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Risk models for hazardous material transportation
subject to weight variation considerations

Hao Hu, Jiaoman Du, Xiang Li∗, Changjing Shang, and Qiang Shen

Abstract—Reasonable risk models in hazardous material trans-
portation are of practical significance, for safeguarding the
lives and properties, protecting the natural environment, and
facilitating the sustainable development. The existing risk models
can be classified into summation risk model and maximum risk
model, which result in over-reliance on overall risk or local risk.
For overcoming these problems, we present two novel risk models
considering different aggregation methods on local risks. The
first model is supported by ordered weighted averaging (OWA)
operator, which assigns the weights according to the position
of the segment risk in the process of risk aggregation, and the
second model is supported by state variable weight (SVW) vector,
which adjusts the weights on segments according to the change
of segment risk values. Generally speaking, OWA risk model is
used under the situation with complete weighting information,
while SVW risk model could be used under the situation with
incomplete weighting information. Based on the analysis for
variable weight mechanism, we show that both models could
effectively balance the overall risk with the local risks assisted by
weights variety. Numerical experiments are provided to illustrate
the validity of the proposed risk models.

Index Terms—Risk model, Hazardous material transportation,
Ordered weighted averaging operator, State variable weight
vector.

I. Introduction

Hazardous material (hazmat) transportation is a hot topic
in the fields of public security and environmental protection.
Generally speaking, the accident probability of hazmat trans-
portation is very low, but the accident consequences may be
extremely damaging. From 2013 to 2017, there were only 356
hazmat transportation accidents in China, but the accidents
caused 855 deaths, 2980 injuries and huge economic losses
[1]. For example, on March 19, 2016, a transport explosion
accident of an oil tank truck in Beijing-Hong Kong-Macao
Expressway caused 5 deaths and 21 injuries; on May 23,
2017, another transport explosion accident in Zhangjiakou-
Shijiazhuang Expressway caused 15 deaths and 42 million
RMB direct economy loss. Therefore, how to effectively
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reduce the hazmat transportation risk has become an impor-
tant and urgent subject, which has attracted great attention
from both scholars and practitioners. In addition, globally,
governments are also concerned with this issue, and have taken
significant measures to reduce the hazmat transportation risk,
such as proper driver training, enhanced vehicle maintenance,
and careful emergency response planning.

In academia, risk evaluation associated with hazmat trans-
portation has been widely investigated from different perspec-
tives. One of the most commonly used, as proposed by Batta
and Chiu [2], is expected risk model, which is defined as the
product of accident probability and accident consequence. In
that model, accident probabilities are obtained by calculating
the historical frequencies of truck accidents, while accident
consequences are the total numbers of influenced people
within a certain range measured. Saccomanno and Chan [3]
introduced an incident probability model, which assumes that
the population densities within the affected areas are equal
such that the incident probability is proportional to the risk
measure. ReVelle et al. [4] suggested a population exposure
model that defines the hazmat transportation risk as the sum
of affected population among all segments. Comprehensive
studies of this area can be found in Erkut et al. [5]. Although
the above works have been wildly used in hazmat transporta-
tion, they also received criticism due to the lack of local risk
evaluation. For example, the expected risk model reflects the
total risk value on the overall route, but ignores the high risk
on certain segments near major population centres.

In reality, when dealing with high consequence events,
most decision makers concern about not only overall risk, but
also local risk. In addressing this issue, Abkowitz et al. [6]
proposed a perceived risk model to avoid the larger population
centers in the route selection process. The model replaces the
accident consequences in the conventional expected risk model
by an exponential function of population, aiming to effectively
reduce the local risk at segments with high population along
the transportation route. Erkut and Ingolfsson [7] described an
alternative model, which minimizes the maximum population
exposure. The model focuses on the maximum influenced
population among segments along the transportation route,
rather than the total influenced population on the whole route.
Essentially, hazmat transportation risk along a route is the
aggregation of multiple segment risks. Overall risk and local
risk stand for different risk preferences of the decision makers,
the former prefers to weighted averaging operators and the
later max operators. In practice, both of these should be
considered in the risk model. In this paper, we use two
classical information aggregation methods to achieve a balance
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between overall risk and local risk, including ordered weighted
averaging (OWA) operator and state variable weight (SVW)
vector.

The OWA operator is an extension of the weighted aver-
aging operator, which was first conceived by Yager [8], and
has been employed in many areas such as decision-making
[9–11], data analysis [12], mathematical programming [13],
and so on. In the field of risk evaluation, OWA operator also
gains significant attention. For example, Hermans et al. [14]
developed a road safety risk model based on OWA operator.
In that model, the weights are assigned according to the
ranking of local indicator values affecting the road safety
risk. The higher priority the local indicator value, the greater
the corresponding weight. Then the overall risk is obtained
by integrating the local indicator values and OWA weighting
vector. Similarly, based on OWA operator, Liu [15] presented
a risk model for the high-tech project investment, and Wang
and Chen [16] presented a health risk model. Although the
OWA operator has been wildly applied in the field of risk
evaluation, there is no application on hazmat transportation
risk evaluation. In order to highlight the potential impact of
serious segment risks on route risk, we propose an OWA risk
model for hazmat transportation, which will assign constant
weights to segment risks according to the ranking of their
values.

The concept of variable weights was originally presented by
Wang [17] to overcome the drawbacks of the constant weight-
ed averaging operator. Li [18, 19] illustrated the reasonability
and necessity of adopting variable weights in decision-making,
and gave the axiomatic definition of SVW vector. From then
on, SVW vector was widely applied in decision-making [20–
22]. In the field of risk evaluation, Zhang et al. [23] put
forward an equipment failure risk model, in which SVW
vectors are assigned to the local risk factors that may cause
equipment failure. The weights associated with serious local
risks are set to increase in an effort to obtain a new balance
with the overall risk. In addition, Wu et al. [24] proposed
another SVW risk model for coal-floor water-inrush, and
Wang et al. [25] presented one for backfilling pipeline wear.
Although the SVW vector has been applied in the field of risk
evaluation, there is no application on hazmat transportation
risk evaluation. In order to accurately characterize the impact
of segment risks on route risk, we propose a novel SVW risk
model for hazmat transportation, which will assign variable
weights to the segment risks.

In short, in an attempt to overcome the shortcomings of
the traditional risk models (over-reliance on overall risk or
local risk), we propose herein two improved hazmat trans-
portation risk models, based on OWA operator and SVW
vector respectively. The main contributions of this study are:
(i) we examine a representative problem case, and analyze
the shortcomings of the traditional risk model in hazmat
transportation from a new perspective of attribute weighting;
(ii) under the situation of complete weight information, an
OWA risk model for hazmat transportation is constructed,
which assigns the weights according to the positions of the
state values in the aggregation process, so that the severity of
local risk can be reasonably reflected by the given weights; and

(iii) under the situation of incomplete weight information, a
new SVW risk model is formulated, which adjusts the variable
weights on segment risks according to the change of risk state
values, so as to increase the proportion of serious local risk
in the overall risk.

The remainder of this study is organized as follows. The
next section reviews the literature regarding risk models of
hazmat transportation. In Section III, mathematical prelimi-
naries on OWA operator and SVW vector are given. Section
IV presents the novel risk definitions and mathematical for-
mulations. In Section V, we show the model application with
a case study. Finally, Section VI provides a conclusion and
future research directions.

II. Literature Review

We present the review by surveying the existing literature
that span two major threads of research: risk assessment
for hazmat transportation, and risk preferences for decision
maker, in an effort to explore their relationships. In hazmat
transportation, we focus primarily on the applications in road
transportation without covering railroad, maritime or pipeline
movements (which are topics beyond the scope of the work
to be presented later). Finally, we explore the feasibility of
applying information integration operators to risk assessment.

In the hazmat transportation risk assessment, there are two
main risk preferences: overall risk and local risk. In the
early stages of risk evaluation research, multiple summation
risk models were proposed to develop a potentially effective
measure for minimizing the overall risk. For example, Batta
and Chiu [2] considered an expected risk model, using the
summation of segment risks defined by the product of accident
probability and accident consequence as the risk measure.
Saccomanno and Chan [3] provided an incident probability
model which defined risk by the summation of segmen-
t accident probability during hazmat transportation without
considering the accident consequence. This method appears
to be particularly suitable for those areas less affected by
hazmat and with high accident frequency. ReVelle et al. [4]
presented a population exposure model for the event with
relatively low probability, perceiving the population exposed
to hazmat is more significant than accident probability, which
defines risk as the summation of affected population among
all segments. The above approaches focus on the overall risk,
but ignore the disastrous consequences in the local risk, which
may give rise to a biased output. For example, suppose that
there are two routes and each one contains 11 segments. In
the first route, segment 1 has local risk value 100, while the
others have no risk. In the second route, all segments have the
same local risk value 10. From the perspective of overall risk
minimization, the first route should be selected, but its local
risk is significantly higher than the second route.

In order to highlight the role of local risk in risk evaluation,
Abkowitz et al. [6] introduced a perceived risk model which
incorporated the public risk attitude into the model by adding
a risk preference α as an exponent of segment accident conse-
quence. However, the interpretation of the exponent α is not
straightforward. Erkut and Ingolfsson [7] considered different
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ways of emphasizing local risks, and presented a maximum
population exposure model for catastrophe avoidance, in an
effort to minimize the maximum number of exposed people
among segments along the route rather than minimizing the
total number of exposed people. The above methods empha-
size the local risk in risk evaluation, but may generate a route
with higher overall risk. Let us reconsider the example in
above paragraph with local risk value 90 at all segments in the
second route. From the perspective of local risk minimization,
the second route should be selected, but its overall risk is
significantly higher than the first route.

In order to obtain the balance between overall risk and
local risk, the Mean-Variance model and Value-at-Risk model,
commonly applied in portfolio selection, have been used for
hazmat transportation risk evaluation. Erkut and Ingolfsson
[7] simultaneously considered expected value and variance of
the number of people affected by an incident, in which the
expectation and variance are used as indicators to characterize
the overall risk and local risk, respectively. Based on such
a multi-objective model, the optimal route can be identified
by adapting either Pareto optimization or weighted average
operation. However, this model depends on large quantities
of reliable and consistent data, which is not consistent with
the low-probability characteristic of hazmat transportation
accidents. Kang et al. [26] proposed a Value-at-Risk model,
aiming to confine the worst risk by a factor of confidence
level determined by the decision maker’s preference. Toumazis
and Kwon [27] applied the concept of conditional Value-at-
Risk to plan the hazmat transportation route. Unlike Value-
at-Risk model, it mainly concerns on the long tail of the
risk distribution in order to avoid catastrophe local risk. The
above methods take into account both overall risk and local
risk based on the assumption that incident consequence is
random variable. However, the randomness assumption may
not hold since the incident frequency is generally not enough
to generate the distribution function.

As applications of these risk models, more and more hazmat
transportation optimization methods are proposed recently,
among which the main objective is to minimize the trans-
portation risk. On the one hand, numerous studies select
overall risk as the objective function for hazmat transportation
optimization models. For example, Ma et al. [28] proposed
a multi-objective chance-constrained programming model for
hazmat transportation, which selects the total number of
population exposures as overall risk. In order to minimize
the expected number of exposed people along the route, Wei
et al. [29, 30] proposed the credibilistic chance-constrained
programming model and credibilistic expected value model for
hazmat transportation, respectively. Du et al. [31, 32] selected
the expected value of affected population to describe the
overall risk in hazmat vehicle routing problem, and designed
different fuzzy simulation-based heuristic algorithms. Ma and
Li [33] proposed a two-stage stochastic programming model
for hazmat supply chain network considering reward-penalty
mechanism, in which the transportation risk is defined as the
total number of population exposure along the route. Hu et
al. [34] proposed a credibilistic goal programming model to
minimize the positive deviations of both expected risk and

expected cost. On the other hand, some studies select the
local risk as a constraint for hazmat transportation optimization
models. For example, Bronfman et al. [35] maximized the
weighted distance between the route and its closest vulnerable
centre to minimize the catastrophe consequences for exposed
population; Garrido and Bronfman [36] introduced a multi-
product multi-shipment hazmat routing model with equity
constraints, aiming to minimize the conditional expectation
of the catastrophic accident consequence. Ma et al. [37–39]
developed the multi-objective robust optimization model with
maximum local risk constraint for hazmat transportation. Other
studies on hazmat transportation risk may be found in literature
[40–43].

Employing a weighting operator to formulate the risk model
is another efficient method to balance the overall risk and
local risk, and has been mentioned by Erkut and Verter [44],
but has not been implemented in the existing literature. The
OWA operator and SVW operator are two commonly used
information aggregation operators in literature. The OWA
operator was introduced by Yager [8] to support aggregation
lying between the max and average operators, and has been
rapidly developed since its appearance [45–47]. The SVW
vector was proposed by Wang [17] to overcome the drawbacks
of the constant weighted averaging operator, and has been
widely investigated from different perspectives [22, 48]. In
this paper, we will define two new risk models based on OWA
operator and SVW vector respectively, which are proved to be
able to make better balance between overall risk and local risk.

III. Preliminaries
In this section, we present the basic definitions and prop-

erties for OWA operator and SVW vector. The seminal work
on OWA operators was introduced by Yager [8], in which
the fundamental step is reordering, i.e., rearranging the input
arguments to a system model in a descending order.

Definition 3.1: (Yager, [8]) A n-dimensional OWA operator
is a mapping φ : Rn → R, which has an associated weight
vector W = (w1,w2, . . . ,wn) satisfying w1 + w2 + . . . + wn = 1
and wi ∈ [0, 1], such that

φ(X) = φ(x1, x2, . . . , xn) =

n∑
i=1

wiyi,

where yi is the ith largest of x1, x2, . . . , xn.
Proposition 3.1: Let φ : Rn → R be a n-dimensional OWA

aggregation operator with decreasing weights w1 ≥ w2 ≥ . . .
≥ wn. Then we have

1
n
·

n∑
i=1

xi ≤ φ(x1, x2, . . . , xn) ≤ max
1≤i≤n
{xi}.

Proof: Compared with 1/n, let 4i be the increment for
weight wi, which can be expressed as

4i = wi − 1/n, i = 1, 2, . . . , n.

It is clear that
41 + 42 + . . . + 4n = 0.

Since the non-negative weights w1,w2, . . . ,wn are a decreasing
sequence with w1 + w2 + . . . + wn = 1, the weight increments
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41,42, . . . ,4n are a decreasing sequence, and there exists a
positive integer i0 such that 4i0 ≥ 0 and 4i0+1 < 0. Then, on
the one hand, we have

φ(x1, x2, . . . , xn) =

i0∑
i=1

(
1
n

+ 4i)yi +

n∑
i=i0+1

(
1
n

+ 4i)yi

=

n∑
i=1

yi

n
+

i0∑
i=1

4iyi +

n∑
i=i0+1

4iyi

≥

n∑
i=1

yi

n
+

i0∑
i=1

4iyi0 +

n∑
i=i0+1

4iyi0

=

n∑
i=1

xi

n
.

On the other hand, we have

φ(x1, x2, . . . , xn) =

n∑
i=1

wiyi ≤

n∑
i=1

wiy1 = max
1≤i≤n
{xi}.

The proof is complete.
The OWA operator can be regarded as a special form of vari-

able weighted averaging operator, which was first introduced
by Wang [17] to entail more flexibility in modeling system
analysis, especially in decision making. Li [18] established
the axiomatic definition for variable weights, and presented
the axiomatic definition for SVW vector as follows.

Definition 3.2: (Li, [18]) A n-dimensional variable weights
vector with reward (penalty) is a mapping

V : [0, 1]n → [0, 1]n

X 7→ V(X) = (v1(X), v2(X), . . . , vn(X))

which satisfies axioms:
(i) v1(X) + v2(X) + . . . + vn(X) = 1;
(ii) vi(X) is continuous with respect to x j (i, j = 1, 2, . . . , n);
(iii) vi(X) is monotonically increasing (decreasing) with re-
spect to xi (i = 1, 2, . . . , n);
where X = (x1, x2, . . . , xn) is a state vector.

Definition 3.3: (Li, [18]) A n-dimensional state variable
weight vector with reward (penalty) is a mapping

S : [0, 1]n → [0, 1]n

X 7→ S (X) = (S 1(X), S 2(X), . . . , S n(X))

which satisfies axioms:
(i) xi ≤ x j ⇒ S i(X) ≤ S j(X);

(ii) S i(X) is continuous with respect to x j (i, j = 1, 2, . . . , n);

(iii) wiS i(X)×

 n∑
i=1

wiS i(X)

−1

is continuous in n-dimensional

space and monotonically increasing (decreasing) with respect
to xi (i = 1, 2, . . . , n), where (w1,w2, . . . ,wn) is a constant
weight vector.

Note that a n-dimensional variable weight vector can be
generated by the normalized Hardarmard product of a constant

weight vector W and a SVW vector S (X), which is written as

V(X) = (v1(X), v2(X), . . . , vn(X))

=
(w1S 1(X),w2S 2(X), . . . ,wnS n(X))

n∑
i=1

wiS i(X)

. (1)

In order to handle the hazmat transportation problem, the
domain of mapping (1) is extended to [0,+∞]. Following the
principle of variable weights, a variable weighted averaging
operator is a mapping ψ : [0,+∞]n → [0,+∞], which can be
written in the following form

ψ(X) =

n∑
i=1

vi(X)xi.

In this study, we only discuss the SVW vector with reward.
Proposition 3.2: (Li and Hao, [48]) Let ψ : [0,+∞]n →

[0,+∞] be a variable weighted averaging operator based on
SVW vector with reward (S 1(X), S 2(X), . . . , S n(X)). Then
we have

1
n
·

n∑
i=1

xi ≤ ψ(x1, x2, . . . , xn) ≤ max
1≤i≤n
{xi}.

Example 3.1: The commonly used SVW vectors with re-
ward are listed as follows:
(i) Power function type: S i(X) = xαi ;
(ii) Exponential type: S i(X) = eα(xi−x);
where α > 0, x = (x1 + x2 + . . . + xn)/n and i = 1, 2, . . . , n. For
example, in case of α = 1, we obtain two SVW vectors with
reward (x1, x2, . . . , xn) and (ex1−x, ex2−x, . . . , exn−x).

IV. Transportation RiskModels ConsideringWeight
Variations

Consider a hazmat transportation network G = (N, A), where
N denotes the set of nodes, and A denotes the set of edges
which represent the highway segments. Let l = (a0, a1, · · · , an)
be a route between an origin-destination (O-D) pair consisting
of some unidirectional edges denoted by ai−1ai, where ai ∈ N
for all i = 1, 2, . . . , n. Denote Rai−1ai as the risk at edge ai−1ai

for hazmat transportation, and pai−1ai as the probability of
hazmat transportation accident at edge ai−1ai. The consequence
is measured by the number of exposed people with a given
impact radius, and is denoted by cai−1ai . A critical issue for
hazmat transportation research is how to select an optimal
route to minimize the transportation risk. Note that different
transportation risk models may lead to diversification of the
optimal route. Generally speaking, existing definitions regard-
ing hazmat transportation risk along route l can be classified
into two types including:

(i) Summation risk model

Rl =

n∑
i=1

Rai−1ai =

n∑
i=1

pai−1ai cai−1ai ; (2)

(ii) Maximum risk model

Rl = max
1≤i≤n

Rai−1ai = max
1≤i≤n
{pai−1ai cai−1ai }, (3)
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Fig. 1. Transportation risk along a route.

where Rl represents the total risk along route l (see Fig. 1).
Eq. (2) is the most popular risk measure and is also known

as the expected risk model (Batta and Chiu, [2]). It states that
the overall risk along route l is equal to the summation of local
risks at all edges belonging to the route. The transportation
model with summation risk measure is to reduce the overall
risk along the route. However, a route with the minimum sum
of edge risks may pass through one or more edges involving
dense population or high accident probability resulting in
the surge of high local risk. Therefore, this summation risk
model may underestimate the importance of the maximum
edge risk along the route. To address this issue, the maximum
risk model is proposed to measure the transportation risk
along route l. Erkut and Ingolfsson [7] defined the edge
risk as the number of population exposures, and proposed a
maximum population exposure model to avoid serious local
risk. Nonetheless, although this model reduces the maximum
local risk along the route, it may over-estimate the overall risk.
Without loss of generality, for facilitating the comparison with
Eq. (2), we can also define the edge risk as pai−1ai cai−1ai , which
generates Eq. (3).

Example 4.1: Suppose that l1, l2 and l3 are three alternative
routes for hazmat transportation, all of which contain four
edges (see Fig. 2). The probability and consequence of a
hazmat transportation accident at edges along routes l1, l2 and
l3 are presented in Table I. If the summation risk model is
used, we have

Rl1 = 23,Rl2 = 40,Rl3 = 24,

which means that the route l1 is the best choice. However, the
local risk at the third edge along route l1 is extremely high,
which may lead to a serious accident consequence in reality.
If the maximum risk model is used instead, we have

Rl1 = 20,Rl2 = 10,Rl3 = 11,

which means that the route l2 is the best choice. However,
the overall risk along route l2 is significantly higher than that
along routes l1 and l3. In this sense, route l2 is not a better
choice actually.

In short, the summation risk model emphasizes on the
overall risk along the route, while the maximum risk model
pays more attention on local risk. Neither of them is able to
provide a good balance between overall risk and local risks.
Therefore, we need to construct a novel transportation risk
model to overcome the drawbacks of these two traditional risk
models.

The summation risk model can be rewritten by the arith-

DO

3
l

2
l

1
l

Fig. 2. Transportation routes for given O-D pair.

metic average of all edge risks as

Rl =

n∑
i=1

Rai−1ai = n ·
n∑

i=1

wiRai−1ai ,

where wi = 1/n for all i = 1, 2, . . . , n. Thus, the model can
be interpreted from the perspective of weighted averaging
operator, which treats all edge risks being equally important.
However, it ignores the fact that some routes may have a higher
edge risk than others. In order to overcome this drawback, we
extend the uniform weights to non-uniform weights with a
general representation, attempting to assign higher weights to
serious edge risks (see Fig. 3).

0 1 1
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Fig. 3. Transportation risk with weights along a route.

The most important issue is to determine the optimal alloca-
tion of the weights. In order to avoid catastrophic accidents, it
is necessary to attach more attention to the edges with higher
local risks. For this purpose, a novel risk model based on OWA
operator is herein introduced.

A. OWA Risk Model

In this subsection, we present an OWA risk model, and
describe the common used ways for constructing the required
weight vector.

Definition 4.1: Suppose that l = (a0, a1, · · · , an) is a route
and w1,w2, . . . ,wn are a non-negative decreasing sequence
satisfying w1 + w2 + . . . + wn = 1. The OWA risk model is
defined as

Rl = n ·
n∑

i=1

wiR̂ai−1ai , (4)

where R̂ai−1ai is the ith largest value in the set {Ra0a1 ,Ra1a2 , . . . ,
Ran−1an } for all i = 1, 2, . . . , n.

Eq. (4) assigns the weight wi to the edge risk of the ith
position from top to down in a risk aggregation process. In
order to strengthen the impact of higher edge risk on the
whole route risk, the weight sequence w1,w2, . . . ,wn is set
in descending order, which is essentially different from the
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TABLE I Total transportation risk at edges defining l1, l2, l3

Transportation route Accident probability (×10−5) Accident consequence (×105) Edges risks

l1 (2, 1, 1, 4) (0.5, 1, 20, 0.25) (1,1,20,1)
l2 (2, 4, 8, 2) (5, 2.5, 1.25, 5) (10,10,10,10)
l3 (4, 2, 6, 2) (1.25, 2.5, 0.5, 5.5) (5,5,3,11)

arithmetic averaging method. In this case, the OWA risk model
obtains a compromise between overall risk and local risks.

Proposition 4.1: Let W = (w1,w2, . . . ,wn) be a weight
vector. Then we have:
(i) the OWA risk model degenerates to the summation risk
model when W = (1/n, 1/n, . . . , 1/n);
(ii) the OWA risk model is equivalent to the maximum risk
model when W = (1, 0, . . . , 0).

Proof: The proof is trivial and omitted.
Different risk models can be generated by changing the

weight vector. In theory, there are infinite ways to construct the
weight vector associated with OWA risk model, among which
the arithmetical progression and geometric progression are two
particular ones, as illustrated in the following examples.

Example 4.2: Suppose that the weights w1,w2, . . . ,wn in
Eq. (4) obey an arithmetical progression and d is the com-
mon difference. Then, the weight vector can be expressed as
(w1,w1−d, . . . ,w1−(n−1)d). Since the weights are normalized
(i.e., w1 + w2 + . . . + wn = 1, wi ∈ [0, 1]), we have

w1 + w2 + . . . + wn = nw1 − n(n − 1)d/2 = 1,

which implies w1 = [(n2 − n)d + 2]/2n. When n = 1, we have
w1 = 1. When n > 1, we have

wi =
(n2 + n − 2ni)d + 2

2n
, i = 2, 3, . . . , n.

Since the weights and common difference are both non-
negative, we have

wn =
(n − n2)d + 2

2n
≥ 0 and d ≥ 0,

which leads to 0 ≤ d ≤ 2/[n(n − 1)].
Example 4.3: Suppose that the weights w1,w2, . . . ,wn

in Eq. (4) obey a geometric progression and q is the
common ratio. Then, the weight vector can be expressed as
(w1,w1q, . . . ,w1qn−1). Since the weights are normalized, the
following results can be obtained: (i) if q = 1, we have

wi = 1/n, i = 1, 2, . . . , n;

(ii) if q 6= 1, we have

w1 + w2 + . . . + wn = w1 ·
1 − qn

1 − q
= 1,

which implies

wi =
qi−1 − qi

1 − qn , i = 1, 2, . . . , n.

Since the weights and common ratio are both non-negative,
we have

wn =
qn−1 − qn

1 − qn > 0 and q > 0,

which implies 0 < q < 1.
Example 4.4: Let us reconsider Example 4.1 by taking the

OWA risk model with weight vector (9/24, 7/24, 5/24, 3/24).
If the OWA risk model is used, we have

Rl1 = 32.5,Rl2 = 40,Rl3 = 28,

which means that the route l3 is the best choice. Compared
with route l2, the overall risk along route l3 is decreased by
40%, and compared with route l1, the maximum edge risk
along route l3 is decreased by 45%.

In general, compared with the summation risk model and
maximum risk model, the OWA risk model achieves a better
balance between overall risk and local risks by highlighting
the impact of serious edge risks. In practice, decision makers
could select different weight vectors freely with respect to the
category of hazmats. However, such an OWA risk model is
commonly applied under the situation with complete weight-
ing information. When the weights information is incomplete,
the OWA risk model does not work, and we propose another
risk model based on SVW vector as described below.

B. SVW Risk Model

In this subsection, we present a SVW risk model, and de-
scribe the common used methods for constructing the required
SVW vectors.

Definition 4.2: Suppose that l = (a0, a1, · · · , an) is a route
and R = (Ra0a1 ,Ra1a2 , . . . ,Ran−1an ) is a risk state vector along
route l. Let (w1,w2, . . . ,wn) be a non-negative weight vector
satisfying w1 + w2 + . . . + wn = 1. The SVW risk model is
defined as

Rl = n ·
n∑

i=1

vi(R)Rai−1ai , (5)

where vi(R) = wiS i(R) ×

 n∑
j=1

w jS j(R)

−1

, and (S 1(R), S 2(R),

. . . , S n(R)) is a SVW vector with reward.
Compared with the summation risk model, Eq. (5) converts

constant weights into variable weights with reward. Following
Definition 3.3, under the action of SVW vector with reward,
there is a positive correlation between variable weight vi(R)
and edge risk Rai−1ai , which means that the greater the edge
risk, the greater the increment of variable weight value. There-
fore, the SVW risk model obtains another balance between
overall risk and local risks along a route. Since different SVW
vectors have different capabilities of adjusting weight values,
we can obtain different risk results by changing the SVW
vector. Indeed, it can be readily established that a relationship
among SVW risk model, OWA risk model and two traditional
risk models using an appropriate SVW vector as follows.

Proposition 4.2: Let W = (w1,w2, . . . ,wn) be a weight
vector. Then we have:
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(i) the SVW risk model degenerates to the summation
risk model when W = (1/n, 1/n, . . . , 1/n), and S i(R) =

S j(R) (∀i, j = 1, 2, . . . , n);
(ii) the SVW risk model is equivalent to the maximum risk
model when w j∗ = 1, where j∗ = arg max

1≤i≤n

(
Rai−1ai

)
.

Proof: The proof is trivial and omitted.
Proposition 4.3: Let (w1,w2, . . . ,wn) be the weight vector

in OWA risk model, and (w∗1,w
∗
2, . . . ,w

∗
n) be the constant

weight vector in SVW risk model. Then, the SVW risk model
degenerates to the OWA risk model when S k j (R) = w j/w∗k j

with 0 < w∗k j
≤ (w j · w∗k j+1

)/w j+1 and

k j =


arg max

1≤i≤n

(
Rai−1ai

)
, if j = 1,

arg max
1≤i≤n, i/∈

j−1⋃
t=1
{kt}

(
Rai−1ai

)
, if j = 2, 3, . . . , n.

Proof: It is straightforward to establish that the vec-
tor (w1/w∗k1

,w2/w∗k2
, . . . ,wn/w∗kn

) obeys Definition 3.3, which
means it can be regarded as a SVW vector with reward. Then
we have

Rl = n ·
n∑

i=1

w∗i S i(R)
n∑

j=1

w∗jS j(R)

Rai−1ai = n ·
n∑

i=1

w∗ki
S ki (R)

n∑
j=1

w∗k j
S k j (R)

Raki−1aki

= n ·
n∑

i=1

w∗ki

wi

w∗ki

n∑
j=1

w∗k j

w j

w∗k j

Raki−1aki
= n ·

n∑
i=1

wiRaki−1aki

= n ·
n∑

i=1

wiR̂ai−1ai

where R̂ai−1ai is the ith largest value in the set {Ra0a1 ,Ra1a2 , . . . ,
Ran−1an }. The proof is complete.

As the weight information is generally incomplete, we could
assign equal weight 1/n to each edge risk. Under the action
of SVW vector with reward, Eq. (5) increase the weight with
higher edge risk. Therefore, the SVW risk model could be
used under the situation of incomplete weight information.
The key issue of such a model is to determine the optimal
form of the SVW vector for use. The following examples show
two types of SVW vectors with reward, which are of practical
significance.

Example 4.5: Let R = (Ra0a1 ,Ra1a2 , . . . ,Ran−1an ) be a risk
state vector along the route. The SVW vector with reward in
Eq. (5) can be constructed as follows:
(i) Power exponential function type

S i(R) = Rα
ai−1ai

, α > 0, i = 1, 2, . . . , n,

which indicates a power exponential relationship between the
ith edge risk and its SVW;
(ii) Exponential type

S i(R) = eα(Rai−1ai−R), α > 0, i = 1, 2, . . . , n,

where R = (Ra0a1 + Ra1a2 + . . . + Ran−1an )/n, which indicates
an exponential relationship between the ith edge risk and its
SVW.

Example 4.6: Let us reconsider Example 4.1 by taking the
SVW risk model. If the weights information is incomplete, set
the constant weight vector as (1/4,1/4,1/4,1/4), and define the
SVW vector with reward as

S i(R) = Rα
ai−1ai

, i = 1, 2, 3, 4,

where α = 0.5. Then we have

Rl1 = 49.5,Rl2 = 40,Rl3 = 26.9,

which means that the route l3 is the best choice. Therefore,
compared with the summation risk model and maximum risk
model, the SVW risk model achieves a better balance between
overall risk and local risks.

In reality, there are infinite ways to construct SVW vectors.
For example, we can combine the given SVW vectors, includ-
ing those of the aforementioned types, to produce new SVW
vectors. In reality, the selection of a weight vector should be
made on the basis of informed hazmat classification.

V. Application to Hazmat RiskModeling and Case Study

In general, the route optimization problems concerning on
hazmat transportation involve: shortest path problem (SPP),
travel salesman problem (TSP) and vehicle routing problem
(VRP). As our study mainly focuses on the risk evaluation
for hazmat transportation rather than route optimization, we
take TSP as an example to illustrate the efficiency of OWA
risk model and SVW risk model. Considering a node set N,
where hazmat depot is the origin a0 which also serves as the
destination an. Their are n−1 hazmat retailers along the trans-
portation route, which are denoted by ai for i = 1, 2, . . . , n− 1
(See Fig. 4). The hazmat TSP can be described as the process
where the hazmat vehicle departs from the depot, visits each
retailer exactly once, and finally returns to the depot. The edge
risk is denoted by Rai−1ai where ai ∈ N for all i = 1, 2, . . . , n.
The objective is to determine the transportation route with
minimum risk. Suppose that xi j is the decision variable, such
that if the edge from i to j is active, it takes value 1; otherwise,
it takes value 0.

depote

retailers

. . .

0
( )

n
a a

1
a

2
a

1n
a

−

Fig. 4. Experimental transportation network.

A. Hazmat TSP Models

Du et al. [32] proposed a TSP model for hazmat trans-
portation problem, aiming to minimize the total transportation
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risk. In this subsection, we replace their summation risk model
by OWA risk model and SVW risk model respectively, and
obtain two new hazmat TSP models. First, based on Eq. (4),
we obtain an OWA risk-based hazmat transportation model

min R = n ·
n∑

i=1

wiR̂ai−1ai

s.t.
∑

i∈N,i 6= j

xi j =
∑

j∈N,i 6= j

xi j = 1, i, j ∈ N∑
i, j∈N

xi j ≤ |M|−1, 2 ≤ |M|≤ n − 1, M ⊂ N

ai = arg max
j∈N\

i−1⋃
k=0
{ak}

(
xai−1 j

)
, 1 ≤ i ≤ n − 1

xi j ∈ {0, 1}, i, j ∈ N,

(6)

where R̂ai−1ai is the ith largest value in the set {Ra0a1 ,Ra1a2 ,
. . . ,Ran−1an }. The first constraint represents flow conservation,
the second constraint is sub-tour elimination constraint, the
third constraint represents the retailer whose service order is i
along the transportation route, and the last constraint defines
the domain of the decision variables.

Second, based on Eq. (5), we obtain a SVW risk-based
hazmat transportation model

min R = n ·
n∑

i=1

vi(R)Rai−1ai

s.t.
∑

i∈N,i 6= j

xi j =
∑

j∈N,i6= j

xi j = 1, i, j ∈ N∑
i, j∈N

xi j ≤ |M|−1, 2 ≤ |M|≤ n − 1, M ⊂ N

ai = arg max
j∈N\

i−1⋃
k=0
{ak}

(
xai−1 j

)
, 1 ≤ i ≤ n − 1

xi j ∈ {0, 1}, i, j ∈ N,

(7)

where vi(R) = wiS i(R) ×

 n∑
j=1

w jS j(R)

−1

, and (S 1(R), S 2(R),

. . . , S n(R)) is a SVW vector with reward.

B. Numerical Experiments

In this subsection, we demonstrate the effectiveness of OWA
risk and SVW risk in comparison to the traditional summation
risk and maximum risk, using the TSP models (6) and (7).
After that, the sensitivity analyses on common difference d
and exponent α are conducted.

Although TSP is a NP-hard problem (Lin and Kernighan,
[49]), effective solution algorithms have been proposed and
applied in practice. For a small-scale networks, we can use ex-
haustive method or branch and bound algorithm (Padberg and
Rinaldi, [50]). For large-scale networks, heuristic techniques
such as genetic algorithm (Nguyen, [51]; Hu et al., [52]), ant
colony algorithm (Musa et al. [53]) and hybrid particle swarm
optimization (Du et al. [32]) can be used to search satisfactory
solutions. However, the search algorithm is not the focus of
this study and hence is not addressed further.

As a case study to experimentally verify the proposed
approaches, we consider a hazmat transportation network
consisting of 1 depot and 10 retailers (See Fig. 5). The local
risk at each edge are presented in Table II. For this small-
scale TSP networks, we use the branch and bound algorithm
to calculate the exact solution.

depote : 1

retailers : 2 -11

11

66

77 44

55

88

99 1111

1010

33

22

Fig. 5. Experimental transportation network.

1) Running Traditional Risk Models: Firstly, both summa-
tion risk model and maximum risk model are used to obtain the
optimal route for this transportation network. Table III shows
the results, including transportation routes and risks, where
R∗1, R∗2, R∗3 and R∗4 are specified as the route risk computed
using summation risk model, maximum risk model, OWA risk
model, and SVW risk model, respectively. To be specific,
utilizing the summation risk model, we obtain a route with
the minimum overall risk of 294, which is denoted by l1;
utilizing the maximum risk model, we obtain 68 routes with
the minimum local risk of 66. For the purpose of comparison,
we select two routes with the minimum and maximum overall
risks from these 68 routes, which are denoted by l21 and l22,
respectively.

Comparing the routes generated by summation risk model
and maximum risk model, we note that the maximum local
risk along route l1 is significantly higher than that along
routes l21 and l22, reaching (80 − 66)/66 × 100% = 21.2%.
On the contrary, the overall risks along routes l21 and l22
are both higher than that along route l1, reaching (322 −
294)/294×100% = 9.5% and (488−294)/294×100% = 66%,
respectively. The results illustrate the defects of traditional risk
models, which are not able to provide a good balance between
overall risk and local risks.

2) Running OWA Risk Model: We run the OWA risk-based
hazmat transportation model, where the weight vectors are
defined by an arithmetical progression as

wi =
(n2 + n − 2ni)d + 2

2n
, i = 1, 2, . . . , n,

with d = 1/[n(n − 1)]. The results are presented in Table III,
where l3 is the route with the minimum OWA risk of 289.7.

Compared with route l1, the overall risk along route l3 has
a mere increase of (301 − 294)/294 × 100% = 2.4%, while
the maximum local risk is significantly decreased by (80 −
67)/80 × 100% = 16.3%. Compared with routes l21 and l22,
the maximum local risk along route l3 has a slight increase of
(67−66)/66×100% = 1.5%, while the overall risks are reduced
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TABLE II Transportation risk at each edge
1 2 3 4 5 6 7 8 9 10 11

1 − − − − − − − − − − −

2 95 − − − − − − − − − −

3 67 75 − − − − − − − − −

4 80 31 95 − − − − − − − −

5 70 75 27 67 − − − − − − −

6 85 25 24 69 89 − − − − − −

7 81 24 92 34 19 25 − − − − −

8 91 28 75 75 88 56 7 − − − −

9 66 46 1 33 16 79 31 52 − − −

10 68 74 45 8 22 91 15 82 53 − −

11 60 96 80 77 81 86 23 39 25 80 −

TABLE III Comparisons among four risk models
Transportation route R∗1 R∗2 R∗3 R∗4

l1 1→ 11→ 7→ 8→ 2→ 6→ 3→ 9→ 5→ 10→ 4→ 1 294 80 290.3 338.2

l21 1→ 11→ 8→ 7→ 5→ 10→ 4→ 2→ 6→ 3→ 9→ 1 322 66 331 361.7
l22 1→ 11→ 8→ 6→ 2→ 4→ 7→ 5→ 3→ 10→ 9→ 1 488 66 478.9 495.6

l3 1→ 11→ 8→ 7→ 6→ 2→ 4→ 10→ 5→ 9→ 3→ 1 301 67 289.7 341

l4 1→ 11→ 9→ 5→ 10→ 4→ 2→ 8→ 7→ 6→ 3→ 1 313 67 317.8 338

by (322 − 301)/322 × 100% = 6.5% and (488 − 301)/488 ×
100% = 38.3%, respectively. The results illustrate that OWA
risk model is able to achieve a better balance between overall
risk and local risks.

3) Running SVW Risk Model: We run the SVW risk-based
hazmat transportation model with weight wi = 1/n and

S i(R) = Rα
ai−1ai

, i = 1, 2, . . . , n,

where α = 0.2. The results are presented in Table III, where
l4 is the route with the minimum SVW risk of 338.

Compared with route l1, the overall risk along route l4 has
a mere increase of (313 − 294)/294 × 100% = 6.5%, while
the maximum local risk is significantly decreased by (80 −
67)/80×100% = 16.3%. Compared with routes l21 and l22, the
maximum local risk along route l4 has a slight increase of (67−
66)/66×100% = 1.5%, while the overall risks are reduced by
(322−313)/322×100% = 2.8% and (488−313)/488×100% =

35.9%, respectively. The results illustrate the efficiency of the
SVW risk model on balancing overall risk and local risks.

4) Sensitivity Analysis: Since the optimal routes generated
by models (6) and (7) depend on their parameter setting in the
corresponding risk models, we conduct sensitivity analyses on
parameters d and α. First, we show the relationship between
OWA risk R∗3 and common difference d by Fig. 6, where
0 ≤ d ≤ 2/[11× (11− 1)] = 0.0182. With the uniform increase
of common difference d, the OWA risk R∗3 shows a steady
decreasing trend with a total decrease of 5.2% within the
domain of d, which implies that model (6) is insensitive to
the variation of common difference d.

Second, we summarize the effect of exponent α on SVW
risk model by Fig. 7. It is shown that SVW risk R∗4 has a sig-
nificant increase when 0.001 ≤ α ≤ 20, but tends to be stable
when α > 20. Therefore, when SVW risk model is adopted for
practical use, empirical selection of an appropriate exponent
α is necessary in order to build the risk model. Factors to
be considered should include the characteristics of hazmat,
preferences of decision makers and natural environment of

transportation networks. For example, if the decision-makers
prefer to control the maximum local risk, they could select an
α in the interval [20,+∞); otherwise, they could select an α
in the interval [0, 20).
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Fig. 6. Relationship between the minimum OWA risk R∗3 and
common difference d.

VI. Conclusions and Future Research Directions

This study has proposed two novel risk models for hazmat
transportation by taking into consideration of weight variation,
aiming to make a better balance between overall risk and
local risk. The OWA risk model focuses on assigning weights
with respect to the ranking of the segment risks, which can
be applied when weight information is complete. The SVW
risk model is produced as the result of adjusting the weights
at segments of a certain transportation route, with respect to
the change of local risk values, which can be used under
the situation of incomplete weight information. Numerical
experiments have demonstrated the effectiveness of both OWA
risk model and SVW risk model. In particular, the results have
shown: (i) compared with the traditional summation risk model
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Fig. 7. Relationship between the minimum SVW risk R∗4 and
exponent α.

and maximum risk model, the OWA risk model is able to lower
the local risk by 16.3% and the overall risk by 6.5%∼38.3%;
(ii) compared with the summation risk model and maximum
risk model, the SVW risk model is able to lower the local
risk by 16.3% and the overall risk by 2.8%∼35.9%; and (iii)
the sensitivity analyses on the model parameters (common
difference d and exponent α) have shown the robustness of
both proposed risk models.

To meet the practical transportation needs for different
types of hazmats and risk preferences of decision makers, we
could change the parameters in the proposed risk models to
seek the corresponding optimal transportation routes. In our
future studies, we plan to focus on how to select the model
parameters for addressing different transportation scenarios.
Second, although this work has presented a systematic case
study, both novel models would benefit from being applied
to more broader hazmat transportation problems, such as
multiple travel salesman problems, shortest path problems,
vehicle routing problems, and so on. Third, it will be valuable
to take more realistic considerations concerning randomness
or fuzziness in transportation environment, and deal with the
uncertain hazmat transportation problem using some flexible
optimization approaches, such as chance-constrained program-
ming model (Du et al. [31]), mean-variance model (Guo et al.
[54]) and mean-entropy model (Zhou et al. [55]).
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