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M Fate of organic compounds during transformation

of ferrihydrite in iron formations

I Abstract

TRANSFORMATION

S. Jelavic'?*, A.C. Mitchell3, K.K. Sand"23

doi: 10.7185/geochemlet.2030

The absence of organic compounds from Precambrian iron formations (IF) chal-
lenges the hypothesis of the biogenic origin of IF. Here we address the fate of

. o = m M adsorbed organic compounds during transformation from ferrihydrite to hematite.

DESORPTION

We determined the binding energy between hematite and common molecular
terminations found in extracellular polymeric substances and biofilms: carboxylic,
hydroxyl and phosphate functional groups. We found that the bond between hem-
atite and hydroxyl groups is approximately 2 times stronger than the bond between
hematite-carboxyl and -phosphate groups. We transformed synthetic ferrihydrite

to hematite at 90 °C in presence of glycerol, which has a high density of hydroxyl
groups, and measured the amount of mineral associated glycerol before and after the transformation. We show that the trans-
formation releases glycerol highlighting that organic compounds adsorbed at precursor ferrihydrite could be desorbed during
the process of IF sedimentation and diagenesis. Our results suggest that the absence of organic compounds in IF should not be

used as evidence against their biogenic origin.

Received 20 March 2020 | Accepted 7 August 2020 | Published 15 September 2020

! Introduction

Traditionally, iron formations (IFs) have been considered as
abiotically generated chemical sediments but an increasing body
of evidence suggests the active role of microbes in their precipi-
tation (Koehler et al., 2010). The role of anoxygenic phototrophic
bacteria in the formation of IFs has been the object of speculation
since the work of Garrels et al. (1973). An improved understand-
ing of microbially induced Fe(II) oxidation highlights that oxidis-
ing bacteria, such as Rhodobacter ferrooxidans, could likely drive
the formation of IFs (Kappler et al., 2005). Further, mass balance
calculations have shown that Fe(II)-oxidising phototrophic bac-
teria have the capacity to oxidise all Fe(II) from the Precambrian
ocean, causing formation of iron (oxyhydr)oxide (FeOx) (Hegler
et al., 2008). However, the low concentration of organic com-
pounds in IFs and their diagenetic or metamorphic derivatives,
challenges the hypothesis of their biogenic origin (Klein, 2005).

Extracellular polymeric substances (EPS) promote FeOx
nucleation (Sand et al., 2020) where microbially formed FeOx
are often found in close association with the EPS (Chan et al.,
2004). When EPS is encrusted with FeOx, the polymers are shed
and new EPS are formed. This prevents the encrustation of the
microbe itself (Phoenix et al., 2000; Chan ef al., 2004). During IF
formation, FeOx-EPS composites would have settled through
the water column and been deposited on the sea floor. Some
of the organic compounds were degraded by diagenetic and
metamorphic processes (Kohler et al., 2013; Posth et al., 2013;
Halama et al, 2016). In addition, there is evidence that the

W N =
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depositional environment was most likely scarce in organic com-
pounds (Dodd et al., 2019). Thus, the majority of the organic
compounds was likely lost prior to deposition.

Hematite is a major component of IFs found today
(Konhauser et al., 2017) but, initially, the FeOx in the FeOx-
polymer complexes were most likely composed of ferrihydrite
(Chan et al., 2004). The transformation to hematite would have
happened in aqueous solutions both before (Sun et al., 2015) and
after deposition on the seabed. Depending on the solution
conditions, ferrihydrite to hematite transformation can involve
intermediary phases such as lepidocrocite and goethite, e.g.,
through Fe(Il) catalysed transformation (Hansel et al., 2003), or
it can be direct (Cudennec and Lecerf, 2006). Transformation
involving intermediary phases is a dissolution-precipitation
process (Schwertmann and Murad, 1983) implying that the
interface between ferrihydrite and organic compounds is elimi-
nated. In this scenario, organic compounds would have been
released to solution where they could have been re-adsorbed
but less strongly bound to newly formed phases (Chen et al.,
2015), or released in the water column and subsequently
degraded by various biotic and abiotic processes (Kleber et al.,
2015). The direct transformation from ferrihydrite to hematite
is a solid-state transition where atoms move only locally to
occupy new structural positions (Cudennec and Lecerf, 2006),
without the loss of an interface with adsorbed complexes.
Thus, the direct transformation of ferrihydrite to hematite is
not necessarily accompanied by a removal of organic com-
pounds. However, the Gibbs free energy of binding (AGy,)
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between ferrihydrite and EPS is larger than between hematite
and EPS (Sand et al., 2020) implying that the polymers were
more likely to desorb from hematite than from ferrihydrite. In
such a case, the absence of organic compounds in IFs cannot
be an argument against their biogenic origin.

To understand better the fate of adsorbed organic com-
pounds during direct transformation from ferrihydrite to hema-
tite, we used dynamic force spectroscopy (DFS) to measure the
energy of binding between hematite and representative organic
functional groups found in EPS. Subsequently we identified the
functional group least likely to desorb during transformation and
carried out transformation experiments where we used ther-
mogravimetric analysis (TGA) to measure the loss of organic
compounds during transformation.

I Materials and Methods

DFS. We used an Asylum MFP3D atomic force microscope (AFM)
and functionalised gold coated AFM tips (MSCT, Bruker) with car-
boxyl (COO"), hydroxyl (OH), and phosphate (HPO;) head-
groups pointing away from the AFM probe (Fig. 1a). Tips were
functionalised following the protocol described in Jelavi¢ et al.
(2017) (details in SI).

We used the {0001} face for DFS because it is one of
the most common hematite surfaces in the environment
(Hartman, 1989) and because it is a predominant face on hem-
atite produced by transformation of ferrihydrite (Cornell and
Schwertmann, 2004). The specular hematite monocrystal
{0001} face was cleaned prior to analysis following the protocol
described in Jelavic et al. (2017) (details in the ST). For DFS mea-
surements, we collected >500 force curves per experiment. The
tip approaching velocity was set to 500 nms~! and the retraction
velocity varied between 10-10000 nms™. The trigger force was
set to 100 pN and dwell time to 0.5 s. During the measurement,
the head groups bound to the hematite surface (Fig. 1a) and we
measured the forces applied to break the bond (i.e. the force
curve, Fig. 1b). We fit the rupture forces vs. the loading rate
to a multibond model (Friddle et al., 2012) enabling calculation
of AGy, (Eq. S-1 to Eq. S-4). The measurements were done in
10 mM NacCl solution at pH =5.6. We chose these conditions,
rather than conditions at which the transformation experiments
were conducted, to maximise the interaction forces between the
tip and hematite surface (Liitzenkirchen et al., 2013; Newcomb
et al., 2017).

Transformation experiments. Ferrihydrite was synthesised
using the method of Schwertmann and Cornell (2000). We used
0.5 M NaCl solution and pH =7 as a proxy for Precambrian sea-
water. We chose glycerol (CH,OH-CHOH-CH,OH) as a model
for an OH-rich molecule. Adsorption of polymers is a complex
function of degree of branching, length and hydrophobicity
(van Oss, 1997). The aim here is not to account for such varia-
tions but to isolate the effect of AGy,, which is independent of
those parameters, on the magnitude of desorption during trans-
formation. Coprecipitation of ferrihydrite-polymer aggregates
results in a high organic content compared to adsorbed polymers
(Mikutta et al., 2014) and can cause variations in grain size and
aggregation. To avoid any influence from such variations and to
avoid low transformation rates related to high surface coverage,
we adsorbed glycerol to ferrihydrite in this study. We mixed
15 mg of ferrihydrite with 15 ml of 0.5 M NaCl and added glyc-
erol to a final concentration of 0.5 % (Fig. 1c). In control samples,
we omitted glycerol. Samples were shaken at 100 rpm overnight
to equilibrate. The next day, a batch of samples was rinsed with
20 ml of rinsing stock solution (0.5 M NaCl adjusted to pH=7
with 1 M NaOH) by ultra-centrifugation (equilibrated sample).

Another batch was placed in the oven heated to 90 °C. The sam-
ples from the oven were sampled at specific time steps to follow
the transformation pathway using X-ray diffraction (XRD).
When sampled, a batch was rinsed with 20 ml of 0.5 M NaCl that
was adjusted to pH =7 (aged sample). All samples were freeze
dried after rinsing.

XRD. Samples for XRD were washed with ultra-deionised
water (resistivity >18.2 MQcm). A volume of 1.5 ml of suspen-
sion was pipetted on the zero background Si holders and left
to dry at room temperature. Such sample preparation results
in large preferred orientation of anisotropic grains such as goe-
thite and lepidocrocite and allows us to detect minute quantities
of crystalline material in a poorly ordered matrix of ferrihydrite.
We collected diffractograms in reflection mode on the Bruker D8
Advance instrument using Cu Ka radiation (. = 1.5418 A) oper-
ated at 40kV and 40 mA, and a LynxEye detector. Diffractograms
were collected from 10-90° 26 with step size of 0.02° and 1.7 s
counting time per step. The sample was spun at 20 rpm. We used
0.3° divergence and 3° antiscatter slits, 2.5° Soller slits on inci-
dent and diffracted beams and a 0.02 mm thick Ni-filter. The
opening of detector window was 2.94°.

TGA. We used Netzsch TG 209 F1 Libra. Samples were
heated at a rate of 10 °C min~' from 30 to 1000 °C under N,
atmosphere. ~15 mg of sample were placed into the Pt crucible
and the weight loss was measured as a function of temperature.

TEM. Images were taken with a Philips CM 20 TEM
equipped with a thermionic LaBg filament. We used an acceler-
ating voltage of 200 kV. Samples were prepared by placing
a droplet of sample suspension on a formvar coated TEM grid
and left for 5-10 s. Subsequently, the grid was washed in
ultra-deionised water and water droplets were removed with
the edge of a paper towel.

I Results and Discussion

Energy of binding. The force spectra (Fig. 2) show that the rupture
force between hematite and the OH group is ~6 times higher than
between COO~ and HPOj; groups (Fig. 2, Table S-1). Re-
calculated to AGy, (Eq. S-4), that is an increase in ~2 kT. These
binding energies suggest that the interaction is dominated by
strong Van der Waals or weak electrostatic forces (Israelachvili,
2011). Considering that the {0001} hematite surface is completely
hydroxylated in water (Trainor et al., 2004), our results follow the
trend where OH-OH bonds are twice as strong as COO~™-OH
bonds at circumneutral pH (Vezenov et al, 1997) present in
Precambrian ocean. Thus, irrespective of the transformation path-
way, biopolymers rich in acidic groups desorb more easily from
hematite than those rich in hydroxyl groups.

Transformation pathway. To investigate the fate of a
ferrihydrite-associated OH-containing molecule during trans-
formation to hematite, we transformed the ferrihydrite-glycerol
complex, monitored the transformation pathway with XRD
and determined the weight loss with TGA. The ferrihydrite-
glycerol complex transformed directly to hematite without any
intermediate phases detectable by XRD (Fig. S-3) suggesting
a solid-state transformation pathway. As a control, we trans-
formed ferrihydrite in absence of glycerol using the same solu-
tion conditions. Even though the hematite was the first phase to
occur after 17 hr, goethite started forming after 43 hr (Fig. S-2)
indicating that, in pure systems, some ferrihydrite dissolves and
reprecipitates as goethite, as previously shown (Das et al., 2011).

The transformation is accompanied by glycerol release. In
general, the ferrihydrite-gycerol complex lost more weight than
the pure ferrihydrite (Fig. 3, Table 1). Ferrihydrite is more
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Figure 1 (a) Schematics of the DFS (Dynamic Force Spectroscopy): self assembled monolayers with carboxyl, hydroxyl and phosphate head-
groups covalently bonded to AFM tip. (b) A scheme of a force curve. (c) In transformation experiments, ferrihydrite and glycerol were mixed
atroom temperature and left to equilibrate overnight. One sample was then taken for TGA (equilibrated sample) and the rest was placed in
the oven at 90 °C until the transformation was complete (aged sample).
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Figure3 Comparison of thermogravimetry curves of ferrihydrite-
glycerol (equilibrium-black curve) and resulting hematite-glycerol
(aged-red curve). The smaller mass loss in the region 125-700 °C
(dashed vertical lines) for the aged sample compared to the equi-
librium sample suggests bigger loss of tightly bound water and
glycerol during the transformation.

Table 1 Weight loss during the TGA analysis in <125 °C and
125-700 °C regions.

% weight loss
Sample <125 °C 125-700 °C
Glycerol equilibrated 8.9 5.4
aged 4.8 3.2
Control equilibrated 9.8 4.7
aged na.’ n.a.

* transformation yielded both goethite and hematite making comparison
impossible

hydrated than hematite so the loss of loosely adsorbed water
(<125 °Q) and tightly bound water (125-700 °C) is higher for
ferrihydrite than hematite (Hiemstra and Van Riemsdijk,
2009). Comparing the weight loss of ferrihydrite-glycerol (5.4 %;
Table 1) to pure ferrihydrite (4.7 %) in the 125-700 °C range,
shows that the tightly bound water accounts only for 87 % of
the weight loss in this region, indicating that the remaining 13 %
is the loss of glycerol and associated interfacial water. This
implies that hematite produced by aging ferrihydrite-glycerol
contains less glycerol than the original ferrihydrite-glycerol
(equilibrated), and that glycerol is released during transforma-
tion. Considering that the initial amount of adsorbed glycerol
is ~5 mg/g of ferrihydrite (Fig. S-1), TGA indicates that all glyc-
erol has been desorbed during the transformation.

The reason for the loss of the glycerol during transforma-
tion can also be the smaller specific surface area (SSA) of the pro-
duced hematite (Fig. S-4) and not only the lower affinity for
glycerol compared to ferrihydrite. From TEM images, we esti-
mated the SSA of ferrihydrite to be 374-790 m?g~! and of hem-
atite to be 10-46 m?g~". Thus, the decrease in the SSA because of
grain coarsening during transformation is between 9-70 times
which alone might explain the decrease in glycerol content.
However, the loss must be amplified by the lower AG,, for hem-
atite-OH than for ferrihydrite-OH system. In addition, our
thermodynamic results suggest that the loss of organic com-
pounds would have happened because of decreased AGy, even
if the subsequent grain coarsening does not occur, e.g., in case of
hematite growth inhibition caused by organic compounds.
However, both scenarios are likely to have contributed to the loss
of organic compounds during the formation of IFs.

We have demonstrated that glycerol, a molecule with a
high AGy, to hematite, desorbs during the transformation of fer-
rihydrite to hematite. We propose that a significant mass of
organic compounds from FeOx-EPS composites is desorbed
early in the process of FeOx sedimentation because of the trans-
formation from ferrihydrite to hematite. This loss of organic
compounds is probably further enhanced by the grain coarsen-
ing of hematite during diagenetic and metamorphic processes
and concomitant reactions in the microenvironment that result
in secondary mineralisation, e.g., Posth et al. (2013). Our experi-
ments were designed to determine the loss of strongly bound
molecules from FeOx during the direct transformation, which
is least likely to result in desorption of adsorbed organic com-
pounds. The less strongly bound organic compounds or organic
compounds adsorbed to ferrihydrite that transformed via disso-
lution-precipitation pathway would likely have desorbed in
higher proportion than that we report here. Thus, our results
highlight that the absence of organic compounds in IF should
not be used as evidence against their biogenic origin.
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I Additional Information

Supplementary Information accompanies this letter at http://
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