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In this paper, we consider an interface mode III crack
with a process zone located in front of the fracture
tip. The zone is described by imperfect transmission
conditions. After application of the Fourier transform,
the original problem is reduced to a vectorial Wiener–
Hopf equation whose kernel contains oscillatory
factors. We perform the factorization numerically
using an iterative algorithm and discuss convergence
of the method depending on the problem parameters.
In the analysis of the solution, special attention is paid
to its behaviour near both ends of the process zone.
Qualitative analysis was performed to determine
admissible values of the process zone’s length for
which equilibrium cracks exist.

This article is part of the theme issue ‘Modelling
of dynamic phenomena and localization in structured
media (part 1)’.

1. Introduction
The theory of brittle fracture, developed by Griffith using
the energy balance approach [1] and later reformulated
by Irwin in terms of stress fields, implies the existence
of a stress singularity at the tip of a sharp crack. It is
also widely recognized that, during the fracture process,
phenomena occurring close to the crack tip are closely
connected to the microstructure of the material. Here,
we recall the models of Irwin [2] and Orowan [3] that
account for plastic behaviour near the crack tip. In [4],
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Neuber investigates the mechanisms of physically nonlinear stress concentrations by replacing
the sharp crack with a blunt notch. Barenblatt introduced the cohesive zone model in [5,6],
describing the resisting forces that occur when material elements are being pulled apart. This
approach allows the elimination of the stress singularity at the crack tip, which is useful for
classic finite-element modelling [7]. Cohesive zone models have been widely used to study many
physical phenomena, such as crack growth in viscoelastic materials [8], debonding in composite
materials [9], the fracture of adhesive joints [10], among others.

All models of fracture belong to the class of mixed boundary value problems which, in turn,
can be reduced to Wiener–Hopf functional equations [11–15]. This applies to modelling cracks
through a formulation that is continuous, for both static and steady-state approaches [16,17]
and for dynamic problems of fractures propagating within a discrete structure. The seminal
contribution made by Slepyan to modelling numerous fracture problems should be mentioned.
Among others, he has developed a unique technique for tackling dynamic problems in discrete
structures [16,18]. This method is extremely effective for considering both lattice structures
composed of masses and connecting springs [19], and structures made of masses and beams
[20,21]. The developed technique allows one to determine the fundamental properties of the
solution, in particular those related to the nature of crack propagation or phase transitions, and
to apply this knowledge to a wide array of applications [22]. However, most of the problems
solved so far only use a scalar Wiener–Hopf equation. This is because more advanced applications
result in coupled systems, taking the form of a vectorial Wiener–Hopf problem with matrix
kernels [23,24]. The same issue of complicated boundary value problems leading to vectorial
Wiener–Hopf-type equations is also encountered during the study of certain classes of contact
problems [25,26].

The issue of multiplicative decomposition, or factorization, is one of the main stages
of the Wiener–Hopf method. In the case of a scalar problem, the solution can be found
explicitly [27]. For higher-order problems, however, constructive solutions are only known for
specific classes of matrices. Notable techniques include efficient approximation using rational
functions [28–30], while numerical factorization of generalized Khrapkov–Daniele matrices
is discussed in [24]. A comprehensive review of matrix factorization techniques can be found
in [31].

In this paper, we analyse the static loading of a semi-infinite interface crack between two
dissimilar elastic materials. We consider a formulation where the process zone reflects the
bridging effect along a finite part of the interface in front of the crack. The contact in this zone
is modelled by the so-called weak imperfect interface [32] which describes soft thin adhesive
joints [33]. The Wiener–Hopf kernel corresponding to this problem is a matrix-valued function
containing oscillating terms. There are several approaches to matrix factorization available in this
case (see [34–37]); however, for this particular problem the most appropriate is that proposed in
[38]. We discuss the numerical algorithm’s peculiarities and demonstrate its efficiency. Finally,
we determine all fracture mechanics parameters, evaluate a condition for the existence of an
equilibrium state of the crack under remote loading and compute the corresponding length of
the process zone.

2. Problem statement
Let us consider an infinite plane occupied by two different linearly elastic and isotropic materials
with shear moduli μj, j = 1, 2. These materials are joined along a linear interface. We introduce
the coordinate system (x, y), where the x-axis is directed along that interface, the y-axis is
directed towards the first material and the origin is located at the point that separates the intact
and damaged regions. On the interface y = 0, we place the process zone, −L < x < 0, which
separates the cracked area, x < −L, from the region of ideal contact between the materials, x > 0,
which is ahead of the crack tip. Here, L is the length of the process zone mentioned above.
An external out-of-plane load pj(x) is applied at the crack faces, between some predefined
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Figure 1. Mode III crack with process zone. (Online version in colour.)

points x = −b and x = −a, with a, b > 0, such that it is self-balanced in terms of the principal
force

∫−L

−∞
p1(x) dx =

∫−L

−∞
p2(x) dx. (2.1)

The problem formulation outlined above is shown in figure 1.

(a) Governing equations and boundary conditions
The equilibrium condition takes the form of the Laplace equation

�uj = 0, (2.2)

where uj = uj(x, y) is the out-of-plane component of the displacement in the jth material. From
[32], we have that the transmission conditions in the process zone y = 0, −L < x < 0 are given by
the following relations:

[[u]](x, 0) = u1(x, 0+) − u2(x, 0−) = kσ (1)
yz (x, 0)

and [[σyz]](x, 0) = σ
(1)
yz (x, 0+) − σ

(2)
yz (x, 0−) = 0,

⎫⎬
⎭ (2.3)

where σ
(j)
yz (x, y) = μj(∂uj/∂y)(x, y) is the shear stress in the jth material and k is the interface

parameter (which is similar to a spring constant [39]). Note that, in contrast to Barenblatt’s
model where the cohesive forces are predefined a priori while the length of the respective zone
is computed to eliminate the stress tip singularity, our model defines only a relationship between
the jump of displacements, [[u]], and traction, σ

(1)
yz , along the interface. Meanwhile, the length of

the process zone is determined from additional fracture conditions related to the strength of this
zone.

Along the ideal contact region, y = 0, x > 0, there is a continuity of displacements and tractions.

At the crack surface y = 0, x < −L, we have the applied external load σ
(j)
yz (x, 0) = pj(x). In summary,

we have the following set of boundary conditions over the whole interface y = 0

[[u]](x, 0) = 0, x > 0,

[[u]](x, 0) = kμ1
∂u1

∂y
(x, 0), −L < x < 0,

[[σyz]](x, 0) = 0, x > −L

and σ
(j)
yz (x, 0) = pj(x), x < −L, j = 1, 2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)
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It is convenient to introduce new functions W, V, Φ, Ψ and gj

[[u]](x, 0) =
{

0, x ≥ 0

W(x), x < 0
, σ

(1)
yz (x, 0) =

{
V(x), x ≥ −L

p1(x), x < −L
,

Φ(x) = W(x − L), x < L,

Ψ (x) = V(x − L), x > 0

and gj(x) = pj(x − L), x < 0, j = 1, 2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

As a result, relations (2.4)1, (2.4)3 and (2.4)4 can be rewritten in the form

[[u]](x, 0) = W(x)(1 − H(x)),

[[σyz]](x, 0) = [[p]](x)(1 − H(x + L))

and σ
(1)
yz (x, 0) = V(x)H(x + L) + p1(x)(1 − H(x + L)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

|x| < ∞, (2.6)

where H(x) is the Heaviside function.
Following a similar approach to that outlined in [40], we look for a solution with the following

asymptotic behaviour of the displacements and tractions

W(x) =

⎧⎪⎪⎨
⎪⎪⎩

Ur(−x)1/2 + O(x), x → 0−,

Ul + O((x + L) ln(x + L)), x → −L + 0,

O(x−1/2), x → −∞

and V(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σl + O((x + L) ln(x + L)), x → −L + 0,

τr(−x)1/2 + O(x), x → 0−,

σ0x−1/2 + O(1), x → 0+,

O (
x−3/2) , x → +∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

where Ul, Ur, σl, τr, σ0 are some unknown constants. In the following, it will be shown that
conditions above lead to a unique and physically justified solution. From (2.7), using the notation
introduced in (2.5), we obtain

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

Ur(L − x)1/2 + O(L − x), x → L − 0,

Ul + O(x ln(x)), x → 0+,

O(x−1/2), x → −∞

and Ψ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σl + O(x ln(x)), x → 0+,

τr(L − x)1/2 + O(L − x), x → L − 0,

σ0(x − L)−1/2 + O(1), x → L + 0,

O(x−3/2), x → +∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

The problem is now formulated in terms of the equilibrium equation (2.2) and boundary
conditions (2.4)2, (2.6). For further analysis, it is also important to take into account the asymptotic
relations (2.7) and (2.8). We note, according to (2.3), that Ul = kσl and Ur = kσr.

(b) Reduction to a vectorial Wiener–Hopf problem
To simplify later analysis, it is convenient to introduce the following constants:

ξ = μ1 + μ2

μ1μ2
, η = μ2 − μ1

μ1μ2
and d = ξ

k
. (2.9)
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We denote the one-sided Fourier transforms of the functions W, V, Φ, Ψ , gj using the standard
notation

W̃−(t) =
∫ 0

−∞
W(x) eitx dx, Φ̃−(t) =

∫ 0

−∞
W(x − L) eitx dx, Im(t) < 0,

Ṽ+(t) =
∫+∞

0
V(x) eitx dx, Ψ̃ +(t) =

∫+∞

0
V(x − L) eitx dx, Im(t) > 0,

g̃−
j (t) =

∫ 0

−∞
pj(x − L) eitx dx, Im(t) < 0, (j = 1, 2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

Applying the Fourier transform to (2.2) and (2.4)–(2.6), with respect to the variable x, we find that
the image of displacement is given by the following expression:

ũj(t, y) =
(

(−1)j−1 1
μjξ

W̃−(t) − e−itL

μ1 + μ2

[[g̃]]−(t)
|t|

)
e(−1)j|t|y, Im(t) = 0, j = 1, 2, (2.11)

where W̃−(t) is unknown.
We introduce new functions P−, G, F, related to the applied load p(x − L):

P−(t) = η

2
[[g̃]]−(t) + 〈g̃〉−(t), G(t) = P−(t) − P−(0)

1 − itγ
eitL and F(t) = − G(t)√

0 − it
e−itL, (2.12)

alongside new unknown functions Z+, R−:

Z+(t) = 1√
0 − it

[
Ψ̃ +(t) + P−(0)

1 − itγ
eitL

]
and R−(t) = √

0 + itW̃−(t). (2.13)

In (2.10)–(2.13), the tildes (∼) correspond to Fourier transforms, while the ‘±’ superscript denotes
that the transform is regular when ±Im(t) > 0. Here [[g̃]]− = g̃−

1 − g̃−
2 is called a jump, and

〈g̃〉− = (g̃−
1 + g̃−

2 )/2 is the average. Note that the auxiliary parameter γ is introduced with the sole
limitation that Re(γ ) > 0, in order to eliminate the possible singularity of the auxiliary function
Z+(t) at zero.

The function
√

0 ± it is regular in the half-plane ∓Im(t) > 0 and has a branch cut {t | Re(t) = 0,
±Im(t) > 0}. It is also important to mention that the asymptotic behaviour of R−, Φ̃−, Ṽ+, Z+
can be obtained from (2.7) and (2.8) by means of Abel-type theorems [11]. Indeed, functions
R−, Φ̃−, Z+ decay as t−1 at infinity, while Ṽ+ decays like t−1/2 (in the corresponding half-planes).
At the zero point, t = 0, we find that the functions R−, Ṽ+, Z+ are bounded, while function Φ̃−
has a singularity of order t−1/2.

In addition, the original problem transforms to a matrix Wiener–Hopf equation along the real
axis:

w−(t) + ML(t)v+(t) = fL(t), (2.14)

where

w−(t) = 1
ξ

(
Φ̃−(t)
R−(t)

)
, v+(t) =

(
Z+(t)
Ṽ+(t)

)
and fL(t) =

⎛
⎝−G(t)

|t| + 1
d

P−(0)
1 − itγ

eitL

F(t)

⎞
⎠ , (2.15)

and

ML(t) =
⎛
⎝ 1√

0 + it
+ 1

d

√
0 − it −1

d
eitL

e−itL 0

⎞
⎠ . (2.16)

The total index of this matrix, κ = κ1 + κ2, is zero since det ML(t) =const [41]. In general, partial
indices κ1, κ2 may be non-zero, which affects the uniqueness of the solution and requires the
fulfilment of additional conditions for the function fL(t). The two simplest cases L = 0 (see [42])
and L → ∞ (for example, [32,40]) both yield a unique solution. Therefore, one can expect that
matrix ML(t) will admit a stable factorization for an arbitrary finite L 
= 0.
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3. Solution of the matrix Wiener–Hopf equation
Let us introduce function D(t) defined on the real axis

D(t) = d + |t|√
0 + it

, (3.1)

and perform both the additive and multiplicative splittings

D(t) = K+(t) + K−(t) and D(t) = T+(t)T−(t), (3.2)

where

K+(t) =
√

0 − it, K−(t) = d√
0 + it

, T+(t) =
√

0 − it
Q+(t)

, T−(t) = 1
Q−(t)

and Q±(t) = exp
{
± 1

2π i

(
Li±2

(
1 + d

t

)
− Li±2

(
1 − d

t

))}
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

and

Li±2

(
1 − d

t

)
= Re

(
Li2

(
1 − d

t

))
− i Im

(
ln∓

(
1 − d

t

))
ln±

d
t

and Li±2

(
1 + d

t

)
= Re

(
Li2

(
1 + d

t

))
− i Im

(
ln±

(
1 + d

t

))
ln∓

(
−d

t

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

Here ln±(t) is a branch of log t along the imaginary axis to be regular in the half-plane ±Im(t) > 0
and Li2(z) is the dilogarithm, defined by (see for example [43])

Li2(z) = −
∫ z

0
ln (1 − x)

dx
x

, z ∈ C \ [1, ∞). (3.5)

According to [43], the imaginary part of the dilogarithm Li2(1 − t) has a jump across the negative
half of the real axis Im(t) = 0 while the real part is continuous in the entire complex plane.

In addition to this, we observe that Q±(t) ∼ 1 at infinity, while it decays as
√

t when t
approaches zero from the corresponding half-plane. Similarly, functions Q±(t) in (3.3)2 give a
closed form factorization of the function Q(t) = |t|(d + |t|)−1, representing the Wiener–Hopf kernel
of the equation (2.14) in the case L → ∞. It is worth noting that the case of an infinite plane with
a semi-infinite interfacial crack was considered in [33], where a function similar to 1/Q(t) was
factorized numerically.

(a) Iterative procedure
Following the approach outlined in [38], we approximate Z+, R− (2.13) by functions Z+

n∗ , R−
n∗ ,

which are determined using the recurrence relations

Z+
n (t) = 1

T+(t)

(
q+(t) − eitL((1/ξ )K+R−

n−1)+

T−(t)

)+
, Im(t) > 0

and R−
n (t) = ξ

T−(t)

(
f (t) + e−itL[q−(t) − (K−Z+

n )−]
T+(t)

)−
, Im(t) < 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.6)

where n = 1, n∗ and

f (t) = −P−(t) e−itL and q(t) = −d
G(t)√

0 − it
√

0 + it
+ P−(0)

1 − itγ
eitL. (3.7)

The iterations start with the initial condition

R−
0 (t) ≡ 0, (3.8)

and n∗ is the required number of iterations. Note that in (3.6) the functions inside the large
brackets are continuous along the real axis, while they decay at infinity as t−1/2 and t−1 for (3.6)1



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190109

................................................................

–600 –400 –200 0 200 400 600
10–7

10–6

10–5

10–4

10–3

10–2

10–1

–600 –400 –200 0
t t

200 400 600
10–6

10–5

10–4

10–3

10–2

10–1

n = 2

R
~ –

n+1 – R
~ –

n Z
~ +

n+1 – Z
~ +

n

n = 3

n = 4

n = 3

n = 4

n = 2

Figure 2. Reduction of the error with growing number of iterations for L∗ = 0.5. (Online version in colour.)

and (3.6)2, respectively. The convergence of this procedure has been discussed in [38]. As soon as
Z+ and R− are evaluated, the calculation of Ṽ+ and Φ̃− becomes straightforward. Indeed, from
(2.14) we derive a scalar Wiener–Hopf equation with respect to the unknown functions Φ̃−, Ṽ+:

1
ξ

Φ̃−(t) − 1
d

eitLṼ+(t) = G(t)
|t| + 1

d
P−(0)

1 − itγ
− 1

d
D(t)Z+

n (t), Im(t) = 0, (3.9)

which can be solved analytically. In general, for a given function h(t) that decays with the growth
of |t|, the decomposition h(t) = h+(t) + h−(t) is accomplished by means of Cauchy-type integrals.
Their limiting values along the real axis are defined by the Sokhotsky–Plemelj formulae [27]

h±(t) = h(t)
2

± 1
2π i

p.v.
∫∞

−∞
h(x)
x − t

dx, Im(t) = 0. (3.10)

(b) Convergence
To provide an illustrative numerical example, we consider a symmetric uniform loading of unit
magnitude, distributed along the line segment (−b, −a) (figure 1). We normalize the damage zone
length by a parameter l∗ = 10(b − a) such that

L∗ = L
l∗

(3.11)

is a dimensionless parameter.
For this formulation, the distributions of errors |R−

n+1(t) − R−
n (t)|, |Z+

n+1(t) − Z+
n (t)| along the

real axis are shown in figure 2. It is clear that the numerical error decreases significantly as
the iterative process continues. Note that the highest error occurs near t = 0, even though the
functions R−, Z+ are bounded at the zero point. This is because the next term in their asymptotic
expansion is of the order t1/2, and as such calculating the coefficients corresponding to these terms
yields computational errors, which result in the noticeable inaccuracies at t = 0. It should be noted,
however, that this error does decrease as the iterative process continues.

Going further, in figures 3 and 4, we show that the iterative method’s rate of convergence
increases with the growth of the process zone L∗. To demonstrate this we introduce the
discrepancy δFn, which represents the accuracy of the solution to the Wiener–Hopf equation (2.14)

δFn = ‖F − Fn‖2 and Fn(t) = 1
ξ

R−
n (t) + e−itLZ+

n (t), (3.12)
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where Fn is the left-hand side of the second component of the vectorial Wiener–Hopf
equation (2.14), while F is given in (2.12). In (3.12) and below, we denote the L2 norm on R by
‖ · ‖2.

Additionally, in these figures, we also show the distributions of three measures: the quantity
δFn mentioned above, and the norms of difference between the consecutive iterative steps
‖R−

n+1 − R−
n ‖2, ‖Z+

n+1 − Z+
n ‖2, to provide a fuller picture of the numerical method’s rate of

convergence.
One can observe in figure 3 that the iterative method (3.6) converges faster (in terms of the

number of iterations) and gives more accurate results for higher values of L∗. However, it is
important to account for the fact that functions Z+(t) and R−(t) oscillate with frequencies that
grow as we increase L∗ and, consequently, a larger number of mesh nodes N are needed to account
for this. This, in turn, makes each individual iteration more time-consuming.

To further clarify this point, and the dependence of the final algorithm on the number of
integration points N, in figure 4 the same graphs are provided for fixed N = 800 with differing
values of L∗. It is clear that the number of iterations needed to reach the saturation limit decreases
with increasing L∗. On the other hand, for a fixed value of N, the numerical method gives more
accurate results for smaller values of L∗. The latter issue is eliminated by taking the number of
mesh nodes N as a function of L∗, as demonstrated by the results in figure 3.

It is worth noting that calculating the functions Z+
n , R−

n at each step of the iterative process
(3.6) only involves evaluating the singular integrals within (3.10), while K± and T± remain the
same for every iteration step. The integration in (3.6) was performed numerically on a finite
part of the real axis, while taking into account the asymptotic behaviour of the integrand at
infinity. Finally, to increase the algorithm’s efficiency, the integration interval was partitioned
non-uniformly.

In table 1, we show the time costs for different computational scenarios. The calculations were
performed on a computer with an Intel Core i3-2310M CPU @ 2.10 GHz × 2 processor.
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Table 1. Time costs.

N = 800 N = 1100 N = 1600 N = 5000

L∗ = 0.1 L∗ = 0.5 L∗ = 2 L∗ = 0.1 L∗ = 0.5 L∗ = 2

number of iterations before saturation 11 8 6 12 10 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average time per iteration (s) 29 29 29 50 70 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total time (s) 330 249 195 650 784 2685
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

error δFn 7 × 10−5 7 × 10−5 10−4 10−5 5 × 10−6 4 × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Analysis of the numerical results
With the iterative scheme for solving the vectorial Wiener–Hopf problem in place, and the
accuracy of the numerical algorithm demonstrated, we can begin the evaluation and analysis
of the system behaviour. We begin with an examination of the fracture mechanics parameters,
before moving on to the process zone itself, and finally determining the fracture’s equilibrium
conditions.

(a) Evaluation of the fracture mechanics parameters
The known asymptotics of functions W, Φ, V, Ψ in the limits as x → 0− and x → −L (2.7)–(2.8)
allow us to define the behaviour of the stresses and displacements at both ends of the process
zone. For example, the behaviour of the stress functions as x → 0+ follows immediately from
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(2.6) as: σ
(j)
yz (x, 0) ∼ σ0/

√
x. Noting this, linear elastic fracture mechanics (LEFM) allows us to

immediately introduce the stress intensity factor

KL
III =

√
2πσ0, (4.1)

and analyse its dimensionless value KL
III/KIII, where KIII is the stress intensity factor in the absence

of the damage zone (L = 0), taken from [42]. Next, we evaluate the parameter σl, that is the stress
level at the left edge of the process zone (2.7). Then, combining the relationship between the jump
of displacements and traction (2.3) in this zone with the known asymptotics yields Ul = kσl, from
which we can obtain the displacement of the crack opening at x = −L in its dimensionless form

u∗
l = 2

k
ξ

σl√
l∗KIII

. (4.2)

The rates at which the values of KL
III/KIII and u∗

l stabilize throughout the iterative process for
various L are provided in figure 5.

Meanwhile, to demonstrate the numerical error in approximating the fracture parameters, we
introduce the following measures

δK(n)
III =

∣∣∣∣∣K
L
III(n + 1)

KIII
− KL

III(n)
KIII

∣∣∣∣∣ and δu(n)
l = |u∗

l (n + 1) − u∗
l (n)|. (4.3)

The rate at which these errors decrease throughout the iterative process, alongside the
dependence of the fracture parameters on the length of the process zone, are shown in figures 6
and 7. It should be noted that KL

III/KIII = 1 and u∗
l = 0 when L = 0.
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It can easily be seen in figures 5–7 that the outlined method is able to achieve a high accuracy
of approximation for the stress intensity factor and crack opening displacement. This is achieved
after only a small number of iterations, and with a high level of stability of the numerical
algorithm.

Note that figures 6 and 7 establish implicit relationships between the length of the process zone
and two fracture parameters under consideration. They will be used later to identify admissible
length of the process zone for a stable crack, see §4c.

(b) Displacements inside the fracture zone
To conduct an examination of the process zone, y = 0, −L < x < 0, we recall from (2.6) that
W(x) corresponds to the jump of displacements along the interface [[u]](x, 0) = W(x)(1 − H(x)). In
fact, the displacements uj(x, 0), (j = 1, 2) can be obtained in terms of this function by applying
the inverse Fourier transform to (2.11), while for the traction we simply use the transmission
conditions (2.3)

uj(x, 0) = (−1)j−1 1
ξμj

W(x), σ
j
yz(x, 0) = 1

k
W(x), −L < x < 0. (4.4)

To demonstrate the solution convergence for the function W(x), we consider the case1 when
L∗ = 0.5. Similarly to the previous subsection, we introduce the new measure

δWn(x) = |Wn+1(x) − Wn(x)|, (4.5)

where Wn(x) is the function W(x) at the nth iteration. The values of this measure, alongside
the corresponding dimensionless solution for Wn(x)/l∗ along the process zone, are provided in
figure 8. It can be clearly seen that after the second iteration the curves Wn(x) almost coincide.

With the rapid convergence of Wn(x) established, we approximate the function W(x) with
Wn∗ (x), where n∗ is the number of required iterations to achieve a desired level of accuracy. Using
this approach, the solution for function W(x), for different values of L∗, are depicted in figure 9.

Therefore, as we can see from (4.4), an understanding of the system’s behaviour within the
process zone can be obtained simply from the analysis of W(x). In particular, one can observe,
that both the displacement’s discontinuity and the shear stress increase in the direction from the
crack tip towards the opposite end of this zone.

1The authors also considered the cases when L∗ = 0.1 and L∗ = 2 and obtained similar results, as such taking L∗ = 0.5 provides
a representative illustration.
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(c) Equilibrium conditions
In the previous analyses, we assumed that the length of the process zone L was predefined, but
in reality, for equilibrium cracks, there are two critical conditions which ensure that the fracture
will not propagate and that neither end of the process zone will move. These conditions can be
expressed in terms of the crack opening displacement and stress intensity factor as follows:

[[u]](−L) < UC and KL
III < KC, (4.6)

where UC, KC are material parameters. By normalizing (4.6), these equilibrium conditions can be
placed in terms of u∗

l and KL
III/KIII

u∗
l < U∗

C,
KL

III
KIII

<
KC

KIII
, (4.7)

where

U∗
C = 2UC

ξ
√

l∗KIII
. (4.8)

In this form, the equilibrium conditions can be related back to the normalized cohesive zone
length L∗ using observations from §4a. Combining the results displayed in figures 6 and 7,
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the relationship between u∗
l and KL

III/KIII is immediately obtained, as provided in the top
left of figure 10. This line represents the boundary between unstable and equilibrium cracks.
Indeed, provided critical values of the crack opening displacement U∗

C and fracture toughness
KC/KIII are taken from the white region (see the red marker in figure 10), conditions (4.7) are
automatically satisfied. From this, alongside previously obtained relations, admissible values of
L∗ for equilibrium cracks can be defined.

To better illustrate this point, consider taking two arbitrary points A, B along the boundary
between the unstable and equilibrium regimes (figure 10). Then, by definition, at the point A we
have u∗

l = U∗
C, while the corresponding value of L∗ can obtained from figure 7, which we shall

denote by L∗
A. Furthermore, it is clear that condition (4.7)1 is satisfied for any L∗ < L∗

A. Similarly,
point B defines the critical process zone length L∗

B, with condition (4.7)2 holding for any L∗ > L∗
B.

It should be noted, as seen in figure 10, that the values of (L∗
B, L∗

A) obtained from each condition
are identical

(L∗
B1

, L∗
A1

) = (L∗
B2

, L∗
A2

) = (L∗
B, L∗

A). (4.9)

To summarize, the region (L∗
B, L∗

A) obtained using the approach outlined above defines the
range of the normalized length of the damage zone, L∗, over which the equilibrium state (4.6) is
possible. Furthermore, if the critical fracture parameters for a given problem fall within the grey
region in the top left of figure 10, then for any L∗ at least one condition in (4.7) fails and the crack
becomes unstable.

(d) Impact of the damage zone’s stiffness
To conclude the analysis of the given problem, we examine how the parameter of the process zone,
k, affects other fracture parameters. This is achieved through an examination of the normalized
constant d∗, defined as

d∗ = l∗
k

μ1 + μ2

μ1μ2
= l∗d, (4.10)

where constant l∗, which was introduced to ensure a proper scaling, was previously determined
in (3.11), while the parameter d was introduced in (2.9). Note that all of the results presented in the
previous subsections were obtained for a fixed value of d∗ = 0.5. The relationships between the
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normalized process zone length and the stress intensity factor, crack opening and critical process
zone stress are provided in figure 11 for varying values of the parameter d∗.

It is readily apparent from the figure above that as the constant k increases so do the value of
KL

III and ul, while the critical stress σl decays. In other words, an increase in the parameter k leads to
a weaker response to the crack within the process zone, while for smaller k this zone demonstrates
tougher behaviour as reflected in the growth of σl (in the right part of figure 11). Note that, in the
limit as k → 0, the solution is regular at x = 0 while the crack tip and stress singularity are located
at the opposite edge of the damaged zone x = −L.

5. Discussions and conclusion
In this paper, we considered the static loading of a mode III crack at the interface of two elastic
materials, with a process zone modelled by relations (2.3). The original problem, given in terms
of equation (2.2) and boundary conditions (2.4)–(2.6), was transformed to a matrix Wiener–Hopf
equation (2.14). The main difficulty in solving this equation was the presence of exponential
factors inside matrix ML.

It has been demonstrated that an iterative approach, of the kind first proposed in [38], is
highly effective at resolving this Wiener–Hopf equation, thereby both solving the initial problem
and determining important fracture mechanics parameters for the system. Namely, the stress
intensity factor, KIII, at the crack tip and the critical opening, ul, at the opposite end of the process
zone. A thorough analysis of the numerical approach used showed the high level of stability
and accuracy, alongside the rapid rate of convergence, for the entire solution. Of particular note
was the fact that the values of both KIII and ul stabilize after only a small number of iterations,
although the required number of iterations is higher for smaller lengths of the process zone L.

The fact that the method outlined here is more efficient for larger L is not unexpected, as the
initial condition (3.8) of the iterative process corresponds to the case L → ∞. As such, although
the iterative method does converge for all positive L > 0, it is clear from the presented results that
both the solution accuracy and convergence rate improve with the growth of L. There are however
solutions to this issue. The computational performance, in this case, could be greatly increased
through a rescaling of the x-axis, although this would introduce an additional challenge in the
manipulation of the right-hand side of (2.14). Alternatively, for small L there exists an alternative
asymptotic method for the matrix factorization, which was presented in [35].

In addition, it was demonstrated that the relationship between critical values of the crack
opening displacement and the stress intensity factor represent a boundary between unstable
and equilibrium cracks. This result was achieved through qualitative analysis, performed to
determine admissible values of length of the process zone (4.9) for which both necessary
conditions for equilibrium in (4.6) are satisfied.
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Meanwhile, the impact of the stiffness parameter, 1/k, on the solution was shown to become
more pronounced as k increases, with the crack opening growing while the traction inside the
damage zone decays. Conversely, reducing k results in a higher resistance to the crack opening
within the process zone. Indeed, for a significantly stiff process zone (k → 0), the stress singularity
at the right edge vanishes and a high-stress concentration appears near the point x = −L.

Finally, the model considered in this paper can be used to analyse steady-state propagation of
an interface crack with a developed damage zone. Similar models with a semi-infinite crack and
various imperfect material interfaces were considered in [32]. In the former problem, the crack
speed can influence the size of the damage zone and consequently affect the stability of the crack
propagation.

Data accessibility. This article has no additional data.
Competing interests. We declare we have no competing interests.
Funding. P.L. acknowledges support from the H2020 Marie Sklodowska Curie RISE project MATRIXASSAY
(H2020-MSCA-RISE-2014-644175). G.M. acknowledges financial support from the ERC Advanced Grant
‘Instabilities and nonlocal multiscale modelling of materials’: ERC-2013-ADG-340561-INSTABILITIES.
Acknowledgements. G.M. is thankful for partial support from the Ministry of Education and Science of the
Russian Federation (project no. 14.Z50.31.0036 awarded to R. E. Alexeev Nizhny Novgorod Technical
University) during his visit to the University. He is also thankful to the Royal Society for the Wolfson Research
Merit Award. Valuable comments and observations of Dr Daniel Peck and the reviewers are gratefully
acknowledged.

References
1. Griffith AA. 1921 The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A

221, 163–198. (doi:10.1098/rsta.1921.0006)
2. Irwin G. 1957 Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl.

Mech. 24, 361–364.
3. Orowan E. 1949 Fracture and strength of solids. Rep. Prog. Phys. 12, 185–232. (doi:10.1088/

0034-4885/12/1/309)
4. Neuber H. 1968 A physically nonlinear notch and crack model. J. Mech. Phys. Solids 16, 289–

294. (doi:10.1016/0022-5096(68)90037-9)
5. Barenblatt GI. 1959 The formation of equilibrium cracks during brittle fracture. general

ideas and hypotheses. axially-symmetric cracks. J. Appl. Math. Mech. 23, 622–636.
(doi:10.1016/0021-8928(59)90157-1)

6. Barenblatt G. 1962 The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl.
Mech. 7, 55–129. (doi:10.1016/S0065-2156(08)70121-2)

7. Ferté G, Massin P, Moës N. 2016 3D crack propagation with cohesive elements in
the extended finite element method. Comput. Methods Appl. Mech. Eng. 300, 347–374.
(doi:10.1016/j.cma.2015.11.018)

8. Knauss WG. 1973 On the steady propagation of a crack in a viscoelastic sheet: experiments and
analysis, pp. 501–541. Boston, MA: Springer.

9. Needleman A. 1987 A continuum model for void nucleation by inclusion debonding. J. Appl.
Mech. 54, 525–531. (doi:10.1115/1.3173064)

10. Needleman A. 1990 An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids
38, 289–324. (doi:10.1016/0022-5096(90)90001-K)

11. Noble B. 1958 Methods based on the Wiener-Hopf technique for the solution of partial differential
equations. International Series of Monographs on Pure, Applied Mathematics, Vol. 7. London,
UK: Pergamon Press.

12. Abrahams I. 2002 On the application of the Wiener-Hopf technique to problems in dynamic
elasticity. Wave Motion 36, 311–333. (doi:10.1016/S0165-2125(02)00027-6)

13. Comninou M. 1977 The interface crack. J. Appl. Mech. 44, 631–636. (doi:10.1115/1.3424148)
14. Simonov I. 1986 Crack at an interface in a uniform stress field. Mech. Compos. Mater. 21, 650–

657. (doi:10.1007/BF00605924)
15. Herrmann KP, Loboda VV. 1999 On interface crack models with contact zones situated in an

anisotropic bimaterial. Arch. Appl. Mech. 2691, 317–335. (doi:10.1007/s004190050223)
16. Slepyan L. 2002 Models and phenomena in fracture mechanics, 1 edn. Berlin, Germany: Springer.

http://dx.doi.org/doi:10.1098/rsta.1921.0006
http://dx.doi.org/doi:10.1088/0034-4885/12/1/309
http://dx.doi.org/doi:10.1088/0034-4885/12/1/309
http://dx.doi.org/doi:10.1016/0022-5096(68)90037-9
http://dx.doi.org/doi:10.1016/0021-8928(59)90157-1
http://dx.doi.org/doi:10.1016/S0065-2156(08)70121-2
http://dx.doi.org/doi:10.1016/j.cma.2015.11.018
http://dx.doi.org/doi:10.1115/1.3173064
http://dx.doi.org/doi:10.1016/0022-5096(90)90001-K
http://dx.doi.org/doi:10.1016/S0165-2125(02)00027-6
http://dx.doi.org/doi:10.1115/1.3424148
http://dx.doi.org/doi:10.1007/BF00605924
http://dx.doi.org/doi:10.1007/s004190050223


16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190109

................................................................

17. Piccolroaz A, Mishuris G, Movchan A. 2009 Symmetric and skew-symmetric weight functions
in 2D perturbation models for semi-infinite interfacial cracks. J. Mech. Phys. Solids 57, 1657–
1682. (doi:10.1016/j.jmps.2009.05.003)

18. Mishuris G, Slepyan L. 2016 Brittle fracture in a periodic structure with internal potential
energy. Proc. R. Soc. A 470, 20130821. (doi:10.1098/rspa.2013.0821)

19. Mishuris GS, Movchan AB, Slepyan LI. 2008 Dynamical extraction of a single chain from a
discrete lattice. J. Mech. Phys. Solids 56, 487–495. (doi:10.1016/j.jmps.2007.05.020)

20. Ryvkin M, Slepyan L. 2010 Crack in a 2D beam lattice: analytical solutions for two bending
modes. J. Mech. Phys. Solids 58, 902–917. (doi:10.1016/j.jmps.2010.03.006)

21. Nieves M, Mishuris G, Slepyan L. 2016 Analysis of dynamic damage propagation in discrete
beam structures. Int. J. Solids Struct. 97-98, 699–713. (doi:10.1016/j.ijsolstr.2016.02.033)

22. Slepyan L, Ayzenberg-Stepanenko M, Mishuris G. 2015 Forerunning mode transition in a
continuous waveguide. J. Mech. Phys. Solids 78, 32–45. (doi:10.1016/j.jmps.2015.01.015)

23. Kisil A, Ayton LJ. 2018 Aerodynamic noise from rigid trailing edges with finite porous
extensions. J. Fluid Mech. 836, 117–144. (doi:10.1017/jfm.2017.782)

24. Kisil A. 2015 Stability analysis of matrix Wiener-Hopf factorization of Daniele-
Khrapkov class and reliable approximate factorization. Proc. R. Soc. A 471, 20150146.
(doi:10.1098/rspa.2015.0146)

25. Zvyagin A, Romashov G. 2011 Asymmetric wedging of elastic material with the formation of
separation zones. Acta Astronaut. 68, 1681–1685. (doi:10.1016/j.actaastro.2010.12.005)

26. Zvyagin AV. 2013 Critical velocity in a contact elasticity problem for the case of transonic
punch velocity. Mech. Solids 48, 649–658. (doi:10.3103/S0025654413060083)

27. Gakhov F. 1977 Boundary value problems, vol. 4 of 70003rd edn. Moscow, Russia: Nauka. [In
Russian].

28. Adukov VM. 2018 Algorithm of polynomial factorization and its implementation in MaplE.
Bull. South Ural State Univ. 11, 110–122. (doi:10.14529/mmpl80408)

29. Abrahams ID. 2000 The application of Padé approximants to Wiener-Hopf factorization. IMA
J. Appl. Math. 65, 257–281. (doi:10.1093/imamat/65.3.257)

30. Kisil A. 2013 A constructive method for approximate solution to scalar Wiener-Hopf
equations. Proc. R. Soc. A 469, 20120721. (doi:10.1098/rspa.2012.0721)

31. Rogosin S, Mishuris G. 2016 Constructive methods for factorization of matrix-functions. IMA
J. Appl. Math. 81, 365–391. (doi:10.1093/imamat/hxv038)

32. Mishuris GS, Movchan NV, Movchan AB. 2006 Steady-state motion of a mode-III crack on
imperfect interfaces. Q. J. Mech. Appl. Math. 59, 487–516. (doi:10.1093/qjmam/hbl013)

33. Antipov Y, Avila-Pozos O, Kolaczkowski S, Movchan A. 2001 Mathematical model
of delamination cracks on imperfect interfaces. Int. J. Solids Struct. 38, 6665–6697.
(doi:10.1016/S0020-7683(01)00027-0)

34. Castro L, Speck F-O, Teixeira F. 2003 Explicit solution of a dirichlet-neumann wedge
diffraction problem with a strip. J. Integral Equ. Appl. 15, 359–383. (doi:10.1216/jiea/
1181074982)

35. Mishuris G, Rogosin S. 2014 An asymptotic method of factorization of a class of matrix
functions. Proc. R. Soc. A 470, 20140109. (doi:10.1098/rspa.2014.0109)

36. Mishuris G, Rogosin S. 2016 Factorization of a class of matrix-functions with stable partial
indices. Math. Method. Appl. Sci. 39, 3791–3807. (doi:10.1002/mma.3825)

37. Abrahams ID, Wickham GR. 1990 General Wiener-Hopf factorization of matrix kernels with
exponential phase factors. SIAM J. Appl. Math. 50, 819–838. (doi:10.1137/0150047)

38. Kisil AV. 2018 An iterative Wiener–Hopf method for triangular matrix functions with
exponential factors. SIAM J. Appl. Math. 78, 45–62. (doi:10.1137/17M1136304)

39. Hashin Z. 2002 Thin interphase/imperfect interface in elasticity with application to coated
fiber composites. J. Mech. Phys. Solids 50, 2509–2537. (doi:10.1016/S0022-5096(02)00050-9)

40. Mishuris G. 2001 Interface crack and nonideal interface concept (mode III). Int. J. Fract. 107,
279–296. (doi:10.1023/A:1007664911208)

41. Gohberg I, Kaashoek MA. 1986 Constructive methods of Wiener-Hopf factorization. Berlin,
Germany: Springer.

42. Piccolroaz A, Mishuris G, Movchan A. 2010 Perturbation of mode III interfacial cracks. Int. J.
Fract. 166, 41–51. (doi:10.1007/s10704-010-9484-7)

43. Kirillov AN. 1995 Dilogarithm Identities. Prog. Theor. Phys. Suppl. 118, 61–142. (doi:10.1143/
PTPS.118.61)

http://dx.doi.org/doi:10.1016/j.jmps.2009.05.003
http://dx.doi.org/doi:10.1098/rspa.2013.0821
http://dx.doi.org/doi:10.1016/j.jmps.2007.05.020
http://dx.doi.org/doi:10.1016/j.jmps.2010.03.006
http://dx.doi.org/doi:10.1016/j.ijsolstr.2016.02.033
http://dx.doi.org/doi:10.1016/j.jmps.2015.01.015
http://dx.doi.org/doi:10.1017/jfm.2017.782
http://dx.doi.org/doi:10.1098/rspa.2015.0146
http://dx.doi.org/doi:10.1016/j.actaastro.2010.12.005
http://dx.doi.org/doi:10.3103/S0025654413060083
http://dx.doi.org/doi:10.14529/mmpl80408
http://dx.doi.org/doi:10.1093/imamat/65.3.257
http://dx.doi.org/doi:10.1098/rspa.2012.0721
http://dx.doi.org/doi:10.1093/imamat/hxv038
http://dx.doi.org/doi:10.1093/qjmam/hbl013
http://dx.doi.org/doi:10.1016/S0020-7683(01)00027-0
http://dx.doi.org/doi:10.1216/jiea/1181074982
http://dx.doi.org/doi:10.1216/jiea/1181074982
http://dx.doi.org/doi:10.1098/rspa.2014.0109
http://dx.doi.org/doi:10.1002/mma.3825
http://dx.doi.org/doi:10.1137/0150047
http://dx.doi.org/doi:10.1137/17M1136304
http://dx.doi.org/doi:10.1016/S0022-5096(02)00050-9
http://dx.doi.org/doi:10.1023/A:1007664911208
http://dx.doi.org/doi:10.1007/s10704-010-9484-7
http://dx.doi.org/doi:10.1143/PTPS.118.61
http://dx.doi.org/doi:10.1143/PTPS.118.61

	Introduction
	Problem statement
	Governing equations and boundary conditions
	Reduction to a vectorial Wiener--Hopf problem

	Solution of the matrix Wiener--Hopf equation
	Iterative procedure
	Convergence

	Analysis of the numerical results
	Evaluation of the fracture mechanics parameters
	Displacements inside the fracture zone
	Equilibrium conditions
	Impact of the damage zone's stiffness

	Discussions and conclusion
	References

