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Rapid detection of Galba truncatula in water 
sources on pasture-land using loop-mediated 
isothermal amplification for control 
of trematode infections
Chelsea N. Davis1, Fiona Tyson1, David Cutress1, Emma Davies1, Dewi Llyr Jones1,2, Peter M. Brophy1, 
Alex Prescott1, Michael T. Rose1,3, Manod Williams1, Hefin Wyn Williams1 and Rhys Aled Jones1* 

Abstract 

Background: Fascioliasis caused by the trematodes Fasciola hepatica and F. gigantica, is a global neglected zoonotic 
disease estimated to cost the livestock industry over €2.5 billion annually. Farm management measures and sustain-
able use of anthelmintics can, in principle, effectively control trematode infection in livestock and reduce the rate 
of developing anthelmintic resistance. Previously, we designed an environmental DNA (eDNA) assay to identify a 
common trematode intermediate host, the freshwater snail Galba truncatula, in water sources to measure specific 
trematode infection risk areas on pasture-land. To improve this procedure, we now report a loop-mediated isothermal 
amplification (LAMP) assay to identify G. truncatula eDNA.

Methods: A LAMP assay was designed and optimised (e.g. temperature, time duration and primer concentration) to 
identify G. truncatula DNA. The ability of the LAMP assay to target G. truncatula DNA was identified, and LAMP assay 
limit of detection was investigated in comparison to conventional PCR. In the field, 48 water samples were collected 
from stream, ditch and water pool habitats in four locations at two Aberystwyth University farms over a seven week 
period to investigate the applicability of the LAMP assay for use on eDNA samples, in comparison to conventional 
PCR.

Results: The LAMP assay delivered detectable results in 30 min at 63 °C. The assay discriminated between G. trunca-
tula DNA and non-target DNA, presenting a level of DNA detection comparable to conventional PCR. No significant 
difference was found between the ability of the LAMP and PCR assay to identify G. truncatula eDNA in water samples. 
Kappa coefficient analysis revealed a moderate level of agreement between LAMP and PCR assays.

Conclusions: This study demonstrated that the LAMP assay can detect G. truncatula eDNA in a simple and rapid 
manner. The LAMP assay may become a valuable tool to determine optimum pasture management for trematode 
parasite control.

Keywords: Loop-mediated isothermal amplification, Environmental DNA, Farm management, Trematode, Fluke, 
Galba truncatula, Fasciola hepatica, Calicophoron daubneyi
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Background
Galba truncatula is an intermediate host for the trema-
todes Fasciola hepatica and Calicophoron daubneyi 
[1]. Trematode parasite stages develop and multiply via 
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polyembryony in G. truncatula to produce cercaria. 
These encyst on herbage as infective metacercaria, which 
consequently infect definitive hosts, such as ruminant 
species [2, 3]. Fasciola hepatica is a trematode of world-
wide economic importance [4] as the disease it causes is 
estimated to cost the global livestock production industry 
€2.5 billion annually [5]. Furthermore, at least 2.4 million 
people are currently infected in over seventy countries, 
with millions more at risk of this food-borne disease [4]. 
In addition, C. daubneyi is an emerging trematode of 
concern in temperate countries [6–8]. In the absence of 
vaccines, trematode control in the definitive host is pri-
marily via anthelmintic administration; however, anthel-
mintic resistance and the limited availability of novel 
anthelmintic compounds threatens sustainable control 
[9].

Farm management combined with the effective use of 
anthelmintics has been found to control the disease and 
prevent resistance [10, 11]. Farm management practices 
that can reduce host parasite exposure include improv-
ing grazing management, draining pasture, fencing off 
wet pastures, using water troughs, and managing ani-
mal stocking rate [12–14]. Currently, regional liver fluke 
infection risk may be remotely forecasted using cli-
matic models such as the Ollerenshaw index [15], whilst 
research is ongoing to develop geographical informa-
tion system and satellite imagery analysis tools that aim 
to identify specific infection risk areas in fields [16–18]. 
However, even in areas where climatic and environmen-
tal conditions seem suitable, intermediate snail hosts may 
be absent leading to zero trematode infection risk for 
livestock grazing those areas [12, 19].

Recently, a water-based environmental DNA (eDNA) 
assay has been designed to identify the presence of G. 
truncatula in water sources on pasture-land [20]. An 
optimised G. truncatula eDNA assay would be cost-effec-
tive, simple and rapid to undertake, meaning this method 
would be ideal to implement localised and seasonal farm 
management practices on a per field basis. Loop-medi-
ated isothermal amplification (LAMP) assays have been 
used to detect trematode species in field and laboratory 
settings [21]. LAMP assays are highly sensitive and easy 
to undertake, requiring only designed primers, DNA pol-
ymerase and a water bath or heat block to complete the 
reaction, and the results can be analysed visually [22–27]. 
LAMP assays are also highly specific as they exploit up to 
six primers for target amplification and are therefore less 
prone to non-target DNA issues than conventional PCR 
tests [22, 28, 29]. Consequently, a LAMP assay designed 
to detect the G. truncatula DNA in combination with a 
previously designed water-based eDNA assay, could be 
a valuable new tool to identify farm trematode infection 
risk areas on pasture-land.

Methods
LAMP design
A set of six LAMP PCR primers (Sigma-Aldrich, St. 
Louis, USA); a forward inner primer (FIP), a backward 
inner primer (BIP), two outer primers (F3 and B3) and 
two loop primers (LoopB and LoopF) were designed with 
assistance by Mast Group Ltd (Bootle, UK) to amplify 
G. truncatula DNA according to published G. trun-
catula internal transcribed spacer 2 (ITS2) sequences 
(GenBank: AJ296271.1, KT280448.1. KT781252.1, 
MH561919.1, JX536270.1; Table  1). The primers were 
aligned and checked for specificity to G. truncatula DNA 
using comparative genome Basic Local Alignment Search 
Tool (BLAST) analysis.

The final reaction mixture (10 μl) contained 3  pmol of 
outer primer (F3 and B3), 25 pmol of inner primer (FIP 
and BIP) and 12  pmol of loop primer (loop B and loop 
F). MAST ISOPLEX® DNA Lyo kit (Mast Group Ltd) and 
120 µM hydroxy naphthol blue (HNB) were used to make 
the mastermix, before adding 0.8  μl of primer mix and 
1  μl of DNA. Amplification was conducted at 63  °C for 
30 min in a thermocycler (TC-4000, Techne, Stone, UK).

The LAMP reaction conditions were optimised with 
different parameters including assay temperature (60.4–
64.7 °C), primer concentration (between 22–28 pmol for 
FIP and BIP; 10–14  pmol loop F and loop B; and 2.5–
3.5  pmol F3 and B3) and incubation time (10–40  min) 
using triplicate biological replicates. Each LAMP assay 
run included a negative control (DNAase-free water 
only) and a positive control (genomic DNA extracted 
from G. truncatula snails). Samples were considered pos-
itive when the LAMP product showed a colour change 
from the violet-coloured negative control, to a sky-blue 
colour similar to the positive control, in addition to the 
presence or absence of banding after gel electrophoresis 
of LAMP product.

LAMP primer cross-reactivity was investigated by 
undertaking LAMP reactions using triplicate biological 
replicates of DNA extractions from the lymnaeid snails 
Radix balthica, Lymnaea fuscus, Omphiscola glabra, 

Table 1 Primers targeting G. truncatula ITS2 DNA sequence used 
for LAMP assay

Primers Sequence (5′-3′) Amplicon 
size (bp)

F3 CTC GGC GAT GGT TGG ATA 18

B3 ATC TCG TCC GAT CTG AGG 18

FIP CCG AGA ACG CCA CGA TAA TTG TCC GTT CAT CTC GTA AC 28

BIP AGT CCA TGG CAT CGC AGC ACC ACG TAG CGT CTT AGA 36

LoopF CTG CCT GGC GGT AGA GAA 18

LoopB GTG GGT GGA GAA CAA GGG 18
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Stagnicola palustris and Lymnaea stagnalis. Lymnaea 
fuscus specimens were gifted by the National Museum 
Wales, O. glabra DNA extracts were gifted by the Royal 
Zoological Society of Scotland (RZSS) and L. stagnalis 
specimens were gifted by Aberystwyth University. Speci-
mens of R. balthica and S. palustris were collected in the 
field after identification with a gastropod dichotomous 
key [30].

The lower limit of detection of the LAMP assay was 
determined by 10-fold dilutions of a known concentra-
tion of G. truncatula genomic DNA extract. The last 
dilution where all three replicates were recorded positive 
was considered as the detection limit.

DNA extraction and conventional PCR
Genomic DNA from all snail species except O. glabra 
was extracted using an adaptation of a Chelex® (Bio-Rad, 
Hercules, USA) method [31], as previously described 
[32]. Omphiscola. glabra DNA extraction was under-
taken at RSZZ using a blood and tissue kit (Qiagen, 
Hilden, Germany). Extracted DNA samples were stored 
at – 20 °C until use.

LAMP assay performance was compared against a 
conventional PCR method previously described [20]. 
Modifications to the original method included the total 
reaction volume, where a 10  μl master mix was created 
containing 5 μl of Platinum™ Green Hot Start PCR Mas-
ter Mix (Thermo Fisher Scientific, Hayward, USA), 0.5 μl 
of each 10  μM primer, 1  μl of the extracted DNA and 
nuclease-free water. A non-template control (DNAase-
free water) as a negative control and a positive control 
(genomic DNA extracted from G. truncatula snails) were 
included for each PCR run. The LAMP and PCR prod-
ucts (10  μl) were analysed by 2% agarose gel (agarose: 
Bioline, Tris Acetate-EDTA buffer: National Diagnostics) 
electrophoresis (Midi Plus Horizontal Gel System, Fish-
erbrand, Hampton, USA) stained with SYBR safe DNA 
gel stain (Invitrogen, Carlsbad, USA) and observed under 
UV transillumination (Genoplex, VWR, Radnor, USA) 
or Typhoon FLA 9000 Gel Imaging Scanner (GE Health-
care, Chicago, USA).

The lower limit of detection of the conventional PCR 
was determined by 10-fold dilutions of a known concen-
tration of G. truncatula genomic DNA extract. The last 
dilution with all triplicate replicates testing positive was 
considered as the detection limit.

eDNA collection and extraction
To investigate the LAMP assay’s capabilities of identify-
ing the presence of G. truncatula on pasture-land, water 
samples were collected and analysed from four loca-
tions at Farm A (52.424226N, −  4.051630W) and Farm 
B (52.425258N, −  4.029358W) which are both located 

at Aberystwyth University, Ceredigion, Wales, UK, over 
a seven-week period (3rd March-13th June 2019). In 
each sampling location, two replicate samples were col-
lected at six time points in this period, giving a total of 
48 samples. Each sampling location were in G. truncat-
ula habitats enrolled in a long-term eDNA research pro-
ject. Sampling location types included two slow moving 
streams, a boggy area containing standing water pools 
and a drainage ditch (Fig. 1).

A filter-based eDNA capture protocol was used 
throughout this study following the methodology of 
Jones et al. [20]. A blank control (500 ml distilled water) 
was undertaken during every day of eDNA collection. 
Filters were stored at − 20  °C until use. Non-disposable 
equipment were soaked in 7% sodium hypochlorite over-
night, before being rinsed in water and dried to avoid 
cross-contamination between sample collections [33].

DNA was extracted from filter samples using the 
DNeasy® PowerSoil® kit (Qiagen). Each filter, including 
blank controls, was homogenised using a sterile pipette 
tip and the whole filter was then subjected to DNA 
extraction  via  the PowerSoil® kit protocol. Each eDNA 
sample was tested in triplicate by both LAMP and PCR 
assays, where the sample was deemed positive if one or 
more of the triplicate technical replicates gave a positive 
result.

Statistical analysis
The success of the newly developed LAMP assay in 
detecting G. truncatula DNA in extracted eDNA samples 
compared to PCR was analysed statistically using a gen-
eralized logistic regression mixed model in SPSS (v.25). 
The subject variable was each eDNA sample, with DNA 
amplification method (LAMP or PCR) the within sub-
ject variable. The dependent variable was the outcome of 
each DNA amplification test (positive or negative). The 
DNA amplification method (LAMP or PCR) was inserted 
as a fixed factor in the model to identify if any differ-
ences in DNA amplification from each sample was seen 
between both methods. The habitat and sampling time-
point were inserted into the model as random factors to 
identify if any differences in test performance was influ-
enced by sampling location and period. Outcomes were 
deemed significant if P < 0.05. Kappa coefficient analysis 
with 95% confidence level was undertaken to assess the 
agreement between LAMP and PCR assays in amplifying 
eDNA using SPSS (v.25).

Results
Comparison of LAMP and conventional PCR limit 
of detection
To determine the limit of detection of the LAMP assay, 
10-fold dilutions  (101–109) of a known concentration 
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of G. truncatula genomic DNA extract and a range of 
primer concentrations were used for LAMP experi-
ments. The lower limit of detection for the LAMP assay 
was found to be  105-fold dilution (0.349  pg/μl) when 
using 22–28 pmol FIP and BIP primer, 10–14  pmol 
loop F and loop B primer and 2.5–3.5 pmol F3 and B3 
primer in the reaction (Fig. 2).

Similar 10-fold dilutions were used to compare the 
limit of detection of the LAMP assay with conventional 
PCR. PCR was identified as having a similar lower limit 
detection  (105-fold dilution, e.g. 0.5 pg/μl) compared to 
the LAMP assay in these conditions (Fig. 3).

LAMP temperature optimisation
All reaction temperatures (60.4–64.7  °C) investi-
gated amplified G. truncatula genomic DNA during 

temperature optimisation of the LAMP assay (Fig.  4). 
As the MAST ISOPLEX® DNA Lyo kit recommends 
undertaking LAMP assays at 63  °C, this temperature 
was chosen for further experimentation.

LAMP reaction duration optimisation
To determine the time duration in which the LAMP assay 
identified a positive outcome, 10-fold dilutions  (104–106) 
of G. truncatula genomic DNA extract were subjected to 
the LAMP assay for four time durations (10, 20, 30 and 
40 min) (Fig 5). The LAMP assay showed a positive result 
in 20 min at  104 fold dilution of G. truncatula genomic 
DNA extract (e.g. 3.49  pg/μl), although this time dura-
tion reduced the limit of detection of the LAMP assay by 
10-fold. A time duration of 30 min resulted in a positive 
outcome at the lower limit of detection for the LAMP 

Fig. 1 Photographic images of four habitats where eDNA samples were collected. These four locations were identified to be potentially suitable for 
G. truncatula habitation at two Aberystwyth University farms were: Habitat 1, slow moving stream; Habitat 2, standing water pools; Habitat 3, slow 
moving stream; and Habitat 4, drainage ditch
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assay  (105-fold dilution = 0.349 pg/μl), so was chosen as 
the optimum LAMP assay time duration.

LAMP primer cross‑reactivity
Cross reactivity of the designed LAMP primers was 
investigated by undertaking the LAMP assay with 
genomic DNA of five snail species belonging to the 
family Lymnaeidae: S. palustris, O. glabra, L. stagnalis, 
L. fuscus and R. balthica which are closely related to 
and live in similar environments to G. truncatula. None 
of these snail species showed a positive result when the 
LAMP assay was undertaken, demonstrating that the 
designed LAMP primers showed the ability to discrimi-
nate between G. truncatula DNA and non-target snail 
DNA (Fig. 6).

Detection of G. truncatula eDNA in water sources using 
the LAMP assay
Water samples from pasture fields were used to test the 
applicability of the LAMP assay to identify G. truncatula 
DNA in the environment in comparison to PCR (Table 2). 
Both assays reported similar results, where samples taken 
from Farm A showed 17/24 and 16/24 positive results 
for G. truncatula DNA using the LAMP and PCR assay, 
respectively. At Farm B, 10/24 and 11/24 positive results 
for G. truncatula DNA were found using the LAMP and 
PCR assay, respectively.

There was no significant difference between the ability 
of the LAMP and PCR assays to identify the presence of 
G. truncatula eDNA in environmental samples (P = 1.000) 
(Table  3) with no significant random effect of habitat 

Fig. 2 Lower limit detection and optimum primer concentration of G. truncatula LAMP assay. This was determined by undertaking (a) LAMP assay 
and (b) confirmation of results of the LAMP assay products using agarose gel (2%) electrophoresis. Lane M: 100 bp DNA Ladder (Thermo Fisher 
Scientific). Lane + (positive control of 34.9 ng/μl G. tuncatula genomic DNA extract) and Lane− (negative control) were both undertaken at primer 
concentration 3 pmol of F3 and B3 primer, 25 pmol of FIP and BIP primer and 12 pmol loop B and loop F primer. Lane 1  (104 dilution of G. tuncatula 
genomic DNA extract), Lane 2  (105 dilution of G. tuncatula genomic DNA extract) and Lane 3  (106 dilution of G. tuncatula genomic DNA extract) 
were undertaken at primer concentration 2.5 pmol of F3 and B3 primer, 22 pmol of FIP and BIP primer and 10 pmol of loop B and loop F primer. 
Lane 4  (104 dilution of G. tuncatula genomic DNA extract), Lane 5  (105 dilution of G. tuncatula genomic DNA extract) and Lane 6  (106 dilution of G. 
tuncatula genomic DNA extract) were undertaken at primer concentration 3 pmol of F3 and B3 primer, 25 pmol of FIP and BIP primer and 12 pmol 
of loop B and loop F primer. Lane 7  (104 dilution of G. tuncatula genomic DNA extract), Lane 8  (105 dilution of G. tuncatula genomic DNA extract) 
and Lane 9  (106 dilution of G. tuncatula genomic DNA extract) were undertaken at primer concentration 3.5 pmol of F3 and B3 primer, 28 pmol of 
FIP and BIP primer and 14 pmol of loop B and loop F primer
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(P = 0.409) and sampling time (P = 0.222) on the results. 
Kappa coefficient analysis (Table  4) revealed a moderate 
level of agreement (Kappa = 0.577) between assays [34].

Discussion
The success of host trematode parasite transmission is 
heavily influenced by G. truncatula population dynam-
ics in the environment [3]. Current methods for identi-
fying precise trematode infection risk areas in fields by 
physically detecting G. truncatula presence are labour-
intensive, require expertise, and are time-consuming and 
costly [12, 19]. In this paper, a practical LAMP assay has 
been designed to detect the eDNA of trematode interme-
diate host, G. truncatula, in water samples. Detection of 
G. truncatula eDNA may indicate trematode infection 
risk areas on pasture which will allow farm management 
practices to be applied to reduce trematode infection risk 
in livestock grazing specific pastures.

The limit of detection of the LAMP assay (0.349  pg/
μl) was comparable to conventional PCR (0.5  pg/μl), 
when using G. truncatula DNA extract in the reaction. 

Fig. 3 Lower limit of detection for G. truncatula conventional PCR. 
This was determined by making 10-fold dilutions ranging from 
 104–106 of 50 ng/μl G. truncatula genomic DNA extract samples. Lane 
M: 100 bp DNA Ladder (Thermo Fisher Scientific); Lane +: positive 
control; Lane −: no-template negative control

Fig. 4 Temperature optimisation of G. truncatula LAMP assay. This was determined by undertaking a LAMP assay (a) and confirmation of results 
of the LAMP assay products using agarose gel (2%) electrophoresis (b). Temperatures ranged between 60.4–64.7 °C of 34.9 ng/μl G. truncatula 
genomic DNA extract sample concentration. Lane M: 100 bp DNA Ladder (Thermo Fisher Scientific); Lane –: no-template negative control at 63 °C
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Similar results were found developing a LAMP assay to 
detect O. viverrini in human faeces where the limit of 
detection for the reaction was between 1 pg and 100  fg 
of template, although the LAMP assay limit of detection 
was 100-fold greater, compared to conventional PCR 

[35]. In agreement with the present study, LAMP assays 
designed to detect Fasciola spp. in the faeces of sheep, O. 
viverrini in human faecal stools and Amphimerus spp. in 
human faeces showed the same 10-fold limit of detection 
as conventional PCR [36–38]. In contrast, investigations 
have found different outcomes upon LAMP assay DNA 
detection limits and adverse results when LAMP assays 
are compared to conventional PCR [39–41]. These incon-
sistent assay outcomes are likely due to the quality of the 
LAMP assay being dependent upon the regions that the 
primers were designed [22]. In this study, the ITS2 gene 
was chosen as the target gene for LAMP assay design, 
because the ITS2 sequence is known to occur in tandem 
repeats in the ribosomal DNA; it is therefore likely to be 
present in larger quantities in the environment [42, 43].

It is recognised that qPCR assays have lower detec-
tion limits than PCR assays [44]. Optimisation of a qPCR 
assay upon the detection of F. hepatica and A. tomentosa 
in water samples determined a limit of detection of 14 fg 
or 50 fg, respectively, where the DNA detection limit was 
100-fold greater than conventional PCR [45]. Compared 
to LAMP assay, qPCR is less practical to undertake due 
to the requirement of a precise, expensive instrument for 
amplification and a skilful labourer needed for detection 
of the amplified products [22].

All the reaction temperatures (60.4–64.7  °C) inves-
tigated amplified G. truncatula genomic DNA when 
optimising the LAMP assay, so 63  °C was chosen for 
further experimentation as recommended by the 
LAMP kit used. LAMP assays are most efficient at 

Fig. 5 Optimum time duration of G. truncatula LAMP assay. This was determined by undertaking a LAMP assay (a) and confirmation of results of the 
LAMP assay products using agarose gel (2%) electrophoresis (b). Time durations ranged from 10–40 min and 10-fold dilutions ranged from  104–106 
of 34.9 ng/μl G. truncatula genomic DNA extract sample concentration. Lane M: 100 bp DNA Ladder (Thermo Fisher Scientific); Lane +: G. truncatula 
positive control; Lane−: no-template negative control

Fig. 6 Cross-reactivity of G. truncatula LAMP assay. This was 
determined by undertaking a LAMP assay (a) and confirmation 
of results of the LAMP assay products using agarose gel (2%) 
electrophoresis (b). In panels a and b: M, 100 bp DNA Ladder 
(Thermo Fisher Scientific); +, G. truncatula positive control; −, 
no-template negative control; 1, S. palustris (140.6 ng/μl); 2, L. stagnalis 
(143.3 ng/μl); 3, R. balthica (167.2 ng/μl); 4, L. fuscus (218.2 ng/μl); 5, O. 
glabra (164.9 ng/μl)
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these temperatures because they allow best perfor-
mance of Bst DNA polymerase and double-stranded 
DNAs are at dynamic equilibrium around this tempera-
ture, so one of the LAMP primers (FIP) can anneal to 
the DNAs without a denaturing step to initiate synthe-
sis [22, 24]. The fact that the LAMP assay reaction can 

be undertaken under isothermal conditions using inex-
pensive equipment, means that detection of trematode 
infection risk areas on pasture-land can be conducted 
in less advanced field laboratories without the expense 
of thermocyclers and electrophoresis instrumentation.

LAMP assay results can be visualised in 30  min to 
detect G. truncatula genomic DNA extract at the limit 
of detection. Comparatively, the conventional PCR 
reaction took a further two hours to complete than the 
LAMP assay, and required gel electrophoresis to deter-
mine an outcome. A LAMP assay designed to detect 
F. hepatica and F. gigantica using four species-spe-
cific primers, took 45  min to obtain amplification and 
observe a visual result [26]. The addition of loop prim-
ers accelerates the LAMP reaction, as they hybridize 
to the stem loops, except for the loops that are hybrid-
ized by the inner primer, priming strand replacement 
DNA synthesis [28]. Using six primers, a LAMP assay 
designed to detect Schistosoma mansoni obtained posi-
tive results in 20  min, 30  min and 50  min when using 
1  ng, 1  pg or 1  fg DNA template, respectively [46]. 
The ability of a LAMP assay reaction to visualise an 
immediate result in 30  min, presents a practical tool 
to quickly and effectively make decisions upon man-
agement of pasture-land. However, advancements are 
needed to develop a rapid field-based eDNA extraction 
method to fully capitalise on the capabilities of LAMP 
assay.

The LAMP primers showed the ability to discriminate 
between G. truncatula DNA and non-target DNA, as five 
closely related snails that live in similar environments 
to G. truncatula tested negative using the LAMP assay. 
Amplification of non-target DNA present in the sample 
is unlikely in LAMP assays due to at least six distinct 
regions on the DNA target being recognised by at least 
four primers in the reaction [22, 28]. This suggests that 
the LAMP assay is robust enough to detect G. truncatula 
eDNA in areas where other snails co-occur.

The LAMP assay identified the presence of G. trun-
catula DNA in environmental samples (e.g. Farm A: 
17/24, Farm B: 10/24 positive results) with no significant 

Table 2 Comparison of G. truncatula LAMP and PCR assays using 
environmental water samples

Notes: eDNA samples were collected in four locations at Farm A and Farm B over 
a 7-week period. Area characteristics of the habitats were: 1, stream; 2, water 
pools; 3, stream; 4, ditch (as shown in Fig. 1)

Abbreviation: n/N, positive/examined

Date collected Habitat LAMP (n/N) PCR (n/N)

Farm A

 03/05/2019 1 2/2 0/2

 03/05/2019 2 0/2 0/2

 09/05/2019 1 1/2 1/2

 09/05/2019 2 1/2 1/2

 16/05/2019 1 1/2 1/2

 16/05/2019 2 2/2 2/2

 30/05/2019 1 2/2 2/2

 30/05/2019 2 2/2 2/2

 06/06/2019 1 2/2 2/2

 06/06/2019 2 1/2 1/2

 13/06/2019 1 2/2 2/2

 13/06/2019 2 1/2 2/2

Farm B

 03/05/2019 3 1/2 0/2

 03/05/2019 4 0/2 0/2

 09/05/2019 3 0/2 1/2

 09/05/2019 4 0/2 1/2

 16/05/2019 3 1/2 2/2

 16/05/2019 4 1/2 1/2

 30/05/2019 3 1/2 1/2

 30/05/2019 4 2/2 1/2

 06/06/2019 3 1/2 0/2

 06/06/2019 4 0/2 1/2

 13/06/2019 3 2/2 2/2

 13/06/2019 4 1/2 1/2

Table 3 Generalized logistic regression mixed model comparing eDNA G. truncatula LAMP and PCR assays

Abbreviation: SE, standard error

Variable β SE P-value

Intercept − 0.296 0.815 0.717

LAMP assay 0.000 0.444 1.000

Random effects Variance

Intercept 4.074

Habitat 0.426 0.516 0.409

Time 1.155 0.945 0.222
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difference to conventional PCR G. truncatula eDNA 
identification (e.g. Farm A: 16/24, Farm B: 11/24 posi-
tive results). Even though both farms showed similar 
positive results using both assays, three samples at Farm 
A and seven samples from Farm B showed conflicting 
results at different sampling points and habitat locations. 
This explains why the Kappa coefficient analysis showed 
a moderate level of agreement between LAMP and PCR 
assays. Similarities between PCR and LAMP assay results 
have also been reported detecting schistosome-infected 
snails, whereby 3/90 Biomphalaria pfeifferi were found 
infected with S. mansoni using both PCR and LAMP 
assays in field habitat locations, and 54/103 and 50/103 
Bulinus spp. snails were found infected with S. mansoni 
using both PCR and LAMP assays, respectively [47]. In 
contrast, conventional PCR underestimated the presence 
of C. sinensis in snail, fish and shrimp species collected 
in 11/106 samples compared to LAMP, where the Kappa 
statistic showed the techniques had high consistency 
[48].

Environmental samples are known to be rich in PCR 
inhibitors (e.g. humic acids, potassium dichromate, for-
maldehyde and phenols) which can interfere with the 
PCR amplification [49]. Inhibition of PCR reactions by 
substances present in environmental samples is particu-
larly important in low concentration samples and sur-
face water samples [50]. LAMP assays have been found 
to be less affected by non-target DNA in comparison 
to PCR [22, 29]. This is due to the Bst DNA polymer-
ase used in LAMP amplification having activity at high 
temperatures which reduces non-specific priming and 
that Bst DNA polymerase is more resistant to inhibitors 
compared to other DNA polymerases [51]. In the pre-
sent study, inhibitors present in the environmental water 
samples may have adversely affected the LAMP and PCR 
assay efficiencies, explaining the Kappa coefficient analy-
sis outcome. Of note, the HNB dye used to visualise the 
present assay, does not interfere with DNA synthesis by 
Bst DNA polymerase [25]. One of the disadvantages of 
LAMP is the impracticality of including an internal posi-
tive control within each reaction [52]. However, it may be 

feasible to analyse spiked samples to identify if negative 
LAMP assays were inhibited [53]. Additionally, it is sug-
gested that further research be conducted to understand 
to what extent PCR inhibitors associated with confound-
ing factors (e.g. water turbidity and soil type) may affect 
this LAMP assay.

Because LAMP assays are less affected by non-target 
DNA, some studies have omitted DNA extraction steps, 
prior to conducting LAMP reactions [29, 54]. Rapidly 
heating urine samples in comparison to using urine DNA 
extraction mini kit or sodium hydroxide/sodium dode-
cyl sulfate extraction method, provided best results for 
extracting Schistosoma haematobium DNA detectable by 
the LAMP assay, where the limit of detection was 10-fold 
higher than when using the commercial kit [55]. Heating 
samples prior to undertaking LAMP assays has also been 
applied to blood samples to detect malaria [51, 56] and 
swaps to diagnose leishmaniasis [57] and trichomoniasis 
[58]. An eDNA LAMP assay which does not require com-
plex DNA extraction steps, would enhance its value to be 
used as a routine farm management tool. Therefore, fur-
ther research should investigate alternative methodology 
to concentrate water eDNA samples and extract DNA, to 
improve the practicality of the current LAMP assay.

The LAMP assay developed in this study detects the 
presence of the trematode intermediate snail host G. 
truncatula in the environment. The eDNA capture and 
extraction protocol utilised in this study has previously 
demonstrated a capability of identifying F. hepatica and 
C. daubneyi eDNA when used in conjunction with PCR 
[20]. LAMP assays have been developed to amplify F. 
hepatica DNA [26] and could be incorporated into this 
protocol to identify the presence of F. hepatica in the 
grazing environment. However, as the eDNA of infective 
and non-infective F. hepatica stages cannot be differenti-
ated, interpreting F. hepatica eDNA detection in relation 
to infection risk would be challenging [20].

To further enhance the practicability of the LAMP 
assay as a farm management tool, a simple formulated 
ready-to-use LAMP kit should be made available [59]. 
A high throughput portable LAMP detection system 
has already been achieved for the diagnosis of malaria 
parasites, where DNA extraction to result visualisation 
can be undertaken within two hours without the need of 
pipetting and centrifugation [60]. Also, a point-of-care 
pathogen screening tool has been designed where sample 
acquisition, preparation, amplification and detection can 
be undertaken in one disposable tube in a field environ-
ment [61]. In the future, the current LAMP assay should 
be developed to provide real time results for multiple 
field locations on a farm, so farm management decisions 
can be promptly made to prevent livestock grazing trem-
atode risk areas.

Table 4 Kappa agreement comparing eDNA G. truncatula LAMP 
and PCR assays

Notes: The Kappa coefficient was undertaken with 95% confidence level and 
conducted using SPSS (v.25). The standard error = 0.119 and P < 0.001

No. of samples

PCR results LAMP positive LAMP negative Total Kappa value

Positive 16 5 21 0.577

Negative 5 22 27

Total 21 27 48
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Conclusions
This LAMP assay has the ability to detect G. truncatula 
DNA from water sources in the environment. Due to the 
short reaction time and ability to visualise results imme-
diately using inexpensive equipment, we predict this 
LAMP assay will be a valuable new tool to rapidly and 
effectively make decisions to support farm management 
practices in trematode risk areas, specifically in individ-
ual field locations.
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