
Aberystwyth University

D-FRI-Honeypot
Naik, Nitin; Shang, Changjing; Jenkins, Paul; Shen, Qiang

Published in:
IEEE Transactions on Emerging Topics in Computational Intelligence

DOI:
10.1109/TETCI.2020.3023447
10.1109/TETCI.2020.3023447
Publication date:
2021

Citation for published version (APA):
Naik, N., Shang, C., Jenkins, P., & Shen, Q. (2021). D-FRI-Honeypot: A Secure Sting Operation for Hacking the
Hackers Using Dynamic Fuzzy Rule Interpolation. IEEE Transactions on Emerging Topics in Computational
Intelligence, 5(6), 893-907. https://doi.org/10.1109/TETCI.2020.3023447,
https://doi.org/10.1109/TETCI.2020.3023447

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Jun. 2022

https://doi.org/10.1109/TETCI.2020.3023447
https://doi.org/10.1109/TETCI.2020.3023447
https://pure.aber.ac.uk/portal/en/persons/changjing-shang(b892bfaa-ae7f-45c2-9082-7bfbf2b70a5e).html
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/dfrihoneypot(cfd05063-51dd-44a6-a9b6-8702ee426290).html
https://pure.aber.ac.uk/portal/en/publications/dfrihoneypot(cfd05063-51dd-44a6-a9b6-8702ee426290).html
https://doi.org/10.1109/TETCI.2020.3023447
https://doi.org/10.1109/TETCI.2020.3023447


1

D-FRI-Honeypot:
A Secure Sting Operation for Hacking the Hackers

Using Dynamic Fuzzy Rule Interpolation
Nitin Naik, Changjing Shang, Paul Jenkins and Qiang Shen

Abstract—As active network defence systems, honeypots are
commonly used as a decoy to inspect attackers and their attack
tactics in order to improve the cybersecurity infrastructure of
an organisation. A honeypot may be successful provided that
it disguises its identity. However, cyberattackers continuously
endeavour to discover honeypots for evading any deception and
bolstering their attacks. Active fingerprinting attack is one such
technique that may be used to discover honeypots by sending
specially designed traffic. Preventing a fingerprinting attack
is possible but doing that may hinder the process of dealing
with the attackers, counteracting the purpose of a honeypot.
Instead, detecting an attempted fingerprinting attack in real-time
can enhance a honeypot’s capability, uninterruptedly managing
any immediate consequences and preventing the honeypot being
identified. Nevertheless, it is difficult to detect and predict an
attempted fingerprinting attack due to the challenge of isolating
it from other similar attacks, particularly when imprecise ob-
servations are involved in the monitoring of the traffic. Dynamic
fuzzy rule interpolation (D-FRI) enables an adaptive approach for
effective reasoning with such situations by exploiting the best of
both inference and interpolation. The dynamic rules produced by
D-FRI facilitate approximate reasoning with perpetual changes
that often occur in this type of application, where dynamic
rules are required to cover new network conditions. This paper
proposes a D-FRI-Honeypot, an enhanced honeypot running
D-FRI framework in conjunction with Principal Component
Analysis, to detect and predict an attempted fingerprinting attack
on honeypots. This D-FRI-Honeypot works with a sparse rule
base but is able to detect active fingerprinting attacks when it
does not find any matching rules. Also, it learns from current
network conditions and offers a dynamically enriched rule base
to support more precise detection. This D-FRI-Honeypot is
tested against five popular fingerprinting tools (namely, Nmap,
Xprobe2, NetScanTools Pro, SinFP3 and Nessus), to demonstrate
its successful applications.

Index Terms—Dynamic fuzzy rule interpolation; D-FRI; Hon-
eypot; D-FRI-Honeypot; Fingerprinting Attack; Sparse Rule
Base; Principal Components Analysis.

I. INTRODUCTION

Cyberattackers are becoming more sophisticated and devi-
ous in their attacks involving artificial intelligence (AI) [1],
[2], [3]. This requires more and better countermeasures from
cyber experts exploiting the same technological developments
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in AI [2], in addition to conventional passive or active defence
systems as a part of defensive strategies [4]. Honeypots, as a
form of active defence systems, are commonly used as a decoy
to inspect attackers and their sophisticated attacking tactics,
in an effort to improve the cybersecurity infrastructure of an
organisation [5], [6].

A. Research Motivations

A honeypot may be successful as long as it disguises its
identity. However, cyberattackers continuously endeavour to
discover honeypots for evading any deception and bolstering
their attacks. Active fingerprinting attack is one such technique
that can be used to discover honeypots by sending specially
designed traffic. If it is identified by an attacker, it can be
abused as a bot to attack others and even its own network
[5], [7], [8]. Preventing a fingerprinting attack is possible but
such an action may hinder the process of its dealing with the
attackers, thereby counter-acting the purpose of a honeypot [9].
Instead, detecting an attempted fingerprinting attack in real-
time can enhance the capability of a honeypot. This is because
it helps ensure uninterrupted dealing of the honeypot while
managing any immediate consequences, including prevention
of its own function from other malicious honeypots. Unfor-
tunately, little work exists to detect and predict an attempted
fingerprinting attack on honeypots because it is very difficult
to isolate such an attack from many of the similar ones,
especially when imprecise observations regarding the network
traffic are involved. Therefore, this research is set to investigate
various fingerprinting attacks. It proposes an intelligent and
adaptive technique for detecting and predicting an attempted
fingerprinting attack on honeypot, in an effort to enhance the
capability of a honeypot.

In the context of present application studies, both the
observations of and the knowledge available for detecting fin-
gerprinting attacks are often described in imprecise terms. This
means that a system built for such applications must be able to
handle ill-defined variable values and vague statements. Fuzzy
rule-based reasoning can help in this regard, being one of the
most popular techniques for designing rule-based intelligent
systems that meet such a requirement. The efficacy of a fuzzy
rule-based system is largely dependent on its underlying rule
base. Typically, such a system infers the conclusion based on
any matching rules in the given rule base. Yet, this type of
system can only be used effectively when the rule base is
dense (i.e., it covers all, or at least almost all input conditions).



2

Practically speaking, it may not be possible to attain such a
dense rule base, especially when coping with novel networks.
Even if it is attainable to devise a dense rule base, the use of
such a rule base may cause adverse effects on computational
overheads and redundancy. Fuzzy rule interpolation (FRI) [10],
[11], [12] has been proposed to perform approximate reasoning
with just a sparse rule base. However, in both cases of dense
and sparse rule bases, largely the rule base is static with no
mechanism to update it, which can make it ineffectual in long
run if it is not updated over time. This forms a significant
challenge for the potential successful applications of fuzzy
systems to cybersecurity problems.

To tackle the aforementioned specific challenge, dynamic
fuzzy rule interpolation (D-FRI) has been developed, enabling
the induction and exploitation of the most updated and dy-
namic rule base during the FRI process [13]. Indeed, D-FRI
offers an integrated framework for inference and interpolation
and can be used with any fuzzy intelligent system irrespective
of the type of its underlying rule base. It benefits the cyberse-
curity applications through its ability of assisting in the mon-
itoring of perpetual changing traffic conditions within a given
network. This is evident from its initial applications in the area,
such as D-FRI-Snort [14], D-FRI-WinFirewall [15], D-FRI-
CiscoFirewall [16], ID-Honeypot [17] and VD-Honeypot [18].
Building on these original attempts, D-FRI is herein utilised
again to develop a D-FRI-Honeypot for detecting or predicting
active fingerprinting attacks on honeypots.

B. Main Contributions

The work proposed herein helps enhance the capability of
a honeypot to conceal its own identity, thereby enabling itself
to successfully perform its function. In particular, it makes the
following major contributions to the relevant literature:

• A methodology to detect and prevent fingerprinting at-
tacks to (cyber security) honeypots that can both run and
also learn online. The methodology offers an automated
means for dealing with the challenging problem of only
having a sparse, and imprecisely described, rule base for
the detection of fingerprinting attacks.

• Active fingerprinting attacks are simulated on a given
honeypot to collect attack data (i.e., TCP/IP packets). The
simulation is accomplished by employing the KFSensor
honeypot and Nmap and Xprobe2 fingerprinting tools,
with the simulated attack data captured in two different
logs, respectively by the use of KFSensor directly and
with Wireshark analyser for forensic analysis.

• A number of the important fields of collected TCP/IP
packets are empirically examined to ascertain abnormal-
ities or patterns as an indication of an attempted finger-
printing attack, with the classical principal component
analysis (PCA) exploited to determine the most influential
fields, which are further utilised to develop an effective
approach to predicting fingerprinting attacks.

• D-FRI is applied to correctly correlate the identified
influential fields and to predict fingerprinting attacks and
their severity level. The resulting system, dubbed D-FRI-
Honeypot hereafter, is successfully tested against five

popular fingerprinting tools, including both Nmap and
Xprobe2 (that have been used in the development of D-
FRI-Honeypot) and three other tools: NetScanTools Pro,
SinFP3 and Nessus, neither of these new tools has been
involved in building the D-FRI-Honeypot previously.

C. Content Organisation

The rest of this paper is organised into the subsequent
sections: Section II explains the basic concepts regarding D-
FRI, honeypots and fingerprinting attacks, including operating
system fingerprinting. Section III describes the simulation and
analysis of fingerprinting attacks on honeypots for the collec-
tion of empirical data. Section IV discusses a comprehensive
examination of the chosen TCP/IP fields and their related
abnormalities/patterns as signs of a fingerprinting attack. Sec-
tion V presents the design and development of a D-FRI-
Honeypot for discovering and predicting fingerprinting attacks
on honeypots. Section VI shows the testing results of the
implemented D-FRI-Honeypot system. Section VII discusses
the main limitations of D-FRI-Honeypot, and Section VIII
concludes the paper and points out possible improvements of
this work.

II. BACKGROUND

This section introduces the basic concepts upon which to
develop the work to be presented in the subsequent sections.

A. Dynamic Fuzzy Rule Interpolation (D-FRI)

The conventional fuzzy reasoning systems infer any out-
comes using a dense rule base that covers the problem domain.
When it is not possible for the rules available to cover the
complete domain then a situation involving the use of a
sparse rule base results. The most effective way to draw
outcomes under such scenarios is the utilisation of an FRI
system. These two procedures, of inference and interpolation,
can be combined for designing more effective fuzzy systems
using the sparse rule base. The integrated system can offer
several benefits such as performing conventional inference
with the sparse rule base and hence, minimising computational
overheads (as rule interpolation requires more computation).
Nonetheless, the effectiveness of such an integrated system
may be affected due to the static nature of the sparse rule base
as it demands an additional mechanism for intelligent learning
and adaptation of the rule base as the problem domain evolves.

The providential, dynamic fuzzy rule interpolation (D-FRI)
is particularly developed to address this issue, which offers
the most updated rule base during a problem-solving process,
through the utilisation of FRI [13]. It can also be used to grad-
ually develop a dense rule base from an original sparse rule
base if needed. The D-FRI system is the result of an integration
of fuzzy inference, fuzzy rule interpolation, and dynamic rule
learning and adaptation techniques. As such, it offers a generic
framework to encompass a wide range of fuzzy inference
and interpolation mechanisms. However, in this work, the
Mamdani’s fuzzy inference [19] and transformation-based rule
interpolation (T-FRI) [20] techniques are utilised due to their
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popularity and availability. The design and working stages of
D-FRI are illustrated in Fig. 1 and its further details can be
found in [13].

Fig. 1: Dynamic Fuzzy Rule Interpolation (D-FRI) [13]

B. Honeypots

A honeypot is a concealed security system that functions
as a decoy to entice cyberattackers to reveal their information
[21]. It deceives, detects and diverts cyberattackers, whereas
concurrently gathering their information [7]. Most honeypots
are used to imitate the functionalities of a real network so
that cyberattackers may interpret such a system as the real
network to carry out attacks, thereby revealing information
regarding the attacker [8]. They are installed to entail con-
stantly observations to uncover the vulnerabilities and new
attacks to the underlying real network and to develop an
enhanced defensive strategy [22]. However, honeypots should
not be used as a defensive system to protect the network.
Honeypots are categorized into two categories on the basis of
their design and level of activity with cyberattackers [23]: low-
interaction honeypots and high-interaction honeypots. Low-
interaction honeypots normally imitate real systems and have
restricted communication with cyberattackers; whereas, high-
interaction honeypots are normally real systems and have
unrestricted communication with cyberattackers [18]. Low-
interaction honeypots are most commonly used honeypots due
to their benefits of limited resources, overheads and interaction
with attackers, and therefore, this research work has also
employed it.

C. Fingerprinting Attack

In a fingerprinting attack, an attacker typically sends a
sequence of fabricated packets to a target system or network
[24]. It does so to provoke a response in the form of packets
containing fingerprint information with the intention of ob-
taining the target’s identification. Fingerprinting attacks are

categorised into two categories on the basis of the activity
of cyberattackers: active and passive fingerprinting attacks. In
an active fingerprinting attack, cyberattackers send carefully
constructed packets to the target, analysing their response
packets to extract fingerprinting information [21]. In a passive
fingerprinting attack, cyberattackers do not send any packets
to the target, instead they sniff, capture and analyse traffic
from the target to extract fingerprinting information [21].
Active fingerprinting attacks are more accurate than passive
fingerprinting attacks as the result is based on the direct
response from the target. Therefore, in this design of D-FRI-
Honeypot, only an active fingerprinting attack is considered.

D. OS Fingerprinting Attack

Operating system (OS) fingerprinting is the most prevalent
fingerprinting type of attack, which is performed on a target
system or network to obtain specific information regarding
its OS, services, device type and type of architecture [25].
The mechanism is to send a stream of fabricated TCP/IP
packets from the attacker to elicit response TCP/IP packets
containing fingerprint information of the target [26]. After
analysing a number of the fields of certain TCP/IP protocols
of the response packets, a fingerprint is constructed and
compared against the fingerprint database to find the exact
or closest matched fingerprint of the target. Cyberattackers
are highly successful in performing OS fingerprinting attacks
as the same TCP/IP protocol suite is implemented by every
OS differently, resulting in different responses for the same
TCP/IP query. Consequently, different responses generated
by different operating systems divulge substantial information
about a given system to cyberattackers. The complete process
of an OS fingerprinting attack is dependent on TCP/IP protocol
suite. As such, it is sometimes referred to as TCP/IP stack fin-
gerprinting. Most low-interaction honeypots simulate several
OSs in order to presents an illusion of real OSs, which makes
this OS fingerprinting attack more crucial to discover any low-
interaction honeypot easily. Moreover, having obtained precise
information about the OS of the target, cyberattackers can
launch more complex attacks with grater severity against the
target system or network.

III. SIMULATION OF OS FINGERPRINTING ATTACKS

Every OS implements the TCP/IP protocol suite differently.
This, acquisition of a fingerprint of any OS requires the
analysis of the TCP/IP packets sent by that OS. The process of
finding a fingerprint of a particular OS is therefore, primarily
based on the examination of the TCP, ICMP and UDP proto-
cols as in general, every fingerprinting tool or technique sends
and receives these three protocol-based packets differently to a
target system. However, certain fingerprinting tools/techniques
primarily employ TCP packets to perform the fingerprinting
attack and certain primarily employ ICMP packets, thus, the
development of any successful method to detect this attack
should involve examination of both categories (TCP and
ICMP) of tools/techniques. Reflecting this practical observa-
tion, the present simulation covers both TCP-based and ICMP-
based OS fingerprinting attacks, in an effort to acquire the type
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of OS fingerprint (and also, information about the associated
services) of a honeypot that may reveal its identity.

A. TCP-Based OS Fingerprinting Attacks using Nmap

Nmap is the most powerful and reliable scanning tool which
is very effective in delivering an OS fingerprinting attack,
being mainly TCP-based. Many Nmap scripts use heuristics
and fuzzy signature matching to derive conclusions about a
target host OS or services [27]. During an OS fingerprinting
attack, Nmap sends a stream of TCP/IP packets, to iden-
tified open and closed ports on the target. This stream of
TCP/IP packets contains TCP, UDP, and ICMP packets. These
packets/probes are aimed at several existing ambiguities and
their exploitation in terms of standard protocol Request-for-
Comments (RFCs). When the target sends a reply back to
Nmap regarding these packets, the fingerprinting tool analyses
the values of various parameters of the TCP, ICMP and UDP
packets and constructs an OS fingerprint to match against the
database of OS signatures it contains [28]. Depending on the
OS signature matching result, it predicts the possible OS of
the target. If there is no exact match then an integrated fuzzy
representation and inference mechanism is used to perform
such a prediction [29].

Table Ia shows the five different Nmap scripts that may be
used for an OS fingerprinting attack. The first Nmap script
is the basic OS fingerprinting command that reveals the OS
fingerprints and other details such as OS version numbers,
device type and architectural information. The second script
offers more descriptive fingerprinting information such as
OS type, device type, host script and traceroute. The third
utilises fuzzy techniques to predict the closest matched OS (in
percentage), in the event that it does not find any exact match.
The fourth is used to perform OS fingerprinting continuously
for the given number of attempts to improve the accuracy of
prediction. The fifth, and the final Nmap script is completely
different from the other four, utilising a different signature
database for matching any fingerprint. It discovers information
relating to various services running on different ports such as
HTTP, FTP, SMTP, SSH, Telnet and DNS. This script can
be executed with a different intensity (ranging from 0 to 9
with 9 being the highest intensity) to improve the accuracy of
prediction [30].

Particularly, the first four Nmap scripts employ the Nmap
database called nmap-os-db [31], and the fifth Nmap script
utilises the Nmap database called nmap-services [32]. For
accuracy and to discount any outlier data, each Nmap script
(with various sub-options) is executed 100 times to record
the results under various network conditions while observing
retransmitted packet patterns.

B. ICMP-Based OS Fingerprinting Attacks using Xprobe2

Nmap is a powerful and reliable fingerprinting tool, how-
ever, its results are largely dependent upon the TCP packets
sent. An ICMP-based fingerprinting simulation and analysis
becomes an essential alternative in order to propose a generic
solution. Xprobe2 is one of the first ICMP-based fingerprinting
tools, which is herein employed for such simulation. It utilises

ICMP packets and is based on the notion of signature engine
supported by fuzzy signature matching [33].

During an OS fingerprinting attack, Xprobe2 sends a stream
of TCP/IP packets, to identified open and closed ports on the
target [34]. This stream of TCP/IP packets contains ICMP,
TCP, and UDP packets. In particular, Xprobe2 consists of 13
modules (whilst versions such as Xprobe2++ and Xprobe2-
ng consist of an additional 3 modules (fingerprint:icmp info,
app:ftp, and app:http), when used to find an OS fingerprint
[34]. This tool is both more effective and quicker than Nmap
due to the utilisation of a fewer number of TCP/IP packets.
Unfortunately, it is obsolete and not updated. Thus, it is
unable to ascertain newer OSs including Windows 7 on the
honeypot system. Nonetheless, the present work is focused
on the development of a counter strategy for identifying and
predicting an OS fingerprinting attack. Having recognised
that Xprobe2 is the very first ICMP-based OS fingerprinting
tool, forming the basis for all subsequent ICMP-based OS
fingerprinting tools, it is imperative to investigate Xprobe2-
based simulation.

Table Ib shows the five different Xprobe2 scripts for an OS
fingerprinting attack. The first Xprobe2 script is a basic OS
fingerprinting command that determines a fingerprint of an
OS running on an intended system as per its basic operation
[33]. The second Xprobe2 script determines a fingerprint of
an OS depending on the utilisation of specific modules, which
can provide different results based on the selected modules.
The third Xprobe2 script determines a fingerprint of an OS
by sending more traffic to an intended system because switch
-B sends consecutive TCP handshake requests to any open
TCP port such as 80, 443, 23, 21, 25, 22, 139, 445 and 6000
on an intended system and expects a SYN ACK reply [35].
The fourth Xprobe2 script determines a fingerprint of an OS
by utilising an internal port scanning module, that performs
a port scanning of indicated TCP and/or UDP port(s) [35].
The fifth Xprobe2 script determines a fingerprint of an OS
by utilising additional details regarding a protocol, port and
the current status via switch -p. The protocol can be chosen
from TCP or UDP, the port number from 1 to 65535, and the
current status (Open or Closed) of a port. In case of a closed
port, an intended system may reply with RST packet for a
TCP port, and may reply with ICMP Port Unreachable packet
for a UDP port. In case of an open port, an intended system
may reply with SYN ACK packet for a TCP port, and may
not reply (send a packet) for a UDP port [35].

Note that similar to the simulation with Nmap, to obtain
accurate results while removing any outliers in the data, each
Xprobe2 script (with various sub-options) is executed 100
times. This helps record the results under different network
conditions and observe patterns of retransmitted packets.

IV. IDENTIFICATION OF OS FINGERPRINTING ATTACKS

The simulation data for both TCP and ICMP based OS
fingerprinting attacks collected in the previous section is
analysed in this section. Each stream of TCP/IP packets
received from an attacker is analysed to reveal any observed
abnormalities/patterns in the various fields of TCP/IP proto-
cols (i.e., TCP, ICMP, UDP and IP). This analysis identifies
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TABLE I: Nmap and Xprobe2 OS Fingerprinting Attack Scripts

(a) Nmap OS Fingerprinting Attack Scripts

No. Nmap OS Fingerprinting Attack Script

1 nmap −O < Honeypot IP >

2 nmap −A < Honeypot IP >

3 nmap −O −−fuzzy −−osscan−guess < HoneypotIP >

4 nmap −O −−max−OS− tries n < Honeypot IP >

5 nmap −sV −−version−intensity n < Honeypot IP >

(b) Xprobe2 OS Fingerprinting Attack Scripts

No. Xprobe2 OS Fingerprinting Attack Script

1 xprobe2 < Honeypot IP >

2 xprobe2 −D/−M < Module Name >< Honeypot IP >

3 xprobe2 −B < Honeypot IP >

4 xprobe2 − T/− U < Port Range > < Honeypot IP >

5 xprobe2 − p < Protocol : Port : Status >
< Honeypot IP >

ten indicator fields of TCP/IP protocols with respect to the
detected discrepancies in the attack simulation data (see Figs.
2 and 3). Additionally, these ten TCP/IP fields are analysed
to emphasise their weight based on the literature and the core
attack principles of popular OS fingerprinting tools/techniques.

A. Abnormalities/Patterns in TCP Flags

TCP comprises six standard flags (SYN, ACK, URG, PSH,
RST, FIN), controlling the nature and flow of the transmission.
There are several flags or combinations of flags which are
considered as abnormal or illegal ones based on the RFCs of
TCP. Yet, there is no explanation regarding the handling of
such abnormal/illegal flags. Different OS’s generate different
responses for an abnormal/illegal flag or combination of such
flags. This is a significant concern for the security community
as attackers generally exploit these responses to determine
the OS of the target. Thus, identification of a number of
these abnormal/illegal TCP flags can be utilised as a good
indicator of an OS fingerprinting attack, which is relatively
straightforward to find as they are well known. Certain OS
fingerprinting tools also utilise additional control flags (e.g.,
CWR, ECN) and Reserved Bits in their attack techniques.
Examples of these abnormal/illegal TCP flags are:

• URG/PSH/FIN Probing – See Fig. 4
• NULL Packet – See Fig. 5
• Reserved Bit Probing – See Fig. 6
• ECN-Echo Probing – See Fig. 6
• FIN Probing
• SYN/FIN Probing

B. Abnormalities/Patterns in TCP Options

Most fingerprinting tools exploit the TCP Options field
of a TCP header because it is an adaptable field and can
be of any size ranging from 0 to 40 bytes. A TCP options
field may contain a subset of or all the following attributes:
Maximum Segment Size (MSS), Window Scaling, Selective
Acknowledgements (SACK), Timestamps, and Nop. There-
fore, every OS customises the TCP Options field based on
its implementation which can be identified as a pattern of that
OS. Conversely, the TCP options field can be used to identify
an OS fingerprinting attack by finding abnormalities/patterns
in the packets received from an attacker. Of course, this
can be combined with other indicators as a sign of an OS
fingerprinting attack.

C. Abnormal Use of TCP Urgent Pointer

TCP provides the facility to mark certain amount of data as
urgent, which is indicated by setting the URG flag. This Urgent
Pointer field indicates how much of the data in the segment is
urgent. This field and URG flag jointly allow an application
to forward urgent data immediately by creating a secondary
out of band channel without waiting in sequential send queue.
Nonetheless, most users are uncertain about using this field
correctly. Thus, this ambiguity offers a possible opportunity
to attackers to exploit this field for a fingerprinting attack. At
the same time, the improper use of this Urgent Pointer may
reveal a potential OS fingerprinting attack.

D. Abnormalities in TCP Window Size

TCP Window Size is important field to decide the total
amount of bytes that can be sent successfully without waiting
for an acknowledgement. TCP Window Size is maintained
by both sender and receiver due to the bidirectional nature
of TCP, however, fixed limit is determined by receiver. This
field is mainly used for network troubleshooting, application
baselining or preventing network congestion at the receiver
end. This is the important field for flow control and could
be exploited for a fingerprinting attack. Equally, this TCP
Window Size can be looked at for finding substantial discrep-
ancies and repetitive cases of zero windows that could reveal
a potential OS fingerprinting attack.

E. Abnormal Use of IP Type of Service (TOS)

This is an IP datagram field that is used to describe its vari-
ous quality of services. It is an 8-bit field consisting of several
quality parameters, namely, Precedence, Speed, Throughput,
Reliability and Cost. The TOS field is commonly redefined
as the Differentiated Services Code Point (DSCP). Some of
the QoS parameters may not be frequently used in regular
communications; therefore, their frequent or anomalous use
may reveal irregular actions and perhaps the probability of an
OS fingerprinting attack.

F. Abnormalities/Commonalities in IP Identification (IPID)

In a TCP/IP network, the maximum size of a datagram is
limited to the processing capacity of that network, which is
called the Maximum Transmission Unit (MTU). Therefore, the
successful data transmission process requires fragmentation of
all those datagrams, which are greater than the MTU. The
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Fig. 2: Investigated fields of TCP Header for attempted
OS fingerprinting attack

Fig. 3: Investigated fields of IP Header for attempted OS
fingerprinting attack

Fig. 4: Captured TCP packet with
URG/PSH/FIN probing during OS fin-
gerprinting attack

Fig. 5: Captured TCP packet with
NULL probing during OS fingerprint-
ing attack

Fig. 6: Captured TCP packet with
Reserved Bit and ECN-Echo probing
during OS fingerprinting attack

IPID field facilitates fragmentation (and later reassembly) of IP
datagrams with a unique ID, which is incremented whenever
an IP datagram is sent from source to the destination. This
IPID is used to reassemble all fragmented IP datagrams (which
will have the same IPID) at the receiver end. The exact order of
the fragmented datagrams during the reassembly is determined
by the fragment offset. The More Fragments (MF) flag is
used to determine if fragmentation is allowed, and whether
more fragments are pending. Similarly, the Don’t Fragment
(DF) flag is used to deny fragmentation, resulting the drop of
packets greater than the MTU size.

The updated specification of the IPID Field (RFC 6864)
states that it must not be utilised for any purpose other
than fragmentation (and reassembly) [36]. However, it is not
uncommon to set its value to zero while using it for numerous
pings, and for numerous SYN-ACKs from the same source.
Irrespective of IPID standard guidelines, its implementation is
still ambiguous, which leads to its exploitation by attackers for
various types of attacks and possibly a fingerprinting attack.
Similarly, this field can be analysed for various sequences of
IPID or commonality of fragmented packets of the same IPID
number for finding a sign an OS fingerprinting attack.

G. Abnormalities in IP Time-To-Live (TTL) Value

The IP TTL field is used to determine the lifetime of an
IP datagram in the network. It can be defined as a counter
or timestamp and once it is elapsed, the corresponding IP
datagram is discarded or revalidated. This field was added to

the IP header to restrict the time an IP datagram can spend on
any network due to the connectionless nature of IP. This field
can be exploited to perform various kinds of attacks including
an OS fingerprinting attack, where an abnormal TTL value
or a TTL value of less than or equal to one can be used.
Conversely, these TTL abnormalities may provide a sign of
an OS fingerprinting attack.

H. Abnormalities/Patterns in UDP Requests

UDP is a very useful protocol in many probing techniques
due to its connectionless nature. All OS fingerprinting tools
use UDP packets in conjunction with TCP/ICMP packets to
collect fingerprinting information from the target. An attacker
sends UDP packets to a port of the target and it may or may
not receive any response, depending on the state of a port
being open or closed. The target replies with an ICMP error
message Destination Unreachable (ICMP Type 3) if the port
is closed; otherwise, it receives no reply for an open or filtered
port. Generally, an UDP packet used in OS fingerprinting is
either empty or set to a fixed payload. An attacker can also set
an IP DF flag in the UDP packet that can prompt the target to
reply with an ICMP error message. These symptoms can be
found in the UDP packets received from an attacker to identify
an OS fingerprinting attack. Also, this can be combined with
other indicators as a sign of such an attack.
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I. Abnormalities/Patterns in ICMP Requests

ICMP is an error announcing protocol that is used for
troubleshooting, and for providing control and error message
services. It may be particularly employed by network devices
(e.g., routers, gateways, hosts) to announce error messages
when there is an issue in delivering packets. As a result,
an attacker can exploit legitimate ICMP request packets to
collect significant information about an OS of the target. Such
packets include: ICMP Echo Request (Type 8), ICMP Router
Solicitation Request (Type 10), ICMP Timestamp Request
(Types 13), ICMP Information Request (Type 15 -Deprecated)
and ICMP Address Mask Request (Type 17 -Deprecated).

Most OS fingerprinting tools utilise abnormal ICMP re-
quests by changing certain parameters of the aforementioned
ICMP requests. For example, an abnormal ICMP Echo request
(Type 8) can be easily determined by examining its Code
value. This is because such a value should always be Code 0,
but certain OS fingerprinting tools use an invalid Code value
in their attacks. These abnormalities can be found in the ICMP
request packets received from an attacker to identify an OS
fingerprinting attack. They can also be combined with other
indicators as a sign of an OS fingerprinting attack.

J. Abnormalities/Patterns in ICMP Packet Size

ICMP packets are normally used to report errors in a
standard format and therefore, their sizes are relatively stable
with respect to the OS, within a predictable range. When
the common size of an ICMP packet is determined as a
network baseline, it is relatively straightforward to compare
normal and abnormal ICMP packets without investigating their
contents in detail. For example, in Nmap-based experimental
simulation, the baseline size was 74 bytes (as with the most
common ICMP packet size in Windows), and the sizes of
two collected ICMP packets by KFSensor Honeypot are 149
to 179. The recorded sizes of the ICMP packets for all the
Nmap experimental iterations are the same. This is a clear
indication of abnormality/pattern found in the ICMP request
packets received from a likely OS fingerprinting attacker. This
can be combined with other indicators as a sign of an OS
fingerprinting attack, of course.

V. D-FRI-HONEYPOT FOR PREDICTING FINGERPRINTING
ATTACKS ON HONEYPOTS

The development of D-FRI-Honeypot is herein based on
D-FRI, supported by Principal Components Analysis (PCA).
In particular, PCA is used to determine the most influential
TCP/IP fields from the earlier analysed TCP/IP fields, which
are subsequently employed by D-FRI to predict or detect an
OS fingerprinting attack. The working procedure of this D-
FRI-Honeypot is shown in Fig. 7.

A. Determining the Most Influential TCP/IP Fields

Principal Components Analysis is one of the most effective
computational techniques for data dimensionality reduction
(DR) while retaining most of the information contained with

the original data. In this work, the primary reasons for the
preferred choice of PCA over alternative DR techniques are:

• that reduced number of TCP/IP fields means decreased
requirements for capacity and memory, enabling a
lightweight system;

• that it is a very efficient technique for data involving not
very high dimensionality, which is the case here;

• that it is of low noise sensitivity, facilitating the handling
of volatile network traffic which typically incurs in the
problem concerned; and

• that it uses simple and readily accessible statistical calcu-
lations, avoiding the need of complex programming tasks.

As outlined previously, based on empirical analysis, there
are ten most crucial fields that may be exploited as indica-
tors for signs of fingerprinting attacks. To aid in improving
the efficacy of prediction of a fingerprinting attack, it is
worthwhile to select only the most significant fields out of
the ten chosen fields and also establish their corresponding
relationships with each other. This can be accomplished us-
ing PCA, where principal components with higher variances
reveal the most significant attributes, showing additional in-
formation about the underlying data. Based on this analysis,
only the best components are selected for the subsequent
analysis as they practically signify the complete data, and
rest of the components can be ignored based on the pre-
decided threshold values, namely, Cumulative Proportion of
Variance, Eigenvalue or Loading (contribution of each orig-
inal field to the principal component). In this experimental
investigation, traditionally accepted thresholds are considered
to determine the number of principal components to use,
including: Cumulative Proportion of V ariance >85%,
Eigenvalue >1 (from Kaiser’s rule [37]) and Loading2

>1/Total Number of V ariables (which indicates that
Loading for any selected component should be relatively
higher than others) [38], [39], [40].

Table IIa illustrates the standard deviation, variances and
cumulative proportion of variances for the ten principal com-
ponents. The cumulative proportion of variance for the first
five components is 0.8821793 (≈ 88%), which is higher than
the pre-decided threshold value of 85% (commonly adopted
in the literature [40]). From this, it is known that the first
five components are the most significant for the collected
fingerprinting data. The cumulative value of the remaining
five components is approximately 12%, indicating that their
contribution to the data is rather low. Further evaluation of
the selected first five components is useful, checking whether
their eigenvalues >1 (see Fig. 8). It is true for the first
four components, however, the fifth component is slightly
smaller than 1 (≈1), but it is essential, in conjunction with
the other four, to constitute the 85% cumulative proportion of
the variance. Thus, unlike those five components whose joint
contribution is less than 15%, this fifth one is retained as one
of the most influential.

The selection of influential variables are additionally fur-
ther evaluated by examining the Loading values, showing
the correlation between an original variable and a principal
component. In this analysis, the Loadings of the first five
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Fig. 7: D-FRI-Honeypot for predicting OS fingerprinting attacks on honeypots
Fig. 8: PCA Graph demonstrating
eigenvalues for principal components

most significant principal components are computed as shown
in Table IIb, wherein, the five original fields of TCP Flags,
TCP Options, ICMP Requests, ICMP Packet Size and UDP
Requests have greater Loadings than the other five (TCP
Window Size, IP Time-To-Live, IPID Value, IP Type Of
Services and TCP Urgent Pointer). This indicates that the
first five fields have greater correlation with the five most
significant principal components.

An in-depth analysis of the Loadings of the first five
fields in relation to the top five principal components leads
to interesting observations and inductions. In particular, the
Loadings of the first principal component with respect to
the first five original fields highlight its higher weighting and
hence, greater importance in the data. PC2 and PC5 are mainly
represented by the two fields of TCP Flags and TCP Options
due to their greater Loadings. This means that the two original
fields can be grouped as a new TCP attribute (TCP Flags +
TCP Options). Similarly, PC3 and PC4 are mainly represented
by the two fields of ICMP Requests and ICMP Packet Size
and thus, these two original variables can be grouped as a new
ICMP attribute (ICMP Requests + ICMP Packet Size). The
fifth field, UDP Requests, has consistently greater Loadings
in relation to all the five principal components. This highlights
its higher weighting and importance in the data, but as a
separate networking protocol. From this observation, it may
be considered as a separate UDP attribute to be combined
with TCP and ICMP attributes in representing any principal
components from PC1 to PC5. Together, these three derived
(i.e., combined) attributes from PCA collectively represent the
original data, thereby significantly increasing computational
efficiency.

B. Predicting OS Fingerprinting Attacks with Severity Levels

In the previous analysis, the three new attributes (related
to TCP, ICMP and UDP) are derived from the five most
significant principal components which are useful to act as
a sign of OS fingerprinting attacks. Additionally, it is very
useful to determine the value range of these attributes for
developing a generic attack prediction mechanism, due to

their interrelationships with several techniques underlying the
data representation mechanisms within commonly adopted OS
fingerprinting tools. Yet, it is equally important to be able to
exploit these attributes in a way that a proposed method can
efficiently predict most OS fingerprinting attacks accurately
irrespective of the underlying techniques/tools. Fuzzy set-
based representation can help address both issues effectively,
by offering a value range for each attribute to deal with
the problem of imprecise attribute representation in most OS
fingerprinting techniques, accurately [6].

1) Fuzzy Input and Output Variables: In designing the
fuzzy inference system for predicting OS fingerprinting at-
tacks, those three influential attributes as identified previously
are employed. In particular, TCP flags and TCP options are
merged as a single attribute named Abnormal TCP Packet
(ATCPP); ICMP requests and ICMP packet size are merged
as another single attribute named Abnormal ICMP Packet
(AICMPP); and the variable UDP requests is kept unchanged
but renamed as Abnormal UDP Packet (AUDPP) to better
match the eyes. The value ranges for these fuzzy variables
are all set to 1-15 packets empirically, based on the anal-
ysis of thousands of TCP/IP packets collected from Nmap
and Xprobe2 simulations and the underlying principles of
fingerprinting tools. From this, five fuzzy sets are defined on
this common range: Very Low, Low, Medium, High and Very
High, respectively representing five severity levels of an OS
fingerprinting attack in the prediction. In terms of the support
of each of these fuzzy values, the overall range is split such
that Very Low is of the support of 0-4 packets, Low is of 2-6
packets, Medium is of 5-9 packets, High is of 8-12 packets,
and Very High is of 11-15 packets.

The fuzzy output variable from the system is named
Attempted Fingerprinting Attack Possibility (AFAP), which
signifies the predicted possibility of whether there may exist
an OS fingerprinting attack, based on computed correlation of
the above three fuzzy input variables. Its range is represented
within the range of 0-100%, split also into similar five fuzzy
terms: Very Low, Low, Medium, High and Very High. Par-
ticularly, the supports of these fuzzy values are empirically
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TABLE II: Principal Components Analysis and Loading/Rotation Matrix

(a) Principal Components Analysis of Targeted TCP/IP Fields of
Collected Fingerprinting Data

Importance of Components Standard
Deviation

Proportion
of Variance

Cumulative
Proportion

Principal Component1 (PC1) 1.8632531 0.3471712 0.3471712
Principal Component2 (PC2) 1.3222377 0.1748313 0.5220025
Principal Component3 (PC3) 1.2714464 0.1616576 0.6836601
Principal Component4 (PC4) 1.0285482 0.1057911 0.7894512
Principal Component5 (PC5) 0.9629541 0.0927281 0.8821793
Principal Component6 (PC6) 0.7542089 0.0568831 0.9390624
Principal Component7 (PC7) 0.5752591 0.0330923 0.9721547
Principal Component8 (PC8) 0.5200373 0.0147899 0.9869446
Principal Component9 (PC9) 0.3845766 0.0111769 0.9981216
Principal Component10 (PC10) 0.137055 0.0018784 1.0000000

(b) Loading/Rotation Matrix of Selected Most Significant Prin-
cipal Components

Fields PC1 PC2 PC3 PC4 PC5
TCP Flags 0.46395 0.66868 0.10247 0.20834 0.43479

TCP Options 0.44029 0.58625 0.11341 0.22636 0.51578

ICMP Requests 0.42547 0.13763 0.77126 0.50812 0.21459

ICMP Packet Size 0.41512 0.12637 0.50132 0.64353 0.22927

UDP Requests 0.35459 0.33253 0.21872 0.26654 0.32253

TCP Window Size 0.12435 0.10501 0.01978 0.24361 0.29201

IP Time-To-Live 0.08543 -0.12875 -0.25983 0.13523 -0.30287

IPID Value 0.07653 -0.10182 0.10455 0.23156 -0.27128

IP Type Of
Services

-0.09123 0.11764 0.04627 0.10138 0.28026

TCP Urgent
Pointer

-0.27362 0.10763 -0.01774 -0.13982 0.11261

defined as follows: Very Low is of the support 0-20%, Low
is of 10-40%, Medium is of 30-60%, High is of 50-80% and
Very High is of 70-100%.

2) Fuzzy Rule Base and Fuzzy Inference: The rules are
created on the basis of computed correlations between the
three fuzzy input variables and the output variable. The con-
straint over this rule generation process is imposed such that
the resulting fuzzy rule base should consist of generic rules
applicable to several commonly adopted OS fingerprinting
techniques or tools. Samples of the generated rules are shown
in Fig. 14 and the fuzzy rule base is presented in Fig. 15. Note
that due to the nature of the application problem, the rule base
is rather sparse. Any prediction performed through a direct use
of these rules is implemented by the FIS (see Fig. 13), which
is based on the popular Mamdani’s inference method [19].

3) D-FRI Sub-system: Low-interaction honeypots are typi-
cally restricted in their resources and capabilities. This natural
fact is in addition to the limitation of running sparse rule-based
FIS and therefore, may adversely affect the effectiveness of the
detection. Furthermore, in practice, the system may not collect
all traffic whilst its associated operation is subject to perpetual
changes in network conditions. As Mamdani’s inference is
only effective when the input conditions are at least met
partially with any existing rule (otherwise, no detection can be
made without being able to fire any rule), D-FRI sub-system is
employed here. It helps to significantly reduce the occurrence
of situations where no detection is made when there is no
match available given the sparse rule base.

Initially, it performs a certain fuzzy rule interpolation when
no match is available from the given rules, generating an
outcome. The sub-system stores every such interpolated result
(interchangeably termed interpolated rule when used together
with the otherwise unmatched values for the input variables),
to enable dynamic learning subsequently. This learning process
is done after reaching a pre-defined threshold of the interpo-
lated rules. Dynamic learning is only applied once a while,
on such a group of interpolated rules, in order to obtain and
promote the most concurrent rules to the sparse rule base.

Importantly, the dynamic rule promotion process enhances
the overall system’s efficacy in two ways: 1) increasing the

possibility of inference (thus reducing interpolation overheads)
in future, and 2) increasing the accuracy of the outcomes
by generating and making use of more accurate and concur-
rent rules. This is evident in the experimental results to be
presented next. Overall, the D-FRI sub-system improves the
detection rate of an active fingerprinting attack, by minimising
false positives and false negatives thanks to the exploitation
of any recent traffic and hence, update rules.

VI. EXPERIMENTAL RESULTS

D-FRI-Honeypot is tested against five different OS finger-
printing tools Nmap, Xprobe2, NetScanTools Pro, SinFP3 and
Nessus, with its prediction result for an attempted OS fin-
gerprinting attack recorded. These tools are selected to cover
a diverse range of the underlying fingerprinting approaches,
including the TCP-based, ICMP-Based and combinational
tools. This is important to ensure rigorous testing of the
D-FRI-Honeypot against a variety of different fingerprinting
attacks. In this experimentation, each fingerprinting tool is
utilised to simulate 50 different attacks. Thus, a total of 250
attacks are carried out on the honeypot. The performance of
D-FRI-Honeypot is recorded under two different conditions:
1) D-FRI-Honeypot using just fuzzy inference and 2) D-FRI-
Honeypot using D-FRI sub-system.

Throughout the experimental investigations, the following
two performance indices are used for system evaluation: pre-
diction accuracy and detection sensitivity. Prediction accuracy
shows how accurately D-FRI-Honeypot has predicted each
attack. Note that the fuzzy linguistic outcomes (namely, Very
High, High, Medium, Low and Very Low) are translated into
numerical values in terms of weightage in percentages, such
as 100%, 80%, 60%, 40% and 20% for evaluation purpose,
with a failure to detect an attempted attack considered as 0%.
In addition to the prediction accuracy, it is also important to
check how many attacks are not detected or alerted by D-FRI-
Honeypot. Therefore, detection sensitivity is calculated as the
ratio of the number of True Positives over the total of True
Positives and False Negatives. The selection of theses two
performance indices prediction accuracy and detection sen-
sitivity offered a balanced approach to measuring the success
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Fig. 9: Fuzzy input vari-
able ATCPP

Fig. 10: Fuzzy input vari-
able AICMPP

Fig. 11: Fuzzy input vari-
able AUDPP

Fig. 12: Fuzzy output vari-
able AFAP

Fig. 13: Fuzzy prediction system Fig. 14: Sample fuzzy rules Fig. 15: Fuzzy rule base

(or otherwise) of D-FRI-Honeypot, in terms of how many and
how accurate it may predict attempted fingerprinting attacks.

A. D-FRI-Honeypot Performance Using Fuzzy Inference

With D-FRI-Honeypot running fuzzy inference only, the
prediction accuracy for all the five tools investigated is illus-
trated in Fig. 16. The overall prediction accuracy for each
tool and the associated 50 attempted attacks is calculated
as follows: 70.8% for Nmap, 70% for Xprobe2, 72% for
NetScanTools Pro, 68% for SinFP3 and 61.6% for Nessus.
These results are depicted in Fig. 17. The overall prediction
accuracy of D-FRI-Honeypot running just fuzzy inference is
therefore, 68.48%.

The detection sensitivity of D-FRI-Honeypot without the
use of D-FRI for each tool is calculated over 50 attempted
attack, resulting in: 74% for Nmap, 70% for Xprobe2, 72% for
NetScanTools Pro, 68% for SinFP3 and 68% for Nessus. These
are also shown in Fig. 17. The overall detection sensitivity of
D-FRI-Honeypot using fuzzy inference is therefore, 70.4%.
This is itself a decent performance considering the sparse rule
base given since the rule base covers approximately 56% of
the problem space (which equivalently speaking, would require
44% more rules to form a dense rule base). It is nevertheless
crucial to improve this performance in order to detect more
attempted attacks.

B. D-FRI-Honeypot Performance Using D-FRI Sub-system

Use of D-FRI-Honeypot running with the D-FRI sub-system
helps in improving the system’s prediction performance. This
is reflected in the evaluation with both metrics prediction accu-
racy and detection sensitivity (for the same attacks considered).

The prediction accuracy in response to each attack for all
the five fingerprinting tools is illustrated in Fig. 18. The pre-
diction accuracy per tool regarding the 50 attempted attacks is
calculated as: 80.4% for Nmap, 79.6% for Xprobe2, 86.6% for
NetScanTools Pro, 79.2% for SinFP3 and 73.6% for Nessus.
These are summarised in Fig. 19. The prediction accuracy of
D-FRI-Honeypot running the D-FRI sub-system is therefore,
79.88%. This demonstrates a considerable improvement over
the system without the use of D-FRI.

The detection sensitivity of D-FRI-Honeypot with D-FRI
sub-system for each tool is also calculated over the 50 at-
tempted attacks, resulting in 88% for Nmap, 82% for Xprobe2,
90% for NetScanTools Pro, 82% for SinFP3 and 86% for
Nessus. These are shown in Fig. 19. The overall detection
sensitivity of D-FRI-Honeypot using D-FRI is 85.6%, a sig-
nificant improvement over the case where no D-FRI is applied.
More detailed comparisons are given below.

C. Comparing D-FRI-Honeypot with or without D-FRI

The above two sets of experimentations, running D-FRI-
Honeypot with just Mamdani’s fuzzy inference and with D-
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Fig. 16: Accuracy per each prediction with D-FRI-Honeypot running fuzzy
inference only

Fig. 17: Prediction Accuracy and De-
tection Sensitivity of D-FRI-Honeypot
running fuzzy inference only

Fig. 18: Accuracy per each prediction of D-FRI-Honeypot with D-FRI sub-system

Fig. 19: Prediction Accuracy and De-
tection Sensitivity of D-FRI-Honeypot
with D-FRI sub-system

FRI sub-system respectively, have to a certain extent shown
the strengthened performance of the latter, given the same
sparse fuzzy rule base. As a matter of fact, the employment
of D-FRI has improved the prediction accuracy of D-FRI-
Honeypot against attempted attacks by a rate of approximately
10% for each attack tool and a rate of 11.4% overall (see Fig.
20). Similarly, the detection sensitivity of D-FRI-Honeypot
against the attempted attack for each fingerprinting tool by
approximately 12% and by 15.2% overall (see Fig. 21).

To reinforce the performance gains through the use of D-
FRI, both prediction accuracy and detection sensitivity of
D-FRI-Honeypot with or without D-FRI are summarised in
Table III. Clearly, D-FRI sub-system helps D-FRI-Honeypot
performing by utilising fuzzy inference and rule interpolation
with the sparse rule base, reducing the failure rate of inference.
Note that owing to the dynamic promotion of interpolated
rules, computational overheads of interpolation are reduced as

the detection process progresses. This is because the dynamic
enrichment of the rule base will facilitate increasingly more
direct rule firing without the need to carry out interpolation.

TABLE III: Summary of Prediction Accuracy and Detection
Sensitivity of D-FRI-Honeypot

D-FRI-Honeypot Prediction Accuracy Detection Sensitivity

Without D-FRI 68.48% 70.4%

With D-FRI 79.88% 85.6%

D. Analysis of D-FRI-Honeypot Results Running D-FRI

Examining the results of D-FRI-Honeypot with the use
of D-FRI for the different OS fingerprinting tools reveals
more interesting observations. In general, D-FRI-Honeypot
has proven to be very effective in the prediction of all
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Fig. 20: Prediction Accuracy of D-FRI-Honeypot with
D-FRI or without D-FRI (i.e., only FIS)

Fig. 21: Detection Sensitivity of D-FRI-Honeypot with
D-FRI or without D-FRI (i.e., only FIS)

detected fingerprinting attacks, with an average rate of 93.55%
predicted attacks being regarded at the Very High/High levels.
In response to individual type of attacking tools, the following
results are attained: 88.63% for Nmap, 100% for Xprobe2,
100% for NetScanTools Pro, 100% for SinFP3 and 79.1%
for Nessus. This means that D-FRI-Honeypot can predict
a majority of attempted OS fingerprinting attacks as Very
High/High for all the five fingerprinting tools, as summarised
in Table IV.

Table IV also shows the exceptions where the predictions
are made at a severity level different from Very High/High.
These are mostly related to Nmap and Nessus as they can
perform a wide range of OS fingerprinting attacks, some of
which rely on HTTP and other application layer protocols,
whilst the present investigation is concentrated on the core
protocols of the network and transport layer (TCP, ICMP, UDP
and IP). Using HTTP and other application layer protocols,
a reduced reliance on the core TCP/IP protocols results, in
the process of obtaining OS fingerprinting information that
may lead to the generation of lower TCP/IP traffic and fewer
abnormalities/patterns for the system to predict. Whilst HTTP
and other application layer protocols can be included in the
detection process, with each protocol targeting a very specific
attack, this will significantly increase the complexity and
overheads of the proposed approach. With just core TCP/IP
protocols included in all tools/attacks based on TCP/IP stack
fingerprinting, a lightweight generic approach is made feasible,
being capable of predicting all TCP/IP based fingerprinting
attacks.

E. Accuracy of D-FRI Generated Dynamic Rules

In order to test the accuracy of the dynamically promoted
rules for the D-FRI-Honeypot, a total of 20 new rules are
generated from the collection of 400 interpolated rules. These
new rules are added to the original sparse rule base to enhance
the honeypot’s ability to generate correct results and minimise
future computational effort. Significantly, reduction of future
interpolation also leads to a decrease of any errors caused by
the interpolative process.

TABLE IV: Prediction by D-FRI-Honeypot for Attempted
Attacks Using Different OS Fingerprinting Tools

OS Finger-
printing Tool

Main Proto-
col for Re-
connaissance

Predicted Sever-
ity Level of At-
tempted Attacks

Exceptions in Predic-
tion of Attempted OS
Fingerprinting Attacks

Nmap TCP-Based V eryHigh∗/
High∗

Severity Level

Protocols affected where
HTTP-based attack
scripts (e.g., nmap -sV)
are used.

Xprobe2 ICMP-Based V eryHigh/
High Severity
Level

NetScanTools
Pro

ICMP-Based V eryHigh/
High Severity
Level

SinFP3 TCP-Based V eryHigh/
High Severity
Level

Nessus Both TCP and
ICMP-Based

V eryHigh∗/
High∗

Severity Level

Protocols affected where
SMB, NTP, SNMP, SSH
and HTTP-based attack
scripts are used.

Where * means that D-FRI-Honeypot can predict Very High/High
severity for majority of OS Fingerprinting Attacks, with Exception of
certain application layer protocol-based attacks (see rightmost column).

The accuracy of the dynamic rules is compared to: 1) that of
directly using the interpolated rules (ε%dvi), and 2) that of the
ground-truth rules (ε%dvt) which are generated on the basis of
translating the underlying defining fuzzy grids, in exactly the
same way as utilised to create those original rules in the sparse
rule base. Note that it is purely for experimental comparison
purpose that such ‘ground-truth’ rules are provided assuming
that there have been sufficient training data available for their
creation. In reality, there do not exist such rules, otherwise
there is no need for rule interpolation given a dense rule base.

The differences between the accuracies attainable by the use
of just static rules for interpolation and that of the ground-
truth rules (e%ivt) are also provided. In all aforementioned
comparisons, the percentage error ε% = ε/rangey is com-
puted corresponding to the range of the consequent variable.
Table V exhibits the average values and standard deviations
with respect to the three measurements. The result clearly
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supports the present work, showing the benefits of promoting
accurate rules through the application of D-FRI. Indeed, the
results of the intelligent dynamic honeypot are closer to the
use of the ground-truth rules.

TABLE V: Accuracy of D-FRI Generated Dynamic Rules

Metric ε%dvi ε%dvt ε%ivt

AVG 2.48 1.39 2.64

SD 2.77 1.40 2.74

VII. LIMITATIONS OF D-FRI-HONEYPOT

The D-FRI-Honeypot has been successfully tested against
several fingerprinting tools in identifying a fingerprinting at-
tack in-situ. However, it has a number of limitations:

• D-FRI-Honeypot may not always generate accurate re-
sults for untested fingerprinting tools, despite it has been
developed according to the underlying attack principles
of popular fingerprinting tools (Nmap and Xprobe2), and
further tested for three other tools NetScanTools Pro,
SinFP3 and Nessus.

• D-FRI-Honeypot may not generate accurate results for
fingerprinting attacks that utilise unknown mechanisms
other than those described previously.

• D-FRI-Honeypot is mainly focused on the core protocols
TCP, UDP and ICMP, without considering the application
layer protocols (e.g., HTTP, FTP, SMTP, SNMP) which
may be exploited in a fingerprinting attack and thereby,
may affect its prediction accuracy.

• D-FRI-Honeypot is developed for low-interaction honey-
pots where fingerprinting is a serious threat to revealing
its identity; consequently, it is neither focused on nor
recommended for high-interaction honeypots.

• D-FRI-Honeypot may generate false positives for those
attacks which exhibit similar abnormalities or patterns to
those identified in the empirical simulations.

• D-FRI-Honeypot produces prediction results that are in-
dicative as they are in fuzzy linguistic terms; thus, further
investigation to prove or disprove such a result is required
if a boolean result is sought.

• D-FRI-Honeypot works depending upon the volume of
traffic sampled as input to perform accurate detection of
a fingerprinting attack; therefore, any obstacle in traffic
may affect the entire identification and prediction process.

VIII. CONCLUSION

This paper has presented a dynamic fuzzy rule interpolation
based honeypot called D-FRI-Honeypot for detecting or pre-
dicting active fingerprinting attacks, including their severity
levels. Earlier, there was little work available to detect and
predict an attempted fingerprinting attack on honeypots. This
observation has led to the investigation of various fingerprint-
ing attacks and the development of an intelligent and adaptive
D-FRI-Honeypot in the research reported herein.

The design of D-FRI-Honeypot has been focused on the
most common OS fingerprinting attacks. The simulation of

fingerprinting attacks and data (TCP/IP packets) collection
have both been accomplished by employing KFSensor hon-
eypot tool and Nmap and Xprobe2 fingerprinting tools. Based
on preliminary observations and empirical evidence, important
fields of collected TCP/IP packets have been analysed in
an effort to establish abnormalities or patterns as a sign of
an attempted fingerprinting attack. Subsequently, PCA has
been utilised to determine the most influential TCP/IP fields,
which are then used to develop the honeypot based on D-
FRI. D-FRI-Honeypot has been successfully tested against
five popular fingerprinting tools. The analysis of experimental
results achieved has demonstrated that D-FRI-Honeypot can
significantly improve the prediction accuracy and detection
sensitivity, covering a majority of attempted OS fingerprinting
attacks, while possessing the ability of accurately and dynam-
ically enriching the system’s own knowledge base online.

Whilst D-FRI-Honeypot is promising, encompassing several
types of TCP/IP based fingerprinting attacks, it may omit
certain fingerprinting attacks that take advantage of application
layer protocols such as HTTP, SMTP, FTP, SMB, NTP, SNMP
and SSH. Thus, as an important future work, it is essential
to enhance D-FRI-Honeypot so that it could incorporate these
fingerprinting attacks. Of course, work also remains to be done
in dealing with those shortcomings identified in the preceding
section.
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