice on the GrIS. Red arrows denote significant quantitative physical

variables, red triangles the surface type, and black arrows the

abundances determined by EFM and qPCR.

in our study (∼103 cells ml−1) were found in samples from
the accumulation area of the ice sheet (KAN_U, Saddle) or in
those affected by fresh snow (KAN_L), and are similar to abun-
dances found in atmospheric waters (Sattler et al., 2001; Bowers
et al., 2012). Since microbial cells may act as ice nuclei (Christner
et al., 2008; Delort et al., 2010), the lowest abundances found in
surface ice may represent a “baseline” cell concentration, which
is a result of deposition of snow already containing microbial
cells.

Dust deposition is another possible source of microbial cells
to the ice sheet (Xiang et al., 2009). Simultaneous analysis
of dust and cell concentrations from glacial ice samples is
scarce (e.g., Antony et al., 2012), and some studies suggest that
microbial abundance in glacial ice cores is not always associ-
ated with dust deposition (Zhang et al., 2008a; Xiang et al.,
2009). However, the results of the statistical analysis of our
data show for the first time a significant association between
dust and cell abundance in Greenland surface ice (Figures 2,
5). This strong correlation may be explained in two ways: first,
microbial cells may be deposited onto the GrIS in association
with dust particles, and second, dust may provide a source
of nutrients to stimulate the growth of microbes in the vicin-
ity. Phosphorus, a rock-bound nutrient, is likely the limiting
macronutrient in the supraglacial environment (Stibal et al.,
2008b, 2009) and has been detected in surface debris on the
southwestern GrIS (Wientjes et al., 2011), which supports this
hypothesis.

Microbial abundance was also shown to be correlated to sur-
face type (with ice showing higher cell numbers than firn) and
the number of days since the last snowfall (Figure 5). We sug-
gest that these controls are related to the process of cell reten-
tion at the glacier surface. This process begins in melting snow
(Hell et al., 2013; Björkman et al., 2014) and continues in surface
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ice, which potentially acts as a filter (Irvine-Fynn et al., 2012).
Therefore, the bare ice surface is expected to accumulate more
microbial cells over time compared with firn, unless their abun-
dance is “diluted” by fresh snow. The preference of ice over firn
can also be explained by the longer melt period at the sites with
ice compared to those with firn, which is further supported by the
significant effect of the N-S position, and is also likely related to
the length of the melt season. Difference in the amount of solar
radiation is another possible explanation of the significance of the
N-S position. The significant negative correlation betweenmicro-
bial abundance and nitrate concentration could be interpreted as
a result of microbial uptake of nitrate (Telling et al., 2012) and
thus a sign of an active microbial community in surface ice on
the ice sheet.

Conclusions

We quantified for the first time the abundance of microbial cells
in surface ice from geographically distinct sites on the GrIS,
including ablation and accumulation areas, using three different
methods (EFM, FCM, and qPCR). EFM generated the most accu-
rate and reproducible results of the three methods, and is there-
fore recommended for the cell enumeration of glacier ice. Cell
abundance of surface ice samples, determined by EFM, ranged
from∼2× 103 to∼2× 106 cells ml−1, while the dust concentra-
tions were found to be between 0.01 and 2mgml−1. Dust content
was the most significant factor explaining the variation in abun-
dance data. Surface type (ice vs. firn), number of days since last
snowfall, N-S position and nitrate concentration were also iden-
tified as significant controls. We suggest that the surface of the
Greenland Ice Sheet receives a “baseline” cell supply via deposi-
tion of atmospheric waters, and that wind-borne dust deposited
on the ice sheet likely contains additional cells and may pro-
vide limiting nutrients for microbial growth. Ablation areas with
high dust concentrations and longer melt seasons are therefore
expected to contain higher numbers of active microbes compared
to the accumulation area and those portions of the ablation area

that contain little dust and are primarily seeded with atmospheric
waters.

Author Contributions

MS conceived and designed the study with inputs from JB, EG
and CJ; MS, MS, JZ and JB collected samples; EG prepared
the artificial ice samples and performed microscopy and qPCR
assisted by MS, KC and CJ; AE, IS, JG and TI did flow cytom-
etry analyses; JB provided glaciological and climate data for
sampling sites; all authors contributed to the discussion of the
results; MS wrote the paper with inputs from EG, KC, JB, IS, AE,
TI, and CJ.

Acknowledgments

This research was funded by Villum Young Investigator Pro-
gramme grant VKR 023121 to MS and Danish Research Council
grant FNU 10-085274 to CJ, and supported by the Dark Snow
Project (http://darksnowproject.org/). Flow cytometric analy-
ses at Aberystwyth were supported by Royal Society grant
RG130314 to AE. JZ was supported by Czech Ministry of
Education grant LM2010009. We thank Pernille Stockmarr
and Christina Rosenberg Lynge for technical assistance and
Michele Citterio, Martin Veicherts, and McKenzie Skiles for field
assistance.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fmicb.
2015.00225/abstract

Supplementary Figure S1 | Accuracies and standard deviations of cell

abundance measurements of artificial ice samples by epifluorescence

microscopy (EFM), flow cytometry (FCM) and quantitative PCR (qPCR).

Note the logarithmic scales and differences in color scaling between plots.

References

Abyzov, S. S., Mitskevich, I. N., Poglazova, M. N., Barkov, N. I., Lipenkov, V.
Y., Bobin, N. E., et al. (2001). Microflora of the basal strata at Antarctic ice
core above the Vostok Lake. Adv. Space Sci. 28, 701–706. doi: 10.1016/S0273-
1177(01)00318-0

Albers, C. N., Bælum, J., Jensen, A., and Jacobsen, C. S. (2013). Inhibition of
DNA polymerases used in Q-PCR by structurally different soil-derived humic
substances. Geomicrobiol. J. 30, 675–681. doi: 10.1080/01490451.2012.758193

Amalfitano, S., and Fazi, S. (2008). Recovery and quantification of bacterial cells
associated with streambed sediments. J. Microbiol. Meth. 75, 237–243. doi:
10.1016/j.mimet.2008.06.004

Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.-M., Barbante, C.,
et al. (2007). Bacterial characterization of the snow cover at Spitzberg, Svalbard.
FEMS Microbiol. Ecol. 59, 255–264. doi: 10.1111/j.1574-6941.2006.00198.x

An, L. Z., Chen, Y., Xiang, S.-R., Shang, T.-C., and Tian, L.-D. (2010). Differ-
ences in community composition of bacteria in four glaciers in western China.
Biogeosciences 7, 1937–1952. doi: 10.5194/bg-7-1937-2010

Anesio, A. M., and Laybourn-Parry, J. (2012). Glaciers and ice sheets as a biome.
Trends Ecol. Evol. 27, 219–225. doi: 10.1016/j.tree.2011.09.012

Anesio, A. M., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter, M., et al.
(2010). Carbon fluxes through bacterial communities on glacier surfaces. Ann.
Glaciol. 51, 32–40. doi: 10.3189/172756411795932092

Antony, R., Krishnan, K. P., Laluraj, C. M., Thamban, M., Dhakephalkar, P. K.,
Engineer, A. S., et al. (2012). Diversity and physiology of culturable bacteria
associated with a coastal Antarctic ice core. Microbiol. Res. 167, 372–380. doi:
10.1016/j.micres.2012.03.003

Bagshaw, E. A., Tranter, M., Fountain, A. G., Welch, K. A., Basagic, H.,
and Lyons, W. B. (2007). Biogeochemical evolution of cryoconite holes on
Canada Glacier, Taylor Valley, Antarctica. J. Geophys. Res. 112, G04S35. doi:
10.1029/2007JG000442

Björkman, M. P., Zarsky, J. D., Kühnel, R., Hodson, A., Sattler, B., and Psenner, R.
(2014). Microbial cell retention in a melting High Arctic snowpack, Svalbard.
Arct. Antarct. Alp. Res. 46, 471–482. doi: 10.1657/1938-4246-46.2.471

Bowers, R. M., McCubbin, I. B., Hallar, A. G., and Fierer, N. (2012). Seasonal
variability in airborne bacterial communities at a high-elevation site. Atmos.

Environ. 50, 41–49. doi: 10.1016/j.atmosenv.2012.01.005
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.

(2012). Greenland ice sheet albedo feedback: thermodynamics and atmospheric
drivers. Cryosphere 6, 821–839. doi: 10.5194/tc-6-821-2012

Frontiers in Microbiology | www.frontiersin.org 10 March 2015 | Volume 6 | Article 225

http://darksnowproject.org/
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2015.00225/abstract
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Stibal et al. Microbes in Greenland surface ice

ter Braak, C. J. F., and Šmilauer, P. (2012). Canoco Reference Manual and User’s

Guide: Software for Ordination (Version 5.0). Ithaca, NY: Microcomputer
Power.

Cameron, K. A., Hagedorn, B., Dieser, M., Christner, B. C., Choquette, K., Sletten,
R., et al. (2015). Diversity and potential sources of microbiota associated with
snow on western portions of the Greenland Ice Sheet. Environ. Microbiol. 17,
594–609. doi: 10.1111/1462-2920.12446

Carpenter, E. J., Lin, S., and Capone, D. G. (2000). Bacterial activity in South Pole
snow. Appl. Environ. Microbiol. 66, 4514–4517. doi: 10.1128/AEM.66.10.4514-
4517.2000

Christner, B. C., Morris, C., Foreman, C.M., Cai, R., and Sands, D. C. (2008). Ubiq-
uity of biological ice nucleators in snowfall. Science 319, 1214. doi: 10.1126/sci-
ence.1149757

Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M.,
Mailhot, G., et al. (2010). A short overview of the microbial popu-
lation in clouds: potential roles in atmospheric chemistry and nucle-
ation processes. Atmos. Res. 98, 249–260. doi: 10.1016/j.atmosres.2010.
07.004

Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J. (2011). Melting
trends over the Greenland ice sheet (1958–2009) from spaceborne microwave
data and regional climate models. Cryosphere 5, 359–375. doi: 10.5194/tc-5-
359-2011

Foght, J. M., Aislabie, J., Turner, S., Brown, C. E., Ryburn, J., Saul, D. J., et al. (2004).
Culturable bacteria in subglacial sediments and ice from two southern hemi-
sphere glaciers.Microb. Ecol. 47, 329–340. doi: 10.1007/s00248-003-1036-5

Foreman, C. M., Sattler, B., Mikucki, D. L., Porazinska, D. L., and Priscu, J. C.
(2007). Metabolic activity and diversity of cryoconites in the Taylor Valley,
Antarctica. J. Geophys. Res. 112, G04S32. doi: 10.1029/2006JG000358

Hamilton, T. L., Peters, J. W., Skidmore, M. L., and Boyd, E. S. (2013). Molecular
evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7,
1402–1412. doi: 10.1038/ismej.2013.31

Hell, K., Edwards, A., Zarsky, J., Podmirseg, S. M., Girdwood, S., Pachebat, J. A.,
et al. (2013). The dynamic bacterial communities of a melting High Arctic
glacier snowpack. ISME J. 7, 1814–1826. doi: 10.1038/ismej.2013.51

Hodson, A., Anesio, A. M., Ng, F., Watson, R., Quirk, J., Irvine-Fynn, T., et al.
(2007). A glacier respires: quantifying the distribution and respiration CO2 flux
of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res.
112, G04S36. doi: 10.1029/2007JG000452

Hodson, A., Bøggild, C., Hanna, E., Huybrechts, P., Langford, H., Cameron, K.,
et al. (2010a). The cryoconite ecosystem on the Greenland ice sheet. Ann.
Glaciol. 51, 123–129. doi: 10.3189/172756411795931985

Hodson, A., Cameron, K., Bøggild, C., Irvine-Fynn, T., Langford, H., Pearce, D.,
et al. (2010b). The structure, biological activity and biogeochemistry of cry-
oconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard.
J. Glaciol. 56, 349–362. doi: 10.3189/002214310791968403

Hodson, A., Paterson, H., Westwood, K., Cameron, K., and Laybourn-Parry, J.
(2013). A blue-ice ecosystem on the margins of the East Antarctic ice sheet.
J. Glaciol. 59, 255–268. doi: 10.3189/2013JoG12J052

Hodson, A. J., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., et al.
(2008). Glacial ecosystems. Ecol. Monogr. 78, 41–67. doi: 10.1890/07-0187.1

Irvine-Fynn, T. D. L., and Edwards, A. (2014). A frozen asset: the potential of
flow cytometry in constraining the glacial biome. Cytometry A. 85, 3–7. doi:
10.1002/cyto.a.22411

Irvine-Fynn, T. D. L., Edwards, A., Newton, S., Langford, H., Rassner, S. M.,
Telling, J., et al. (2012). Microbial cell budgets of an Arctic glacier sur-
face quantified using flow cytometry. Environ. Microbiol. 14, 2998–3012. doi:
10.1111/j.1462-2920.2012.02876.x

Karl, D. M., Bird, D. F., Björkman, K., Houlihan, T., Shackelford, R., and Tupas, L.
(1999). Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science
286, 2144–3147. doi: 10.1126/science.286.5447.2144

Klappenbach, J. A., Saxman, P. R., Cole, J. R., and Schmidt, T. M. (2001). rrndb: the
ribosomal RNA operon copy number database. Nucl. Acids Res. 29, 181–184.
doi: 10.1093/nar/29.1.181

Krsek, M., and Wellington, E. M. H. (1999). Comparison of different
methods for the isolation and purification of total community DNA
from soil. J. Microbiol. Meth. 39, 1–16. doi: 10.1016/S0167-7012(99)
00093-7

Langford, H., Hodson, A., Banwart, S., and Bøggild, C. (2010). The microstructure
and biogeochemistry of Arctic cryoconite granules.Ann. Glaciol. 51, 87–94. doi:
10.3189/172756411795932083

Lindberg, E., Albrechtsen, H. J., and Jacobsen, C. S. (2007). Inhibition of real-time
PCR in DNA extracts from aquifer sediment. Geomicrobiol. J. 24, 343–352. doi:
10.1080/01490450701456701

Liu, Y., Yao, T., Jiao, N., Kang, S., Xu, B., Zeng, Y., et al. (2009). Bacterial diver-
sity in the snow over Tibetan Plateau glaciers. Extremophiles 13, 411–423. doi:
10.1007/s00792-009-0227-5

Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Aðalgeirsdóttir, G., Mot-
tram, R., and Simonsen, S. B. (2012). Very high resolution regional climate
model simulations over Greenland: identifying added value. J. Geophys. Res.
117, D02108. doi: 10.1029/2011JD016267

Mindl, B., Anesio, A. M., Meirer, K., Hodson, A. J., Laybourn-Parry, J., Som-
maruga, R., et al. (2007). Factors influencing bacterial dynamics along
a transect from supraglacial runoff to proglacial lakes of a high Arctic
glacier. FEMS Microbiol. Ecol. 59, 307–317. doi: 10.1111/j.1574-6941.2006.
00262.x

Miteva, V., Teacher, C., Sowers, T., and Brenchley, J. (2009). Comparison of
the microbial diversity at different depths of the GISP2 Greenland ice core
in relationship to deposition climates. Environ. Microbiol. 11, 640–656. doi:
10.1111/j.1462-2920.2008.01835.x

Møller, A. K., Søborg, D. A., Al-Soud, W. A., Sørensen, S. J., and Kroer, N. (2013).
Bacterial community structure in High-Arctic snow and freshwater as revealed
by pyrosequencing of 16S rRNA genes and cultivation. Polar Res. 32:17390. doi:
10.3402/polar.v32i0.17390

Montross, S., Skidmore, M., Christner, B., Samyn, D., Tison, J.-L., Lorrain, R., et al.
(2014). Debris-rich basal ice as a microbial habitat, Taylor Glacier, Antarctica.
Geomicrobiol. J. 31, 76–81. doi: 10.1080/01490451.2013.811316

Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., et al.
(2012). The extreme melt across the Greenland ice sheet in 2012. Geophys. Res.
Lett. 39, L20502. doi: 10.1029/2012GL053611

Priscu, J. C., Adams, E. E., Lyons, W. B., Voytek, M. A., Mogk, D.W., Brown, R. L.,
et al. (1999). Geomicrobiology of subglacial ice above lake Vostok, Antarctica.
Science 286, 2141–2144. doi: 10.1126/science.286.5447.2141

Sattler, B., Puxbaum, H., and Psenner, R. (2001). Bacterial growth in supercooled
cloud droplets. Geophys. Res. Lett. 28, 239–242. doi: 10.1029/2000GL011684

Säwström, C., Mumford, P., Marshall, W., Hodson, A., and Laybourn-Parry, J.
(2002). The microbial communities and primary productivity of cryoconite
holes in an Arctic glacier (Svalbard 79◦N). Polar Biol. 25, 591–596. doi:
10.1007/s00300-002-0388-5

Sheridan, P. P., Miteva, V. I., and Brenchley, J. E. (2003). Phylogenetic analysis of
anaerobic psychrophilic enrichment cultures obtained from aGreenland glacier
ice core.Appl. Environ. Microbiol. 69, 2153–2160. doi: 10.1128/AEM.69.4.2153-
2160.2003

Skidmore, M., Anderson, S. P., Sharp, M., Foght, J., and Lanoil, B. D. (2005).
Comparison of microbial community composition in two subglacial envi-
ronments reveals a possible role for microbes in chemical weathering pro-
cesses. Appl. Environ. Microbiol. 71, 6986–6997. doi: 10.1128/AEM.71.11.6986-
6997.2005

Stibal, M., Anesio, A. M., Blues, C. J. D., and Tranter, M. (2009). Phosphatase activ-
ity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6,
913–922. doi: 10.5194/bg-6-913-2009

Stibal, M., Lawson, E. C., Lis, G. P., Mak, K. M., Wadham, J. L., and Anesio, A.
M. (2010). Organic matter content and quality in supraglacial debris across
the ablation zone of the Greenland ice sheet. Ann. Glaciol. 51, 1–8. doi:
10.3189/172756411795931958

Stibal, M., Šabacká, M., and Žárský, J. (2012a). Biological processes on glacier and
ice sheet surfaces. Nat. Geosci. 5, 771–774. doi: 10.1038/ngeo1611

Stibal, M., Schostag, M., Cameron, K. A., Hansen, L. H., Chandler, D.M.,Wadham,
J. L., et al. (2015). Different bulk and active bacterial communities in cryoconite
from the margin and interior of the Greenland ice sheet. Environ. Microbiol.

Rep. 7, 293–300. doi: 10.1111/1758-2229.12246
Stibal, M., Telling, J., Cook, J., Mak, K. M., Hodson, A., and Anesio, A. M. (2012b).

Environmental controls on microbial abundance and activity on the Green-
land ice sheet: a multivariate analysis approach. Microb. Ecol. 63, 74–84. doi:
10.1007/s00248-011-9935-3

Frontiers in Microbiology | www.frontiersin.org 11 March 2015 | Volume 6 | Article 225

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Stibal et al. Microbes in Greenland surface ice

Stibal, M., Tranter, M., Benning, L. G., and Řehák, J. (2008a). Microbial pri-
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