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Joint Cross-Modal and Unimodal Features for
RGB-D Salient Object Detection

Nianchang Huang, Yi Liu, Qiang Zhang*, Jungong Han*

Abstract—RGB-D salient object detection is one of the basic
tasks in computer vision. Most existing models focus on investi-
gating efficient ways of fusing the complementary information
from RGB and depth images for better saliency detection.
However, for many real-life cases, where one of the input images
has poor visual quality or contains affluent saliency cues, fusing
cross-modal features does not help to improve the detection
accuracy, when compared to using unimodal features only. In
view of this, a novel RGB-D salient object detection model is
proposed by simultaneously exploiting the cross-modal features
from the RGB-D images and the unimodal features from the
input RGB and depth images for saliency detection. To this end,
a Multi-branch Feature Fusion Module is presented to effec-
tively capture the cross-level and cross-modal complementary
information between RGB-D images, as well as the cross-level
unimodal features from the RGB images and the depth images
separately. On top of that, a Feature Selection Module is designed
to adaptively select those highly discriminative features for the
final saliency prediction from the fused cross-modal features and
the unimodal features. Extensive evaluations on four benchmark
datasets demonstrate that the proposed model outperforms the
state-of-the-art approaches by a large margin.

Index Terms—RGB-D, saliency detection, multi-branch feature
fusion and feature selection.

I. INTRODUCTION

SALIENT Object Detection (SOD) is to detect the most
attractive region in the scene by imitating human visual

mechanism [1]. It has been applied to a variety of computer
vision tasks, including object recognition [2], tracking [3] and
segmentation [4], [5], etc. Until now, tremendous efforts have
been made to detect the salient object in a given image [6],
[7], [8], [9], [10], [11], [1], [12]. The earlier methods [11], [1],
[12] mainly rely on various types of handcrafted features (e.g.,
color, intensity and texture) for saliency detection. Recently,
with the rapid development of Convolutional Neural Networks
(CNNs) [13], [14], [15], [16], [17], CNNs based SOD models
[6], [7], [8], [9], [10], [18], [19], [20] have attracted more
attention and has achieved significant improvements than
conventional models [1], [12].

However, most of these SOD models are designed for
visible light images of Red, Green and Blue channels (i.e.,
RGB images). For some challenging scenarios, for example,
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Fig. 1. Illustration of the validity for salient object detection by using RGB-D
images. (a) RGB images; (b) Depth images; (c) Saliency maps deduced from
RGB images; (d) Saliency maps deduced from RGB-D images; (e) Ground
truth. By comparing (c) and (d), it can be easily found that the complementary
information between RGB and depth images can boost the saliency detection
performance of the traditional RGB-deduced models.

as shown in the first row of Fig. 1(a) where the salient object
and the background share similar appearance, or as shown
in the second row of Fig. 1(b) where the background is
complex, these RGB-induced models may be powerless. In
order to address such issues, researchers started to look into
the possibility of using complementary information acquired
by two different cameras to enhance image saliency detection.
Fusing RGB and depth (RGB-D) images turns out to be one
of the most feasible solutions due to the rapid development of
depth sensory technologies, such as Microsoft Kinect [21] and
Intel Realsense [22]. Different from RGB images that mainly
provide spatial appearances of the scene, depth images provide
affluent spatial structures and 3D layout information about the
scene, which are robust to light and color changing. Benefiting
from the complementary information between RGB-D images,
more desirable salient object detection results may be obtained.
For example, as shown in the first row of Fig. 1(d), by using
the depth information, the salient object in the foreground may
be easily distinguished from the background although they
have similar spatial appearances. As shown in the second row
of Fig. 1(d), multiple objects with similar spatial appearances
may also be easily distinguished from each other by using the
depth information because they have different distances to the
imaging sensor.

To exploit these complementary information, some CNNs
based RGB-D salient object detection models have also been
presented in recent years, which can be divided into three
categories: pixel-level fusion [23], feature-level fusion [24],
[25], [26], [27], [28], [29] and decision-level fusion [30], [31].
In pixel-level fusion, the source RGB-D images are simply
considered as four-channel inputs and fed into the networks. In
decision-level fusion, two saliency maps are first induced from
the input RGB and depth images, respectively and then fused
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Fig. 2. Illustrations of the discriminative ability of cross-modal features and unimodal features under different cases. (a) RGB images; (b) Depth images;
(c) RGB features; (d) Depth features; (e) Cross-modal features; (f) Saliency maps deduced by RGB features; (g) Saliency maps deduced by depth features;
(h) Saliency maps deduced by cross-modal features; (i) Saliency maps obtained by our model that uses cross-modal features as well as unimodal features;
(j) Ground truth. Both the RGB and depth images in the first and second rows contain many discriminative saliency cues, which may be complementary to
each other. Thereby, the corresponding cross-modal features contain the fine details of unimodal RGB features and the depth information of unimodal depth
features. However, the depth images in the third and fourth rows are low-quality and the RGB images in the fifth and sixth rows contain multiple objects
(e.g., persons) with similar spatial appearances, which introduce some disturbing information to the fused cross-modal features (e.g., the red boxes in (c)-(e)).
As a result, some of these objects are mistakenly detected as salient ones by just using the fused cross-modal features (e.g., the blue boxes in (h)).

to obtain the final saliency map. While, in feature-level fusion,
a two-stream network is first employed to extract the features
from the source RGB and depth images, respectively. Then
the extracted features from each unimodal image are fed into
a fusion network. The saliency map is finally deduced from
these fused features. In general, feature-level fusion can obtain
better saliency results than pixel-level fusion and decision-
level fusion [25] and thus has attracted more attention in recent
years.

Moreover, most RGB-D salient object detection methods
based on feature-level fusion usually make use of the comple-
mentary cross-modal features from RGB-D images to predict
the final saliency maps. As illustrated in the first two rows
of Fig. 2, better predictions are generally deduced from the
fused cross-modal features than those from unimodal features
(e.g., RGB features or depth features). However, it is doubtable
that the fused cross-modal features always perform better than
those unimodal features, especially when one of the input
images has poor visual quality or contains affluent saliency
cues. For example, as shown in the red-rectangle regions in
the last four rows of Fig. 2, some disturbing features from
one of the input images (depth images in the 3rd and 4th

rows of Fig. 2, or RGB images in the 5th and 6th rows
of Fig. 2) are introduced into the fused features and thus
weaken the discriminative ability of the fused features for
saliency detection. Accordingly, some background regions are
mistakenly determined to be salient ones in the final prediction
if using the fused cross-modal features.

Alternatively, better saliency detection results may be ob-

tained if the unimodal (RGB or depth) features and the fused
cross-modal features can be simultaneously used during the
final saliency prediction. Based on this intuition, we present
a novel end-to-end CNN architecture for RGB-D salient
object detection in this paper. In the proposed network, a
Multi-branch Feature Fusion Module (MFFM) is designed,
in which the fused cross-modal features between RGB-D
images and the unimodal features from RGB and depth images
are simultaneously captured and preserved prior to being fed
into the prediction sub-network. On top of that, a Feature
Selection Module (FSM) based on the channel-wise attention
mechanism is designed to adaptively select those features
for the final saliency prediction. As shown in Fig. 2, better
saliency detection results can be obtained by jointly using the
fused cross-modal RGB-D features as well as the unimodal
RGB and depth features, rather than using the fused cross-
modal RGB-D features only.

In summary, the main contributions of this work are as
follows:

1) An end-to-end CNNs based RGB-D salient object de-
tection network is proposed. As the departure from existing
models that only consider the fused cross-modal RGB-D
features, our model enables to simultaneously use the fused
cross-modal RGB-D features and the unimodal (RGB and
depth) features for saliency detection.

2) An MFFM is presented to effectively capture the cross-
modal complementary information between RGB-D images,
as well as the unimodal features from the RGB images and
the depth images. By cascading several MFFMs, the extracted
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cross-modal and unimodal features are organized in a coarse-
to-fine way and contribute interactively to saliency prediction.

3) Based on the channel-wise attention mechanism, an FSM
is designed, where the global and local information are simul-
taneously employed to adaptively select highly discriminative
cross-modal and unimodal features for more accurate salient
object detection.

The rest of this paper is organized as follows. In Section
II, we briefly introduce previous works related to RGB and
RGB-D salient object detection. In Section III, the details
of the proposed method are presented. Several experiments
are conducted to evaluate the proposed model in Section IV.
Finally, Section V concludes this paper.

II. RELATED WORK

A. RGB Salient Object Detection

So far, a number of models have been presented for RGB
based salient object detection. Conventional models [11], [1],
[12] mainly rely on various types of handcrafted features, such
as color, intensity and texture, for saliency detection. Recently,
CNNs have been widely used in many computer vision tasks,
such as classification [13], [16], [14] and segmentation [32],
[33], because of its strong feature learning ability. A lot
of CNNs based saliency detection models have also been
available [34], [35], [7], [8], [36], [37].

Early CNNs based saliency detection models first employ
convolutional layers for feature extraction and then utilize fully
connected layers for saliency prediction. For instance, Wang
et al. [36] first utilized two sub-networks to automatically
learn local and global features, given the input images. Then
the learned features were fed into multiple fully connected
layers for saliency prediction. However, the employed fully
connected layers decrease the computational efficiency via
dropping the spatial information. Later works address this
issue with Fully Convolutional Network (FCN) based saliency
detection networks [34], [35], [7], [8], due to the fact that
FCN can make dense predictions for pixel-level tasks. Most
FCN based salient object detection models exploit multi-level
contexts for saliency detection. For example, five levels of
features from the VGG-16 network [13] were jointly employed
for saliency detection in [35]. In [34], a generic framework
aggregating multi-level convolutional features was presented
for salient object detection, which simultaneously incorporated
coarse semantics and fine details. Furthermore, some works
employ multi-scale contextual information to obtain more
robust results for the salient objects with different sizes. For
example, a multi-scale context-aware feature extraction mod-
ule was designed in [38], where multiple dilated convolutions
were employed to capture multi-scale contextual information
for saliency detection.

However, these saliency detection models are merely de-
signed for RGB images. In most cases, these RGB-induced
saliency detection models may work well, but they may be
powerless for some real-life scenarios, where it is very often
that salient objects and backgrounds are similar in appearance
or the backgrounds are complex.

B. RGB-D Salient Object Detection

In order to address the above mentioned problems, some
works have introduced RGB-D images for saliency detection
considering the complementary information within the RGB
and depth images. Similar to those RGB-induced salient object
detection methods, conventional saliency detection methods
for RGB-D images also relied on various types of handcrafted
features [39], [40]. For example, a RGB-D based saliency
method was presented based on anisotropic center-surround
difference in [39]. In [40], based on multi-layer cellular
automata, a multi-stage salient object detection framework via
minimum barrier distance transform and saliency fusion was
proposed for RGB-D images.

In recent years, CNN based RGB-D saliency detection
models have become the mainstream [41], [23], [25], [30],
[28], [42]. In early CNN based works, the source RGB-D
images may be directly considered as the four-channel inputs
and fed into a CNN architecture for saliency detection, as in
[41], [23]. Lately, various more flexible and complex CNN
based RGB-D saliency detection models have been presented
to better exploit the cross-modal complementary information.
Most of those models employ the fused cross-modal fea-
tures for saliency detection through involving different multi-
modal feature fusion modules [25], [28], [20]. For example, a
complementarity-aware fusion module was presented in [25] to
effectively exploit the cross-modal complementation as well as
the cross-level complementation in the source RGB-D images.
In order to better exploit the multi-scale cross-modal features
between the source RGB-D images, the depth information
was first enhanced by using some contrast priors that had
been widely used in the non-deep learning based methods and
then was used as an attention map to work with the RGB
features for saliency detection via a fluid pyramid integration
mechanism in [28].

Meanwhile, other works try to better combine the saliency
maps derived from RGB and depth images by generating
suitable fusion weights. For instances, in [30], two saliency
maps were first generated from the RGB image and the depth
image, respectively, by using two independent sub-networks.
Then a quality-aware deep neural network was proposed via
deep reinforcement learning to model the weights for each
source image, by which the two pre-predicted saliency maps
were combined to obtain the final saliency map. Similarly, a
saliency fusion module was presented to learn a switch map to
adaptively fuse the two saliency maps that were pre-deduced
from the source RGB and depth images, respectively, via a
two-stream CNN in [31].

Recently, in [20], a novel RGB-D Salient Person (SIP)
dataset was constructed. Given the SIP dataset and existing
six RGB-D datasets, an all-around RGB-D benchmark was
presented, in which 31 classical RGB-D salient object detec-
tion models were summarized and 17 of them were evaluated.
Based on that, a state-of-the-art baseline model, called Deep
Depth-Depurator Network (D3Net), was also proposed, which
consisted of a depth depurator unit and a feature learning
module, performing initial low-quality depth map filtering and
cross-modal feature learning, respectively.



JOURNAL OF IEEE TRANSACTIONS ON MULTIMEDIA 4

In summary, most of these RGB-D saliency detection mod-
els mainly focus on how to effectively capture the comple-
mentary information within the RGB-D images for saliency
prediction. Differently, in this paper, fused cross-modal fea-
tures and the unimodal features are simultaneously employed
for the purpose of performance improvement.

III. PROPOSED MODEL

As shown in Fig. 3, the proposed RGB-D salient detection
network contains three components: (1) A two-stream sub-
network for unimodal image feature extraction, including one
stream for RGB image and the other for depth image; (2) An
MFFM for the fusion of cross-modal and cross-level features
from the multi-modal RGB-D images as well as the cross-level
features from the unimodal RGB and depth images; (3) An
FSM based on the attention mechanism to select discriminative
features for the saliency prediction. In the following contents,
we will discuss these three components in detail, respectively.

A. Two-stream Network for Unimodal RGB and depth Image
Feature Extraction

The two-stream unimodal feature extraction network con-
tains two sub-networks with the same structure, which are
used to extract the unimodal features from the RGB image
and the depth image, respectively. In both sub-networks, the
VGG-16 net [13] pre-trained on ImageNet [43] is adopted
as the backbone network for fair comparisons with previous
works. Other networks, such as Res-Net [16], may also be
used. As well, for saliency detection, the last pooling layer
and all the full-connected layers are removed from the original
VGG-16 for keeping spatial information of input images. For
each unimodal RGB or depth image, the modified VGG-16
net provides five levels of features, i.e., Conv 1-2 (containing
64 feature maps of size 224× 224, denoted by F1

i ), Conv 2-2
(containing 128 feature maps of size 112 × 112, denoted by
F2
i ), Conv 3-3 (containing 256 feature maps of size 56× 56 ,

denoted by F3
i ), Conv 4-3 (containing 512 feature maps of size

28×28, denoted by F4
i ) and Conv 5-3 (containing 512 feature

maps of size 14×14, denoted by F5
i ). Here i ∈ {RGB, depth}

denotes the RGB or depth image.
It has been widely proven that multi-scale contextual infor-

mation is very helpful to salient object detection, since the
global context can locate the objects, while the local context
can distinguish salient ones from the background [44], [45],
[9]. Considering that, an Atrous Spatial Pyramid module with
a Residual connection (called as Res ASPP) is connected to
each side-output of the VGG-16 net to capture the multi-scale
contextual information of different levels in this paper.

Atrous Spatial Pyramid Pooling (ASPP) was first presented
in [46] for semantic segmentation tasks, where four parallel
atrous convolutional paths with the same structure but different
dilation rates are employed to extract multi-scale contextual
information. Recently, it has also been used in some other
computer vision tasks, including depth estimation [47] and
salient object detection [48]. However, directly adopting ASPP
module in our proposed salient object detection model may not
work well because of the large dilation rates (e.g., 6/12/18/24)

TABLE I
DETAILS OF RES ASPPS FOR DIFFERENT LEVELS OF FEATURES.

Level Dilation rate
(r1/r2/r3/r4)

Input channels
(N)

Output channels
(M)

conv1-2 1/2/3/4 64 64
conv2-2 1/2/3/4 128 128
conv3-3 1/2/3/4 256 192
conv4-3 1/3/5/7 512 256
conv5-3 1/3/5/7 512 384

in the original ASPP module [46]. Large dilation rates usually
lead to small weights of filters [32]. As the result of that, a
reliable contextual relationships among the spatial positions
may not be established.

Therefore, smaller dilation rates are employed in Res ASPP.
Moreover, as shown in Table I, much smaller dilation rates
(e.g., 1/2/3/4) are utilized for the shallower levels to capture
the local contextual information, while relatively larger dila-
tion rates (e.g., 1/3/5/7) are employed in the Res ASPPs for
the deeper levels to capture the global contextual information.
This is mainly due to the fact that shallower levels of features
generally contain more spatial details, while deeper levels of
features contain more semantics information. Finally, in addi-
tion to the four atours convolutional paths, a short connection
path with a single regular convolutional layer is added in
Res ASPP as a residual mapping to accelerate the training
process [16].

Fig. 4 illustrates the architecture of Res ASPP. Mathemat-
ically, given the m-th level of extracted features Fmi from
VGG-16 net, the outputs F̃mi from the Res ASPP module are
computed by

F̃mi =δ(Cat(AConv(Fmi , θ
m
i,1),AConv(F

m
i , θ

m
i,2),AConv(

Fmi , θ
m
i,3),AConv(F

m
i , θ

m
i,4)) + Conv(Fmi , ϑ

m
i )),

(1)

where δ(∗) and Cat(∗) denote the ReLU activation func-
tion [49] and the concatenation operation, respectively.
AConv(∗, θmi,l)(l = 1, 2, 3, 4) refers to the four atrous convo-
lutional layers with the same kernel size of 3×3 but different
dilation rates and their corresponding network parameters
θmi,l. Conv(∗, ϑmi ) denotes a regular convolutional layer with
kernel size of 1 × 1 and its network parameters ϑmi . As
discussed above, in addition to the original features Fmi from
each level of the VGG-16 net, their multi-scale contextual
information can also be captured by Res ASPP. This will
greatly benefit the final saliency inference and will be verified
in the experimental part.

B. Multi-branch Feature Fusion Module

Given the unimodal features extracted from RGB and depth
images, most existing RGB-D saliency detection methods pay
more attention to how to fuse these unimodal features [25],
[28], [20]. In the subsequent saliency prediction, only the
fused cross-modal features are employed and the unimodal
features are discarded. This may work well for most cases.
However, as discussed in the earlier Section I, in some special
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Fig. 3. Diagram of the proposed RGB-D salient object detection network. First, the unimodal RGB and depth features are extracted from the two-stream
backbone network. Then, these unimodal features are fed into the Res ASPP modules to generate more multi-scale unimodal features. Next, these multi-scale
unimodal features are fused via the proposed MFFMs to capture cross-modal complementary information between the input RGB-D images. In addition to the
fused cross-modal features, the unimodal features from the input RGB and depth images will be also preserved for the saliency prediction via the proposed
MFFMs. Finally, those cross-modal features and unimodal features with high discriminability are adaptively selected from the last MFFM for the final saliency
prediction by using the proposed FSMs.

3×3 AConv

rate=r1

3×3 AConv
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+C

1×1 Conv

C Concatenation + Element-wise summation
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m

iF

m

iF
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Fig. 4. Architecture of Res ASPP. In Res ASPP, four parallel atrous
convolutional layers with different dilation rates are first employed to extract
multi-scale features. Then, a short connection path is employed as a residual
mapping. Finally, the outputs of Res ASPP are obtained by adding the
extracted multi-scale features and the features from the short connection path.

cases, the fused cross-modal features may not always perform
better than those unimodal (RGB or depth) features, especially
when one of the input images has poor visual quality or
contains affluent saliency cues. Only using the fused cross-
modal features may not achieve desirable results for these
special cases. Alternatively, better saliency detection results
may be obtained if the unimodal (RGB and depth) features
and the fused cross-modal features are simultaneously used
for the final saliency prediction. Considering that, an MFFM

Fig. 5. Diagram of the proposed MFFM. The proposed MFFM contains three
branches, one branch for capturing cross-modal complementary information
while the other two branches for preserving unimodal (RGB and depth)
features to the next stage.

is presented to simultaneously preserve the unimodal (RGB
and depth) features as well as the fused cross-modal features
for the subsequent saliency prediction.

As shown in Fig. 5, the proposed MFFM contains three
branches, including one multi-modal branch and two unimodal
branches. The multi-modal branch is designed to capture the
cross-modal and cross-level complementary features from the
multi-modal RGB-D images. The other two unimodal branches
are intended to capture the cross-level complementary features
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Fig. 6. Difference between the existing FFM and our proposed MFFM.
(a) Simplified architecture of some existing RGB-D salient object detection
models based on FFM; (b) Simplified architecture of our proposed RGB-D
salient object detection model based on MFFM.

from the unimodal RGB or depth image, respectively.
The two unimodal branches (i.e., the RGB branch and

the depth branch) in the MFFM share the same structure.
Specifically, given the features F̃mi (i ∈ {RGB, depth})
from Res ASPP in the m-th level, the outputs Hm

i from the
unimodal RGB or depth branch in MFFM are obtained as
follows. The outputs Hm+1

i from the corresponding branch of
MFFM in the (m+1)-th level (if exists) are first upsampled
by using the bilinear interpolation and then concatenated with
the features F̃mi from the Res ASSP module for the current
m-th level. After that, the outputs Hm

i from the corresponding
unimodal branch of MFFM in the current m-th level are
obtained by performing some convolution and ReLU activation
operations on the concatenated features, i.e.,

Hm
i =

{
RB(Cat(F̃mi ,UP(Hm+1

i ));ωmi ),m = 1, 2, 3, 4,

RB(F̃mi ;ωmi ),m = 5,
(2)

where RB(∗;ωmi ) denotes a residual block shown in the right
part of Fig. 5, containing two stacked convolutions with a
ReLU activation function and a shortcut connection. ωmi repre-
sents the network parameters for the block RB(∗;ωmi ). UP(∗)
denotes the upsampling operation with a bilinear interpola-
tion. By doing so, the cross-level complementary information
among different levels of features from each unimodal RGB
or depth image will be well captured and preserved for the
final saliency inference in a coarse-to-fine way.

Different from the unimodal branches that just capture the
cross-level complementary features from each unimodal im-
age, the multi-modal branch in MFFM is designed to capture
the cross-modal as well as the cross-level complementary

features within the multi-modal RGB-D images. For that,
as shown in Fig. 5, the unimodal features F̃mi from the
Res ASPP module and Hm+1

i from the unimodal branch
of MFFM in the coarser level are first concatenated. Then
the concatenated features from the RGB branch and the
concatenated features from the depth branch are temporally
fused via a pixel-wise summation operation. After that, the
temporally fused features in the current level and those fused
features Hm+1

RGB−D from the multi-modal branch of MFFM
in the coarser level are further concatenated and fed into a
residual block to obtain the final fused features Hm

RGB−D.
Mathematically, the multi-modal branch can be expressed by

Hm
RGB−D =
RB(Cat(Cat(F̃mRGB ,UP(Hm+1

RGB)) + Cat(F̃mDepth,UP(

Hm+1
Depth)),UP(Hm+1

RGB−D));ω
m
RGB−D),m = 1, 2, 3, 4,

RB(F̃mRGB + F̃mDepth;ω
m
RGB−D),m = 5.

(3)

By using MFFM, the cross-level complementary features
from the unimodal RGB and depth images, together with the
cross-modal and cross-level complementary features within
the multi-modal RGB-D images, are simultaneously extracted.
By cascading several MFFMs, these cross-modal and cross-
level features are preserved in a coarse-to-fine way. Besides,
inspired by [50] and [51], we also add an intermediate super-
vision at each branch of MFFM to encourage the cross-modal
and cross-level feature fusion timely in each level. This will
benefit the final saliency inference greatly.

Fig. 6 illustrates the main difference between the proposed
MFFM and the Feature Fusion Module (FFM) used in most
of existing RGB-D salient detection models. As shown in Fig.
6(a), existing FFMs, such as Complementarity-Aware Fusion
(CA-Fuse) module in [25] and Multi-Modal Feature Fusion
network (MMFFnet) in [23], are designed to capture the cross-
modal and cross-level complementary features between the
multi-modal RGB-D images for the final saliency prediction
in a coarse-to-fine way, which is denoted by the red path.
In addition to the cross-modal and cross-level complementary
features within the multi-modal RGB-D images, the cross-
level complementary features within each unimodal RGB or
depth image are also extracted and preserved for the final
saliency prediction via MFFM. As shown in Fig. 6(b), besides
the red path that is used to fuse and transfer the multi-
modal features, two extra paths are employed to preserve the
unimodal features in MFFM. The blue path and the orange
path are designed for the RGB features and the depth features,
respectively. In this way, more rich features will be extracted
and preserved for the subsequent saliency prediction.

C. Feature Selection Module

MFFM is able to capture the cross-modal and cross-level
complementary features from the multi-modal RGB-D images,
as well as the cross-level features from the unimodal RGB
and depth images. Consequently, it is also ineluctable that
some of these cross-modal and unimodal features may contain
disturbing information, which will lead to a performance
degradation or even wrong predictions. Considering that, as
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Fig. 7. Architecture of our proposed FSM. First, an adaptive average pooling is employed on concatenated cross-modal and unimodal features to squeeze
the spatial information of input features into channel descriptors. Then, these channel descriptors are fed into two parallel branches with mirrored structures
for aggregating local information to global information. Finally, weights for different channels of cross-modal and unimodal features are generated by a fully
connected layer.

shown in Fig. 7, an FSM based on the channel-wise attention
mechanism is presented to further adaptively select highly
discriminative cross-modal and unimodal features for the final
saliency prediction.

Most existing networks (e.g. Squeeze-and-Excitation Net-
work (SENet) [38] and Convolutional Block Attention Module
(CBAM) [52]) carry out the channel-wise attention in two
steps. First, a global average pooling is employed to obtain
a feature descriptor which contains the global information
of each channel. Second, two Fully Connected (FC) layers
are employed to fully capture channel-wise dependencies to
generate weights for each channel.

However, the global average pooling in those models may
capture only global information for each channel of features,
but neglects some meaningful local information within each
channel of features. For example, as shown in Fig. 8, if only
employing global information captured by the global average
pooling for selecting highly discriminative features, similar
weights may be generated for features in Fig. 8(c) and (d), due
to the fact that those features have similar global information,
though the features in Fig. 8(c) contain some disturbing local
information in the regions marked by red boxes. As a result,
inaccurate saliency maps may be deduced (e.g., the local
saliency maps in the red boxes of Fig. 8(e)).

Considering that, in addition to global information, local
information is also employed to select highly discriminative
features in the proposed FSM. Specifically, in the first step
of our proposed FSM, an adaptive local average pooling,
instead of global average pooling, is employed to squeeze the
spatial information of input features into channel descriptors.
As shown in Fig. 9, given the input features X ∈ RC×W×H
containing C channels of feature maps of size W ×H , each
channel of features xc ∈ RW×H in X are first divided into
W ′×H ′ blocks equally. Then the average pooling is performed
on each block and a descriptor fc ∈ RW

′×H′
for the current

channel is obtained.
As shown in Fig. 7, to establish the relations of different

channel descriptors with less parameters, the channel descrip-
tors F = [f1, f2, ..., fc] ∈ RC×W

′×H′
from the first step

of FSM are fed into two parallel branches with mirrored

Fig. 8. Illustration of some features selected by jointly using the global
and local information (i.e., by employing the proposed FSM) or only by
using global information (i.e., by employing the SE block in SENet [38] as
an example). (a) RGB images; (b) Depth images; (c) and (d) Some feature
maps from MFFM. The red values and blue values are the channel weights
generated by FSM and SE block, respectively. (e) Saliency maps deduced by
the features from the SE block; (f) Saliency maps deduced by the features
from our proposed FSM; (g) Ground truth. SE block tends to generate similar
weights for features in (c) and (d) as a result of the following fact. These
features in (c) and (d) contain similar global information, although the features
in (c) contain some disturbing information in the local regions marked by the
red boxes. While, the proposed FSM tends to align higher weights to (c) than
those to (d), which owes to the joint local and global information employed
by our proposed FSM.

W×H W'×H'

Divide input features into W'×H' blocks

Apply average pooling to each block

Fig. 9. Illustration of the adaptive average pooling in the proposed FSM.

structures, instead of simply employing a convolutional layer
with kernel size of W ′×H ′, in the second step. In one of the
two branches, a horizontal convolutional layer with kernel size
of W ′ × 1 is first employed and then a vertical convolutional
layer with kernel size of 1 × H ′ is employed. Accordingly,
in the other branch, a vertical convolutional layer with kernel
size of 1×H ′ and a horizontal convolutional layer with kernel
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size of W ′× 1 are sequentially employed. Each convolutional
layer in the two branches is followed by the ReLU activation
function. By this way, the parameters will be reduced from
C ×W ′ ×H ′ to C × 2× (W ′ +H ′).

Finally, the outputs from the two branches are concatenated
and then fed into a FC layer with the Sigmoid function to
generate the channel weights ω ∈ RC×1×1 for the input
features X. After obtaining the channel weights, the final
output Y ∈ RC×W×H of FSM is obtained by multiplying the
input features X with the weights ω in a channel-wise way.
In summary, given the features {H1

RGB ,H
1
Depth,H

1
RGB−D}

from the output of MFFM, FSM can be mathematically
expressed by

Y = X ◦ ω, (4)

where ◦ denotes the channel-wise multiplication. X denotes
the input features for the proposed FSM, which is constructed
by concatenating the features {H1

RGB ,H
1
Depth,H

1
RGB−D},

i.e.,
X = Cat(H1

RGB ,H
1
Depth,H

1
RGB−D). (5)

The channel-wise weights ω are computed by

ω = σ(Cat(δ(HConv(δ(VConv(AAP(X), γ3)), γ2)),

δ(VConv(δ(HConv(AAP(X), γ4)), γ5)), ), γ1).
(6)

Here, σ(∗, γ1) denotes a FC layer with the Sigmoid function
and parameters γ1. HConv(∗, γ2) and HConv(∗, γ5) are two
horizontal convolutional layers with parameters γ2 and γ5,
respectively. VConv(∗, γ3) and VConv(∗, γ4) are two vertical
convolutional layers with parameters γ3 and γ4, respectively.
AAP(∗) denotes the Adaptive Average Pooling.

By this means, the global information as well as the
local information is simultaneously exploited in the proposed
FSM to determine whether a feature from MFFM is highly
discriminative. Thereby, as shown in Fig. 8, higher weights
are assigned to the features in Fig. 8(d) than in Fig. 8(c)
by the proposed FSM, due to the fact that the features in
Fig. 8(d) contain more accurate saliency cues than those in
Fig. 8(c), especially in the local regions marked by red boxes.
As a result, the saliency maps deduced by the features from
FSM are closer to the ground truth than those deduced by the
features from SE blocks.

D. Loss Function

As in [7] and [31], the loss function ζ used to train our
network contains two terms, i.e,

ζ = ζsal + ζedge, (7)

where ζsal denotes the saliency loss to force the predicted
saliency map as close to the ground truth as possible. ζedge
denotes the edge-preserving loss to sharp the boundary of the
predicted saliency map.

Saliency Loss: As shown in Fig. 5, we use a multi-
scale intermediate supervision at each branch of MFFM to
encourage the fusion of cross-modal and cross-level features
timely in each level. Suppose S denotes the final saliency
map deduced by our proposed method and SmRGB , SmDepth

and SmRGB−D denote the intermediate saliency maps deduced
from the RGB, depth and RGB-D branches of MFFM in the
m-th level, respectively. The saliency loss ζsal is then defined
by:

ζsal = L(S,Y) +
∑
m

(
L(SmRGB ,Y

m) + L(SmDepth,Y
m)

+ L(SmRGB−D,Y
m)
)
,

(8)

where L(S,Y) denotes the cross-entropy loss between the
saliency map S and the ground truth Y, i.e.,

L(S,Y) = Ylog(S) + (1−Y)log(1− S). (9)

Similarly, L(SmRGB ,Y
m), L(SmDepth,Y

m), L(SmRGB−D,Y
m)

denote the cross-entropy loss between the saliency maps
SmRGB , SmDepth, SmRGB−D and the ground truth Ym in m-th
level, respectively. Ym is sampled from Y and has the same
size as that of SmRGB , SmDepth or SmRGB−D.

Edge-preserving Loss: To compute the edge-preserving
loss ζedge, two edge maps are first obtained by performing
the ‘Sobel’ operator 1 on the finally predicted saliency map
S and the ground-truth Y, respectively, as suggested in [7]
and [31]. Then ζedge is computed as the sum of the absolute
differences between the two edge maps [31], i.e.,

ζedge = |Sobel(Y)− Sobel(S)|1, (10)

where Sobel(Y) and Sobel(S) are the edge maps of Y and
S, respectively, by using ‘Sobel’ operator. |•|1 denotes the l1-
norm of a matrix and is computed as the sum of the absolute
values of all the elements in the matrix.

IV. EXPERIMENTS

A. Datasets

We conduct several experiments on four publicly available
datasets: NJU2000 [53], NLPR [39], STEREO [54] and SIP
[20]. NJU2000 [53] contains 2003 stereo RGB-D image pairs
with diverse scenarios. NLPR [39] contains 1000 RGB-D
image pairs captured by Microsoft Kinect, covering a variety
of indoor and outdoor scenes under different illumination
conditions. STEREO [54] consists of 797 pairs of binocular
RGB-D images. SIP [20] is a newly proposed dataset, which
consists of 1000 accurately annotated high-resolution RGB-D
image pairs. For a fair comparison, we follow the same data
split way as in [6]. Specifically, 1400 samples from NJU2000
and 650 samples from NLPR are randomly selected as the
training set. The rest of images are selected as the testing set.

B. Evaluation Metrics

Some standard metrics, including Precision-Recall (PR)
curves, F-measure scores, Mean Absolute Error (MAE) and
S-measure [55], are employed for performance evaluation.
Precision and Recall are computed by comparing the ground

1Other edge detection operators (e.g., the traditional image gradient oper-
ator, or edge extraction network [51]) may also be employed.
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truth and the binarized saliency maps under different thresh-
olds (i.e., from 0 to 255). For MAE, lower values are better
and for others, higher values are desirable.

F-measure is a harmonic mean of Precision and Recall
and is formulated by:

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

, (11)

where, β2 is set to 0.3, as suggested in [53]. Following [53],
max F-measure (maxF ) and mean F-measure (meanF ), i.e.,
max and mean scores of all the Fβ values by using different
PR pairs, are provided for comparisons.

MAE is computed as the average difference between the
predicted saliency map S and the ground-truth map Y, i.e.,

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−Y(x, y)|, (12)

where W and H are the width and height of the saliency map
(or ground truth), respectively.

S-measure is used to evaluate the structural similarity be-
tween the saliency map and the ground truth, which combines
a region-aware structural similarity (Sr) and an object-aware
structural similarity (So), i.e.,

Smeasure = α ∗ So + (1− α) ∗ Sr, (13)

where α ∈ [0, 1] is the balance parameter and is set to 0.5 as
default. More details are seen in [55].

C. Implementation Details

We implement our experiments by using the Pytorch [56]
toolbox on an NVIDIA 1080Ti GPU. First, the initial parame-
ters of those VGG-16 nets [13] employed for unimodal feature
extraction are pre-trained on ImageNet dataset [43]. Other
parameters of the proposed model are randomly initialized
with Xavier initialization [57]. Then, the entire model is end-
to-end trained by employing the Stochastic Gradient Descent
(SGD) optimizer with Nesterov momentum [58]. Here, the
initial learning rate, weight decay and mini-batch size of the
SGD optimizer are set to 0.002, 0.0005 and 4, respectively.
Meanwhile, the learning rate will be decayed by a factor of
0.8 in every 30 epochs. During training and testing, all the
images are rescaled to the size of 224× 224 by employing a
bilinear interpolation as in [31].

D. Ablation Experiment and Analysis

In order to verify the validity of these proposed modules in
our network, we will perform several ablation experiments on
the NJU2000 dataset in this section.

1) Res ASPP: In order to demonstrate the validity of the
proposed Res ASSP module for the multi-scale contextual
feature extraction from the unimodal RGB and depth images,
we first remove the Res ASSP module from our proposed
method and obtain another version (w/o Res ASPP, for short)
of our method. After that, two more salient object detec-
tion methods (i.e., w/ ASPP and w/ Res ASPP, for short)
are obtained for comparisons by adding serval ASPP and

TABLE II
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS ON RES ASPP

MODULE.

Methods maxF meanF S-measure MAE

w/o Res ASPP 0.902 0.883 0.895 0.0447
w/ ASPP 0.899 0.870 0.897 0.0443

w/ Res ASPP 0.910 0.885 0.903 0.0418

TABLE III
QUANTITATIVE RESULTS BY USING DIFFERENT FUSION MODULES.

Methods maxF meanF S-measure MAE

S RGB 0.868 0.824 0.868 0.0631
S Depth 0.831 0.802 0.836 0.0808
M FFM 0.890 0.862 0.892 0.0515

M MFFM 0.906 0.878 0.900 0.0436

Res ASPP modules in w/o Res ASPP, respectively. In w/
ASPP, the dilation rates for all the employed ASPP modules
are set to the same values as in [32] (i.e., 6/12/18/24). In
w/ Res ASPP (i.e., our proposed method), the dilation rates
for the employed Res ASPP modules are set as in Table I.
The quantitative results shown in Table II demonstrate that
adding ASPP does not increase and even degrades the saliency
detection performance because of the too large dilation rates.
In contrast, the salient object detection performance can be
greatly improved by using Res ASPP, which may be due to
the smaller dilation rates in Res ASPP.

2) MFFM: Several versions of our proposed method (i.e.,
S RGB, S Depth, M FFM and M MFFM, for short, re-
spectively) are provided to test the validity of the proposed
MFFM. In S RGB and S Depth, only one of the unimodal
RGB or depth image is used as the input. In M FFM and
M MFFM, the multi-modal RGB D images are used as the
input. The only difference between the two methods is that
the traditional FFM in Fig. 6(a) is used to fuse the features
from the source images in M FFM, while the proposed MFFM
is employed in M MFFM. As well, for fair comparisons,
the proposed FSM is removed from these methods. That is
to say, the extracted features from the RGB-D image are
directly employed to predict the saliency maps in S RGB
and S Depth. The features from FFM/MFFM are also directly
employed for saliency prediction. Some visual and quantitative
results obtained by different methods are shown in Fig. 10 and
Table III.

As expected and shown in the first two rows of Fig. 10,
both M FFM and M MFFM perform better than S RGB
and S Depth. This demonstrates that the fused cross-modal
features from the multi-modal RGB-D images will provide
more saliency cues for the saliency detection and thus obtain
better saliency detection results than those obtained by the
features from one of the unimodal input images in most cases.
However, as shown in the last four rows of Fig. 10, when
one of the input images has much poor visual quality or
contains affluent saliency cues, M FFM performs worse than
S RGB or S Depth. This indicates that the fused features
from the multi-modal input images may be degraded because
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Fig. 10. Illustration of the validity of our proposed MFFM. (a) RGB images; (b) Depth images; (c) Saliency maps obtianed by S RGB; (d) Saliency maps
obtained by S Depth; (e) Saliency maps obtained by M FFM; (f) Saliency maps obtained by M MFFM; (g) Ground truth.

of the features from one of the input images with poor
qualities. Accordingly, the saliency detection performance is
also degraded by just using the fused features from the multi-
modal input images in these special cases. Different from
FFM, MFFM preserves the features from each unimodal image
as well as those fused features from multi-modal images. As
a result, more saliency cues will be provided for the saliency
prediction by MFFM. As shown in Fig. 10(f), M MFFM can
still obtain satisfactory results for these special images. The
quantitative results of different methods are shown in Table
III, which demonstrates the validity of the proposed MFFM
for multi-modal image salient object detection again.

3) FSM: As shown in Fig. 11, we illustrate some typical
cases to verify the validity of the proposed FSM. In addition,
the weights learned by FSM for some channels of features are
also provided in Fig. 11 to better demonstrate the validity of
the proposed FSM for feature selection.

As shown in the first two rows of Fig. 11, better saliency
maps are usually obtained by using the cross-modal features
from the RGB-D branch of MFFM in the proposed method
than those unimodal features from the RGB or depth branch
of MFFM. However, as shown in the last four rows of Fig.
11, the saliency maps deduced by using the features from the
RGB-D branch of MFFM are not better and even worse than
those deduced by using the features from the RGB or depth
branch of MFFM, when one of the input images has much
poor visual quality or contains affluent saliency cues.

The weights learned by FSM are also consistent with those
visual results. As shown in Fig. 11, the weights assigned to
the features from the RGB-D branch are higher than those
assigned to the features from the RGB and depth branches
for the images in the first two rows. Differently, FSM assigns
higher weights to the features from the RGB or depth branch
than those from the RGB-D branch for the images in the last

TABLE IV
QUANTITATIVE RESULTS BY USING DIFFERENT ATTENTION MODELS.

Methods maxF meanF S-measure MAE

baseline 0.906 0.878 0.900 0.0436
+CBAM 0.901 0.873 0.898 0.0447
+GC block 0.906 0.870 0.900 0.0435
+SE block 0.908 0.878 0.900 0.0433
+FSM 0.910 0.885 0.903 0.0418

four rows. This indicates that FSM may adaptively select those
features with higher discriminative ability for the final saliency
prediction. As a result, the saliency maps deduced by using
those selected features with FSM are very close to the ground
truth.

As shown in Table IV, we also compare the proposed
FSM with some other attention-based modules, including
Convolutional Block Attention Module (CBAM) [52], Global
Context (GC) block [59] and Squeeze-and-Excitation (SE)
block [38]. In Table IV, M MFFM mentioned above is seen
as the baseline method, where FSM is not utilized and the
features from MFFM are directly employed to predict the final
saliency map. It can be easily found from Table IV that FSM
can significantly improve the saliency detection performance
of the baseline method. Compared with the other attention
modules, FSM may more accurately select those features with
highly discriminative ability for the saliency prediction from
the outputs of MFFM. This owes to the fact that the local
and global information from different channels of features are
jointly adopted in FSM to evaluate the importance of each
channel.
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Fig. 11. Illustration of the validity of FSM. (a) RGB images; (b) Depth images; (c) Saliency maps deduced by using the features from the RGB branch of
MFFM; (d) Saliency maps deduced by using the features from the depth branch of MFFM; (e) Saliency maps deduced by using the features from the RGB-D
branch of MFFM; (f) Saliency maps deduced by using the features from FSM; (g) Ground truth; (h) Features with the highest weights from the RGB branch
of MFFM; (i) Features with the highest weights from the depth branch of MFFM; (j) Features with the highest weights from the RGB-D branch of MFFM.

Fig. 12. Some visualization results of different salient object detection methods. As shown in the first two rows, most existing models work well in simple
scenes. However, as shown in the rest of rows, most existing works may fail to detect those salient objects under some challenging cases (e.g., depth images
with poor visual qualities in the second and third rows, RGB images with low contrast in the fifth and sixth rows or complex scenes in the last two rows),
while the proposed model can still obtain good saliency results.

E. Comparison with the State-of-the-Art Models

We compare our model with seven State-Of-The-Art
(SOTA) CNNs based RGB-D salient object detection models,

including D3Net [20], CPFP [28], AF [31], TSAA [27], PCA
[25], CTMF [24] and MMCI [26]. Some visualization results
are illustrated in Fig. 12. As shown in the first two rows of
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(a) NJU2000 [53]
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(d) SIP [20]

Fig. 13. PR curves of different methods.

TABLE V
QUANTITATIVE RESULTS BY USING DIFFERENT METHODS. MAX F-MEASURE (maxF ), MEAN F-MEASURE (meanF ), S-measure AND MAE ARE

EMPLOYED FOR COMPARISONS. FOR maxF , meanF AND S-measure, HIGHER VALUES ARE DESIRABLE AND FOR MAE , LOWER VALUES ARE
DESIRABLE. THE BEST RESULTS ARE SHOWN IN BOLD.

Datasets Metrics MMCI [26] CTMF [24] PCA [25] TSAA [27] AF [31] CPFP [28] D3Net [20] our

maxF 0.867 0.856 0.887 0.887 0.899 0.890 0.903 0.910
NJU2000 [53] meanF 0.812 0.784 0.843 0.843 0.869 0.836 0.840 0.885

S-measure 0.858 0.849 0.877 0.878 0.880 0.878 0.894 0.903
MAE 0.079 0.085 0.059 0.061 0.053 0.053 0.051 0.042
maxF 0.867 0.856 0.887 0.887 0.899 0.890 0.903 0.910

NLPR [39] meanF 0.736 0.736 0.801 0.802 0.832 0.830 0.840 0.870
S-measure 0.846 0.860 0.873 0.886 0.903 0.888 0.906 0.920

MAE 0.059 0.056 0.044 0.041 0.033 0.036 0.034 0.027
maxF 0.880 0.854 0.884 0.899 0.904 0.897 0.903 0.910

STEREO [54] meanF 0.857 0.792 0.845 0.878 0.876 0.842 0.844 0.882
S-measure 0.869 0.853 0.880 0.886 0.892 0.885 0.895 0.902

MAE 0.074 0.087 0.061 0.055 0.047 0.050 0.053 0.045
maxF 0.840 0.719 0.850 0.850 0.771 0.870 0.882 0.893

SIP [20] meanF 0.794 0.683 0.825 0.808 0.706 0.818 0.838 0.854
S-measure 0.833 0.715 0.834 0.834 0.719 0.850 0.864 0.873

MAE 0.086 0.139 0.075 0.075 0.117 0.064 0.062 0.056

Fig. 12, all of the methods mentioned here perform well for
those images with simple scenes. However, as shown in the
last four rows of Fig. 12, when one of the input images has
much poor visual quality or already contains affluent saliency

cues, these SOTA methods cannot obtain desirable saliency
detection results. For example, some salient objects are not
uniformly detected, or parts of the backgrounds are not well
suppressed during the saliency detection. As shown in the last
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row of Fig. 12, when the backgrounds are much complicated,
the salient objects are not even detected by some of these
SOTA methods. Differently, our method can still effectively
detect the salient objects from these RGB-D images with these
challenging scenes. This may be due to the fact that the cross-
modal features from the RGB-D images and the unimodal
features from the RGB and depth images are simultaneously
preserved for saliency prediction in our proposed method. The
quantitative results in Table V and Fig. 13 also show that our
model significantly outperforms the others in terms of maxF ,
meanF , MAE, S-measure and PR curves.

V. CONCLUSION

A novel RGB-D salient object detection model has been
proposed in this paper, where the cross-level and cross-modal
features from the RGB-D image pairs, as well as the cross-
level unimodal features from the RGB images and the depth
images, are simultaneously captured and preserved during the
fusion process by using a proposed MFFM. Furthermore,
by virtue of the proposed FSM based on the channel-wise
attention mechanism, some channels of features with higher
discriminative ability are selectively boosted for the final
saliency prediction and some channels of features with less
useful information are also suppressed. As a result, when
one of the input images has much poor visual quality or
contains affluent saliency cues, or when the backgrounds
of the scenes are much complex, the proposed method can
still effectively detect the salient objects from the scenes.
Numerous of experiments have demonstrated the superiorities
of the proposed method over the state-of-the-arts.
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