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Abstract: Recent years have witnessed a trend that uses image representation models, including sparse representation (SR), low-8 

rank representation (LRR) and their variants for multi-focus image fusion. Despite the thrilling preliminary results, existing 9 

methods conduct the fusion patch by patch, leading to insufficient consideration of the spatial consistency among the image patches 10 

within a local region or an object. As a result, not only the spatial artifacts are easily introduced to the fused image but also the 11 

“jagged” artifacts frequently arise on the boundaries between the focused regions and the de-focused regions, which is an inherent 12 

problem in these patch-based fusion methods. Aiming to address the above problems, we propose, in this paper, a new multi-focus 13 

image fusion method integrating super-pixel clustering and a unified LRR (ULRR) model. The entire algorithm is carried out in 14 

three steps. In the first step, the source image is segmented into a few super-pixels with irregular sizes, rather than patches with 15 

regular sizes, to diminish the “jagged” artifacts and meanwhile to preserve the boundaries of objects on the fused image. Secondly, 16 

a super-pixel clustering-based fusion strategy is employed to further reduce the spatial artifacts in the fused images. This is achieved 17 

by using a proposed ULRR model, which imposes the low-rank constraints onto each super-pixel cluster. This is apparently more 18 

reasonable for those images with complicated scenes. Moreover, a Laplacian regularization term is incorporated in the proposed 19 

ULRR model to ensure the spatial consistency among the super-pixels with the same cluster. Finally, a measure of focus for each 20 

super-pixel is defined to seek the focused as well as de-focused regions in the source image via jointly using representation 21 

coefficients and sparse errors derived from the proposed ULRR model. Extensive experiments have been conducted and the results 22 

demonstrate the superiorities of the proposed fusion method in diminishing the spatial artifacts in the fused image and the “jagged” 23 

boundary artifacts between the focused and de-focused regions, compared to the state-of-the-art fusion algorithms. 24 

Keywords: Multi-focus image fusion, Super-pixel clustering, Unified low-rank representation, Spatial consistency. 25 

1. Introduction 26 

Owing to the limited field depth of optical imaging systems, it is usually difficult, if not impossible, 27 

to acquire an image with all the objects in-focus [1]. Hence, only parts of an image have sharp 28 

appearances while the others look relatively blurring, which brings great inconvenience for human visual 29 

perception and sometimes computer processing as well. A lot of technologies are available to remedy 30 

this situation, in which multi-focus image fusion is a simple yet efficient way to combine multiple images 31 
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that shoot the same scene at different focal points into a single image, on which all objects are clearly 32 

displayed [2].  33 

There are two basic requirements for a multi-focus image fusion method. One is that the focused 34 

regions should be determined and extracted from the given multi-focus input images and then preserved 35 

into the fused image, while all the defocused regions should be discarded [1]. The other is spatial artifacts 36 

or inconsistencies should be introduced to the fused image as little as possible during the fusion. Hence, 37 

how to accurately identify the focused and de-focused regions given the source images and how to 38 

combine the focused regions organically are two open questions in multi-focus image fusion. Our answer 39 

here is a new multi-focus image fusion method that employs super-pixel clustering and unified low-rank 40 

representation model. 41 

So far, a number of multi-focus image fusion methods have been presented. A thorough review of 42 

these methods can be found in [2]. Among these, the fusion methods based on image representation 43 

models, e.g., sparse representation (SR) [3, 4], low rank representation (LRR) [5, 6] and their different 44 

extensions [7, 8], have attracted considerable attention in recent years attributed to their flexibilities. 45 

Usually, most image representation-based fusion methods are implemented patch by patch. Concretely, 46 

they start by dividing the input images into patches with regular shapes and the same sizes, and then 47 

carry out the fusion at the patch level. 48 

 49 

Fig. 1. Illustration of some decision maps. (a) and (b) Source images with focus on the front and the back, respectively; (c) Decision 50 

map obtained by [3] without sliding window, where the “white” and “black” points denote that the corresponding regions in the 51 

fused image are selected from Fig. 1(a) and Fig. 1(b), respectively; (d) Decision map obtained by [1] with spatial contextual 52 

information; (e) Decision map obtained by the proposed method. 53 
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However, most of these fusion methods just consider each image patch individually, which ignore 54 

the spatial consistency among those image patches within a local region or an object. As a result, some 55 

serious spatial artifacts appear on the focus decision maps (or the fused images), as shown in the red 56 

rectangular regions of Fig. 1(c).  57 

For that, some fusion strategies have been proposed to suppress block artifacts and enhance the 58 

robustness against misregistration, among which the sliding window technology [3] is commonly 59 

employed. Despite its acceptable performance, sliding window usually leads to a huge requirement of 60 

memory storage as well as the increase of computational complexity. Alternatively, some spatial contexts 61 

or spatial consistency based strategies are presented in recent years [1, 7]. As displayed in the red 62 

rectangle regions of Fig. 1(d), these newly presented fusion strategies may diminish the spatial artifacts 63 

greatly. However, only the spatial consistency among those image patches within a local region is 64 

considered and the object area consistency among the patches within an object is ignored in these fusion 65 

strategies. Consequently, as shown in the purple circular region of Fig. 1(d), some patches may be still 66 

determined to have different focus information from those images in the same object.  67 

In fact, an object in a multi-focus image is generally either wholly in-focus or out-of-focus due to 68 

the fact that the camera lens usually focuses on an object when taking a picture. Accordingly, those image 69 

patches within the same object may be similar in focus, i.e., they are all in-focus or all out-of-focus.  70 

In addition to those spatial artifacts introduced in the fused image, “jagged” artifacts also arise 71 

frequently on the boundaries between the focused regions and the de-focused regions, as shown in the 72 

blue elliptical region of Fig. 1(d). This is an inherent problem in the patch-based fusion methods. Besides, 73 

it should be noted that most existing methods directly employ the intensity values as the feature for each 74 

patch, which are sensitive to the noise or illumination changes, especially, for smooth regions. As shown 75 
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in the rectangle regions of Fig. 1(c) and Fig. 1 (d) again, those isolated regions usually appear in those 76 

smooth regions that containing few details. 77 

In order to address such problems arising in those existing image representation-based fusion 78 

methods, we present a super-pixel clustering based multi-focus image fusion method via a unified low-79 

rank representation (ULRR) model. First, the input images are segmented into some super-pixels with 80 

irregular shapes rather than patches with fixed shapes to reduce the “jagged” artifacts between the 81 

focused and de-focused regions and meanwhile to preserve the boundaries of objects in the fused image. 82 

As well, multiple types of features, including colors, edges and textures, are extracted for each super-83 

pixel to boost the focus discrimination.  84 

Secondly, the super-pixels having similar features in each source image are first grouped into 85 

different clusters. Then these clusters are represented by using a proposed ULRR model considering the 86 

low-rankness (or correlations) of the super-pixels within a cluster. The proposed ULRR model is a sort 87 

of improved version of the traditional LRR model [9] by incorporating a Laplacian regularization term 88 

with respect to the representation coefficients. Here, the Laplacian regularization term intends to enforce 89 

the spatially adjacent super-pixels from the same cluster to be similar in representation coefficients and 90 

thus end up having similar focus information.  91 

Finally, a measure of focus (MOF) is defined for each super-pixel by engaging the representation 92 

coefficients and sparse errors obtained by ULRR to compute a focus decision map, which in turn guides 93 

the fusion procedure of various source images. As displayed in Fig. 1(e), the focused and de-focused 94 

regions can be well determined by using the proposed method, on which much fewer spatial artifacts 95 

appeared on the fused image, and the “jagged” artifacts between the focused and de-focused regions 96 

disappeared. Experimental results verify the superiorities of our proposed fusion method over some state-97 
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of-the-arts, even including some deep learning based methods, in diminishing the spatial artifacts in the 98 

fused image and the “jagged” boundary artifacts between the focused and de-focused regions. 99 

The main contributions of this paper are highlighted as follows.  100 

(1) A new multi-focus image fusion method based on clustering is proposed, where the spatial 101 

consistency among the local regions within an object is considered to reduce the spatial artifacts and to 102 

enhance the object area consistency in the fused image. This is different from that in [1] and [7], where 103 

only the local consistency among spatially-adjacent patches is considered.  104 

(2) A unified low-rank representation (ULRR) model is proposed to capture the “intrinsic” low-105 

rankness of each super-pixel cluster in our method, ensuring the spatial consistency among adjacent 106 

super-pixels within the same cluster or object. In addition, a new dictionary is constructed for ULRR. 107 

(3) The proposed fusion method is implemented super-pixel by super-pixel, rather than in a patch 108 

based way as that in most existing SR and LRR based fusion methods, to reduce the “jagged” artifacts 109 

between the focused and de-focused regions and meanwhile to preserve the boundaries of objects in the 110 

fused image. Moreover, multiple types of features, including colors, edges, and textures, are extracted 111 

for each super-pixel to boost the focus discrimination. This is also beyond the traditional SR or LRR 112 

based fusion methods, where the intensity values are directly adopted as the features. 113 

The rest of this paper is organized as follows. The related work is briefly introduced in Section 2, 114 

while the details of the proposed method are elaborated in Section 3. Experimental results as well as 115 

conclusions are given in Section 4 and Section 5, respectively. 116 

2. Related works 117 

So far, tremendous efforts have been devoted to multi-focus image fusion and numerous fusion 118 

algorithms have been presented, which fall into two groups: transform domain based methods and spatial 119 
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domain based methods.  120 

Among the former, multi-scale transform (MST) based fusion methods are the trends and have been 121 

discussed over the years [10, 11]. Different from transform domain based ones, spatial domain based 122 

methods directly extract the fused images (or image patches) from the source images via some measures 123 

of focus (MOFs) [12]. This usually caused many undesirable spatial artifacts. For that, some block and 124 

region based fusion methods have been presented in the past few years [13, 14, 15,]. Especially, in [15], 125 

a regional approach based on super-pixel segmentation and mean filtering was proposed. Currently, based 126 

on image matting [16], guided filtering [17], edge model [18] and conditional random field optimization 127 

[19], some new spatial domain based fusion methods have been presented to achieve state-of-the-art 128 

performance in information extraction and spatial consistency. A survey on these methods can be seen in 129 

[2, 20]. 130 

Recently, some new image representation models, such as sparse representation (SR) [3, 4, 21], low 131 

rank representation (LRR) [5, 6] and their variants [7, 8] have been employed to image fusion. For 132 

example, Yang et al. [3] took the first attempt in applying the SR theory to multi-sensor image fusion. In 133 

[21], Chen et al. introduced a multi-focus image fusion method based on clarity-enhanced image 134 

segmentation and regional sparse representation to strengthen its robustness against distortions that 135 

usually resulting from the pixel based coefficients selection. In our previous work [7], a robust sparse 136 

representation (RSR) based multi-focus image fusion was presented, where information from each local 137 

image patch and its spatial contextual information were jointly employed to determine the focused and 138 

de-focused regions. A multi-focus image fusion method based on dictionary learning and LRR was 139 

presented to achieve good performance in both global and local structures in [5]. The latent low-rank 140 

representation was used to extract the salient information of source images and guide the adaptive fusion 141 
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of low-pass sub-images in [8]. A thorough review and discussion about these fusion methods can be seen 142 

in [22]. 143 

With the development of deep learning, some multi-focus image fusion methods based on deep 144 

neural networks, e.g., convolutional neural networks (CNNs), have been proposed. Early CNN works 145 

[23, 24] view the determination of each image patch to be in-focus or out-of-focus as a classification 146 

problem. Later, some end-to-end networks are introduced for multi-focus image fusion [25, 26, 27]. 147 

Recently, several ensemble learning based multi-focus image fusion methods [28, 29] were presented, 148 

where an ensemble of three CNNs were trained on three datasets to predict the decision maps without 149 

the need of post-processing steps. Although these deep learning based methods may achieve satisfactory 150 

performance, a massive amount of training data with labels are required to train such networks. This is a 151 

challenging work for multi-focus image fusion.  152 

3. Proposed method 153 

 154 

Fig. 2. Diagram of the proposed multi-focus image fusion algorithm. 155 

In this paper, only two source images are taken into account, and the images are supposed to have 156 

been well registered in advance. Fig. 2 depicts the diagram of the proposed fusion method, which consists 157 

of the following components: (1) Super-pixel segmentation and clustering; (2) Unified low-rank 158 

representation; (3) Focus decision map computation and refinement. Based on the focus decision map, 159 
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the fused image is thus obtained. In addition, a local compact dictionary will be constructed from the 160 

average image of each pair of source images, when the source images are decomposed using the proposed 161 

ULRR model. In the following subsection, we will describe each component in detail. 162 

3.1. Super-pixel segmentation and clustering 163 

3.1.1. Super-pixel segmentation 164 

Super-pixels group perceptually similar pixels to create visually meaningful entities while heavily 165 

reducing the number of primitives for subsequent processing steps [30]. Since they were first named in 166 

2003 [31], super-pixels have been widely applied to many computer vision tasks, including image fusion 167 

[15]. Compared with image patches of regular shapes, super-pixels can preferably preserve the boundary 168 

of objects in an image. Considering that, we adopt super-pixels, instead of image patches, in our proposed 169 

fusion method. So far, many super-pixel algorithms have been proposed, among which, linear spectral 170 

clustering (LSC) [32] is shown to achieve higher visual compactness and boundary adherence for natural 171 

images but with lower computational costs. Considering that, we adopt LSC for super-pixel segmentation 172 

in this paper. 173 

As well, all the source images to be fused should be segmented into the same results so that their 174 

corresponding super-pixels can be properly merged in the subsequent fusion process. A commonly used 175 

way is to perform super-pixel segmentation on the average image of source images [15], and then map 176 

the super-pixel segmentation results to each source image. For multi-focus source images, some 177 

undesirable results may be obtained, especially for those transitional regions between focused and de-178 

focused regions. For example, as shown in the rectangle region of Fig. 3(a), parts of the hands in the 179 

focused regions have been grouped into the same super-pixel with some de-focused regions. Accordingly, 180 

parts of these regions will be mistakenly determined to be focused or de-focused ones and the border of 181 
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the hands will be destroyed in the fused image.  182 

 183 

Fig. 3. Illustration of super-pixel segmentation results by performing LSC on different input images. (a) On the average image of 184 

multi-focus source images; (b) On one of the multi-focus source images. 185 

Alternatively, we will perform super-pixel segmentation on one of the source images, rather than 186 

on the average image, in order to obtain more accurate boundaries between focused and de-focused 187 

regions. As shown in the rectangle region of Fig. 3(b), each part of the hands is grouped into a super-188 

pixel. In the subsequent fusion process, the border of the hands will be well preserved. 189 

In summary, given a pair of source images, denoted by 
AI  and 

BI , respectively, we first perform 190 

LSC on 
AI  to obtain a set of super-pixels  , | 1,2, ,A isp i N= , where N  denotes the total number 191 

of super-pixels and is experimentally set to 350 in this paper. Then we map the segmentation results on 192 

BI  and obtain  , | 1,2, ,B isp i N= . 193 

3.1.2. Super-pixel clustering 194 

In general, a super-pixel only denotes a regional atom without any perceptual meaning. Accordingly, 195 

as shown in Fig. 4 (c), each object in an image and the background may be constructed by many super-196 

pixels with similar features. In real applications, we usually focus the lens on one object in the scene 197 

when taking a picture. As a result of that, the super-pixels within the same object in a multi-focus image 198 

may be all in-focus or all out-of-focus with a large probability. When the fusion is directly performed on 199 

super-pixels, the super-pixels within the same object may be mistakenly determined to have different 200 

focus information from the others. Some spatial artifacts may thus be easily introduced to the fused image. 201 
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 202 
Fig. 4. Super-pixel clusters. (a) and (b) Source images with focus on the front and the back, respectively; (c) Results of super-pixel 203 

segmentation; (d) Results of super-pixel clustering. 204 

In order to address such problem, we will first group the super-pixels in each source image into 205 

different clusters and then consider the spatial consistency among the super-pixels within the same cluster 206 

to introduce fewer spatial artifacts to the fused image. Similar to that in super-pixel segmentation, we 207 

just group the super-pixels in one of the source images and then map the clustering results to the other 208 

source image to ensure that the two multi-focus source images have the same clustering results. 209 

In this paper, because of its popularity and simplicity, we adopt the k  -means algorithm [33] to 210 

achieve the super-pixel clustering, where the averaging RGB color values of all the pixels in each super-211 

pixel are employed as the super-pixel feature. Specifically, given the two source images 
/A BI 1 and their 212 

corresponding two sets of super-pixels  / , | 1,2, ,A B isp i N=  , two sets of super-pixel clusters 213 

 / , | 1,2, ,A B kC k K=  are obtained, where K denotes the number of clusters and will be discussed in 214 

the experimental part. And each cluster
/ ,A B kC  contains

kN  super-pixels, i.e.215 

 / , / , , | 1,2,...,A B k A B k i kC sp i N= = . As shown in Fig. 4 (d), each object in the image is segmented into only 216 

a fewer number of clusters, which will facilitate the consistency among the super-pixels within the same 217 

object in the subsequent fusion process. 218 

3.1.3. Feature extraction 219 

In most SR or LRR based fusion methods, pixel intensity values are often directly employed as the 220 

 
1The symbol /A B  in 

/A BI  denotes A or B, i.e., 
/A BI  means 

AI  or 
BI . In the following contents, the definition of similar 

symbols is the same.  
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features, which are sensitive to noise or illumination changes. Some regions, especially those smooth 221 

regions, are easily mistakenly determined to be in-focus or out-of-focus. In view of this, we extract 222 

multiple types of features, including colors, edges and textures, rather than just the intensity, for each 223 

super-pixel in our proposed fusion method. Specifically, feature extraction for each super-pixel and 224 

super-pixel cluster can be described as follows. 225 

(1) For each pixel 
/ ,A B jp  in one of the source images, construct its feature vector / ,

d

A B j Rv  of 226 

dimension 44d = , including colors, edge and texture features. RGB color values as well as HIS (Hue, 227 

Saturation, Intensity) components are extracted for each pixel, producing 6-dimensional color features. 228 

For edge features, high pass filter, discrete wavelet and several edge operators (LOG, Prewitt, Sobel, et 229 

al.) are performed onto the image, yielding 18-dimension filter responses at each location. Texture 230 

features, which are constituted by the gray level co-occurrence matrix [34] of each super-pixel, contain 231 

a total of 20-dimensional features, including contrast, energy, homogeneity, dissimilarity and difference 232 

entropy.  233 

(2) Construct the feature vector / ,

d

A B i Rx   for each super-pixel 
/ ,A B isp   by averaging all the 234 

feature vectors of pixels contained in the current super-pixel, i.e., / , / ,

1

j ii

A B i A B j

p spspN 

= x v  , where 
ispN  235 

stands for the total number of pixels contained in the super-pixel 
/ ,A B isp . 236 

(3) Construct the feature matrix / ,
kd N

A B k R


X  for each super-pixel cluster 
/ ,A B kC  by using all of 237 

the vectors of the super-pixels in the same cluster, i.e., 238 

, , ,1 , ,2 , ,[ , , , ]
kA k A k A k A k N=X x x x ,                                              (1) 239 

, , ,1 , ,2 , ,[ , , , ]
kB k B k B k B k N=X x x x ,                                              (2) 240 

where 
/ , ,A B k ix  denotes the feature vector of the i-th super-pixel 

/ , ,A B k isp  in the cluster 
/ ,A B kC . 241 

 242 
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3.2. Proposed unified low-rank representation (ULRR) for super-pixel clusters 243 

As shown in Fig. 4 (d), each super-pixel cluster represents a part of an object or a local region having 244 

similar appearances in the scene. Therefore, the super-pixels from the same cluster are likely to be similar. 245 

Accordingly, the feature matrix 
kX 2 for each super-pixel cluster constructed in the previous subsection 246 

3.1.3 has “intrinsic” property of low-rankness. Therefore, a low-rank representation (LRR) model is a 247 

natural choice for capturing the “intrinsic” low-rankness of each super-pixel cluster in our proposed 248 

fusion method.  249 

As a powerful analytical tool, LRR [9] intends to recover low-rank structures from the data 250 

corrupted by sparse but strong noise. We may directly perform LRR on the feature matrix 
kX , but this 251 

would ignore the spatial consistency among the super-pixels within the same cluster.  252 

As discussed in the previous subsection 3.1.2, the spatially adjacent super-pixels residing within the 253 

same cluster may have similar focus information, i.e., they may be all in-focus or all out-of-focus. 254 

Therefore, these super-pixels will have similar “intrinsic” property, i.e., they may have similar 255 

representation coefficients via LRR. Motivated by that, we think of a unified low-rank representation 256 

(ULRR) model by incorporating a Laplacian regularization term with respect to the representation 257 

coefficients into the traditional LRR model to capture the low-rankness of each super-pixel cluster. 258 

3.2.1. Unified low-rank representation model 259 

Given a dictionary d MR D  with M  atoms of dimension d and the feature matrix kd N

k R


X  260 

( 1,2,...,k K=  ) for each super-pixel cluster
kC  , the unified low-rank representation model is 261 

mathematically defined by 262 

1

1

2,1,
1,

min tr( ), . . , 1, 2, ,
k

k

K
T

k k k k

k

s t k K 


=

+ + = + =
Z Z
E E

Z E ZLZ X DZ E ,             (3) 263 

 
2In this subsection, we remove the symbol /A B  from 

/ ,A B kX  for generality. 
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where 
kDZ  denotes the “intrinsic” low-rank part contained in the matrix 

kX . kM N

k R


Z  denotes 264 

the representation coefficient matrix to be sought. kd N

k R


E  represents the error or noise part. 
*kZ  265 

indicates the nuclear norm of the matrix 
kZ   and is a convex relaxation of the rank function. The 266 

matrices M NR Z   and d NR E   are constructed by  1 2, ,..., K=Z Z Z Z   and  1 2, ,..., K=E E E E  , 267 

respectively. 
2,1

E denotes the 
2,1l -norm of the matrix E . Minimizing 

2,1
E  enforces the matrix E  268 

to have column-sparsity.   and   are two positive trade-off parameters to balance the effect of each 269 

part.  270 

The Laplacian regularization term tr( )T
ZLZ  in Eq. (3) is defined by 271 

2

,2
,

1
tr( )

2

T

i j i j

i j

= −ZLZ z z ,                                              (4) 272 

where 
iz  denotes the -thi column of Z . The weight 

,i j  refers to the similarity between the -thi  273 

and -thj  super-pixels 
isp  and 

jsp , and is computed by 274 

2

2

2
,

exp( ), if and are spatially adjacent and belong to the same cluster
2

0, otherwise

i j

i j
i j

sp sp 

 −
 −= 



x x

. (5) 275 

Here, 
ix  and 

jx  are the feature vectors of 
isp  and 

jsp , respectively.   is a scalar parameter and 276 

we experimentally set it to 0.5 . Given these weights, an affinity matrix N NR W with its ( , )-thi j  277 

entry 
, ,i j i j=W  and a diagonal degree matrix 

N NR Λ   with its -thi   diagonal element 278 

, ,i i i jj
=Λ W  can be constructed. The Laplacian matrix 

N NR L  is then defined as = −L Λ W . 279 

Eq. (3) presents a convex optimization problem that can be solved by various methods. For that, we 280 

first convert it to the below equivalent one by involving some auxiliary variables in this paper: 281 

1

1

2,1, ,
1,

min tr( ), . . , ,
k

k

K
T

k k k k k k

k

s t 


=

+ + = + = =
Z Z
E E

J E HLH X DZ E Z J Z H .        (6) 282 

To solve it, a linearized alternating direction method with adaptive penalty (LADMAP) [35] is 283 

adopted, which requires minimizing the following augmented Lagrangian function 284 
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2 2

1, 2,

1

2

32,1

, ,
2 2

      tr( ) ,
2

K

k k k k k k k k k k k k kF F
k

T

F

L
 


 


=

 
= + − − + − + − − + − 

 

+ + + − + −

 J Y X DZ E Y Z J X DZ E Z J

E HLH Y Z H Z H

, (7) 285 

where Lagrange multipliers 
1,kY , 

2,kY ( 1,2,..., )k K=  and 
3Y  help to remove the equality constraint 286 

in Eq. (6). 0   is a penalty term. A,B  represents the Euclidean inner product of A  and B . This 287 

problem can thus be minimized with respect to 
kZ  (or Z ), 

kE (or E ), 
1,kY , 

2,kY  ( 1,2,..., )k K= , 288 

3Y , and H , respectively. Algorithm 1 briefly summarizes how we calculate the proposed ULRR, and 289 

more details are explained in Appendix A.  290 

Algorithm 1:  Solving ULRR via LADMAP 

Input: Observed data ( 1,2,..., )k k K=X , dictionary D , and parameters   and   

Output: Z  and E  

Initialization:
0 =Z 0 , 

0 =E 0 , 0

k =J 0 , 
0 0=H , 0

1 0=Y , 0

2 0=Y , 0

3 0=Y , 0 610 −= , 6

max 10 = , 1.1 =  

While not converged do 

(1) Fix the others and update ( 1,2,.., )k k K=J using Eq. (A2); 

(2) Fix the others and update H  using Eq. (A4); 

(3) Fix the others and update ( 1, 2,.., )k k K=Z  and Z  using Eq. (A6); 

(4) Fix the others and update E  using Eq. (A8); 

(5) Update the multipliers 
1,kY , 

2, ( 1,2,.., )k k K=Y  and 
3Y : 

1 1 1

1, 1, ( )i i i i

k k k k k+ + +=Y Y + X - DZ - E , 1 1 1

2, 2, ( )i i i i i

k k k k+ + +=Y Y + Z - J , 1 1 1

3 3 ( )i i i i i+ + +=Y Y + Z - H ; 

(6) Update  : 

1

maxmin( , )i i   + = ;  

(7) Check the convergence conditions: 

1 1max i i

k k k
k

+ +


X - DZ - E , 

1i i +


Z - Z , and 

1i i +


E - E ; 

where 


  denotes the l -norm of a matrix. 

end while 

3.2.2. Dictionary construction 291 

In addition to the ULRR model, the dictionary is also crucial to fusion success. The original feature 292 

matrices (e.g., 
,A kX  or 

,B kX ) from each source image may be directly employed as the dictionary [9] 293 

for ULRR. However, it is difficult to maintain the fairness of focus measure for the corresponding super-294 

pixels from different source images. Alternatively, an adaptive dictionary is constructed from an image 295 
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obtained by averaging each pair of source images in our proposed fusion method when decomposing 296 

,A kX  and 
,B kX . Moreover, as discussed in [36], the dictionary with fairly low-rank is more desirable 297 

for LRR. Considering that, we will perform a Gaussian filtering on the average image before constructing 298 

the dictionary. Specifically, the dictionary for ULRR is constructed as in Algorithm 2. 299 

Algorithm2: Dictionary construction 

(1) For each pair of source images 
AI  and 

BI , an image 
ABI  is obtained by averaging the source images; 

(2) A blurred average image 
ABI   is obtained by performing a Gaussian filtering with kernel size of 8 8  on 

ABI . 

(3) The super-pixel segmentation result for 
AI  (or

BI ) is mapped to
ABI  , obtaining a set of super-pixels

 , | 1,2,...,AB isp i N= . 

(4) The features  , | 1,2,...,d

AB i R i N =x  are extracted for the super-pixels  , | 1,2,...,AB isp i N=  by using the same way 

as in Subsection 3.1.3. A feature matrix is thus constructed by 
,1 ,2 ,, ,..., d N

AB AB AB AB N R  =  X x x x . 

(5) A set of eigenvalues  1 2| 0, 1,2,...,i N i N       =  , sorted in descending order, and their corresponding 

eigenvectors  | 1, 2,...,i i N=ρ  are obtained by performing principal component analysis (PCA) on the matrix 
ABX . 

(6) A compact dictionary with M   atoms of dimension d is constructed by the eigenvectors  | 1, 2,...,i i M=ρ  

corresponding to the first M largest eigenvalues, i.e., 
1 2[ , , , ] Rd M

M

= D ρ ρ ρ , where M  is experimentally set to 64 

in this paper. 

As discussed above, a dictionary is adaptively constructed from each pair of multi-focus source 300 

images. The adaptability will improve the representation ability of each constructed dictionary, which 301 

will be validated in the subsequent experimental part. In addition, the number of atoms in the dictionary 302 

gets reduced by using PCA. This also speeds up computation of the proposed fusion method. 303 

3.3. Focus decision map computation and refinement 304 

Given the constructed dictionary D  and a set of feature matrices  , | 1,2,..,A k k K=X  extracted 305 

from a source image 
AI , a representation coefficient matrix 

AZ  and a sparse error matrix 
AE  are 306 

obtained by solving Eq. (3). Similarly, a representation coefficient matrix BZ  and a sparse error matrix 307 

BE  for the source image BI  are obtained. 308 

As shown in Fig. 5, the super-pixels in the focused regions normally have larger representation 309 

coefficient magnitudes as well as sparse errors, especially larger representation coefficient magnitudes, 310 
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than those super-pixels in the de-focused regions. Therefore, the focused and de-focused regions in a 311 

multi-focus image can be determined by jointly using the representation coefficients and sparse errors. 312 

 313 
Fig. 5. Illustration of the ULRR results on a pair of multi-focus source images. (a), (d) Source images with focus on the front and 314 

the back, respectively; (b), (e)Representation coefficients obtained by ULRR for (a) and (d), respectively; (c), (f) Sparse errors 315 

obtained by ULRR for (a) and (d), respectively. For better displaying, each super-pixel in the source image is replaced by the l2-316 

norm of its corresponding column vector in the representation coefficient matrix and spare error matrix. 317 

For that, a measure of focus (MOF) for the i-th super-pixel 
/ ,A B isp  is first defined by: 318 

  
/ , / , / ,2 2

(1 )A B i A B i A B iMOF  = + −z e ,                                         (8) 319 

where 
/ ,A B iz  and 

/ ,A B ie  are the i-th column of 
/A BZ  and 

/A BE , respectively. 
2

  denotes the 
2l -320 

norm of a vector.   is experimentally set to 0.95 in this paper. 321 

Then an initial focus decision map   of the same size as the source images is defined and its each 322 

element ( , )x y  is computed by 323 

/ , , ,1, ( , )  &  
( , )

0, otherwise

A B i A i B ix y sp MOF MOF
x y

 
 = 


.                                (9) 324 

Fig. 6(c) illustrates an initial focus decision map obtained by using Eq. (9). It can be obviously 325 

found that most of the focused regions and de-focused regions can be accurately determined by using the 326 

proposed MOF defined by Eq. (8). In addition, the boundaries between the focused regions and the de-327 

focused regions are naturally preserved, and few “jagged” artifacts are introduced because of the super-328 

pixel segmentation.  329 
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 330 

Fig 6. Illustration of the decision maps obtained by different post-processing. (a) and (b) A pair of multi-focus images with focus 331 

on the front and the back, respectively; (c) Initial focus decision map obtained by using Eq. (9); (d) Decision map after image 332 

matting; (e) Decision map after removing “holes”; (f) Final decision map after guided filtering.  333 

In spite of that, some isolate regions still exist, as shown in Fig. 6(c). To address such problems, 334 

some post-processing is further performed on the initial focus map, which includes: (1). Image matting 335 

[37] to refine the boundary between the focused and de-focused region; (2). Removing holes [7] to erase 336 

small isolate regions, i.e., a region smaller than an area threshold is reversed in the binary initial decision 337 

map; (3). Guided filtering [17] to reduce the spatial artifacts between focused and de-focused regions. 338 

After that, a refined focus decision map   is finally obtained. 339 

Fig. 6 (d) indicates that the boundary accuracy between the focused and de-focused regions is 340 

improved to some extent by using image matting. Some isolated regions are also eliminated. After 341 

removing holes, some small isolate regions are further removed, as shown in Fig. 6(e). Finally, as shown 342 

in Fig. 6(f), some gradual transitional regions are generated between the focused and de-focused regions, 343 

which makes the boundaries look more natural. 344 

3.4. Fusion 345 

Given the refined focus decision map  , the fused image 
FI  can thus be obtained by using a 346 

‘weighted averaging’ scheme, i.e.,  347 

( ) ( ) ( ) (1 ( )) ( )F A BI x, y x, y I x, y x, y I x, y =  + − .                                  (10) 348 

Here, the refined focus decision map   is used as the weighted map. In summary, the proposed fusion 349 

method can be described in Algorithm 3. 350 

Algorithm 3:The proposed multi-focus image fusion method based on super-pixel clustering and ULRR 

(1) Perform super-pixel segmentation on the source images as described in Subsection 3.1.1, and obtain two sets of super-

pixels  , | 1,2,...,A isp i N=  and  , | 1,2,...,B isp i N= ;
 

(2) Perform super-pixel clustering on  , | 1,2,...,A isp i N=  and  , | 1,2,...,B isp i N=  as described in Subsection 3.1.2, and 
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obtain two sets of super-pixel clusters  , | 1,2,...,A kC k K=  and  , | 1,2,...,B kC k K= ; 

(3) Construct the feature matrix for each super-pixel as described in Subsection 3.1.3 and obtain two sets of feature matrices 

 , | 1,2,...,A k k K=X  and  , | 1,2,...,B k k K=X ; 

(4) Construct the dictionary by using Algorithm2. 

(5) Perform ULRR on  , | 1,2,...,A k k K=X   and  , | 1,2,...,B k k K=X   by using Eq. (3), and obtain representation 

coefficient and sparse error matrices  ,A AZ E  and  ,B BZ E  for source images AI  and BI , respectively; 

(6) Compute the focus decision map   by using the matrices  , , ,A B A BZ Z E E  as described in Subsection 3.3; 

(7) Construct the fused image FI  by using Eq. (10). 

4. Experiment results and analysis 351 

Extensive experiments are conducted to verify the performance of the proposed multi-focus image 352 

fusion algorithm, which are organized as: 1) the impacts of several important parameters on the proposed 353 

method are investigated; 2) the validities of the constructed dictionaries and the proposed ULRR are 354 

carried out; 3) comparisons against some state-of-the-art methods on two public databases; (4) extension 355 

to the fusion of triple multi-focus images; (5) some discussions on the proposed fusion method. 356 

4.1. Parameters setting 357 

Here, we use ten pairs of multi-focus source images, which are manually generated from the images 358 

in Fig. 7 [38], to investigate how the parameters, including the cluster number K, and the trade-off 359 

parameters   and   in Eq. (3), affect the proposed method. For that, image matting [37] is performed 360 

on each image in Fig. 7 to extract the foreground object regions and the background regions, respectively. 361 

Then the foreground regions and the background regions are blurred using a ‘Gaussian’ low-pass filter, 362 

respectively, to obtain a pair of multi-focus images. Thus, ten pairs of manually generated multi-focus 363 

source images are obtained. Finally, several fused images are obtained from each pair of these multi-364 

focus images by using the proposed method with different parameters. These fused images are compared 365 

against their corresponding ‘ideal’ images in Fig. 7 using the metrics like mean square error (MSE) and 366 

difference coefficients (DC) [1]. Smaller MSE and DC values imply higher fusion performance. 367 

The experimental results in Table 1 demonstrate that the fusion performance achieves desirable 368 

when the number of clusters K is set to 4 or 5. Similarly, the experimental results in Table 2 indicate that 369 
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the proposed fusion method achieves the best when   is set to 0.05. The performance increases with 370 

the decrease of   and keeps almost unchanged when   achieves 0.002. In the following experiments, 371 

we set the parameters K,   and   to 4, 0.05, 0.002, respectively. 372 

 373 

Fig.7. Original images that used to generate the multi-focus images. 374 

Table 1. Fusion performance with different values of K on the 10 pairs of manually generated multi-focus images. 375 

K 2 3 4 5 6 8 

MSE 12.8483 12.5746 11.9715 11.9666 12.3555 13.5860 

DC 0.0122 0.0118 0.0115 0.0114 0.0115 0.0120 

Table 2. Fusion performance with different values of
 
  and   on the 10 pairs of manually generated multi-focus images. 376 

 
  with =0.002    with =0.05  

0.03 0.04 0.05 0.06 0.08 0.01 0.005 0.002 0. 001 0.0001 

MSE 13.5656 13.5622 11.9715 13.4647 13.6323 13.3931 12.5915 11.9715 11.9715 11.9715 

DC 0.0119 0.0119 0.0115 0.0125 0.0125 0.0125 0.0118 0.0115 0.0115 0.0115 

4.2. Validity of the constructed dictionary 377 

In this subsection, we will investigate the impacts of different dictionaries on the fusion results to 378 

verify the constructed dictionary in our proposed fusion method. To do so, six dictionaries are constructed 379 

for fusion. The first three dictionaries ( Global

KsvdD , Ave

KsvdD  and Blur

KsvdD , for short) are constructed by using K-380 

SVD [39], and the other three dictionaries ( Global

PCAD , Ave

PCAD  and Blur

PCAD , for short) are constructed by using 381 

PCA. Especially, Global

KsvdD  and Global

PCAD  are globally learned from a set of nature images with high spatial 382 

resolutions and have 256 dictionary atoms. Ave

KsvdD   and Ave

PCAD   are adaptively constructed from the 383 

average image of each pair of source images and have 64 dictionary atoms. For that, the source images 384 

are first averaged and the feature matrix for the average image is extracted afterwards. Then a dictionary 385 

is learned from the feature matrix by using K-SVD or PCA. Blur

KsvdD   and Blur

PCAD   (i.e., the employed 386 
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dictionary in our proposed fusion method) are adaptively constructed from the blurred average image of 387 

each pair of source images and also have 64 dictionary atoms. 388 

 389 
Fig. 8. Fusion results by using different dictionaries. (a1) and (b1) A pair of source images with focus on the front and the back, 390 

respectively; (c1) ~ (h1) Initial focus decision maps for (a1) and (b1) obtained by using Global

KsvdD , Ave

KsvdD , Blur

KsvdD , Global

PCAD , Ave

PCAD391 

and Blur

PCAD , respectively; (a2) ~ (h2) Another pair of source images and their initial focus decision maps obtained by using different 392 

dictionaries. 393 

Fig. 8 illustrates the fusion results when using different dictionaries. It is clear that using the 394 

dictionaries constructed by K-SVD could not lead the proposed fusion method to achieve desirable 395 

results. Furthermore, it is also obvious that the proposed fusion method can achieve better results by 396 

using Blur

PCAD  than by using Ave

PCAD  and Global

PCAD . This indicates that the representation coefficients and 397 

the sparse errors, especially the representation coefficients, deduced from the proposed ULRR model can 398 

better capture the “intrinsic” focus characteristics of a multi-focus image under a dictionary constructed 399 

from blurred images than those constructed from clear images. 400 

4.3. Validity of the proposed ULRR model for multi-focus image fusion 401 

In order to test the validity of the proposed ULRR model for multi-focus image fusion, three 402 

versions (ULRR_v1, ULRR_v2, ULRR_v3, for short, respectively) of our proposed fusion method just 403 

with different LRR models are performed on two pairs of multi-focus source images, shown in Fig. 9. In 404 

ULRR_v1, the traditional LRR model [9] is employed, which is directly performed on the feature 405 

matrices /A BX   constructed from source image super-pixels rather than on the feature matrices 406 

 / , | 1,2,...,A B k k K=X  constructed from the source super-pixels clusters. In ULRR_v2, the proposed 407 

ULRR model in Eq. (3) without the Laplacian regularization term is employed. In ULRR_v3, i.e., the 408 
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proposed fusion method, the proposed ULRR model in Eq. (3) with the Laplacian regularization term is 409 

employed.  410 

As shown in Fig. 9 (c1) and Fig. 9 (c2), many isolated regions existed in the focus decision maps 411 

obtained by using ULRR_v1. Differently, the isolated regions are greatly reduced in the focus decision 412 

maps obtained by using ULRR_v2, as shown in Fig. 9 (d1) and Fig. 9 (d2). Especially, as shown in Fig. 413 

9 (e1) and Fig. 9 (e2), the isolated regions are significantly reduced in the focus decision maps when 414 

using ULRR_v3. This indicates that performing ULRR on the super-pixel clusters can better capture the 415 

“intrinsic” focus information of different regions in a multi-focus image than directly performing LRR 416 

on super-pixels. This owes to the consideration of super-pixel clusters in the proposed method via ULRR, 417 

especially the spatial consistency among the super-pixels within the same cluster via the Laplacian 418 

regularization term in ULRR.  419 

 420 

Fig. 9. Illustration of the validity of the proposed ULRR model. (a1) and (b1) A pair of source images with focus on the front and 421 

the back, respectively; (c1) ~ (e1) Initial focus decisions maps for (a1) and (b1) obtained by ULRR_v1, ULRR_v2 and ULRR_v3, 422 

respectively; (a2) ~ (e2) Another pair of source images and their initial focus decision maps obtained by using different models. 423 

4.4. Comparisons with traditional fusion methods 424 

Here, we compare our method (ULRR, for short) with another 6 traditional state-of-the-art methods, 425 

including GFF [17], IM [16], SPixel [15], LR_RSR [7], SRCF [4], and DL_LRR [5]. The public Lytro 426 

Dataset in [4] including 20 pairs of multi-focus images and a smaller dataset (SMD, for short) including 427 
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10 pairs of multi-focus images that are collected from different kinds of literature are employed to test 428 

different fusion methods, which are illustrated in Fig. 10 and Fig. 11, respectively. 429 

 430 

Fig. 10. Lytro Dataset. (a1) ~ (a10) The first 10 input images with the focus on the front part; (b1) ~ (b10) The corresponding input 431 

images with the focus on the back part; (a11) ~ (a20) The remaining 10 input images with the focus on the front part; (b11) ~ (b20) 432 

The corresponding input images with the focus on the back part. 433 

 434 

 Fig. 11. SMD Dataset. (a1) ~ (a10) The 10 input images with focus on the left (or front) part; (b1) ~ (b10) The corresponding 10 435 

input images with focus on the right (or back) part. 436 

In order to quantitatively compare the fusion performance of different methods, six metrics are used, 437 

including mutual information based fusion metric FMI [40], universal image quality index based metric 438 

uiqiQ  [41], quaternion based color image fusion quality metrics 
ssimQ  [42] and 

4Q  [43], and phase 439 

consistency based metrics PCQ   [44] and _ZNCC PC   [45]. The former four metrics measure how 440 

well the original information, such as entropy information and structures, from the source images, have 441 

been preserved in the fused images. The last two metrics may evaluate different methods in spatial 442 

consistency to some extent. Larger values of these metrics are more desirable for a fusion method. 443 

Fig. 12 and Fig. 13 illustrate some fusion results on Lytro Dataset and SMD Dataset obtained by 444 
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some of the fusion methods mentioned above3. In addition, the initial decision maps obtained by using 445 

our proposed ULRR method without any post-processing steps are also illustrated in Fig. 12 (i) and Fig. 446 

13(i). Table 3 and Table 4 report the average quantitative results on the two datasets, respectively.  447 

 448 

Fig. 12. Some fusion results on Lytro Dataset. (a) GFF; (b) IM; (c) SPixel; (d) LR_RSR; (e) SRCF; (f) p_CNN; (g) CNN; (h) 449 

EN_CNN; (i) ULRR without post-processing steps; (j) ULRR. The decision maps in (h) and (i) are initial ones without using any 450 

 
3 Given a pair of multi-focus images, DL_LRR directly outputs the finally fused images without using focus decision maps. 

Therefore, the visual results obtained by DL_LRR are not provided in Fig. 12 and Fig. 13. 
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post-processing steps. The remaining decision maps are the final ones after the post-processing steps. 451 

 452 

Fig. 13. Some fusion results on SMD Dataset. (a) GFF; (b) IM; (c) SPixel; (d) LR_RSR; (e) SRCF; (f) p_CNN; (g) CNN; (h) 453 

EN_CNN; (i) ULRR without post-processing steps; (j) ULRR. The decision maps in (h) and (i) are initial ones without using any 454 

post-processing steps. The remaining decision maps are the final ones after the post-processing steps. 455 

From Fig. 12 and Fig. 13, the following facts can be easily observed. Plenty of spatial artifacts 456 

appear on the fused images obtained by GFF. IM usually introduces some spatial artifacts on the 457 

boundaries between focused and de-focused regions. In most cases, SPixel cannot accurately determine 458 

the boundaries between the focused and de-focused regions, although few spatial artifacts are introduced 459 

in their decision maps. LR_RSR and SCRF introduce fewer spatial artifacts in their decision maps. But 460 

some regions, especially those smooth regions as observed in the red elliptical regions in Fig. 12 (d) and 461 

(e), are mistakenly labeled as out-of-focus (or in-focus) by the two methods. As discussed in the earlier 462 
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part of Section 1, this may be due to the fact that only the intensity values of the input images are 463 

employed as the features in LR_RSR and SRCF. Moreover, some “jagged” artifacts exist in the 464 

boundaries between the focused and de-focused regions (e.g., the green rectangle regions) of Fig. 12(d), 465 

Fig. 12(e), Fig. 13(d) and Fig. 13(e). 466 

Differently, as shown in Fig. 12(j) and Fig. 13(j), almost no isolate regions exist in the decision 467 

maps obtained by ULRR. This indicates that the focused and de-focused regions in the source images 468 

are better determined by ULRR than the other methods. Accordingly, fewer spatial artifacts are involved 469 

in the fused images by using our proposed fusion method. Moreover, no “jagged” artifacts exist in the 470 

decision maps obtained by ULRR. The boundaries between the focused and de-focused regions in Fig. 471 

12(j) and Fig. 12(j) look closer to the boundaries of the objects in the source images. The comparisons 472 

between Fig. 12 (i) and (j), Fig. 13(i) and (j), indicate that the post-processing steps can partially benefit 473 

to the improvements of our proposed method. 474 

Table 3. Averaging performance of different traditional fusion methods on Lytro Dataset. 475 

Methods FMI uiqiQ  
ssimQ  

4Q  
PCQ  _ZNCC PC  

GFF 1.4153 0.9092 0.8838 0.9754 0.6817 0.9273 

IM 1.4102 0.8932 0.8759 0.9736 0.6225 0.9078 

SPixel 1.4194 0.9048 0.8818 0.9746 0.6736 0.9248 

LR_RSR 1.4198 0.9072 0.8838 0.9751 0.6763 0.9270 

SRCF 1.4195 0.9105 0.8818 0.9747 0.6790 0.9276 

DL_LRR 1.4199 0.9015 0.8829 0.9748 0.6347 0.9077 

ULRR 1.4197 0.9117 0.8844 0.9756 0.6819 0.9317 

Table 4. Averaging performance of different traditional fusion methods on SMD Dataset. 476 

Methods FMI uiqiQ  
ssimQ  

4Q  
PCQ  _ZNCC PC  

GFF 1.1831 0.9053 0.7824 0.9103 0.6213 0.9189 

IM 1.1931 0.9024 0.7777 0.9053 0.5948 0.9243 

SPixel 1.1871 0.9070 0.7779 0.9058 0.6213 0.9287 

LR_RSR 1.1852 0.9079 0.7802 0.9076 0.6297 0.9288 

SRCF 1.1873 0.9141 0.7783 0.9057 0.6234 0.9283 

DL_LRR 1.1860 0.8850 0.7767 0.9055 0.5223 0.8743 

ULRR 1.1891 0.9119 0.7815 0.9086 0.6314 0.9356 
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The quantitative results in Table 3 and Table 4 are in line with the visual results above, which 477 

demonstrates that ULRR significantly outperforms the other methods in terms of PCQ
  and 478 

_ZNCC PC
. This indicates that our proposed fusion method performs the best in spatial consistency, 479 

compared to those methods mentioned here, and fewer spatial artifacts have been introduced to the fused 480 

images by using ULRR than by the other methods. Table 3 also demonstrates that ULRR performs the 481 

best on Lytro Dataset in terms of uiqiQ
 , ssimQ

  and 4Q
 . Table 4 demonstrates that ULRR always 482 

achieves the top two performance on SMD Dataset in terms of FMI , uiqiQ
 , ssimQ

  and 4Q
 . This 483 

indicates that, in addition to spatial consistency, our proposed fusion method can also achieve better 484 

performance in information extraction than the other methods in most cases. 485 

4.5 Comparisons with deep learning based methods 486 

In addition to those traditional methods, three deep learning (DL) based fusion methods, including 487 

CNN [23], p_CNN [24] and EN_CNN [28], are compared with our proposed fusion method. Some visual 488 

results on Lytro Dataset and SMD Dataset are also illustrated and provided in Fig. 12 and Fig. 13, 489 

respectively. The quality results on the two datasets are provided in Table 5 and Table 6, respectively. 490 

As shown in the first columns of Fig. 12 and Fig. 13, these DL based methods can generally achieve 491 

desirable fusion results. Especially, EN_CNN can accurately determine the focused and de-focused 492 

regions without using any post-processing steps, thanks to the strong abilities of CNNs for image 493 

representation and feature extraction. However, as shown in the red elliptical regions of Fig. 12 and Fig. 494 

13, some smooth regions are also mistakenly determined to be in-focus (or out-of-focus) by these DL 495 

based methods. For some regions with abundant textures (e.g., the blue elliptical regions in Fig. 13), 496 

these DL based fusion methods could not determine the focused and de-focused regions uniformly. 497 

Differently, our proposed fusion method can completely determine the focused and de-focused regions 498 
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in most cases, as illustrated in Fig. 12 and Fig. 13. 499 

The experimental results in Table 5 and Table 6 indicate that ULRR achieves comparable 500 

performance with these DL based fusion methods in terms of FMI , uiqiQ
, ssimQ

 and 4Q
. In terms of 501 

PCQ
  and 

_ZNCC PC
 , ULRR performs competitively with CNN and outperforms p_CNN and 502 

ES_CNN by a clear margin. This indicates that, even in information extraction, our proposed method 503 

still performs competitively with these DL based ones, but in spatial consistency, our proposed method  504 

is clearly superior to most of these DL based ones. This further verifies the validity of our proposed 505 

fusion method in the reduction of spatial artifacts. 506 

Table 5. Averaging performance of different deep learning based fusion methods on Lytro Dataset.  507 

Methods FMI uiqiQ  
ssimQ  

4Q  
PCQ  _ZNCC PC  

CNN 1.4195 0.9111 0.8839 0.9753 0.6851 0.9307 

p_CNN 1.4208 0.9091 0.8823 0.9747 0.6749 0.9260 

ES_CNN 1.4207 0.9087 0.8816 0.9746 0. 6628 0. 9247 

ULRR 1.4197 0.9117 0.8844 0.9756 0.6819 0.9317 

Table 6. Averaging performance of different deep learning based fusion methods on SMD Dataset.  508 

Methods FMI uiqiQ  
ssimQ  

4Q  
PCQ  _ZNCC PC  

CNN 1.1879 0.9135 0.7815 0.9082 0.6357 0.9318 

p_CNN 1.1894 0.8970 0.7808 0.9067 0.5960 0.9102 

ES_CNN 1.1902 0.8949 0. 7773 0. 9053 0. 5892 0. 9152 

ULRR 1.1891 0.9119 0.7815 0.9086 0.6314 0.9356 

4.6. Fusion of more than two multi-focus images 509 

 The proposed fusion method can be easily extend to fuse more than two multi-focus images. 510 

Suppose that there are total S images ( 1,2,..., )sI s S=  to be fused. For that, similar to Eq. (9) in the 511 

Subsection 3.3, the initial decision map 
s  for the s-th source image is determined by 512 

, ,1, ( , )  &  max
( , )

0,

s i j i
j

s

x y sp s MOF
x y

otherwise

 =
 = 



,                            (11) 513 

where 
,j iMOF  denotes the measure of focus for the i-th super-pixel 

,j isp  in the j-th image. After some 514 

post-processing, the final decision map s
  is obtained and the fused image FI  is obtained by  515 
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1

( , ) ( , ) ( , )
S

F s s

s

I x y x y I x y
=

=  .                                        (12) 516 

 517 
Fig.14.Illustration of the triple multi-focus image fusion. (a),(b) and (c) A set of triple multi-focus source images with the focus on 518 

the front, middle and back, respectively; (d), (e) and (f) The decision maps for (a),(b) and (c), respectively; (g) Fused image. 519 

 Fig. 14 illustrates the fusion of a set of three multi-focus images, which are also provided in the 520 

Lytro Dataset [4]. Similarly, the fusion results demonstrate that all of the focused regions within the input 521 

images can be effectively combined into the fused images without the introduction of obvious spatial 522 

artifacts. 523 

4.7 Fusion of gray-scale multi-focus images 524 

 525 

Fig. 15. Illustration of the fusion results on a pair of color multi-focus images and their gray-scale versions by using our proposed 526 

method. (a1) and (b1) A pair of color multi-focus images with the focus on the left and right parts, respectively; (c1) Focus decision 527 

map for (a1) and (b1); (d1) Fusion result on (a1) and (b1); (a2) and (b2) Gray-scale versions of (a1) and (b1), respectively; (c2) 528 

Focus decision map for (a2) and (b2); (d2) Fusion result on (a2) and (b2). 529 

We have also tried to apply our proposed fusion method to fuse gray-scale multi-focus images. Fig. 530 

15 illustrates the fusion results of a pair of color multi-focus images and their gray-scale versions by 531 

using our proposed fusion method. As shown in Fig. 15, we find that the fusion results on gray-scale 532 

multi-focus images are not satisfactory although the fusion results on the color multi-focus images are 533 

desirable. This may owe to the feature extraction, super-pixel segmentation and clustering modules in 534 

our proposed method, which heavily depend on the color information of source images. 535 
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4.8 Discussion 536 

 In this subsection, we will discuss two issues. One is about the computational complexities of 537 

different methods while the other is about the superiorities of our proposed methods over current DL 538 

based fusion methods. 539 

With respect to the first issue, Table 7 provides the average computational time T of different 540 

methods on Lytro Dataset. Here, all of the traditional methods and some of the DL based methods (e.g., 541 

CNN and p_CNN) are tested in Matlab R2013b environment on a PC with an Intel i7 CPU and 32 GB 542 

of RAM. ES_CNN is tested on an NVIDIA 1080Ti GPU with 11 G memory.  543 

Table 7. Averaging computational time of different methods on Lytro Dataset. 544 

Methods GF IM SPixel LR_RSR SRCF DL_LRR CNN p_CNN ES_CNN ULRR 

T(s) 0.57 2.49 57.49 25.50 13.27 4443.15 124.38 439.41 366.37 71.00 

 As shown in Table 7, ULRR has higher computational complexity than most of the other traditional 545 

fusion methods, such as LR_RSR and SRCF. This may owe to the part of feature extraction for each 546 

super-pixel in our proposed method. As shown in Table 8, for a pair of multi-focus images with size of547 

520 520 , the running time of our proposed method is about 73 seconds, among which feature extraction 548 

for each super-pixel takes about 82% of the total time. Despite that, Table 7 also demonstrates that ULRR 549 

has higher computational efficiency than those DL based fusion methods. Especially, the average 550 

computational time of ULRR is about half that of CNN, although the two methods perform competitively 551 

in spatial consistency as well as in information extraction. 552 

Table 8. Computational time of different modules in our proposed method for a pair of multi-focus images of size 520 520 . 553 

Module 
Super-pixel 

segmentation 

Feature 

extraction 

Super-pixel 

clustering 

Dictionary 

construction 

ULRR 

decomposition 

Post-

processing 
Total 

Time(s) 0.47 60.56 1.51 0.12 3.32 7.47 73.45 

Percentage(%) 0.64 82.45 2.06 0.16 4.52 10.17 100 

Regarding the second issue, as discussed in Subsection 4.5, our proposed fusion method performs 554 

competitively and even better than some DL based ones. A part of the reason might be that the training 555 

data for these DL based fusion methods, which are manually generated by just performing different 556 

Gaussian filters on the original images, could not fully simulate the multi-focus characteristics of an 557 
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image. Also, similar to most existing SR band LRR based fusion methods, these DL fusion methods 558 

usually perform fusion on image patches of fixed shapes independently, thus ignoring the spatial 559 

consistency among adjacent patches and degrading the fusion performance to some extent. Differently, 560 

the spatial consistency among adjacent super-pixels and the object area consistency among the super-561 

pixels within an object are jointly considered in our proposed fusion method. Moreover, post-processing 562 

steps also contribute to the improvement of our fusion performance.  563 

5. Conclusion 564 

In this paper, we present a novel multi-focus image fusion algorithm based on super-pixel clustering 565 

and a unified low-rank representation (ULRR) model. Owing to the use of super-pixels of irregular sizes, 566 

the “jagged” artifacts between the focused and de-focused regions, which arises from the patch based 567 

fusion methods, can be effectively eliminated. Thanks to the use of multiple types of features, the focus 568 

information for the smooth regions as well as those regions with rich details can be well determined by 569 

the proposed fusion method. By further using super-pixel clustering and considering the object 570 

consistency among the super-pixels within the same cluster via the proposed ULRR model, the spatial 571 

artifacts in the fused images are greatly reduced and even eliminated by the proposed fusion method. 572 

Experimental results demonstrate that the proposed fusion method outperforms some state-of-the-arts, 573 

even including some deep learning based methods, in terms of visual and quantitative evaluations, 574 

especially in the reduction of spatial artifacts or in spatial consistency.  575 

Finally, it should be also noted that the high fusion performance of our proposed method is at the 576 

cost of high computational complexity. Moreover, the proposed method works well for the color multi-577 

focus images but it does not perform well for the gray-scale multi-focus images. In future, we will explore 578 

how to reduce the computational complexity of our proposed method and how to modify our proposed 579 
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method to the fusion of gray-scale multi-focus images. 580 
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The sub-optimization has the following closed-form solution: 587 
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where ( )SVT φ  denotes the Singular Value Thresholding (SVT) operation on the matrix φ  with the 589 

threshold  . 590 
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The optimization problem in Eq. (A3) has the flowing closed-form solution: 593 
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(3) Update Z  ( kZ ) 595 
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(A5) 597 

where  1 2, ,..., K=X X X X  ,  1 2, , , K=Z Z Z Z  ,
1 1,1 1,2 1,, ,i i i i

K
 =  Y Y Y Y，  ,

2 2,1 2,2 2,, ,i i i i

K
 =  Y Y Y Y，  ,598 

1 1 1 1
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K
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1 2, ,i i i i

K
 =  E E E E，  . Eq. (A5) is a convex function and has the 599 

following optimal solutions:  600 
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where  1 2, , K=E E E E， .This sub-optimization problem has the following closed-form solution [35]: 604 
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where 1 1
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G X - DZ + . (:, )iE  and (:, )iG  denote the i-th column of E  and G , respectively. 606 
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