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Figure 1: First 3 principal components of our statistical diffuse (left) and specular (middle) albedo models. Both are visualised

in linear sRGB space. Right: rendering of the combined model under frontal illumination in nonlinear sRGB space.

Abstract

In this paper, we bring together two divergent strands of

research: photometric face capture and statistical 3D face

appearance modelling. We propose a novel lightstage cap-

ture and processing pipeline for acquiring ear-to-ear, truly

intrinsic diffuse and specular albedo maps that fully factor

out the effects of illumination, camera and geometry. Using

this pipeline, we capture a dataset of 50 scans and com-

bine them with the only existing publicly available albedo

dataset (3DRFE) of 23 scans. This allows us to build the

first morphable face albedo model. We believe this is the

first statistical analysis of the variability of facial specular

albedo maps. This model can be used as a plug in replace-

ment for the texture model of the Basel Face Model and we

make our new albedo model publicly available. We ensure

careful spectral calibration such that our model is built in a

linear sRGB space, suitable for inverse rendering of images

taken by typical cameras. We demonstrate our model in a

state of the art analysis-by-synthesis 3DMM fitting pipeline,

are the first to integrate specular map estimation and out-

perform the Basel Face Model in albedo reconstruction.

1. Introduction

3D Morphable Models (3DMMs) were proposed over 20

years ago [4] as a dense statistical model of 3D face geom-

etry and texture. They can be used as a generative model of

2D face appearance by combining shape and texture param-

eters with illumination and camera parameters that are pro-

vided as input to a graphics renderer. Using such a model

in an analysis-by-synthesis framework allows a principled

disentangling of the contributing factors of face appearance

in an image. More recently, 3DMMs and differentiable ren-

derers have been used as model-based decoders to train con-

volutional neural networks (CNNs) to regress 3DMM pa-

rameters directly from a single image [29].

The ability of these methods to disentangle intrinsic (ge-

ometry and reflectance) from extrinsic (illumination and

camera) parameters relies upon the 3DMM capturing only

intrinsic parameters, with geometry and reflectance mod-

elled independently. 3DMMs are usually built from cap-

tured data [4, 22, 5, 7]. This necessitates a face capture

setup in which not only 3D geometry but also intrinsic face

reflectance properties, e.g. diffuse albedo, can be measured.

A recent large scale survey of 3DMMs [10] identified a lack

of intrinsic face appearance datasets as a critical limiting

factor in advancing the state-of-the-art. Existing 3DMMs

are built using ill-defined “textures” that bake in shading,

shadowing, specularities, light source colour, camera spec-

tral sensitivity and colour transformations. Capturing truly

intrinsic face appearance parameters is a well studied prob-

lem in graphics but this work has been done largely inde-

pendently of the computer vision and 3DMM communities.

In this paper we present a novel capture setup and pro-

cessing pipeline for measuring ear-to-ear diffuse and spec-

ular albedo maps. We use a lightstage to capture multiple

photometric views of a face. We compute geometry using

uncalibrated multiview stereo, warp a template to the raw
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scanned meshes and then stitch seamless per-vertex diffuse

and specular albedo maps. We capture our own dataset of

50 faces, combine this with the 3DRFE dataset [27] and

build a statistical albedo model that can be used as a drop-

in replacement for existing texture models. We make this

model publicly available. To demonstrate the benefits of

our model, we use it with a state-of-the-art fitting algorithm

and show improvements over existing texture models.

1.1. Related work

3D Morphable Face Models The original 3DMM of

Blanz and Vetter [4] was built using 200 scans captured in a

Cyberware laser scanner which also provides a colour tex-

ture map. Ten years later the first publicly available 3DMM,

the Basel Face Model (BFM) [22], was released. Again,

this was built from 200 scans, this time captured using a

structured light system from ABW-3D. Here, texture is cap-

tured by three cameras synchronised with three flashes with

diffusers, providing relatively consistent illumination. The

later BFM 2017 [14] used largely the same data from the

same scanning setup. More recently, attempts have been

made to scale up training data to better capture variabil-

ity across the population. Both the large scale face model

(LSFM) [5] (10k subjects) and Liverpool-York Head Model

(LYHM) [7] (1.2k subjects) use shape and textures captured

by a 3DMD multiview structured light scanner under rel-

atively uncontrolled illumination conditions. Ploumpis et

al. [24] show how to combine the LSFM and LYHM but

do so only for shape, not for texture. All of these previous

models use texture maps that are corrupted by shading ef-

fects related to geometry and the illumination environment,

mix specular and diffuse reflectance and are specific to the

camera with which they were captured. Gecer et al. [12] use

a Generative Adversarial Network (GAN) to learn a non-

linear texture model from high resolution scanned textures.

Although this enables them to capture high frequency de-

tails usually lost by linear models, it does not resolve the

issues with the source textures.

Recently, there have been attempts to learn 3DMMs di-

rectly from in-the-wild data simultaneously with learning to

fit the model to images [30, 28]. The advantage of such ap-

proaches is that they can exploit the vast resource of avail-

able 2D face images. However, the separation of illumina-

tion and albedo is ambiguous while non-Lambertian effects

are usually neglected and so these methods do not currently

provide intrinsic appearance models of a quality compara-

ble with those built from captured textures.

Face Capture Existing methods for face capture fall

broadly into two categories: photometric and geometric.

Geometric methods rely on finding correspondences be-

tween features in multiview images enabling the triangu-

lation of 3D position. These methods are relatively robust,

can operate in uncontrolled illumination conditions, provide

instantaneous capture and can provide high quality shape

estimates [3]. They are sufficiently mature that commer-

cial systems are widely available, for example using struc-

tured light stereo, multiview stereo or laser scanning. How-

ever, the texture maps captured by these systems are nothing

other than an image of the face under a particular set of en-

vironmental conditions and hence are useless for relighting.

Worse, since appearance is view-dependent (the position of

specularities changes with viewing direction), no one single

appearance can explain the set of multiview images.

On the other hand, photometric analysis allows estima-

tion of additional reflectance properties such as diffuse and

specular albedo [21], surface roughness [15] and index of

refraction [16] through analysis of the intensity and polar-

isation state of reflected light. This separation of appear-

ance into geometry and reflectance is essential for the con-

struction of 3DMMs that truly distentangle the different fac-

tors of appearance. The required setups are usually much

more restrictive, complex and not yet widely commercially

available. Hence, the availability of datasets has been ex-

tremely limited, particularly of the scale required for learn-

ing 3DMMs. There is a single publicly available dataset

of scans, the 3D Relightable Facial Expression (3DRFE)

database [27] captured using the setup of Ma et al. [21].

Ma et al. [21] were the first to propose the use of po-

larised spherical gradient illumination in a lightstage. This

serves two purposes. On the one hand, spherical gradient il-

lumination provides a means to perform photometric stereo

that avoids problems caused by binary shadowing in point

source photometric stereo. On the other hand, the use of po-

larising filters on the lights and camera enables separation

of diffuse and specular reflectance which, for the constant

illumination case, allows measurement of intrinsic albedo.

This was extended to realtime performance capture by Wil-

son et al. [31] who showed how a certain sequence of il-

lumination conditions allowed for temporal upsampling of

the photometric shape estimates. The main drawback of the

lightstage setup is that the required illumination polariser

orientation is view dependent and so diffuse/specular sep-

aration is only possible for a single viewpoint which does

not permit capturing full ear-to-ear face models. Ghosh et

al. [17] made an empirical observation that using two illu-

mination fields with locally orthogonal patterns of polari-

sation allows approximate specular/diffuse separation from

any viewpoint on the equator. Although practically useful,

in this configuration specular and diffuse reflectance is not

fully separated. More generally, lightstage albedo bakes in

ambient occlusion (which depends on geometry) and RGB

values are dependent on the light source spectra and camera

spectral sensitivities.

3D Morphable Model Fitting The estimation of 3DMM

parameters (shape, expression, colour, illumination and
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camera) is an ongoing inverse rendering challenge. Most

approaches focus on shape estimation only and omit the

reconstruction of colour/albedo and illumination, e.g. [20].

The few methods taking the colour into account suffer from

the ambiguity between albedo and illumination demon-

strated in Egger et al. [9]. This ambiguity is especially hard

to overcome for two reasons: 1. all publicly available face

models don’t model real diffuse or specular albedo, 2. most

models have a strong bias towards Caucasian faces which

results in a strongly biased prior. The reflectance models

used for inverse rendering are usually dramatically simpli-

fied and the specular term is either omitted or constant.

Genova et al. [13] point out the limitation of no statistics

on specularity and use a heuristic for their specular term.

Romdhani et al. [25] use the position of specularities as

shape cues but again with homogeneous specular maps. The

work of Yamaguchi et al. [32] demonstrate the value of sep-

arate estimation of specular and diffuse albedo, however

they do not explore the statistics or build a generative model

and their approach is not available to the community. Cur-

rent limitations are mainly caused by the lack of a publicly

available diffuse and specular albedo model.

2. Data capture

A lightstage exploits the phenomenon that specular re-

flection from a dielectric material preserves the plane of po-

larisation of linearly polarised incident light whereas sub-

surface diffuse reflection randomises it. This allows separa-

tion of specular and diffuse reflectance by capturing a pair

of images under polarised illumination. A polarising filter

on each lightsource is oriented such that a specular reflec-

tion towards the viewer has the same plane of polarisation.

The first image, Ipara, has a polarising filter in front of the

camera oriented parallel to the plane of polarisation of the

specularly reflected light, allowing both specular and dif-

fuse transmission. The second, Iperp, has the polarising fil-

ter oriented perpendicularly, blocking the specular but still

permitting transmission of the diffuse reflectance. The dif-

ference, Ipara − Iperp, gives only the specular reflection.

Setup Our setup comprises a custom built lightstage with

polarised LED illumination, a single photometric camera

(Nikon D200) with optoelectric polarising filter (LC-Tec

FPM-L-AR) and seven additional cameras (Canon 7D) to

provide multiview coverage. We use 41 ultra bright white

LEDs mounted on a geodesic dome of diameter 1.8m. Each

LED has a rotatable linear polarising filter in front of it.

Their orientation is tuned by placing a sphere of low diffuse

albedo and high specular albedo (a black snooker ball) in

the centre of the dome and adjusting the filter orientation

until the specular reflection is completely cancelled in the

photometric camera’s view. Since we only seek to estimate

albedo maps, we require only the constant illumination con-

dition in which all LEDs are set to maximum brightness.

In contrast to previous lightstage-based methods, we

capture multiple virtual viewpoints by capturing the face

in different poses, specifically frontal and left/right pro-

file. This provides full ear-to-ear coverage for the single

polarisation-calibrated photometric viewpoint. The opto-

electric polarising filter enables the parallel/perpendicular

conditions to be captured in rapid succession without re-

quiring mechanical filter rotation. We augment the photo-

metric camera with additional cameras providing multiview,

single-shot images captured in sync with the photometric

images. We position these additional cameras to provide

overlapping coverage of the face. We do not rely on a fixed

geometric calibration, so the exact positioning of these cam-

eras is unimportant and we allow the cameras to autofocus

between captures. In our setup, we use 7 such cameras in

addition to the photometric view giving a total of 8 simul-

taneous views. Since we repeat the capture three times, we

have 24 effective views. For synchronisation, we control

camera shutters and the polarisation state of the photomet-

ric camera using an MBED micro controller. A complete

dataset for a face is shown in Fig. 2.

Participants We captured 50 individuals (13 females) in

our setup. Our participants range in age from 18 to 67 and

cover skin types I-V of the Fitzpatrick scale [11].

3. Data processing

In order to merge these views and to provide a rough

base mesh, we perform a multiview reconstruction. We

then warp the 3DMM template mesh to the scan geometry.

As well as other sources of alignment error, since the three

photometric views are not acquired simultaneously, there is

likely to be non-rigid deformation of the face between these

views. For this reason, in Section 3.3 we propose a robust

algorithm for stitching the photometric views without blur-

ring potentially misaligned features. We provide an imple-

mentation of our sampling, weighting and blending pipeline

as an extension of the MatlabRenderer toolbox [2].

3.1. Multiview stereo

We commence by applying uncalibrated structure-from-

motion followed by dense multiview stereo [1] to all 24

viewpoints (see Fig. 2, blue boxed images). Solving this un-

calibrated multiview reconstruction problem provides both

the base mesh (see Fig. 2, bottom left) to which we fit the

3DMM template and also intrinsic and extrinsic camera pa-

rameters for the three photometric views. These form the

input to our stitching process.

3.2. Template fitting

To build a 3DMM from raw scanning data, we es-

tablish correspondence to a template. We use the Basel

5013



!"#$%%
&#$'( !)*#*

&#$'( !"#$%%
+,&( !)*#*

+,&(
Frontal Pose Left Pose Right Pose

Multiview stereo

Template warping

!"#$%%
#-./( !)*#*

#-./(

0!"#$%%

0(!)*#* − !"#$%%) Sampling

Poisson 

blending

Raw scan

!%(-("/

Colour transformed 

albedo images

Sampled albedo maps

Fitted 

template

Diffuse:

Specular:

Figure 2: Overview of our capture and blending pipeline. Images within a blue box are captured simultaneously. Photometric

image pairs within a dashed orange box are captured sequentially with perpendicular/parallel polarisation state respectively.

Face Pipeline [14] which uses smooth deformations based

on Gaussian Processes. We adopted the threshold to ex-

clude vertices from the optimisation for the different levels

(to 32mm, 16mm, 8mm, 4mm, 2mm, 1mm, 0.5mm from

coarse to fine) to reach better performance for missing parts

of the scans. Besides this minor change we used the Basel

Face Pipeline as is, with between 25 and 45 manually anno-

tated landmarks (eyes: 8, nose 9, mouth 6, eyebrows 4, ears

18). We used the template of the BFM 2017 for registration

which makes our model compatible to this model.

3.3. Sampling and stitching

We stitch the multiple photometric viewpoints into seam-

less diffuse and specular per-vertex albedo maps using Pois-

son blending. Blending in the gradient domain via solution

of a Poisson equation was first proposed by Pérez et al. [23]

for 2D images. The approach allows us to avoid visible

seams where texture or geometry from different views are

inconsistent.

For each viewpoint, v ∈ V = {v1, . . . , vk}, we sample

RGB intensities onto the n vertices of the mesh, Iv ∈ R
n×3.

Then, for each view we compute a per-triangle confidence

value for each of the t triangles, wv ∈ R
t. For each tri-

angle, this is defined as the minimum per-vertex weight for

each vertex in the triangle, where the per-vertex weights are

defined as follows. If the vertex is not visible in that view,

the weight is set to zero. We also set the weight to zero if

the vertex projection is within a threshold distance of the

occluding boundary to avoid sampling background onto the

mesh. Otherwise, we take the dot product between the sur-

face normal and view vectors as the weight, giving prefer-

ence to observations whose projected resolution is higher.

Next, we define a selection matrix for each view, Sv ∈
{0, 1}mv×t, that selects a triangle if view v has the highest

weight for that triangle:

(

S
T

v
1mv

)

i
= 1 iff ∀u ∈ V \ {v}, wu

i
< wv

i
. (1)

We define an additional selection matrix Svk+1
that selects

all triangles not selected in any view (i.e. that have no non-

zero weight). Hence, every triangle is selected exactly once

and
∑

k+1

i=1
mvi

= t. We similarly define per-vertex selec-

tion matrices S̃v ∈ {0, 1}m̃v×n that select the vertices for

which view v has the highest per-vertex weights.

We write a screened Poisson equation as a linear system
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[8] in the unknown stitched RGB intensities Istitch ∈ R
n×3:

[

SG

λS̃v1

]

I
stitch =















(I3 ⊗ Sv1
)GI

v1

...

(I3 ⊗ Svk
)GI

vk

03mk+1×3

λS̃v1
I
v1















, (2)

where ⊗ is the Kronecker product,

S =







I3 ⊗ Sv1

...

I3 ⊗ Svk+1






, (3)

I3 is the 3×3 identity matrix and G ∈ R
3t×n computes the

per-triangle gradient in the x, y and z directions of a func-

tion defined on the n vertices of the mesh. We solve (2) in a

least squares sense so that Istitch seeks to match the selected

gradients in each triangle. Triangles with no selected view

are assumed to have zero gradient. View v1 is chosen as the

reference in order to resolve colour offset indeterminacies

and λ is the screening weight. We use k = 3 views, the

frontal view is chosen as the reference and we set λ = 0.1.

3.4. Calibrated colour transformation

Our photometric camera captures RAW linear images.

We transform these to linear sRGB space using a colour

transformation matrix computed from light SPD and cam-

era spectral sensitivity calibrations, discretised at D evenly

spaced wavelengths. We measure the spectral power distri-

bution of the LEDs used in our lightstage, e ∈ R
D, using

a B&W Tek BSR111E-VIS spectroradiometer. We use the

spectral sensitivity measurement, C ∈ R
D×3, for the Nikon

D200 as included in the database of Jiang et al. [19]. The

overall colour transformation is given by a product of three

transformations: T = Txyz2rgbTraw2xyz(C)Twb(C, e). The

first performs white balancing:

Twb(C, e) = diag(CT
e)−1. (4)

The second converts from the camera-specific colour space

to the standardised XYZ space:

Traw2xyz(C) = CCIEC
+, (5)

where CCIE ∈ R
D×3 contains the wavelength discrete CIE-

1931 2-degree color matching function and C
+ is the pseu-

doinverse of C. To preserve white balance we rescale each

row such that: Traw2xyz(C)1 = 1. The final transformation,

Txyz2rgb, is a fixed matrix to convert from XYZ to sRGB

space. As part of our model we provide T, C and e.

4. Integrating 3DRFE

We augment our own dataset by additionally including

the 23 scans from the 3DRFE dataset [27]. This uses the

(a) Geometry (b) Diffuse albedo (c) Specular albedo

3DRFE Source Processed

(d) Diffuse albedo (e) Specular albedo

Figure 3: (a)-(c): Source geometry and albedo maps from

the 3DRFE dataset [27]. (d)-(e): final registered, colour

transformed albedo maps on warped template geometry.

original capture setup of Ma et al. [21] which means that

photometric information is only captured from the one view

for which the polariser orientations are calibrated. Scans are

provided in the form of single viewpoint specular and dif-

fuse albedo maps and a mesh (see Fig. 3(a)-(c)) whose UV

coordinates are the 2D perspective projection of the mesh

into the maps. This enables us to estimate geometric cam-

era calibration parameters from the 3D vertex positions and

corresponding 2D UV coordinates. We perform the cali-

bration using [6] and estimate both intrinsics and distortion

parameters. We fit the BFM template to the meshes in the

same way as for our own data (see Section 3.2). We then

project the fitted template into the maps using the estimated

camera calibration, directly sample diffuse/specular albedo

for visible vertices and inpaint vertices with no sample us-

ing a zero gradient assumption.

The diffuse and specular albedo maps are stored in a non-

linear colour space so we preprocess them by applying in-

verse gamma (of value 2.2) to transform them back to a

linear space. To account for variation in overall skin bright-

ness, during capture the camera gain (ISO) was adjusted for

each subject. This means that albedo maps cannot be di-

rectly compared or modelled since their individual scale is

different. We obtained from the original authors the ISO

setting for each subject and compensate by dividing each

albedo map by its ISO number. Finally, the albedo maps

differ from those taken in our setup by an unknown over-

all scale factor and colour transformation. To compensate

for this, we find the optimal 3 × 3 colour transformation to

transform the mean diffuse albedo of the 3DRFE scans onto

the mean of our scans. We apply this transformation to all

of the linearised, ISO-normalised albedo maps to give the

final set of maps used in our model.

5. Modelling

We model diffuse and specular albedo using a linear sta-

tistical model learnt with PCA:

x(b) = Pb+ x̄, (6)
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where P ∈ R
3n×d contains the d principal components,

x̄ ∈ R
3n is the vectorised average map and x : Rd 7→ R

3n

is the generator function that maps from the low dimen-

sional parameter vector b ∈ R
d to a vectorised albedo map.

Whilst there are more elaborate techniques to model facial

texture, we decided to use PCA because of its very stable

performance even in the very low data regime and its qual-

ity in terms of generalisation and specificity.

Inpainting The stitched albedo maps produced by the

process described in Section 3.3 may still contain artefacts,

for example in regions with no observed data, stray hairs

across the face, where background is sampled onto the face

or due to alignment errors in the pipeline. In addition, some

faces in the 3DRFE database have closed eyes which is not

desired in our model. For this reason, we manually mask all

regions containing artefacts (amounting to 5% of the ver-

tices in our dataset) and complete them using a novel hybrid

of statistical inpainting and Poisson blending.

For each sample, we assume the set M ⊂ {1, . . . , n}
contains a subset of the n model vertices that have been

masked out. We begin by computing a linear statistical

model (6) in which masked out values are replaced by the

average over non-missing values.

As before, we define a selection matrix for the masked

and non-masked vertices, S̃M and S̃M′ respectively. We

also define selection matrices for the triangles whose ver-

tices are all masked, SM, all non-masked, SM′ , and the s

triangles that contain a mix of masked and non-masked ver-

tices Smix ∈ R
s×t. We compute the parameters of a least

squares fit of the preliminary model to the stitched colours

of the non-masked vertices:

b
∗ = ((13 ⊗ S̃M′)P)+(13 ⊗ S̃M′)(vec(Istitch)− x̄), (7)

where + denotes the pseudoinverse. We compute the final

albedo maps by again writing a screened Poisson equation

as a linear system:





(13 ⊗ SM)G
(13 ⊗ Smix)G

S̃M′



 I
complete =





(13 ⊗ SM)GI
stat

0s

S̃M′I
stitch



 (8)

where vec(Istat) = Pb
∗ + x̄ is the statistically inpainted

texture. The solution encourages the texture gradient in the

masked out region to match the gradient of the statistically

inpainted texture but to match the original texture in the

non-masked region. For triangles on the boundary between

masked and non-masked regions we encourage zero gradi-

ent. In Fig. 4 we show an example for the face with most

masking required. Note that simply using the statistical in-

painting (middle) leads to seams in the texture. The process

can be iterated so that these completed textures are used to

rebuild the statistical model though we note no significant

improvement after the first iteration. We apply this masking

Figure 4: Hole filling (subject with most masked vertices).

Left: manually masked albedo map. Middle: statistically

inpainted. Right: Poisson blend.

and blending procedure to both diffuse and specular albedo

maps.

We perform an additional final step for the specular

maps. Specular albedo is not meaningfully estimated in the

eyeball region. This is because the eyeball surface is highly

specular compared to skin (i.e. the specular lobe is much

narrower). Since the spherical illumination is discretised by

a relatively small number of light sources, most points on

the eye surface do not specularly reflect towards the viewer

(see Fig. 3(c) - zoom for detail). For this reason, we re-

place specular albedo values in the eyeball region by a ro-

bust maximum (95th percentile) of the estimated specular

albedo values in that region (see Fig. 3(e)).

Statistical modelling The most straightforward way to

model diffuse and specular albedo is with two separate

models of the same form as equation (6). However, a draw-

back of this is that the two maps are not independent and

allowing arbitrary combinations of the two model parame-

ters can lead to unrealistic appearance. For example, if the

face has a beard in the diffuse albedo map, then the specular

albedo should be lower in the beard region. An obvious al-

ternative is to learn a joint model in which diffuse and spec-

ular are concatenated and modelled together. A drawback

of this model is that it may be desirable to retain different

numbers of principal components for the two models or to

use the diffuse model alone. Using only the diffuse part

of this joint model is no longer orthonormal. In addition,

since diffuse albedo conveys most of the information about

the identity of a face, it is desirable to have the statistics fo-

cused on the diffuse part. For these reasons, we propose an

additional third alternative. Here, we learn a diffuse only

model and then build a specular model in which the prin-

cipal components are made from the same linear combina-

tions of training samples as the diffuse modes. This means

that the same parameters can be used for both models while

retaining orthonormality of the diffuse model:

vec(Idiff) = P
diff

b+ x̄
diff, (9)

vec(Ispec) = P
spec

b+ x̄
spec, (10)

Comparing the three alternatives (see Fig. 5), the inde-
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Figure 5: Leave-one-out generalisation error for three vari-

ants of the specular model.

pendent specular model generalises best, the concatenated

model second best and the proposed model with princi-

pal component weights transferred from the diffuse model

worst. However, the difference is neglectable and the com-

bination of having a single set of parameters for both models

and retaining optimality of the independent diffuse model

makes this the best choice.

We use symmetry augmentation in our modelling. The

BFM template is bilaterally symmetric with known sym-

metry correspondences. Therefore, we include each sample

twice, once as captured, once reflected. This gives us a total

of 146 training samples. We make all variants of our model

publicly available using both the full BFM 2017 template

and also a template cropped only to the inner face region.

Image formation model To use our model for synthesis

or analysis-by-synthesis requires a slightly different image

formation model than is typically used with 3DMMs. Ap-

pearance at a vertex v should be computed as follows:

iv =
[

idiff(P
diff
v

b+ x̄
diff
v

) + ispec(P
spec
v

b+ x̄
spec
v

)
]

1
2.2

(11)

where idiff and ispec are colour diffuse and specular shading

(computed using a chosen reflectance model and dependent

on illumination, geometry and viewing direction), Pdiffuse
v

denotes the three rows of Pdiffuse corresponding to vertex v,

similarly for P
spec
v , x̄diff

v
and x̄

spec
v . See Fig. 1 (right) for a

visualisation using this image formation model. In addition,

for a camera that does not work in sRGB colour space, an

additional transformation to the camera’s colour space prior

to nonlinear gamma of 2.2 is required.

6. Experiments

Our final model is a combination of the proposed diffuse

and specular albedo model to model facial appearance and

the BFM 2017 to model face shape and expressions. Since

the shape part of the model is identical to the BFM 2017,

we focus on the evaluation of the appearance model and

reconstruction of facial albedo.
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Figure 6: Comparison with current state-of-the-art and pub-

licly available models. Our full model is shown in Fig. 1

We begin by providing a qualitative comparison between

our proposed model and the currently most used publicly

available 3DMMs in Fig. 6. We observe that the first mode

of our proposed model is more diverse and less biased than

the BFM. Additionally, we see that the appearance between

models varies dramatically which shows how arbitrary the

albedo in the LYHM and BFM are. Our full model pre-

sented in Fig. 1 is unprecedented and there is no other model

to compare to.

Next, we use our model in a standard inverse rendering

setting. We adopted the publicly available model adapta-

tion framework1 based on [26] and compare it directly to

model adaptation results based on the BFM in Fig.7. This

implementation adapts shape, albedo and camera parame-

ters, as well as the first three bands of a spherical harmonics

illumination model and is based on Markov Chain Monte

Carlo Sampling. We perform the experiment on the LFW

dataset [18] exactly as proposed in [14] and just exchanged

the model (including applying gamma) and used statistical

specular albedo maps during model adaptation.

Finally, we perform an evaluation in the same inverse

rendering setting as the previous experiment but with known

ground truth albedo maps. We use six identities from our

own dataset and build a model excluding them. We then fit

to images from our dataset taken by the non-photometric

1https://github.com/unibas-gravis/

basel-face-pipeline
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Target BFM 2017 ours ours diffuse ours specular

Figure 7: Qualitative model adaptation results on the LFW

dataset [18]. Our model leads to comparable results whilst

explicitly disentangling albedo and estimating diffuse and

specular albedo.

reconstruction model mean

BFM17 0.0192 ± 0.0121 0.0575 ± 0.0551

ours 0.0060 ± 0.0022 0.0170 ± 0.0270

Table 1: Albedo estimation results for the BFM 2017 and

the proposed method. The second column shows the recon-

struction based on the respective model mean solely. Those

results are based on the reconstructions depicted in Fig 8.

cameras. These are simply SLR cameras in auto mode

with no polarisation, representing a realistic image in ap-

proximately ambient light. We apply the inverse rendering

framework with the same configuration, except for limit-

ing the illumination condition to an ambient one and esti-

mate albedo and observe better albedo reconstruction per-

formance for our proposed model compared to the BFM for

every single case. We applied gamma for both models since

it leads to better results even for the albedo reconstruction

input BFM17 ours groundtruth input BFM17 ours groundtruth

Figure 8: Albedo estimation results based on the exact same

inverse rendering pipeline for the BFM 2017 and the pro-

posed model. The proposed model is both visually and

in terms of mean squared error (see Table 1) closer to the

ground truth.

of the BFM. Visual results can be found in Fig. 8 and quan-

titative values are shown in Table 1.

7. Conclusion

We built and make available the first statistical model of

facial diffuse and specular albedo. The model at hand fills

a gap in 3DMM literature and might be beneficial in vari-

ous directions. This model leverages the computer graphics

part of the inverse rendering setting where 3DMMs are clas-

sically applied. We present superior performance compared

to the BFM 2017 in terms of albedo reconstruction from the

facial appearance in a 2D image. Besides the computer vi-

sion application of inverse rendering with all its various ap-

proaches, we see big potential in the direction of de-biasing

current face processing pipelines. To the best of our knowl-

edge, this work is the first to combine diffuse and specu-

lar albedo and jointly model different skin types with their

matching specular reflection properties. Besides applica-

tions for computer graphics and vision, we also see a benefit

for studying human face perception. Whilst other 3DMMs

were already used in behavioural experiments, this is the

first model enabling to study human face perception based

on a real disentangled representation of illumination, shad-

ing, and reflection. We make our model and accompanying

code publicly available2.
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Thomas Vetter. Morphable face models-an open framework.

In Proc. International Conference on Automatic Face and

Gesture Recognition, pages 75–82. IEEE, 2018.

[15] A. Ghosh, T. Chen, P. Peers, C. A. Wilson, and P. Debevec.

Estimating specular roughness and anisotropy from second

order spherical gradient illumination. Computer Graphics

Forum (Proc. EGSR), 28(4):1161–1170, 2009.

[16] A. Ghosh, T. Chen, P. Peers, C. A. Wilson, and P. De-

bevec. Circularly polarized spherical illumination reflectom-

etry. ACM Transactions on Graphics (Proceedings of SIG-

GRAPH Asia), 29(6), 2010.

[17] Abhijeet Ghosh, Graham Fyffe, Borom Tunwattanapong, Jay

Busch, Xueming Yu, and Paul Debevec. Multiview face

capture using polarized spherical gradient illumination. In

ACM Transactions on Graphics (Proceedings of SIGGRAPH

Asia), volume 30, page 129, 2011.

[18] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik

Learned-Miller. Labeled faces in the wild: A database

for studying face recognition in unconstrained environ-

ments. Technical Report 07-49, University of Massachusetts,

Amherst, October 2007.

[19] Jun Jiang, Dengyu Liu, Jinwei Gu, and Sabine Süsstrunk.
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