
Aberystwyth University

The Influence of the Acoustic Properties of Motorcycle Helmets on Temporary
Hearing Loss in Motorcyclists
Kennedy, John; Holt, Nigel; Carley, Michael ; Walker, Ian

Published in:
Acta Acustica united with Acustica

DOI:
10.3813/AAA.918792

Publication date:
2014

Citation for published version (APA):
Kennedy, J., Holt, N., Carley, M., & Walker, I. (2014). The Influence of the Acoustic Properties of Motorcycle
Helmets on Temporary Hearing Loss in Motorcyclists. Acta Acustica united with Acustica, 100(6), 1129-1138.
https://doi.org/10.3813/AAA.918792

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/346636387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3813/AAA.918792
https://pure.aber.ac.uk/portal/en/persons/nigel-holt(2904791b-f7e4-42c9-88ff-2702c65d0dda).html
https://pure.aber.ac.uk/portal/en/publications/the-influence-of-the-acoustic-properties-of-motorcycle-helmets-on-temporary-hearing-loss-in-motorcyclists(bbf3ca7c-28ca-444f-a2e3-1386539d92ea).html
https://pure.aber.ac.uk/portal/en/publications/the-influence-of-the-acoustic-properties-of-motorcycle-helmets-on-temporary-hearing-loss-in-motorcyclists(bbf3ca7c-28ca-444f-a2e3-1386539d92ea).html
https://doi.org/10.3813/AAA.918792


The influence of the acoustic properties of motorcycle helmets on
temporary hearing loss in motorcyclists

J. Kennedy1), N. Holt2) , M. Carley3), I. Walker4)
1) Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland

kennedj@tcd.ie
2) Department of Psychology, Institute of Human Sciences, Aberystwyth

University, Penglais, Aberystwyth, SY2 33UX, United Kingdom
3) Department of Mechanical Engineering, University of Bath, Bath, BA2

7AY, United Kingdom
4) Department of Psychology, University of Bath, Bath, BA2 7AY, United

Kingdom

Abstract
Noise is an unavoidable component of motorcycling. The noise sources

are varied, and include the helmet itself which also filters the noise pass-
ing through it. Here helmet noise transmission characteristics have been
analyzed using insertion loss measurements and loudness matching in a
behavioural study. Results demonstrate the action of the helmet as a
spectral filter and confirm previously published data showing attenuation
in the frequency range above 500Hz. Highlighted here for the first time is
an amplification of noise below 500Hz. The loudness matching task data
allowed the generation of equiloudness functions which show the effect
of the helmet on riders’ perceptions of loudness. The generated curves
are here compared to the relevant international standard (ISO226) and
show that loudness was strongly influenced by the helmet. The noise ex-
perienced by a motorcycle rider on a 30 minute journey can result in a
temporary hearing threshold shift of over 15dB. Due to the filtering char-
acteristics of the helmet this threshold shift is highly frequency dependent.
To quantify the frequency dependence of the resulting temporary hearing
threshold shift pure tone audiometry was conducted before and after ex-
posure to white noise, with and without a helmet in a laboratory setting
and after on-road noise exposure. Of particular note is the finding of in-
creased hearing sensitivity at high frequencies following certain type of
motorcycle noise exposure. The difference is discussed in the framework
of the filtering characteristics of the helmet.

1 Introduction

Noise in motorcycling is known from numerous studies [1–10,12–19] to be loud
enough to cause hearing damage, leading to recommendations on hearing pro-
tection from medical experts [20,21]. The problem has also been considered by
motorcycling interest groups [22] and in the motorcycling press [23]. Previous
studies have concentrated on measuring noise levels [19], and on reduction of
noise exposure [24], with a view to limiting noise-related hearing damage.

Noise induced hearing loss (NIHL) is ranked within the top ten work-related
problems that affect employees [32]. It may occur through exposure to a one off
loud noise, such as an explosion, but more commonly occurs through continu-
ous exposure to loud sounds over a longer period of time, or repeated exposure
to multiple noise doses, and this includes motorcycling. Typically, noisy envi-
ronments like these are workplace environments such as workshops and facto-
ries [33] and as such are the focus of legislation designed to limit the noise to
which workers are exposed.
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An initial temporary hearing threshold shift (THTS) may be defined as a
loss in sensitivity in hearing after noise exposure. Recovery of hearing from this
THTS back to the pre-exposure level depends on age of the listener, on the
spectral content and on level of the noise to which they were exposed [29, 30].
A transition from a THTS to a permanent hearing threshold shift (PHTS) is a
characteristic of NIHL caused by repeated periods of noise exposure. In addition
to this, damage may come in the form of tinnitus—often experienced as a high
frequency ringing, or noise in the ear or ears. Meyer et al [34] estimate persistent
tinnitus in the UK amongst males aged 35-64 as 266,000 and in females in the
same age range as 84,000. The noise experienced in motorcycling is well within
a range and level sufficient to produce a THTS, but motorcyclists are presently
inadequately represented in the relevant literature. The noise experienced by
the motorcyclist is unique and is influenced by transmission through the hel-
met which is designed only to protect the rider in the event of a fall or crash.
Important here is that the helmet itself is part of the issue and this research
indicates why it should be considered when a solution to motorcycling related
hearing loss is to be identified.

Surveys of riders [25] have reported rider hearing damage in the form of
tinnitus, and the majority of riders express the desire for quieter helmets, with
over half of them wearing earplugs when they ride as a noise reduction method.
Ear plugs do not, however, distinguish between sounds and thus block sounds
to which a rider may need to pay attention, such as some traffic noise and
emergency signals. A knowledge of the acoustic response of the helmet as well
as how riders perceive and respond to sounds while wearing a helmet is needed
to better inform this drive towards noise reduction.

We report experiments conducted as part of a study of the causes and effects
of motorcycle noise and, in particular, the short term response of riders to noise.
This part of the study examines a psychophysical component of the problem,
by making insertion loss measurements on helmets and comparing the results to
those from a loudness matching task carried out with participants. This allows
us to link the physical problem of sound propagation through the helmet with
effects on the hearing of the rider.

As an investigation into the effects of motorcycle noise exposure on THTS,
pure-tone audiometry was conducted before and after listeners were exposed to
white noise with and without a motorcycle helmet in an investigation of the
influence of the filtering effects of the the helmet on any THTS.

2 Experimental facilities and instrumentation

The tests were conducted in an IAC 250 series sound shelter which is designed
to provide a controlled acoustic environment in which hearing screening can be
undertaken. The internal dimensions of the sound shelter are 604mm x 860mmx
1680mmḞigure 1 shows a participant in the sound shelter during the loudness
matching task. Due to the nature of the investigation, featuring participants
wearing a motorcycle helmet, the loudness matching task required the presen-
tation of free field sound at controlled levels. This was achieved using a purpose
built speaker box with a Visaton BG 20 8Ω speaker. The speaker box was
designed to be capable of providing sound of amplitude up to 100dB over the
frequency range 100Hz–10kHz used in the loudness matching task.
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Figure 1: Participant in IAC 250 sound shelter
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Table 1: PELTOR H7F attenuation properties

f/Hz 125 250 500 1000 2000 3150 4000 6300 8000

−∆SPL 16.1 23.9 34.0 40.1 37.0 36.8 37.7 38.8 39.0

Table 2: IAC sound shelter attenuation properties

f/Hz 125 250 500 1000 2000 4000 8000

−∆SPL 18.0 32.0 38.0 44.0 51.0 52.0 50.0

The calibration of the sound shelter was conducted using 1/4inch 130D20
PCB Piezotronics microphones mounted within a polystyrene mannequin head.
These microphones were connected to a PCB 442B117 signal conditioner and
the microphone data were acquired using a 16 channel National Instruments
DAQ system. This system consisted of a personal computer (PC) and NI-PCI-
MIO-16E-1 acquisition card and BNC-2090 connector box. The microphones
were calibrated using a Larson Davis CAL200 microphone calibrator.

The sounds were produced using custom Matlab software on a PC with a
Creative Sound Blaster Extigy sound card. The output of the sound card was
fed to a Denon PMA-355UK amplifier and then to the speaker cabinet mounted
in the sound shelter.

Pure tone audiometry was conducted in the sound shelter using a Kamplex
KS-8 screening audiometer, compliant with BS EN60645. The factory ear-cups
had previously been embedded into PELTOR H7F ear defenders prior to their
calibration. This was to provide additional attenuation of external sound given
in Table 1. This added to the attenuation levels of the sound shelter (Table 2)
and, importantly for testing in the field, provided good attenuation levels at
the frequency range assessed with the audiometer. The helmet used in the
laboratory investigations within the sound shelter was taken from a series of
helmets provided by manufacturers for noise investigations. As such, the make
and model are covered by a confidentiality agreement.

For comparison with laboratory data additional measurements were con-
ducted under real driving conditions. A test loop consisting of a stretch of
dual carriageway between two roundabouts was used. The motorcycle used was
a 2008 Suzuki GSXF-650 and the helmet a Shoei Raid II. A GPS unit was
used to record data on motorcycle position and speed over the course of the
test. The unit was mounted on the motorcycle dashboard and used by the rider
to maintain the test speed of 110km/h along the stretches of dual carriage-
way. Measurements of the sound pressure level were acquired using a Edirol
R-09 stereo digital recorder and miniature Knowles microphones mounted at
the rider’s ear. The microphones were calibrated with a Larson Davis CAL200
calibrator. A support vehicle was located in an isolated car park off the stretch
of dual carriageway. Pure tone audiometry was conducted in the support vehicle
using the Kamplex KS-8 screening audiometer before and after the test run.
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3 System calibration and noise characteristics

An individual system calibration was required for each of the frequencies to be
presented in the loudness matching task. The system was designed so that sound
pressure levels from 40–90dB could be presented at-ear for every frequency to
be tested. System volume was controlled by the software volume level and a
calibration curve for each test frequency was produced using the PCB micro-
phone system and the mannequin head which was mounted at head height for
the participants.

Using the information from the system calibration, software-generated white
noise could be pre-filtered to ensure the system genuinely produced noise with a
flat frequency spectrum. A 30 minute sample of this white noise was generated
and is referred to as the “white noise” test condition.For the second test condi-
tion used in the laboratory tests participants were asked to wear a motorcycle
helmet while listening to the same white noise sample. The filtering characteris-
tics of the helmet result in a strong change in the frequency content of the noise
experienced by the listener. This test condition is referred to as “helmet noise”.
Additional work carried out by this group has involved detailed measurements
of the noise experienced by the motorcyclist at known speeds under controlled
conditions on a track [31]. Using data available from these measurements a
third test condition of a 30 minute sample of motorcycle noise as experienced
at steady 80km/h driving conditions was generated. This noise was pre-filtered
using the same filter as the white noise sample. This noise allows listeners not
wearing a helmet to be exposed to the acoustic environment experienced by a
helmet-wearing motorcyclist. This test condition is referred to as “motorcycle
noise”.

Due to the very high low frequency sound pressure levels produced in this
noise condition it was not possible to completely eliminate structural vibrations
in the sound shelter between 100Hz and 200Hz. The dimensions of the booth
mean that the participants can be considered to be in the near field when the
wavelengths of the frequencies of interst and dimensions of the speaker are
considered. The possibility of a standing wave being generated in the sound
shelter is eliminated by the irregular and moving surfaces of the participants
body during testing.

4 Test Procedures

4.1 Equal Loudness Matching

The most common method of loudness scaling is an estimation of loudness based
on the matching of two tones of different frequency [26, 27]. A reference tone,
traditionally 1kHz, is presented at a known sound pressure level and the lis-
tener adjusts a second tone of different frequency, so that its perceived loudness
matches that of the reference tone. The loudness of tones of frequencies above
and below the reference tone’s are measured in this way. The measurements
taken are psychophysical, that is, they are a psychological representation of the
sound power, or loudness. Sounds perceived as being of the same loudness are
assigned the same phon level. At 1kHz readings in dB and phons are by defi-
nition the same. At fixed phon level the sound pressure level measured in dB
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varies as a function of frequency.
Twelve participants took part in a free-field loudness matching procedure.

None were payed for their time. In each trial a 1kHz reference tone was pre-
sented at 65dB. Eleven comparison tones (100Hz, 200Hz, 300Hz, 400Hz, 500Hz,
1kHz, 2kHz, 3kHz, 4kHz, 5kHz, and 7.5kHz) were each presented four times in
random order, making a total of 44 trials, in two blocks of 22 with an enforced
inter-block interval of 3 minutes. The initial level of each comparison tone pre-
sentation was chosen randomly within the range 50–80dB. All tones were 500ms
in length and the participant could control their presentation with a keyboard
from inside the sound cabin. A custom control interface allowed participants to
repeat the presentation of the reference tone at will, and to raise and lower the
level of the comparison tones by 2.5dB. Maximum and minimum levels of the
comparison tones were limited to 90dB and 40dB. The interface provided feed-
back on trial number, and a warning in the event that comparison tone limits
had been reached. Once happy with the match made participants moved onto
the next trial by indicating that they were ready to do so using the interface.
Measurements were counterbalanced, with half of the participants providing
data first with the helmet and then without. It should be noted here that the
level of the reference tone was set at 65dB without the helmet; when the helmet
was inserted into the system the level of the reference tone will have been lower
at ear. This point is addressed further in the discussion.

4.2 Insertion loss

The question of the acoustic effects of motorcycle helmets, in particular their
attenuation properties, has not received much attention in the past, although
there have been studies on protective helmets used in other applications. To our
knowledge, the earliest study on motorcycle helmets was that of Van Moorhem
et al. [1], who were motivated by the possible effects of helmets on the detection
of warning signals, an issue also considered by McKnight and McKnight [18].
More recently, a set of measurements of the insertion loss of motorcycle helmets
was carried out by M lyński et al. [28] who measured the insertion loss of three
types of helmet. The direct measurement of insertion loss was carried out using
microphones placed near the right ear of the helmet wearer. A second set of tests
was carried out by measuring the wearer’s hearing threshold with and without
the helmet. The difference between the two thresholds was taken as a measure
of the helmet effect on loudness. It was found that the two procedures gave
comparable results, that is, the physical insertion loss measurements and the
loudness results were very similar. A result shown in Figure 5 of this study [28],
though not much remarked upon by the authors, was a gain in noise of about 5dB
around 250Hz, i.e. an “insertion gain”.

The insertion loss of the motorcycle helmet was measured using the same
speaker, microphone and mannequin head set up as for the calibration. In order
to produce pure white noise through the speaker the frequency response function
of the system was measured. Once this had been calculated the inverse of the
response function was used to pre-filter software generated white noise. This was
then played through the system and measured to ensure that white noise had
been produced. This allowed an identical software generated white noise signal
to be repeatedly produced by the speaker system. The mannequin head was set
at a fixed location directly below the speaker. A 30 second white noise burst
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was played over the speaker system and triggered the NI acquisition system.
Data were acquired using the two at-ear microphones and by a third reference
microphone within the IAC booth. This procedure was carried out for two
test cases: firstly a baseline without the helmet and then with the helmet used
in the participant testing. The insertion loss measurements were calculated by
subtracting the resulting baseline at-ear spectrum from the at-ear spectra of the
helmet case. The reference microphone was used to quantify how the addition of
the helmets to the sound proof booth altered the acoustic field from the speaker.
The difference was found to be negligible within the frequency range used and
we assume that the helmet had a negligible effect on the incident acoustic field.

4.3 Threshold shift measurements

Due to the nature of the threshold shift measurements it was decided that one
participant who agreed to be repeatedly exposed to the various noise conditions
over a period of several weeks would be used. This participant was exposed
to each noise condition, i.e. white noise, helmet noise and motorcycle noise, a
total of 4 times per condition. Their baseline threshold was re-measured prior
to each exposure. The tests were conducted early on each testing morning and
the participant was asked to ensure they were not exposed to any significant
noise levels on their journey to the testing facility. This participant was a non-
motorcyclist in the 25 to 30 year age bracket.

In parallel to the participant testing in the laboratory testing was conducted
under real world conditions. A second motorcycling participant was recruited
for testing both inside and outside the laboratory. This participant had been a
regular motorcyclist for a number of years and therefore had the possibility of
some existing hearing impairment. The motorcycling particpant was in the 35
to 40 year age bracket.

The situation for this participant was different as in addition to the on road
measurement this participant came into the lab for a single session of each type
of noise exposure. For the laboratory sessions the motorcycling particpant was
also asked to insure they avoided any significant noise exposure during their
journey to the laboratory, in particular that they did not arrive by motorcycle.

In condition 1, the white noise was presented at 100dB for a period of 30
minutes. In condition 2, referred to as helmet noise, the listener was exposed
to the same white noise at the same level while wearing the motorcycle helmet.
In condition 3 referred to as motorcycle noise, listeners were exposed to the
realistic motorcycling noise again for a period of 30 minutes. Post-exposure
audiometry was carried out immediately after the 30 minute listening period.
Sensitivities to 11 frequencies were measured on each occasion.

Threshold recovery time was assessed in a single session of each exposure
type. The procedure was identical to the threshold shift measurements. Those
frequencies that showed a threshold shift were tested repeatedly until the thresh-
old returned to baseline levels. Testing intervals were 0, 5, 10, 15 and 30 minutes
after noise exposure which was sufficient for all frequencies to return to baseline
levels for each test condition.
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Figure 2: Equiloudness data - mean and standard error

5 Results

5.1 Equiloudness Matching

Equiloudness measurements for the 12 participants are shown in Figure 2. Mea-
surements made with and without a helmet are shown in comparison with the
international standard equiloudness contour for 65dB (ISO226).

5.2 Insertion Loss

The insertion loss measurement for the helmet is given in Figure 3. The measure-
ment given is limited to the range of frequencies used in the loudness-matching
task. Data above the 0dB line represent an amplification of the sound, that is
an “insertion gain”.

5.3 Threshold Shift

Figure 4 shows a comparison of the spectral content of each noise type as experi-
enced at ear by participants during the temporary hearing threshold tests. The
low frequency components of the realistic motorcycling sound, below 500Hz, are
of a much larger amplitude than experienced during either white noise test. The
amplification of the lower frequency components by the helmet can be seen in
the range of 100Hz to 250Hz.

Figure 5 shows the variation of riding speed and noise exposure levels expe-
rienced by the rider during the on road test.

Figure 6 gives baseline threshold and threshold shift data from one listener.
Manural air conduction audiometry was used to measure the acuity of hearing
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Table 3: White noise recovery time (dB shift from baseline)

f/kHz 0.125 0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0 6.0 8.0

0min -10 0 -5 0 -5 0 -5 0 -15 -15 -10
5 mins 0 0 0 0 0 0 0 0 -15 -10 -5
10min 0 0 0 0 0 0 0 0 -10 -10 -5
15min 0 0 0 0 0 0 0 0 -5 -5 -5
30min 0 0 0 0 0 0 0 0 0 0 0

for this participant. This procedure consists of tone bursts over a series of fre-
quencies presented to a subject using the Kamplex KS-8 screening audiometer.
The participant raised a finger to indicate that they could hear a signal.

If after noise exposure the subject requires a different sound level to hear the
sound e.g. the sound level has to be increased above the value on this threshold
curve then the subject is said to have experienced a threshold shift. In the usual
scenario the subject will require a higher sound level indicating a reduction is
hearing sensitivity.

This listener completed each test condition three times for a total of nine
separate sessions on non-consecutive days over a series of weeks. Figure 6 (a)
shows the mean baseline hearing threshold assessed with pure tone audiometry
at the audiometry facility. Figures 6 (b), (c), and (d) identify deviations from
the thresholds taken before each test for each condition. Since each condition
was tested three times these figures show the mean and standard deviation of
the threshold shift for each condition.

Data points above the zero reference line indicate an increase in sensitivity,
those below the line indicate a decreased sensitivity. Notable from these data are
the decreased sensitivity at frequencies above 3kHz in the white noise condition,
and the increased sensitivity for the same frequencies after exposure to noise
while wearing a helmet and to a lesser extent after exposure to motorcycle
noise. This is an unusual result which will be discussed in light of the helmet
characteristics.

Tables 3, 4 and 5 give recovery time for each of the three conditions. Since
the recovery time was only measured for one session for each noise condition,
due to the time requirements for this measurement, there are no error bars
associated with these tables.

Notable are the recovery times of up to 15 minutes following white noise
exposure with and without a helmet in tables 3 and 4. Notable also is the direc-
tion of the change in threshold, given here as positive for increased sensitivity,
and negative for decreased sensitivity.

Figure 7 gives data from twelve baseline threshold measurements from the
second motorcycling particpant taken before exposure to different noises in four
experimental conditions: exposure to white noise, helmet noise, motorcycle noise
and the noise experienced while riding under real conditions on road, here de-
scribed as road noise. Comparing figure 7 to the baseline measurements taken
for the first participant, shown in figure 6 (a), there is some clear evidence of
high frequency hearing impairment due to a combination of increased age and
potentially motorcycling over a period of a number of years.

Figure 8 gives shifts from the baseline threshold measure for the motorcycling
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Figure 6: Mean baseline and threshold shift measurements with standard devi-
ation : Non-motorcycling participant
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Table 4: Helmet noise recovery time (dB shift from baseline)

f/kHz 0.125 0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0 6.0 8.0

0min -5 0 -10 5 10 5 0 0 5 5 5
5min 0 0 -5 0 10 5 0 0 5 5 5
10min 0 0 -5 0 5 5 0 0 5 0 5
15min 0 0 0 0 0 0 0 0 5 0 5
30min 0 0 0 0 0 0 0 0 0 0 0

Table 5: Motorcycle noise recovery time (dB shift from baseline)

f/kHz 0.125 0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0 6.0 8.0

0min 0 0 0 0 5 0 0 5 0 5 0
5min 0 0 0 0 5 0 0 5 0 0 0
10min 0 0 0 0 0 0 0 0 0 0 0
15min 0 0 0 0 0 0 0 0 0 0 0
30min 0 0 0 0 0 0 0 0 0 0 0

particpant. Notable in these data are their similarity to those in Figure 6 for
the non-motorcycling particpant despite the differences in the baseline hearing
sesnsitivity. Figure 8 (d) gives changes in threshold following the period of
riding detailed in section 2.

6 Discussion

Mean data for the equiloudness measurements without the helmet follow a con-
tour close to that given by ISO226 for a 65dB equiloudness contour supporting
the efficacy of the techniques used here in measuring equiloudness. Any devia-
tion from the standard at higher frequencies may be partly due to the age group
of the cohort and may also be due to the position of the sound source. Listeners
providing data in this task were undergraduate students with an average age of
22 years. The sensitivity to higher frequencies of this age group is greater than
it would be for an older cohort. In addition to this, measurements in the ISO
standard were made with the sound source directly in front of the listener. In
our measurements, the sound source was directly above the listener, which may
be relevant in the propagation of higher frequency sounds to the ear.

The insertion loss measurements of the helmet showed large attenuation of
sound above 1kHz. In the case of the upper frequency used in the loudness-
matching task this attenuation was as much as 25dB. The helmet showed the
unusual property of amplifying certain frequencies below 1kHz. As noted above,
this effect has been observed elsewhere [28]. The mechanism of this increase is
likely structural resonance but this is not easily assessed. The helmet can be
considered to be a hollow sphere with a large cavity. Analytical solutions to
the resonance properties of sphere of this nature are not available in literature.
Additionally the structure of a motorcycle helmet consists of layers of shock
absorbing material with high damping and potentially non-linear vibrational
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Figure 7: Baseline threshold : Motorcycling participant

behaviour. It is possible that the broadband increase shown by the measure-
ments is due to damped structural resonances in this frequency range. When
the helmet interacts with the human head the resulting vibrational system is
even more complex. It is interesting to note that the human head is reported
to have resonance frequencies in this range i.e. 350Hz to 900Hz [11].

Helmet 1 was used in the equiloudness measurements. Figure 2 shows that
the character of the equiloudness curves was strongly influenced by the addi-
tion of the helmet for all participants. Above 1kHz, participants consistently
chose higher levels for the comparison tones than they did when not wearing
the helmet. At 7.5kHz the mean difference was 15dB, and while this is a con-
siderable difference in sound pressure level, it is less than might be expected
when the insertion loss curve is considered. From the shape of the insertion loss
measurements we can correctly predict the general trend in the equiloudness
curves as modified by the helmet. The discrepancy between the equiloudness
and insertion loss measurements at 7.5kHz is in the region of 10dB.

This considerable difference could potentially be explained by the absence of
alternative transmission paths in the insertion loss measurement procedure such
as body and bone conduction. These transmission paths may not be affected in
the same way as the air conduction paths by the insertion of a helmet into the
system.

The insertion loss data do not include the performance of the human lis-
tener. To address this, an insertion loss type figure can be calculated using
the equiloudness data. This can be done by looking at the change in the mean
equiloudness contours for the cases with and without the helmet. While the
same reference tone was used in both cases the addition of the helmet to the
head slightly changes the level of the reference tone as experienced by the lis-
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Figure 8: Threshold shift : Motorcycling participant
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Figure 9: Change in loudness

tener. Data from the insertion loss measurements indicate that the level of the
reference tone with the helmet is 62.5dB, 2.5dB lower than the 65dB reference
tone experienced without the helmet and therefore on a different phon level.
Comparisons of equiloudness measures at different phon levels is non trivial
since each phon level follows a slightly different contour. In order to accurately
compare a change in the equiloudness contours at two different phon levels the
existing difference in contour shape must also be taken into account.

Figure 9 shows this insertion loss type measure for the equiloudness data.
The reference line plotted in the figure gives the difference in sound pressure
levels that would be required for loudness judgments to be unaffected moving
from a 65dB to a 62.5dB reference tone. Any deviation from this line represents
a change in the perception of equiloudness due to the addition of the helmet.
The data show that the psychophysical effect of the helmet is to increase some
judgments of loudness relative to the reference tone for sounds of frequency less
than 1kHz and to decrease the judgment of loudness relative to the reference
tone above 1kHz.

In addition to this, threshold recovery time following noise exposure is mon-
itored. The results in Figures 6 and 8 show how the threshold profile changes
following exposure to the different noises. A reduction in sensitivity following
exposure may be predicted, but enhanced sensitivities at higher frequencies fol-
lowing exposure are shown where a helmet is used, or where the noise is shaped
as a function of the spectral filtering characteristics of the helmet.

The white noise conditions both show a reduction in sensitivity at the higher
frequencies. This temporary hearing threshold shift (THTS) is shown to decline
and fall back towards the baseline hearing threshold. Reductions in sensitivity
of as much as 15dB took up to 30 minutes to return to pre-exposure levels.
Compare this with the motorcycle, helmet and road noise conditions in Fig-
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ures 6 and 8. Here the increased sensitivity is reflected in the recovery times
in Tables 4 and 5. It is notable that the recovery from both increased and
decreased sensitivity is comparable, taking at most 30 minutes for this listener.

The mechanism(s) behind the measured increase in sensitivity reported here
are unclear and it is suggested that they merit further investigation both psy-
chophysically and in audiology. The effect, though temporary, is perhaps most
accurately described in terms of an impermanent loudness recruitment. Whereas
we do not propose, as in loudness recruitment itself, that there is cochlear dam-
age resulting in the increased perception of loudness [35, 36], there are some
similarities here. Loudness itself is a subjective phenomenon, and so an in-
creased perception of loudness does not represent an increased sensitivity to
sound, only the subjective judgement of its loudness. It is the pre-exposure
to the louder sound dose has clearly resulted in a growth in the perception of
loudness that cannot be explained in terms of cochlear damage, as judgements
return to ’normal’ with time. There is also a strong frequency dependence to
this phenomenon relating to the frequency content of the nois exposure and so
we present it here as worthy of further investigation in a number of fields.

It should be noted that the exposure here was relatively short in all cases,
at 30 minutes, and at 100dB in all cases. Should either of these vary, changes in
threshold will be different and recovery times may also vary. These data suggest
that the magnitude and direction of the change has no bearing on the speed of
recovery, with a full return to pre-exposure levels taking 30 minutes in each
noise condition. It is possible that the measurements of threshold change are
conservative. The resolution of the audiometer used was 5dB at all frequencies
and so changes may have been up to 4dB more in each case. The severity of
any THTS indicated in these data is then likely to be an underestimate.

Table 5 shows recovery time after exposure to motorcycle noise. The spec-
trum of this noise is shown in Figure 4. Notable here is that it includes at least
the same amount of energy at the majority of frequencies as helmet noise, and
more energy at frequencies below 400Hz than either of the other noises used.
Despite this, after exposure to this noise at 100dB for 30 minutes no reduction
in sensitivity at any frequencies was shown. Little change was seen at all in this
condition. The changes that were seen were small with relatively temporary
increases in sensitivity in some frequencies above 1kHz.

Figure 5 and Figure 8 (d) provide relevant data from on-road tests. A
comparison of data in panel (d) with the lab test data for exposure to helmet
noise and motorcycle noise, shown in panels (b) and (c), reveals some differences
between the deviation-from-threshold profiles in this listener. This is despite the
noise being either an approximation of that heard while wearing a helmet, or
the noise actually heard while wearing a helmet. The reductions in sensitivity to
frequencies below 6kHz while riding are not found in the laboratory. Similarly,
the increases in sensitivity found at 2, 3 and 4 kHz in the laboratory are seen
at the higher frequencies of 6 and 8kHz while riding. These differences can be
attributed to the additional signals in the auditory environment experienced on
the road. Figure 5 shows that the noise experienced on the road was not constant
as it was in the laboratory. Periods of noise in excess of 100dB are separated
by relatively quieter periods of approximately 82dB. These are directly related
to the speed on the road, shown in panel (b). The higher speeds correspond to
the periods of most significant noise exposure. Previous data [31] have shown
that turbulent noise due to flow across the helmet is a significant component
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of the noise experienced in motorcycling, and this noise can change with head
and windshield angle. The noises associated with the motorcycle itself and
the complexities of riding, including gear changes, acceleration, deceleration,
and head movements when riding will combine to form a different auditory-
environment to that presented in the laboratory which most closely resembled
a period of riding at constant speed along a straight section of road.

Significant low frequency threshold shifts were not measured in the subjects.
Due to the inherent resilience of the human auditory system to low frequency
sound it is not surprising that only a small threshold shift of approximately
5dB was experienced by the participants despite the amplification of the low
frequency content by the helmet. The testing time of 30 minutes is likely insuf-
ficient to cause low frequency threshold shifts. It is an interesting open question
as to what is the frequency dependence of short term hearing threshold shifts.
This work highlights some of the complications which exist when dealing with
broadband noise exposure which is not equally distributed across all frequencies.

7 Conclusions

The action of the motorcycle helmet as a spectral filter is to amplify certain fre-
quency ranges and attenuate others. The amplification of low frequency sound
by as much as 15dB and the resulting increase in perceived loudness of those
sounds has implications for those concerned with the design of hearing protec-
tion technologies for riders. We can conclude that existing passive methods of
hearing protection, such as ear plugs, are insufficient. Methods such as these
are designed as barriers to the air transmission path and they do not consider
paths such as bone and body conduction, where low frequencies are likely to
dominante.

The attenuation of high frequency sound by the helmet serves to effectively
remove a large portion of the acoustic environment. Acoustic feedback from the
riding environment is vitally important for rider safety and forms an important
part of the riding experience. Those concerned with the design of warning
signals such as sirens should also be aware of the filtering characteristics of the
helmet.

The THTS measurements allow us to conclude that the effects on hearing
threshold of the noise experienced whilst riding and when the noise is corre-
spondingly shaped with reference to a helmet spectrum are quantifiably differ-
ent to those experienced due to white noise exposure. The data also show that
it is possible to reproduce the patterns of threshold shift found on the road in
a controlled laboratory setting. Notable also are increases in hearing sensitivity
at frequencies higher than 1kHz after exposure to motorcycle, helmet and on-
road noise. In addition to this, the reduced sensitivity experienced during the
on-road tests was shown here to be greater than expected from the laboratory
results.
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