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ABSTRACT Fusarium graminearum is a global fungal pathogen of wheat and other
small grains, causing Fusarium head blight (FHB) disease, also known as wheat scab.
We report here the annotated genome of a deoxynivalenol/15-acetyl-deoxynivalenol-
producing Brazilian strain called CML3066, isolated from FHB-symptomatic wheat spikes
collected in 2009.

The ascomycete fungus Fusarium graminearum is the main pathogen causing Fus-
arium head blight (FHB), an important cereal disease worldwide (1). The F.

graminearum genome from a South American strain was not previously available. Here,
we report an annotated assembly for strain CML3066 (DON/15-ADON), isolated in 2009
in Rio Grande do Sul state, Brazil (latitude, �28.327, longitude, �51.271). This strain was
isolated from a symptomatic wheat spike with 21.5% FHB incidence (2).

Genomic DNA of F. graminearum CML3066 was extracted from mycelia grown for 3
days in potato dextrose broth (PDB) medium using a cetyltrimethylammonium bromide
(CTAB) protocol (3) and quantified using a Qubit 2.0 fluorometer (Life Technologies).
Libraries were prepared with TruSeq DNA high-throughput (HT) (Illumina) and
SMRTbell (PacBio) kits. Genome sequencing was done both on an Illumina HiSeq
2000 platform, producing 100-bp paired-end reads (91� coverage) with no quality
control required, and on a PacBio RS II platform with a postquality filter of minimum
polymerase read quality of 0.80 and minimum subread length of 500 bp, resulting
in 160� coverage with a subread total of 6,392,721,477 bp, 1,358,615 reads, and an
N50 value of 5,621 bp. Default parameters were used for all software unless
otherwise noted. The de novo assembly was carried out using SOAPdenovo2 v2.0.4
using the Illumina data with a range of k-mer values (61 to 99) and the SMRT
analysis portal using the PacBio data. The PacBio assembly was manually gap filled
and further scaffolded using Lastz v1.04.03 alignments with the complementary
Illumina assembly, resulting in four complete chromosomes from telomere to
telomere with no gaps or N bases. Reference sequence statistics were extracted
from Geneious v8.1. The genome annotation of CML3066 was done using the
MAKER v2.30 (4) annotation pipeline with RepeatMasker v4.50 (5). Gene calls were
generated using both AUGUSTUS v2.7 (6) using the F. graminearum species model
and GeneMark (7), which was trained using strain PH-1 (8, 9).

The CML3066 assembly is 36,908,675 bp long with a GC content of 47.9%. The CML3066
genome is predicted to contain 14,188 genes, 286 of which are not present in the PH-1
genome. Using the PH-1 reference, a minimum of 80% of the length of the gene was
required to have mapped reads to be considered present. Single nucleotide polymorphism
(SNP) calling was performed with SAMtools using default settings. SNP effects were
predicted using SnpEff 4.2. Comparison of SNP frequencies along all four chromosomes of
both CML3066 and PH-1 (8, 10) revealed that all telomere proximal regions displayed the
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highest SNP density windows. In addition, chromosomes 1, 2, and 4 were found to have
one or two large interstitial regions with a high SNP density. To predict secreted proteins,
Blast2GO v3.2 was used to identify signal peptide and transmembrane domains. Prediction
of glycosylphosphatidylinositol (GPI)-anchored membrane proteins, cellular protein local-
ization, and effectors was performed using Big-Pi, WoLF PSort and ProtComp v9.0 (Soft-
berry), and EffectorP v1.0 (11–14), respectively. The secretome was predicted to contain 874
genes. A genome comparison between CML3066 and the reference strain PH-1 is summa-
rized in Table 1.

Data availability. The raw data and assembled/annotated sequences have been
deposited in the European Nucleotide Archive (ENA). The study accession number is
PRJEB12819. The accession numbers for the assembled chromosomes and mito-
chondrial genome are LT222053 to LT222057. The secretome and effector predictions
can be found at https://github.com/ana321wood/Secretome_CML3066_Feb2020/blob/
master/Secretome_CML3066_Feb2020_AMW.txt.
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