
AUTOMATIC SENTENCE ANNOTATION FOR MORE USEFUL BUG REPORT
SUMMARIZATION

AKALANKA GALAPPATHTHI
Master of Philosophy, University of Peradeniya, 2018

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Akalanka Galappaththi, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/346635205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATIC SENTENCE ANNOTATION FOR MORE USEFUL BUG REPORT
SUMMARIZATION

AKALANKA GALAPPATHTHI

Date of Defence: August 14, 2020

Dr. John Anvik Associate Professor Ph.D.
Thesis Supervisor

Dr. Yllias Chali Professor Ph.D.
Thesis Examination Committee
Member

Dr. Wendy Osborn Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. John Sheriff Assistant Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Abstract

Bug reports are a useful software artifact with software developers referring to them for

various information needs. As bug reports can become long, users of bug reports may

need to spend a lot of time reading them. Previous studies developed summarizers and the

quality of summaries was determined based on human-created gold-standard summaries.

We believe creating such summaries for evaluating summarizers is not a good practice.

First, we have observed a high level of disagreement between the annotated summaries.

Second, the number of annotators involved is lower than the established minimum for the

creation of a stable annotated summary. Finally, the traditional fixed threshold of 25%

of the bug report word count does not adequately serve the different information needs.

Consequently, we developed an automatic sentence annotation method to identify content

in bug report comments which allows bug report users to customize a view for their task-

dependent information needs.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. John Anvik, for his

guidance, support, and encouragement through my graduate experience. The input of time

and comments by Prof. Yllias Chali and Dr. Wendy Osborn are very much appreciated.

I extend my thanks to the members of Sibyl-lab, Palak Halvadia, Md Hasan Tareque, and

Maimoona Bashir, for annotating bug report comments. I also thank the other members of

the lab for their encouragement and thoughtful comments on my research work.

I would like to remind my parents who helped me emotionally and financially during

stressful times. My heartiest gratitude goes to the Sri Lankan community in Lethbridge

who helped me during my stay. Finally, thank you my dearest wife, Asha, for encouraging

me to pursue graduate studies and for going through two hard years of a long-distance

relationship.

I acknowledge the funding for this project provided by the Natural Science and Engi-

neering Research Council of Canada (NSERC) and Alberta Innovates (Tech Futures) grad-

uate scholarship.

iv

Contents

Contents v

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Bug Report Summarization . 2

1.1.1 Bug Report Structure . 2
1.1.2 Summarization Process . 2
1.1.3 Prior Approaches Aim at the Wrong Target 5

1.2 Contributions of this Work . 8
1.3 Organization . 9

2 Background and Related Work 10
2.1 Text Summarization . 10
2.2 Bug Report Summarization . 11

2.2.1 Clue word score . 15
2.2.2 Naïve Bayes Classifier . 16
2.2.3 Support Vector Machine . 18
2.2.4 Topic Modelling . 19
2.2.5 Evaluating Bug Report Summaries 19

2.3 Visualization of Bug Report Summaries 20
2.4 Tagging Bug Report Comments . 21
2.5 Summary . 22

3 Feature Evaluation for Automatic Bug Report Summarization 23
3.1 Bug Report Features for Summarization 23
3.2 Creating an Abstract Sentence Recommender 24

3.2.1 Data Source . 24
3.2.2 Extracted Features . 26
3.2.3 Bug Report Summary Creation . 29

3.3 Evaluation . 30
3.3.1 Comparison to the Previous Approach 31
3.3.2 Evaluating Feature Groups . 31

3.4 Lessons Learned . 32
3.5 Summary . 33

v

CONTENTS

4 Automatic Sentence Annotation 34
4.1 Schemas for Bug Report Summarization 34
4.2 Automatic Labelling of Bug Report Comments 37

4.2.1 Data Set . 37
4.2.2 Data Extraction and Processing 38
4.2.3 Automatic Assignment of Labels 41

4.3 A Task Relevant Bug Report Summarizer 48
4.4 Summary . 50

5 Results and Discussion 51
5.1 Results . 51

5.1.1 Manual Labelling of Sentences . 51
5.1.2 Results of Automatic Labelling 52

5.2 Discussion . 53
5.2.1 Description Labeller . 53
5.2.2 Clue word Detector . 54
5.2.3 Off-topic Classifier . 54
5.2.4 Code Detector . 55
5.2.5 Resolution Detector . 56
5.2.6 URL Detector . 56

5.3 Summary . 56

6 Conclusion 57
6.1 Future Work . 57

6.1.1 Off-Topic Labeller . 57
6.1.2 Description Labeller . 58
6.1.3 Plan Labeller . 58
6.1.4 User Study of Customizable Bug Report Summaries 58

Bibliography 59

Appendix A Annotated Bug Reports 64

vi

List of Tables

3.1 Features used for extractive summarization of bug reports 25
3.2 Comparison of our results with Rastkar’s results 31

4.1 Description of labels . 41

5.1 Quality of automatic annotations . 53

A.1 Annotated bug report (Firefox:#495584) 64
A.2 Annotated bug report (Firefox:#449596) 65
A.3 Annotated bug report (Firefox:#491925) 66
A.4 Annotated bug report (Eclipse:#250125) 69
A.5 Annotated bug report (Eclipse:#224588) 70
A.6 Annotated bug report (Eclipse:#223734) 72
A.7 Annotated bug report (Firefox:#437797) 73
A.8 Annotated bug report (Eclipse:#260502) 75
A.9 Annotated bug report (Firefox:#328600) 77
A.10 Annotated bug report (GIMP:#156905) 77
A.11 Annotated bug report (GIMP:#164995) 79
A.12 Annotated bug report (GIMP:#170801) 80
A.13 Annotated bug report (GIMP:#364852) 82
A.14 Annotated bug report (GNUCash:#168803) 83
A.15 Annotated bug report (gvfs:#522933) . 85
A.16 Annotated bug report (GTK:#64222) . 87
A.17 Annotated bug report (GTK:#514396) . 89
A.18 Annotated bug report (Eclipse:#215879) 91
A.19 Annotated bug report (Eclipse:#69350) 92
A.20 Annotated bug report (Eclipse:#226688) 94
A.21 Annotated bug report (Eclipse:#276131) 95
A.22 Annotated bug report (Bugzilla Calendar:#429126) 96
A.23 Annotated bug report (Thunderbird:#403907) 100
A.24 Annotated bug report (Thunderbird:#296655) 102
A.25 Annotated bug report (KDE:#153211) . 105
A.26 Annotated bug report (KDE:#61263) . 106
A.27 Annotated bug report (KDE:#188311) . 110
A.28 Annotated bug report (KDE:#88340) . 111
A.29 Annotated bug report (KDE:#66526) . 112
A.30 Annotated bug report (GIMP:#326962) 114
A.31 Annotated bug report (Eclipse:#154119) 116

vii

LIST OF TABLES

A.32 Annotated bug report (Firefox:#238215) 117
A.33 Annotated bug report (KDE:#173341) . 118
A.34 Annotated bug report (KDE:#155920) . 120
A.35 Annotated bug report (KDE:#164545) . 123
A.36 Annotated bug report (KDE:#174533) . 124

viii

List of Figures

1.1 Snapshot of the bug report of Bugzilla Calendar:#1587358. The Figure
only shows the meta information and the first comment. 3

1.2 Snapshot of the bug report of Mozilla Core:#429126. The Figure only
shows the description and the first few lines of the stack trace. 4

2.1 Creating a fragment quotation graph for an e-mail conversation [13]. 16
2.2 Example that demonstrate how support vector machine separate two groups

of data. 18

3.1 Recommender creation process. 24
3.2 Communication thread in bug report (Firefox:#449596) 28
3.3 Example fragment quotation graph according to the Figure 3.2 29
3.4 Average precision, recall and F-score value of leave-one-out cross valida-

tion for classifiers of different feature groups 32

4.1 Bug report summarization schema . 35
4.2 Bug report sentence intention schema . 35
4.3 Overview of the labeling and summarization process 41
4.4 Communication thread in bug report (Firefox:#495584) 43
4.5 Syntax parse tree for sentence “Feel free to open a new bug if there is some-

thing I missed.”. 47
4.6 Syntax parse tree for code public static void main(String ar[]). . 48
4.7 User interface of customizable bug report summary 49

5.1 A portion of Firefox:#449596 bug report in Rastkar et al.’s corpus. 52

ix

Chapter 1

Introduction

Bug reports1 are useful software project artifacts that contain information about problems

occurring in the past, discussion of possible or implemented solutions, and who contributed

to these solutions. Software developers and software users use issue tracking systems to

report unexpected behaviors or request new features when those are absent. Such reports

and requests area stored in issue tracking systems such as Bugzilla2 or Jira3. The issue

tracking system records a variety of textual information including a title, description, and

comments [5]. Figure 1.1 shows a bug report stored in Bugzill for Mozilla project. Devel-

opers post comments in the bug report when they find the reported bug is in their domain of

interest. The comments are a method of communication between developers that facilitate

eventually solving the bug report [6]. Due to the escalation of communication, the number

of sentences in a bug report can vary widely, with some bug reports containing relatively

few sentences (around 20) and some having over 50 sentences.

Software developers refer to the bug report contents for various reasons. Bug report

triaging [4, 5, 26, 43, 45], duplicate bug report detection [14, 23, 25, 41], and historical

information collection to fix new bugs are all common software development activities

involving bug reports [17, 19, 20, 22].

As the content of a bug report is primarily free-form text, natural language processing

(NLP) techniques, specifically those for text summarization, are used [25, 29, 30, 31, 39].

1We use the general term ’bug report’ to refer to any software project artifact which is used for tracking
project work such as feature requests, change requests, and tasks descriptions.

2https://www.bugzilla.org verified 03/05/2020
3https://www.atlassian.com/software/jira verified 03/05/2020

1

1.1. BUG REPORT SUMMARIZATION

There are two types of text summarization techniques: abstractive and extractive. Abstrac-

tive summarization requires understanding the content of the document and paraphrasing

the content in such a way that the meaning is preserved. Extractive summarization selects

sentences from the document that reflect the overall meaning of the document [35]. Text

summarization uses both statistical and linguistic techniques to find useful sentences in

comments.

1.1 Bug Report Summarization

Bug report summaries are useful for software developers when they refer to long bug

reports. Since bug reports do not have summarized versions, researchers developed various

techniques to automatically summarize bug reports. In this section, we describe the bug

report structure and the bug report summarization process.

1.1.1 Bug Report Structure

Bug reports contain unstructured data such as the bug report title, the bug description

and comments from developers, and structured data such as platform, operating system,

and version number. The unstructured data in the bug report contains full-text and semi-

structured text such as stack-traces, code snippets, and URLs. Figure 1.1 shows the struc-

tured data and the bug report description that contains full-text. The full-text in some of the

bug report descriptions is lengthy. In some cases, only a portion of the bug description is

enough to understand the bug report. For example, the bug report #429126 of Mozilla has

a bug report description with 151 lines. However, the bug report description ends at line 17

and the remainder is a stack trace. The first two lines in the bug description is about the

platform and the version number (Figure 1.2).

1.1.2 Summarization Process

The bug report summarization studies in the literature focused on the extractive summa-

rization approach instead of creating abstractive summaries. The reason was that abstractive

2

1.1. BUG REPORT SUMMARIZATION

Figure 1.1: Snapshot of the bug report of Bugzilla Calendar:#1587358. The Figure only
shows the meta information and the first comment.

summarization has a heavy computational burden compared to extractive summarization

[39] and in many cases the summaries were of poor quality [21].

Extractive summarization selects sentences from the bug report comments that are

deemed to be important. Then, the selected sentences are placed in the summary in the

order of how they appear in the bug report. This way the summarization model only needs

to differentiate sentences (or lines) in comments that are useful or not useful to the users.

We will describe extractive summarization approaches in detail in Section 2.2.

Bug report summarization studies have developed various computational techniques

to select sentences for the summary. After creating a computer-generated summary4 the

computer-generated summary was compared against one or more human-annotated sum-

maries5. This evaluation method was used in many studies of bug report summarization

[30, 31, 38, 39].
4A summary created by a computational model by selecting sentences.
5A summary created by a human annotator by selecting the sentences that best represent the information.

3

1.1. BUG REPORT SUMMARIZATION

Figure 1.2: Snapshot of the bug report of Mozilla Core:#429126. The Figure only shows
the description and the first few lines of the stack trace.

4

1.1. BUG REPORT SUMMARIZATION

The process of creating annotated summaries was different in each of the prior studies

that we examined. Therefore, we present a general approach here. A human annotator

creates a summary by selecting sentences that are deemed to be important to represent the

bug report’s content. Since a summary should be concise, the annotator selects sentences

in such a way that word count of the selected sentences falls below a given threshold. To

reduce the information bias in the annotated summaries, more than one annotator is used

in many of the studies. Nenkova et al. found that one should use a minimum of five

annotators to have a stable annotated summary [37]. However, Rastkar et al. used three

annotators [38, 39] and Mani et al. used two annotators [31]. The study conducted by

Lotufo et al. used only one annotator [30]. When more than one annotator was used, the

authors selected the sentence that the majority of annotators selected in their summary.

Those sentences were known as the “Gold Standard Summary” (GSS) for a bug report. For

example, if three annotators created summaries and at least two of them chose the same

sentence, then that sentence was included in the GSS.

1.1.3 Prior Approaches Aim at the Wrong Target

Although the previous works provided significant contributions for the summarization

of bug reports, we believe that they were aiming for the wrong target. In all of the prior

works, the target was to create an extractive summary that was as close as possible to a GSS

created by human annotators. However, based on observations in prior work, specifically

those by Rastkar et al. [38, 39] and our own work [18], we have concluded that such

gold-standard summaries are neither attainable in reality due to the higher word count in

GSS compared to the word count threshold assigned to automatic summarizers. Also, the

number of annotators used in creating annotated summaries is less than the accepted number

for a stable GSS, as found by Nenkova et al. [37], which makes the evaluation less reliable.

The rest of this section provides insight into how we came to this conclusion.

5

1.1. BUG REPORT SUMMARIZATION

Creating a gold-standard is not feasible

In the previous studies, the metrics used for evaluating the summarization systems were

those that are traditionally used for a recommender system: precision, recall, and F-score

(Eq. 1.1, 1.2, and 1.3 respectively).

Precision =
o f sentences correctly selected

total # sentences in the summary
(1.1)

Recall =
o f sentences correctly selected

total # sentences in GSS summary
(1.2)

F− score =
2× precision× recall

precision+ recall
(1.3)

Pyramid precision [37], a variation of the traditional precision metric that accounts for

variation in the annotators, was also used. The annotator-created extractive summaries

were used as the gold-standard when computing these metrics in these studies. However,

the level of agreement, or rather the disagreement, between the annotators is a significant

issue in computing these values.

Both Rastkar et al. [38, 39] and Mani et al. [31] applied the kappa test to measure the

agreement level between annotators. Rastkar et al.’s annotators had a score of 0.41 [38, 39]

and Mani et al.’s annotators had a score of 0.415 [31]. These scores indicate a moderate

level of agreement between the human annotators. As Lotufo et al. [30] used only a single

annotator, the validity of their annotated summaries was not confirmed.

Why does this matter? As was demonstrated by the previous studies, annotators them-

selves cannot agree on what is a gold-standard summary. Although pyramid precision at-

tempts to address this issue, it has its own flaws. Specifically, this metric depends on the

number of annotators (i.e. the number of tiers in the pyramid) and the reliability of the

annotators. Regardless of the findings of Nenkova et al. [37], in all of the previous works,

6

1.1. BUG REPORT SUMMARIZATION

the number of annotators was below five.

We also argue that, if the human annotators cannot agree among themselves above 50%,

achieving an automatic summarization solution that has high precision or recall is not a

realistic goal. More importantly, how would we know when we have developed “the best"

summarization technique for bug reports? Yet, this has been the goal of previous automatic

bug report summarization techniques.

According to Nenkova et al. [37] to achieve good agreement between annotators, a sum-

marization project should use at least five annotators. However, this is not a feasible task

for software engineering projects. Assume that a summarization approach focuses on pro-

ducing bug report summaries for project managers. We would need five project managers

to reasonably establish the gold-standard extractive summaries. Considering the resource

limitations of most software projects, it is unlikely that a project would have five project

managers for creating an extractive summary corpus with the needed agreement level,

and project managers are only one type of bug report user. In other words, for software

engineering-related summarization projects, creating an appropriately stable gold-standard

corpus is not feasible.

Gold-standard summaries are unrealistic

As the primary goal of bug report summarization is to reduce the amount of time spent

on reading a bug report, all prior studies focused on creating fixed-sized summaries. How-

ever, none of these approaches considered the different requirements that project members

have for the summaries. In fact, it is this difference in requirements between project mem-

bers that likely leads to annotator disagreement. For example, in the user study conducted

by Rastkar et al. [39], they found that 58% of users would like to have reproduction steps

in the summary when determining whether a bug report is a duplicate or not.

Bug reporting guidelines for projects (e.g. [1, 2, 40]) and studies on what are the impor-

tant items for a bug report [7] show similar disagreements about what constitutes a "good

7

1.2. CONTRIBUTIONS OF THIS WORK

bug report". Such disagreements about bug report contents inevitably carry over into anno-

tations for bug report summaries.

These points indicate that bug report summaries need to be tailored to the information

needs of the user. Therefore, creating a "one-size-fits-all" gold standard corpus is an unre-

alistic goal.

1.2 Contributions of this Work

Although several bug report summarization approaches have been proposed [24, 25,

29, 30, 31, 38, 39], all of these studies focus on creating a fixed-size summary. However,

the restrictions imposed by a fixed-size summary approach can reduce the quality of the

summary by missing important or useful information for a bug report user [30, 38, 39].

Therefore, the summary of a bug report should be flexible such that the user can include or

exclude information according to their information needs [10].

Previous bug report summarization efforts created condensed bug report summaries that

didn’t provide for user interaction [24, 25, 31, 38, 39]. Although Lotufo et al. provided two

summary views: a condensed summary and an interlaced summary where the interlaced

summary displayed the entire bug report by highlighting the sentences extracted as the

summary [30], their approach did not allow for any user interaction with the summary.

After evaluating the results and comments of user studies conducted by Rastkar et al. [39]

and Lotufo et al. [30], we concluded that fixed-sized summaries that miss information

sought by some bug report users is a significant flaw in these bug report summarization

approaches. Therefore, we introduce an approach to automatically annotate the contents of

a bug report such that an interface can allow bug report users to find and interact with the

bug report to meet their task-specific information needs.

The contributions of this thesis are as follows:

• We present the results of partially replicating the study conducted by Rastkar et al.

[38, 39].

8

1.3. ORGANIZATION

• We created a bug report schema for summarization describing its content and struc-

tural dependencies.

• We created a sentence labelling schema to identify intentions of comments in bug

reports.

• We developed a set of labelling modules to assign labels to sentences in bug report

comments according to the labelling schema.

• We propose a tool that allows bug report users to create a customized summary for

their specific information needs according to the labels assigned to the sentences.

1.3 Organization

The rest of this thesis proceeds as follows. In Chapter 2 we provide an overview of text

summarization and prior work on bug report summarization. We also provide information

on studies that focus on bug report visualization. Chapter 3 presents our effort to reproduce

the work of Rastkar et al. [38, 39]. To overcome the shortcomings found in our replication

study and the studies that we found in literature, we introduce our automatic sentence an-

notation process in Chapter 4. In Chapter 5, we present our results and discuss why some

of the sub-modules did not perform as well as we expected. We conclude our study and

outline future work in Chapter 6.

9

Chapter 2

Background and Related Work

This chapter provides background information on text summarization and an overview of

prior work regarding bug report summarization, visualizing bug report summaries, and tag-

ging of the contents in bug report comments.

2.1 Text Summarization

Text summarization is a trending research area because of information overload. Email

threads, meeting transcripts, news articles, medical reports and software artifacts are exam-

ples for large text data where text summarization can be applied and can be useful. Text

summarization has two approaches: abstractive and extractive summarization. Abstractive

summarization is the process of creating a concise version by paraphrasing original content

and maintaining the correct grammatical sentence structure. On the other hand, extractive

summarization picks a few sentences from the original document that conveys the main

idea and concatenate those sentences in an order to preserve the original meaning [36]. The

following example extracted from the bug report corpus6 created by Rastkar et al. [38, 39]

helps to distinguish between abstractive and exatractive summarization.

6https://www.cs.ubc.ca/cs-research/software-practiceslab/projects/summarizing-software-aftifacts veri-
fied 09/12/2018

https://github.com/HuaiBeibei/IBRS-Corpus verified 02/26/2020

10

2.2. BUG REPORT SUMMARIZATION

Original text:
That pref was thought to be for extensions which wanted to com-
pletely replace our own Session Restore functionality. While this
has worked somehow for Tab Mix Plus, we’ve had several issues with
people ending up both Session Restore and Tab Mix Plus disabled
(see bug 435055 and its duplicates). Furthermore, there are sev-
eral code points which will also break when Session Restore has
been disabled (such as the list of recently closed tabs). Instead
of adding try-catch-blocks wherever we use Session Restore, I’d
much rather encourage extensions authors to override both nsSes-
sionStartup and nsSessionStore to provide the same API with their
own functionality (or implementing a dummy-API and making sure for
themselves that they’ve correctly replaced all known consumers)....
Abstractive summary:
It is suggested to remove the preference that removes the session
storing feature, because disabling it breaks some features. It was
originally intended for extensions to disable when they do their
own session restore, but can leave users with it still disabled
after the extension is disabled. Instead the extension writers
should extend the API to do session restoration themselves. Those
users concerned with the privacy implications can disable other
settings to effectively to the same thing.
Extractive summary:
That pref was thought to be for extensions which wanted to com-
pletely replace our own Session Restore functionality. While this
has worked somehow for Tab Mix Plus, we’ve had several issues with
people ending up both Session Restore and Tab Mix Plus disabled
(see bug 435055 and its duplicates).Furthermore, there are several
code points which will also break when Session Restore has been
disabled (such as the list of recently closed tabs)...

2.2 Bug Report Summarization

Over the last decade, several studies were proposed to automatically summarize soft-

ware bug reports. We first summarize the three primary studies found in the literature:

Rastkar et al. [38, 39], Mani et al. [31], and Lotufo et al. [30].

Rastkar et al. proposed an automatic bug report summarization model using a super-

vised learning technique. The authors created a bug report corpus, mentioned in Section 2.1,

11

2.2. BUG REPORT SUMMARIZATION

with 36 bug reports extracted from four open source software projects: Mozilla7, KDE8,

Eclipse9, and Gnome10. The corpus contains annotated summaries composed by three hu-

man annotators. Annotators were asked to create an abstractive summary at first. Then they

were requested to link sentences in bug report comments that their abstractive summary

was based on. Those sentences were the extractive summary of that particular bug report.

The GSS were created by selecting the sentences from three extractive summaries for each

bug report if at least two annotators included the sentence in their extractive summary. The

GSS were used to evaluate the quality of computer generated summaries.

Rastkar et al. extracted 24 features from each sentence in a bug report and used those

features to train a logistic regression model. The logistic regression model works as a

classifier that selects sentences in the bug report that are suitable to add to its summary. The

logistic regression model returns a value between 0 and 1 for each sentence. The authors

arranged the sentences in descending order and selected the top sentences for the summary.

The selection was terminated when the word count of the summary reached 25% of the

word count of the bug report. The authors used the leave-one-out cross validation technique

to evaluate the performance of their model. The logistic regression model received 57% for

precision, 35% for recall, and 40% for F-Score. The pyramid precision for the logistic

regression model was 66% [38, 39].

The study by Rastkar et al. was significant because of the bug report corpus they cu-

rated and made available to other researchers. The findings of their study motivate other

researchers to pursue unsupervised classification techniques for bug report summarization.

Their corpus was used as a benchmark data set when evaluating bug report summarizers in

[24, 30, 31].

The next study by Mani et al. [31] took an unsupervised learning approach to create

automatic bug report summaries. Similar to Rastkar et al. [38, 39], Mani et al. created their

7bugzilla.mozilla.org, verified 09/12/2018
8bugs.kde.org, verified 09/12/2018
9bugs.eclipse.org/bugs, verified 09/12/2018

10bugzilla.gnome.org, verified 96/12/2018

12

2.2. BUG REPORT SUMMARIZATION

bug report corpus with 19 bug reports and hired two annotators to create both abstractive

and extractive summaries. Also, they used the bug report corpus created by Rastkar et al.

[38, 39] to compare the quality of the generated extractive summaries.

This study introduced an automatic “noise” identifier. Each sentence in a bug report

went through three content identifiers. At first, they checked whether the sentence is a

question. If not, the sentence was directed to the code identification module. If the sentence

was not source code, it was checked for being an “investigative" (i.e. question) sentence.

If a sentence was not flagged as any of the three types, it was labelled as “Other". The

authors found that the sentences labelled as “Other” were often greeting sentences such as

“Hello” or “Thank you for your support”. The question identifier used a parsed syntactic

tree structure to detect questions. The authors developed a set of rules to identify patterns

in source code, stack traces, commands, and command output. A sentence was determined

as “investigative" if the sentence has a minimum of five words and contains more than

two keywords of the bug report. Each bug report had a keyword dictionary. Keywords

were the top terms extracted from a ranked list of words whose rank was determined by

the term frequency-inverse document frequency (TF-IDF) metric. The final step of the

noise identifier was a filter that removes source code and “Other” sentences before passing

sentences to the unsupervised summarizer.

Mani et al. [31] used four unsupervised machine learning algorithms to create sum-

maries. Those were the centroid method (a clustering method), Maximum Marginal Rel-

evance (MMR) [12], Graph Random-walk with Absorbing States that Hops Among Peaks

for Ranking (GRASSHOPPER) [46], and Diverse Rank (DivRank) [32]. After comparing

the evaluation scores, the GRASSHOPPER algorithm performed better than the other three

algorithms (F-Score:50%). MMR and DivRank received scores of 48% and 46% respec-

tively. The centroid method performed poorly with a 43% F-Score.

Like Mani et al. [31], Lotufo et al. [30] focused on creating an unsupervised bug report

summarizer. In Lotufo et al.’s approach, they considered the relevance of a sentence to be

13

2.2. BUG REPORT SUMMARIZATION

included in the summary. The relevance was measured by the similarity between a sentence

and the bug report title and description, the similarity between two sentences, and the use

of a heuristic to measure the agreement of two sentences. Each sentence was represented as

a node in a graph. Those three heuristics were combined to calculate the weights between

sentences. The weights were transformed into probabilities to convert the graph to a Markov

chain. Then they applied the PageRank [11] algorithm to rank the sentence relevance.

Lotufo et al. [30] compared the evaluation scores with Rastkar et al.’s study [38, 39].

The results indicated that Lotufo et al.’s unsupervised summarisation model worked better

than Rastkar et al.’s supervised learning approach. Lotufo et al.’s study stood out compared

to the previous two studies because they presented the bug report summary in two manners.

The condensed presentation displayed only the relevant sentences picked up by the sum-

marizer, whereas the interlaced presentation displayed the entire bug report and highlighted

the selected sentences.

There were other attempts towards creating bug report summaries. Jiang et al. ap-

plied the PageRank algorithm to rank sentences in combination with a supervised machine

learning technique to assign a score to important sentences that need to be included in the

summary [25]. This study also composed their own bug report corpus (called OSCAR11)

with 19 bug reports and 40 duplicates of those 19 bug reports. Similar to the corpus created

by Rastkar et al. [38, 39], they also used three annotators to create extractive summaries.

In contrast to Rastkar et al.’s study [38, 39], this summarization technique required dupli-

cate bug reports to create better summaries. With duplicate bug reports in the corpus, their

method out-performed Rastkar et al.’s [38, 39] supervised learning model. However, with-

out the duplicate bug reports, their model’s performance declined [25]. Li et al. created

DeepSum, a deep learning neural network, to summarize bug reports [29]. This was the

first attempt at training a deep neural network for bug report summarization. When com-

paring the results of their study with previous work of Rastkar et al. [38, 39], Mani et al.

11http://oscar-lab.org/paper/prst/corpus.htm verified 08/06/2020

14

2.2. BUG REPORT SUMMARIZATION

[31], and Lotufo et al. [30], they found that DeepSum achieved a 13.2% higher F-Score

than previous studies. Since this was an unsupervised learning model, it reduced the effort

of manually labelling bug reports for training purposes.

In next four sections we provided background information on feature extraction tech-

nique called the clue word score (Section 2.2.1, two text classification techniques: Naïve

Bayes (Section 2.2.2 and support vector machine (Section 2.2.3, and an information re-

trieval method in topic modeling known as latent dirichlet allocation (Section 2.2.4 because

we used those techniques in our methods.

2.2.1 Clue word score

As mentioned, NLP techniques have been used in bug report summarization because

the comments in bug reports are mostly free-text. General NLP techniques, such as stem-

ming and lemmatizing, are commonly used when preprocessing text [24, 29, 44]. Regular

expressions are used to capture patterns such as code snippets and stack traces [31]. In this

section, we present an uncommon techniques used in bug report summarization - clue word

score (CWS).

Clue word score is one of the features extracted from bug reports in Rastkar et al.’s

supervised learning model [38, 39]. CWS was introduced to summarize e-mail conver-

sations [13]. The authors leveraged the quoted fragments in emails to find links between

emails. The quoted texts were detected if the ‘>’ symbol was at the beginning of a sentence

(or line). Once the quoted fragments and corresponding original e-mails were identified,

a graph was created. This graph was called the “fragment quotation graph” whose nodes

were original e-mail fragments. Any unquoted text appearing before or after a quoted text

were possible responses. If any unquoted text was present, those fragments were included

in the graph as nodes. Then a directed edge was added from the response to the quoted text.

Figure 2.1 presents the example found in Carenini et al.’s paper for a better understanding

of this technique. Part (a) shows the six e-mails (E1-E6) with original and quoted texts (or

15

2.2. BUG REPORT SUMMARIZATION

fragments) (a-j). In E2, b is a original fragment (and a possible response to fragment a) and

a is a quoted fragment. Therefore, both a and b are nodes in the fragment quotation graph

and an edge was drawn from b to a as shown in part (b) of Figure 2.1.

Figure 2.1: Creating a fragment quotation graph for an e-mail conversation [13].

If two words have the same meaning or same root form, these words are considered to

be clue words. Car-automobile and bird-birds are considered as clue words. Clue words

were counted in each node by traversing through the graph. Each node was compared with

the parent and the child nodes to count how many clue words were present. The number of

clue words in a fragment indicated the importance of it to the conversation.

Murray et al. tested the applicability of CWS to summarize spoken conversation [33].

But in this study, CWS was only one feature among a set of other features. Rastkar et

al. applied the same technique to summarize bug reports considering the conversational

nature in bug report comments [38, 39]. We have included descriptive steps of creating

the fragment quotation graph and calculating the clue word score in section 3.2.2 for bug

reports.

2.2.2 Naïve Bayes Classifier

The Multinomial Naïve Bayes (NB) algorithm is a widely used text classification tech-

nique. It is a generative classifier because the classification model tries to generate the most

suitable class that the document belongs to based on the set of features in the document.

Here the features are a set of unordered words in the documents. Since we do not consider

16

2.2. BUG REPORT SUMMARIZATION

the order that the words appear in the document, each document is an unordered bag-of-

words. Then the frequency of each word in a document is calculated. As Naïve Bayes

is a probabilistic classifier, when classifying a document d to its class c ∈ C the classifier

returns the class ĉ which has the maximum probability. Equation 2.1 is used to calculate

the probability for a given document belonging to a class.

ĉ = argmax
c∈C

P(c|d) (2.1)

To calculate the maximum probability for a given document, for each class we find

the prior probability of each class and the likelihood that a document belongs to a class.

Therefore, we can rewrite the above equation as shown in Equation 2.2.

ĉ = argmax
c∈C

P(d|c)P(c) (2.2)

The prior probability for classes can be calculated by dividing the total number of docu-

ments for a given class by the total number of documents in all classes as shown in Equation

2.3.

P(c) =
Nc

Ndoc
(2.3)

The likelihood of document d belonging to class c is calculated by dividing the frequen-

cies of each word in a document by frequency of the same word in entire vocabulary V, then

multiplying all the resulting fractions. Equation 2.4 shows how the likelihood is calculated.

P(d|c) = ∏
i∈positions

P(wi|c) (2.4)

where,

P(wi|c) =
count(wi,c)

∑w∈V count(w,c)
(2.5)

To avoid underflow and to increase the speed, NB calculations are done in log space.

17

2.2. BUG REPORT SUMMARIZATION

Therefore, the Equation 2.2 can be written as follows:

ĉ = argmax
c∈C

log P(c)+ log ∑
i∈positions

P(wi|c) (2.6)

2.2.3 Support Vector Machine

Support vector machine (SVM) is a discriminative classifier that tries to separate a doc-

ument from other classes based on its features. The support vector machine generates a

boundary between classes that has the maximum margin between classes. The underly-

ing mathematical concept behind training SVM is a complex process. Therefore, we will

illustrate how SVM classifies data using an example (Figure 2.2).

Figure 2.2: Example that demonstrate how support vector machine separate two groups of
data.

In our example, we have chosen two-dimensional data so that we can represent it clearly

and simply. As our data is in two-dimensional space, the boundary that separates the two

classes is a line. In this case, it is a straight line. SVM defines this boundary based on

the largest margin that it can create with the points from both classes. In Figure 2.2, the

boundary is represented with a solid line and the margins are represented using dashed

lines. As can be seen, there are two points from each class plotted on the margins, with the

18

2.2. BUG REPORT SUMMARIZATION

boundary drawn in the middle of the margins. The idea behind SVM is that the boundary

that separates the classes depends on those data points closest to it. Those points are known

as support vectors because if those points shift the boundary shifts as well.

2.2.4 Topic Modelling

Topic modelling is an information retrieval (IR) method that uncovers a set of themes

to which each document belongs. In topic modelling, topics are a collection of dominant

words that appear in similar documents. As documents are a collection of words, the algo-

rithm searches through documents and finds a group of words that often appear together in

documents.

The Latent Dirichlet Allocation (LDA) algorithm is a commonly used algorithm for

topic modelling. The documents that are passed to LDA are represented in a document-term

matrix. Then this matrix is converted into two lower dimensional matrices: a document-

topic matrix and a topic-term matrix where the number of topics is predetermined. Al-

though there are initial matrices for the word distribution of topics and the topic distribu-

tion in the documents, these distributions need to be improved. Each word in the topic

distribution receives a probability which is the product of two other probability measures.

The proportion of word w in document d assigned to a topic t (p1 = P(t|d)) is calculated

and then the proportion of assignment of topic t to all documents that are derived from the

particular word w is calculated from the previous probability (p2 = P(w|t)). Finally, the

product of p1 and p2 is used to update the probability of each word in the topic distribu-

tions. The process is repeated for a predefined number of iterations until the probabilities

converge.

2.2.5 Evaluating Bug Report Summaries

Previous studies used precision, recall, and F-Score to evaluate computer generated

summaries. As the GSSs were created using more than one human annotator, pyramid pre-

cision was also used to evaluate summaries. The pyramid precision metric was introduced

19

2.3. VISUALIZATION OF BUG REPORT SUMMARIES

by Nenkova et al. to measure the relative importance of information included in a summary

[37]. To calculate Pyramid precision, first, we count the number of times each sentence in

a summary was picked by an annotator. Then this number was divided by the number of

sentences with the highest possible links in the summary as shown in equation 2.7.

pyramid precision =
∑# links f or a sentence in a summary

highest possible links f or the same # sentences
(2.7)

For example, if a summary was generated with five sentences and three of the sentences

were linked by two annotators and remaining two sentences were linked by a single anno-

tator, the total number of links in the summary is (3× 2)+ (2× 1) = 8. If the annotated

summaries for the same document (or a bug report) has four sentences with three links and

five sentences with two links and rest of sentences were only linked by one annotator, the

best possible number of links for the same size summary is (4×3)+(1×2)= 14. Therefore

the pyramid precision for the document is calculated as PyramidPrecision = 8
14 ≈ 0.57.

2.3 Visualization of Bug Report Summaries

The Rastkar et al. [38, 39] and Mani et al. [31] studies did not address the visualization

of the bug report summaries. However, Lotufo et al. created two different views for a sum-

mary; one that only displays the summary sentences and the other that has the entire bug

report and highlights the summary sentences [30]. The user study conducted by Lotufo et

al. found that 56% preferred the condensed summary view whereas 46% preferred the in-

terlaced view [30]. The comments from that user study indicated that some users preferred

the interlaced view as they did not trust the automatic summarizer. However, the sentence

highlighting allowed such users to read through the comments quickly. On the other hand,

users did not find that the interlaced view is useful with very long bug reports.

A study that did focus on bug report summary visualization was by Yeasmin et al. [44].

Their visualization approach is similar to Lotufo et al.’s technique [30]. However, instead

of using one colour, Yeasmin et al. used different colours for the summary sentences so that

20

2.5. SUMMARY

a user can focus his/her attention on the specific colour coded sentences in the original bug

report.

2.4 Tagging Bug Report Comments

As part of their work on providing an efficient interface for bug report triaging, Bortis

and van der Hoek commented that information in bug report summaries should be inter-

pretable at-a-glance but still have the descriptive information readily available [10]. In their

work, tags were used to mark bug reports with common characteristics. Similarly, in our

work, we developed tags to mark sentences with common attributes such as code snippets,

URLs, and quotes from other comments.

Mani et al. found that identifying and removing noise when training the classifier im-

proved the performance of the classification model. They identified syntax, stack traces, and

error messages (labelled as code) and greeting sentences (labelled as other) as noise [31].

Similar to Mani et al.’s approach we identify but do not emphasize the sentences that have

noise tags (e.g. URL, code, and off-topic). We provide an interface that presents informa-

tion to understand the bug report with the flexibility of viewing other information if desired.

Therefore, unlike Mani et al.’s approach which completely removed noise sentences for the

user, we allow selective access to any information in the bug report.

Rastkar et al.’s corpus contains tags that describe the intent of a sentence. They used

the labels problem, suggestion, fix, agreement, disagreement, and meta [39]. The meta

label was used for code snippets, stack traces, and error messages with the other tags being

self-explanatory. Huai et al. also used the idea of intentions to improve the classification

model [24]. In our work, we chose to refrain from using those tags because of the inherent

problems with human annotated information. Instead, we proposed a broad set of tags that

can be extracted based on keywords (or key phrases) and regular patterns such as URLs or

enumerated lists.

21

2.5. SUMMARY

2.5 Summary

Previous studies have created supervised and unsupervised bug report summarization

models. Unsupervised models performed well as summarizers when generating the sum-

maries for new bug reports, whereas supervised models were sensitive to the training data,

and therefore did not perform as well. NLP techniques were widely used in summarization

studies when extracting features and finding structural dependencies. Annotated summaries

were used to evaluate automatically generated bug report summaries. Precision and recall

were widely used metrics when evaluating summaries. When more than one annotated sum-

maries are available, pyramid precision also can be applied as an evaluation metric. Very

few studies focused on bug report visualization while the majority of the studies simply

displayed the extracted sentences from a bug report as a summary.

22

Chapter 3

Feature Evaluation for Automatic Bug
Report Summarization

Rastkar et al. [38, 39] presented an extractive approach to bug report summarization. Their

approach selected sentences to be extracted from the bug report based on a variety of fea-

tures extracted from sentences. As part of our work on bug report summarization, we

investigated whether reasonable extractive summaries of bug reports can be created with-

out the use of the complex features used on Rastkar et al.’s approach [38, 39], and how the

different features contribute to the creation of a reasonable extractive summary. The linear

regression model trained by Rastkar et al. achieved 57% precision and 35% recall. We

used the word “reasonable” in here to emphasize how useful the sentences extracted from

bug reports to create a summary for a software engineering task considering the moderate

scores achieved by the classifier.

3.1 Bug Report Features for Summarization

Rastkar et al. used 24 features that were categorized into four sets: sentence length,

lexical features, structural features and features related to the participants of the conver-

sation in the bug report [38, 39]. As Rastkar et al. found that the F-score statistics of the

structural and participant-related features have low variability, we focused our study on the

length and lexical features (shown in bold in Table 3.1) [38, 39]. Also, we chose to re-

move the complex features, those related to sentence entropy, to investigate how extractive

summaries are selected without the use of these features and compare them to manually

23

3.2. CREATING AN ABSTRACT SENTENCE RECOMMENDER

created summaries. In short, we investigated the use of two sentence length features, six

conditional probability scores, four cosine similarity scores, and the clue-word score. The

details for these features are explained in the following two sections.

3.2 Creating an Abstract Sentence Recommender

Creating a recommender for selecting sentences for the creation of an extractive sum-

mary has four steps. A high-level diagram of the recommender creation process is shown

in Figure 3.1.

The first step is to select bug reports that will be used to train the recommendation

model. The second step is to extract features from the sentences in the reports. We extracted

thirteen features as show in bold in Table 3.1. The third step is to train the text classifier that

will classify a sentence as being in a summary or not. We use a logistic regression model

to assign a probability value to each sentence. The fourth step is to create the summary.

We sort the sentences in descending order according to the probability assigned by the

regression model.

Figure 3.1: Recommender creation process.

3.2.1 Data Source

We use the bug report corpus created by Rastkar et al. [38, 39] in our investigation. The

bug report corpus consists of thirty-six (36) bug reports extracted from four open source

software projects: Mozilla12, KDE13, Eclipse14 and Gnome15. Each bug report in the cor-

12bugzilla.mozilla.org, verified 09/12/2018
13bugs.kde.org, verified 09/12/2018
14bugs.eclipse.org/bugs, verified 09/12/2018
15bugzilla.gnome.org, verified 96/12/2018

24

3.2. CREATING AN ABSTRACT SENTENCE RECOMMENDER

Table 3.1: Features used for extractive summarization of bug reports

Category Feature Description

Length

SLEN Word count normalized by longest sentence in the bug
report.

SLEN2 Word count normalized by longest sentence in the
turn.

Lexical

MXS Max Sprob score.
MNS Mean Sprob score.
SMS Sum of Sprob score.
MXT Max Tprob score.
MNT Mean Tprob score.
SMT Sum of Tprob score.
COS1 Cosine similarity between sentences using Sprob.
COS2 Cosine similarity between sentences using Tprob.
CENT1 Cosine similarity between sentence and conversation

using Sprob.
CENT2 Cosine similarity between sentences and conversation

using Tprob.
THISENT Entropy of the current sentence
PENT Entropy after the current sentence
SENT Entropy before the current sentence
CWS Clue word score

Structural

TLOC Sentence position in the turn
CLOC Sentence position in the bug report
TPOS1 Time from the beginning of the conversation to the

turn
TPOS2 Time from the turn to the end of the conversation
SPAU Time between current and next turn
PPAU Time between current and prior turn

Participants
DOM Participants dominance in words
BEGAUTH Is first participant (0/1)

25

3.2. CREATING AN ABSTRACT SENTENCE RECOMMENDER

pus has a title which indicates from which of the software projects it comes. Each bug re-

port’s comments are given in a format such as that of two or more people taking turns when

having a conversation. Therefore, each comment is considered a turn and each turn has the

participant’s name, the time when the conversation started, and the text of the individual

sentences from the entire comment. Each bug report has two or more people participating

in the conversation. Bug reports are stored in an XML format with each identified by a

unique number.

The corpus also contains annotations made by three different annotators for each com-

ment indicating whether the sentence should be included in an extractive summary. Follow-

ing the procedure given by Rastkar et al. [38, 39], we created a GSS for each bug report by

including a sentence in the extractive summary if at least two annotators indicated it should

be included.

3.2.2 Extracted Features

Sentence Length Features

The two sentence length features extracted from each bug report comment are SLEN

and SLEN2. SLEN is the length of a sentence normalized by the length of the longest

sentence in all of the comments in the bug report. SLEN2 is the length of a sentence

normalized by the length of the longest sentence in the specific bug report comment.

Probabilistic Weight Related Features

In our investigation, ten probabilistic features were extracted from each sentence of a

bug report comment. These lexical features are based on two different conditional proba-

bilities known as Sprob (for sentence probability) and Tprob (for turn probability).

Equation 3.1 defines Sprob. Given a term t by a person making a comment, Sprob is

calculated by finding the maximum probability of that term’s appearance in sentences from

all of the comments S. For example, assume there are three commenters for a bug report:

A, B and C. If A used the word w1 seven times, B used w1 twice and C used w1 once, then

26

3.2. CREATING AN ABSTRACT SENTENCE RECOMMENDER

the maximum probability of w1 is 0.7, and all instances of w1 in the bug report receive 0.7

as their Sprob weight.

Sprob(t) = P(S|t) (3.1)

Equation 3.2 defines Tprob. Given a term t by a person making a comment, Tprob is

calculated by finding the maximum probability of that term’s appearance in a comment T.

For example, if a bug report has five comments and the word w2 appears eight times in one

comment, twice in another comment, and in no other comments, then Tprob(w2) is 0.8.

Tprob(t) = P(T |t) (3.2)

Using each conditional probability weight, we calculated three sentence level condi-

tional probability features for the sum of weights, maximum weight and mean of weights.

For Sprob the features calculated were SMS, MXS and MNS for sum, max and mean re-

spectively. Similarly, for Tprob the names were SMT, MXT and MNT.

We calculated four cosine similarity scores for each sentence using Sprob and Tprob as

the word encoding. COS1 and COS2 represented the sentence-wise cosine similarity using

Sprob and Tprob respectively. CENT1 and CENT2 represent the similarity of a sentence to

the entire conversation using Sprob and Tprob respectively.

Clue Word Score

The clue word score was originally developed to summarize e-mails [13]. The authors

leverage the quoted text in emails to find dependencies between e-mails. Then they exam-

ined the words in the quoted text and original text. If a word, or its root form, was repeated

in both the quoted and original text in the emails, such a word is considered as a clue word.

A clue word is an indication of the continuation of the same conversation.

Comments in bug reports also have quoted sentences. Developers quote previous com-

ments to request further information or to provide a reply if the quoted text was a question.

27

3.2. CREATING AN ABSTRACT SENTENCE RECOMMENDER

Figure 3.2: Communication thread in bug report (Firefox:#449596)

Therefore, Rastkar et al. used the clue word score as one of the features for bug report

summarization [38, 39].

Calculating the clue word score is a three-step process. First, the program examined

each comment from the beginning of the bug report to the end to find quoted sentences.

Quotes were identified using the “>” symbol that appeared in front of a sentence. Once a

quote was detected the program traverses backward to find the original sentence which is

usually in a previous comment. If the original sentence was found that was extracted. Every

non-quoted sentence in the comment where the quoted sentence was found also extracted.

This process was carried out until the program reached the end of the bug report.

The second step was to create a graph using the extracted sentences. The nodes in the

graph were the sentences. Directed edges were drawn from each non-quoted sentence to

the original sentence of the quoted sentence. For example in Figure 3.2 the sentence 14.2 is

a quoted sentence and the sentence 13.3 is its original. Therefore, all none quoted sentences

in the 14th comment should have draw a directed edge to 13.3 as shown in Figure 3.3. This

graph was known as the fragment quotation graph.

Once the fragment quotation graph was created, the third step was to calculate the clue

word score for each sentence in the graph. The program traversed through each node and

28

3.2. CREATING AN ABSTRACT SENTENCE RECOMMENDER

Figure 3.3: Example fragment quotation graph according to the Figure 3.2

examined a node’s parent and child nodes to count the number of clue words. Equation 3.3

shows how the clue word score is calculated for word wi. Equation 3.4 shows how the clue

word score is calculated for all clue words in sentence S.

CWS(wi,N) = ∑
parent(N)

f req(wi, parent(N))+ ∑
child(N)

f req(w1,child(N)) (3.3)

CWS(S) = ∑
w j∈S

CWS(w j,N) (3.4)

3.2.3 Bug Report Summary Creation

A logistic regression model was used to create a classifier which classifies each sentence

from the bug report comments as appearing or not appearing in the extractive summary. The

Python sklearn package was used to implement the sentence classifier. Various logistic

regression models were trained to test the effect of the individual feature types and the com-

bined effect of the length and lexical features regarding the performance of the classifier.

29

3.3. EVALUATION

Following the procedure outlined by Rastkar et al., an extractive bug report summary

was created by selecting the sentences with the highest probability of being included in

the extractive summary according to the classifier until the word count of the constructed

summary reached 25% of the original bug report’s word count [38, 39].

3.3 Evaluation

To compare our model with Rastkar et al.[38, 39], we trained a logistic regression model

using our thirteen selected features. We used the metrics of precision, recall and F-score to

evaluate the different models.

Precision measures the percentage of sentences in the extractive summary that were

correctly selected compared to the gold-standard summary. It was calculated as the total

number of sentences correctly classified as being in the extractive summary divided by the

total number of sentences in the extractive summary.

Precision =
o f sentences correctly selected

total # sentences in the summary
(3.5)

Recall measures how close the generated summary is to the GSS summary. It was

calculated as the total number of sentences correctly classified as being in the extractive

summary divided by the total number of sentences which appeared in the GSS summary.

Recall =
o f sentences correctly selected

total # sentences in GSS summary
(3.6)

The F-score value is the harmonic mean of precision and recall.

F− score =
2× precision× recall

precision+ recall
(3.7)

30

3.4. LESSONS LEARNED

3.3.1 Comparison to the Previous Approach

When we compare the results of our logistic regression model using a 25% word count

threshold with that of Rastkar et al.’s [38, 39], we found that our model has an average

precision and recall that is less than theirs (Table 3.2). However, this decrease is to be

expected, given that thirteen features are used in our model compared to 24 features in

Rastkar et al.’s model [38, 39].

Table 3.2: Comparison of our results with Rastkar’s results

Our model Rastkar’s model

Precision 44% 57%
Recall 24% 35%
F-Score 29% 40%

3.3.2 Examining Feature Groups

We examined the model performance when only certain feature groups were used. It

was found that when using only the sentence length features (SLEN and SLEN2), the clas-

sifier had an average precision of 60%, and the recall was found to be very low at 18%.

Using only the probabilistic weights as features (SMS, MXS, MNS, SMT, MXT, MNT),

we found that the recall improved to 22%, but the precision declined to 42%. The model

which combined both the length and lexical features had a precision of 44% and a recall

of 24%. The sentence similarity (COS1, COS2) and the conversation similarity (SENT1,

SENT2) were similar to the scores of probabilistic weights. Clue word score (CWS) on the

other hand performed well overall considering an F-score of 37%. Figure 3.4 shows the

performance results of the different classifiers that we trained.

31

3.4. LESSONS LEARNED

Figure 3.4: Average precision, recall and F-score value of leave-one-out cross validation
for classifiers of different feature groups

3.4 Lessons Learned

In training the logistic regression model with the sentence length and lexical features,

we found that lengthy sentences often contained useful information needed to create a good

summary. This is consistent with the literature which states that the sentence length is used

to eliminate short sentences from the summary that do not contain useful information, such

as author names or code extractions [27, 28, 42]. However, we also found that only using

the length of the sentence was not enough to capture all of the useful sentences, as selecting

longer sentences resulted in quickly reaching the word percentage threshold. Our results

for the use of lexical features also show that the recall is higher when the length is not

considered, as the classifier selects more of the shorter sentences thereby increasing the

recall.

As we are taking a supervised learning approach to summary creation, the results are

sensitive to the summaries found in the GSS. When comparing the word count of the sum-

maries in the GSS for each bug report, we found that some summaries had a word count of

more than 50% of the original bug report’s word count. As we used a word count threshold

of 25% of the original bug report’s word count for the summaries, our model is unlikely to

32

3.5. SUMMARY

choose all the sentences found in the GSS summary for some of these summaries and this

results in a low recall for the trained models.

Rastkar et al. hired three annotators to create extractive summaries. They used the kappa

test to measure the agreement level between annotators. The annotator agreement score

was 0.41 for their study [38, 39]. The disagreement levels indicated the different levels of

information requirements. If the human annotators cannot agree among themselves above

50%, achieving an automatic summarization solution that has high precision or recall is not

a realistic goal.

Our replication study confirms that certain features were very important in selecting

sentences to a summary. As we implemented only half of the features and we did not

implement sentence entropy related features those with higher variability score [38, 39],

our evaluation scores were lower. Even if we implemented the rest of the features, it only

confirms that we could train a moderately performing summarizer that does not work very

well for bug reports outside the training corpus. Rastkar et al. also confirmed that their

model was sensitive to the data in the training corpus.

3.5 Summary

We partially replicate the work of Rastkar et al. [38, 39] to evaluate the contribution

of different features to create a bug report summary. We learned that certain features were

useful in selecting summary sentences compared to others. We found that long GSS and

moderate agreement level between annotators affect the performances of the classifier. Our

findings of the feature evaluation study direct us to take a different approach to create bug

report summaries.

33

Chapter 4

Automatic Sentence Annotation

In chapter 2 we provided an overview of bug report summarization studies. Even though

unsupervised bug report summarization performed better than supervised models, fixed-

size summaries missed information required by certain software developers. In this chapter,

we provide a labelling technique that identifies the content in bug report comments. Then

later in the chapter, we introduce an interface that allows users to customize the content that

they want to see based on the labels.

4.1 Schemas for Bug Report Summarization

Bug reports contain structured and unstructured data [7]. Most of the comments appear

as free text, a form of unstructured data. Structured data in bug reports include code snip-

pets, stack traces, error reports, and attachments [8]. After careful examination of the bug

reports in Rastkar et al.’s corpus [38, 39], we developed a bug report schema for summa-

rization, as shown in Figure 4.1. According to this schema, a bug report is composed of

sentences. The content of these sentences could be of interest to software engineers and we

can use features and keywords to identify the interesting sentences. Some of the sentences

have dependencies on other sentences in the bug report. We can use these dependencies

between sentences to apply techniques such as clue words [13] and topic modelling.

The sentences in bug report comments are created with various intentions. We devel-

oped a schema for categorizing the four common intentions that we observed in bug reports,

as shown in Figure 4.2.

34

4.1. IDENTIFYING COMMENT INTENTION

Figure 4.1: Bug report summarization schema

Figure 4.2: Bug report sentence intention schema

35

4.1. IDENTIFYING COMMENT INTENTION

The first comment in a bug report is always the description of the bug. The description

provides brief details about the bug. Some bug descriptions are written as a paragraph (i.e.

unstructured) and others are well-structured. In all cases, the three intentions of steps to

reproduce, actual outcome, and expected outcome are found. In a well-structured bug report

description, these intentions were easy to identify. We found that recently reported bug

reports, after year 2004 in Rastkar et al.’s [38, 39] corpus, were more likely to contain this

structure. However, when examining the bug reports in the their corpus, where some bug

reports were reported as early as the year 2000, automatically identifying these intentions

was more challenging as the descriptions were mostly of the paragraph form.

Other developers post comments once a bug is reported. Upon careful examination

of the comments subsequent to the first comment (i.e. bug description), we found three

intentions.

First, if a bug description or any other comment is not clear enough, developers re-

quest further information with a response appearing in a later comment. We identify such

comments as having an intention of clarification. As developers typically quote the orig-

inal sentence(s) from the previous comment(s) when they request further information or

when they respond to a request, this creates a communication structure similar to that of

email threads. Therefore, we can apply the “clue word score” [13] algorithm to identify the

connections between these sentences.

Second, sometimes when developers identify the problem, they create a solution. We

refer to this intention as resolution. We use two techniques to identify comments with

this intention: keywords and hyperlinks. We found that resolution comments often contain

keywords such as “fix”, “patch”, and “attachment”. In some cases, the comments contain

links to specific commits in the version control system. We used uniform resource locations

(URL) patterns to recognize such comments as also being resolution comments.

Lastly, a developer may introduce an idea to solve an issue but not provide the actual so-

lution as with a resolution comment. In this case, the comment is considered to have a plan

36

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

intention. We do not yet have a specific pattern or set of keywords to identify such com-

ments due to the diversity of scale for the problems described in bug reports and developers’

personal preference when composing comments. For example, if the proposed solution to

a problem is small, such as changing a parameter or adding one line to the source code, the

comment could be a single sentence. On the other hand, a proposed solution may be com-

plex and have multiple lines of code snippets and/or comments. Also, developers express

their plan in a variety of ways, such as enumerated lists and paragraphs. Consequently, we

were unable to derive a general enough heuristic to assign the plan label to comments with

a sufficient level of accuracy.

4.2 Automatic Labelling of Bug Report Comments

Now we present our approach for detecting and labelling the content in bug report com-

ments. First, we describe the dataset used to create and test our approach. Next, we present

the content labels and how these labels are applied.

4.2.1 Data Set

To develop and test our approach to automatically labelling bug report comments, we

chose to use the bug report corpus curated by Rastkar et al. [38, 39]. This choice was made

because the dataset is publicly available16 and is the bug report corpus used in previous two

studies by Mani et al. [31] and Lotufo et al. [30].

The bug report corpus is a collection of XML (Extensible Markup Language) docu-

ments with the following schema:

16https://github.com/HuaiBeibei/IBRS-Corpus verified 01/05/2020

37

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

<BugReport> The contents of a bug report.

<Title> The bug report title, product name, and the bug report
ID, as given by the bug tracking system.

<Turn> A turn represents a comment by a developer. A <Turn>
element contains three elements:

<Date> The date of the comment.

<From> The name of the developer who wrote the comment.

<Text> The text of comment. The <Text> element contains
one or more <Sentence> elements.

<Sentence> A line in the comment. This could be a
proper sentence, a line of code or an empty line.
All <Sentence> elements contain an ID attribute.

4.2.2 Data Extraction and Processing

We extracted each bug report from the corpus and processed the data in the following

manner:

1. The contents of <Sentence> elements were preprocessed using various techniques.

The text-clean module that we implemeted provides the following functionalities.

Each function takes a parameter to allow for customizing the cleaning process as

needed. For example, when detecting URL, symbols such as . and \ are required.

Therefore, one can set the parameter remove_punc = False to keep these symbols.

Remove punctuation We use the list of symbols in Python’s string.punctuation

to match and remove punctuation symbols in the text.

Remove digit Python’s string.digits provides the list of digits 0 to 9. We apply

a string translate function to remove digits from the text.

Remove emojis Although comments in bug reports seldom contain emojis, we do

remove them in cases where they occur. To remove emojis we use the emoji17

17https://pypi.org/project/emoji/ verified 11/06/2020

38

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

package developed for Python.

Convert HTML escape characters The corpus contains double escaped HTML

characters. For example, > is written as &gt;. Therefore, we run an

unescape function twice to convert such text. We use the Python html18

package to convert escaped characters.

Convert escape characters As the corpus contains escape characters, such as \",

we use Python package codec19 to decode these characters.

Remove stop words To identify stop words, we use the smart stopword list created

by Nayeem et al. [34], as it has more words than the regular stop word list

provided by the nltk English word list. All words in the corpus are converted

to lower case in this function because all words in the stopword list are in lower

case.

Lemmatize words Word lemmatization is used to get the root form of a word. For

example, carry is the result of lemmatizing the word carries. We used the Word-

NetLemmatizer20 from Python’s nltk package. We prefer lemmatizing over

stemming because stemming does not provide the actual root word. Using the

same example as above, the output of stemming would be carri.

2. The original text is passed to the following modules for labelling. The order of call-

ing the URL Detector, Code Detector, and Off-Topic Classifier is important

because the Code Detector and Off-Topic Classifier depend on the outcome

of the previously called modules. Note that the rest of the modules are independent

of each other, and the order of use is not important.

URL Detector All comments are passed into this module to find sentences contain-

ing URLs. Since most of the URLs point to files or commits in a version control
18https://docs.python.org/3/library/html.html verified 11/06/2020
19https://docs.python.org/3/library/codecs.html verified 11/06/2020
20https://www.nltk.org/_modules/nltk/stem/wordnet.html verified 11/06/2020

39

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

system (e.g. Subversion) or other reports in the bug tracking system, a developer

can use these links to examine these file or bug reports as needed.

Code Detector The code detector identifies syntax, error messages, stack traces, and

preference parameters in all of the comments. This module ignores the sen-

tences labelled by the URL Detector.

Off-topic Classifier A Naïve Bays classifier was trained to detect off-topic sentences

using comments extracted from YouTube and StackOverflow. Comments from

YouTube were used as positive examples (i.e. off-topic sentence) whereas com-

ments from StackOverflow were used as negative examples (ie. on-topic sen-

tences). Digits and punctuation symbols are removed from each sentence before

they are passed to this classifier. This module ignores sentences labelled by the

URL Detector and Code Detector.

Clue-word Detector The entire bug report is passed in to determine the clue-word

relationships between sentences for detecting the clarification intention.

Topic Modeller Topic words are extracted from each bug report and each sentence

is compared against the created topic word list. Since topic words represent

the dominant themes in a discussion, sentences containing these words have a

higher significance over other sentences. This information is useful as every

developer does not quote comments when responding to a previous comment.

Reproduction Step Detector Only the first comment (i.e. bug report description) is

passed into this module. The module finds the sentences that describe the bug

and its reproduction steps for detecting the steps to reproduce intention.

Resolution Detector All comments, except the first one, are passed into this module

to identify sentences with the resolution intention.

40

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

Figure 4.3: Overview of the labeling and summarization process

Table 4.1: Description of labels

Label Description

Des Bug report description including steps to reproduce, expected outcome
and actual outcome

CW Clue words
Org Original sentence if the sentences is quoted in later comment
QT Quoted sentence from a previous comment
Topic Topic word is included
Res Resolution statements (contain fix, patch, attachment)
OT Off-topic sentence
URL Sentence contains a URL
Code Codes, stack traces, error messages and etc.

4.2.3 Automatic Assignment of Labels

We derive nine labels to identify the content found in bug reports. The labels are shown

in Table 4.1. The first six labels are assigned to sentences that are considered to contain

useful information for bug report users. The last three labels are assigned to sentences

considered to be unimportant or noise, which can then be filtered out as desired.

Description [Des] The bug report’s description contains essential information for soft-

ware developers. For example, steps to reproduce, observed results, and expected results

41

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

are all useful to triagers when determining duplicate bug reports or to developers when cre-

ating a fix. We apply the label Des to a sentence in the first comment if it is determined

to contain steps to reproduce the bug, observed results or expected results. Regular ex-

pressions are used to capture the explicitly stated steps to reproduce, observed results, and

expected results. If these regular expressions fail, a regular expression for identifying any

enumerated lists is used, with the assumption that such a list is describing the steps for re-

production. Finally, the sentences in the bug report description are compared with the bug

report title. If there is a common word in both the sentence and the title, we apply the Des

label to the sentence. Note that we remove stopwords and lemmatize the words to identify

variations of the same word that appears in the comments and the title.

Clue Word [CW], Orginal [Org], and Quoted [QT] Developers often quote comments

from other developers when they need further information about that comment or when they

need to respond to that comment. For example, if a developer posts a question, another

developer will post the answer by first quoting the question and then replying. Or if a

developer posts a way to solve a bug, another developer will post a comment accepting

the solution or requesting more information by quoting the solution. As these quotes and

responses create a chain-like communication between developers, we use the labels Org

for an original sentence (i.e. start node) and QT for when that sentence is quoted (i.e. end

node). The label CW is attached to a sentence if both the response and the quote have words

in common. CW denotes the presence of “clue words” as proposed by Carenini et al. [13]

for email summarization.

Figure 4.4 shows a portion of a bug report from Rastkar et al.’s corpus [38, 39] that

contains a communication thread. In Turn 5, there are two quoted sentences (sentences 5.2

and 5.3) from Turn 4. The two sentences in Turn 4 receive the Org label and the sentences

5.2 and 5.3 in Turn 5 receive the QT label. The unquoted sentences in Turn 5 are possible

responses. If a sentence has a common word (or at least a common root form) with a

quoted sentence, the unquoted sentence receive a CW label. Here, the sentence 5.5 has the

42

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

Figure 4.4: Communication thread in bug report (Firefox:#495584)

word renamed and the quoted sentence 5.3 has the word rename. Therefore, the sentence

5.5 receives the label CW.

How a clue word score is calculated for bug reports was explained in Section 3.2.2. As

we are interested in the sentences that have clue words, not the number of clue words, we

add the label CW to a sentence that has at least one clue word.

[Topic] In Rastkar et al.’s corpus [38, 39], we observed that developers sometimes re-

spond to other comments without quoting the previous comment(s). As the communication

threads are not explicit, we can not directly identify such communication patterns in the bug

report, resulting in our automatic labelling approach missing important information and the

comments not receiving a label.

To address this problem, we chose to identify comments that participate in a common

topic, specifically the dominant topic in the bug report. To do this, we applied a topic

modelling approach from natural language processing. Topic modelling is a technique used

to identify topics from a pool of documents from different fields [9]. However, we are not

interested in identifying the different topics in a bug report in the work. Instead, we utilize

43

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

the technique to capture the dominant topic words in the bug report by extracting only one

topic from the topic model for each bug report. Then we compare the comments against the

set of topic words to find comments that participated in the dominant conversation of the

bug report. We assign the label Topic to these sentences.

We use the Latent Dirichlet Allocation (LDA)21 model in the Python gensim package to

extract topic words from a bug report. We remove sentences labelled with OT, Code, or URL

as those do not contain useful information for topic extraction. The remaining sentences

are passed through our text cleaning module before creating the bag of words for the bug

report.

Resolution [Res] Once a bug report is created, it goes through different states, as indi-

cated by the report’s status, with the actual states differing between bug tracking systems

[3]. During these different states, developers try to reproduce the bug, provide screenshots

or mock-ups of user interfaces, create partial solutions, or create patches that may be ac-

cepted as the solution by another developer. Such attachments, partial patches and final

solutions are of interest to bug report users [7].

We use regular expressions to identify attachments and comments that reflect the final

solution or an intermediate step towards the final solution. The label Res is assigned to a

sentence if that sentence has such keywords as push, fix, patch, attach, attachment,

and commit. Similar to clue word matching, we do root word matching instead of exact

word matching.

When examining Rastkar et al.’s corpus [38, 39], we found comments such as “Patch

3” and “Previous patch with some minor adjustments.” (from bug report Eclipse #224588).

Therefore, we use the regular expressions ^patch.* and .*patch.* to capture such com-

ments. For the other regular expressions, we replace patch with the other keywords previ-

ously mentioned to identify comments that contain those keywords.

21https://radimrehurek.com/gensim/models/ldamodel.html verified 12/05/2020

44

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

Off-Topic [OT] During our inspection of the bug reports in Rastkar et al.’s corpus [38,

39], we found comments which did not contribute to the ongoing conversation. Those

comments were usually greetings or appreciations towards another developer, such as “Hi

John”, “Thank you”, “Great!”, or “Nice work!”. The label OT is assigned to such a sen-

tence to reflect that it is an off-topic comment in the bug report.

To determine the off-topic comments, we followed Chowdhury and Hindle’s approach

for filtering off-topic comments from Python IRC channels [16]. We extracted comments

from YouTube22 and StackOverflow23 (SO) as positive (i.e. off-topic) and negative (i.e.

on-topic) examples, respectively, to train a classification model. The YouTube dataset con-

sisted of comments from YouTube channels with the keywords English teaching, cook-

ing, news and sports, as these were considered to likely contain a good representation of

common off-topic comments with respect to software development. StackOverflow was

chosen because it has millions of questions and answers, where both the questions and an-

swers have comments to represent software development conversations. As posts in SO are

regulated by the community, we expected there to be fewer off-topic comments in SO com-

ments. We extracted ∼3000 lines of comments from each of YouTube and SO as positive

and negative examples, respectively. We manually filtered the comments from SO as we

did find a few greeting comments in that data. We excluded those comments when train-

ing the models. During preprocessing we converted all text to lower case and removed all

punctuations symbols, extra white spaces, and stopwords. Then we lemmatized the words

to remove the effect of variations of the same word. We trained a Support Vector Machine

(SVM) classifier and a Naïve Bayes classifier. We used the SVM model to categorize the

bug report comments into off-topic or on-topic comments because we found that the Naïve

Bayes classifier produced too many false positives. The results for both of these classifiers

are presented in Section 5.1.2. Note that this is the only sub-module that has a supervised

learning model. However, we made sure the classifier is not sensitive to the training dataset

22https://developers.google.com/youtube/v3/getting-started
23https://api.stackexchange.com/docs

45

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

by not using bug report comments. We believe our decision to follow Chowdhury and

Hindle’s [16] approach improves the generalizability of our model.

[URL] Uniform Resource Locators (URLs) are often added to bug reports by either de-

velopers or DevOps tools. For example, we observed links to other bug reports and to

version control commits. Links to other bug reports allow developers to investigate the

content of these other bug reports. This may help a developer in solving a current bug,

or a triager to create a “super bug” that gathers together a set of reports that have similar

behaviour. Links to version control systems, such as Git and Subversion, allow developers

to inspect the changes made by a patch. Although URLs may be considered as noise for

summarization, a bug report user could benefit from having these links accessible when a

deep investigation of all of the information is needed. Therefore, we consider being able to

identify URLs automatically and allowing users to view them as important.

We use regular expressions to identify URLs in comments and assign them the label

URL. During our investigation of Rastkar et al.’s corpus [38, 39], we found URLs for bug

reports in the bug tracking system, commits to the version control system, and web pages

to access information or download software. In general, all URLs used either http(s) or

ftp as the protocol. Therefore, we wrote two simple regular expressions, .*https?://.+

and .*ftp://.+, to identify URLs.

[Code] Bug report comments can contain code snippets, error messages, software con-

figuration parameters, stack traces and software version names and numbers. Although this

information may be relevant to a bug report, it may also not be essential for understanding

the bug report. Mani et al. [31] identified such information as noise in their study be-

cause the summarization models performed poorly when this noise was present. We assign

the label Code to such sentences so that the user can decide whether to show or hide such

information in the summary view.

We investigated two approaches to identify comments with such technical information.

46

4.2. AUTOMATIC LABELLING OF BUG REPORT COMMENTS

Figure 4.5: Syntax parse tree for sentence “Feel free to open a new bug if there is something
I missed.”.

Our first approach was to use the syntax parse tree structure of a sentence. For a gram-

matically correct sentence in the English language, the parse tree has the root node S to

represent a sentence, as shown in Figure 4.524. As code snippets, stack traces, and error

messages don’t follow the rules of English grammar, their tree structure does not have a

node S (Figure 4.6) and this information can be used to identify them. However, we found

that this method also identifies short sentences as Code because such sentences do not fol-

low grammar rules. For example, “Actual results” and “Fair point” were labelled as Code

by the module. Even though those sentences were perfectly meaningful to humans, for the

computer model, they were not. This led us to look into an alternative solution.

24The tree was generated using https://stanfordnlp.github.io/CoreNLP/corenlp-server.html verified
14/06/2020

47

4.3. A TASK RELEVANT BUG REPORT SUMMARIZER

Figure 4.6: Syntax parse tree for code public static void main(String ar[]).

Our second approach was to use a set of regular expressions to capture code snippets,

stack traces, error messages, and other software related configuration parameters. As our

dataset contained bug reports from four software projects, the programming languages used,

the error messages returned, the structure of stack traces, and the configuration settings pa-

rameters of the tools were all different. Therefore, we wrote various regular expressions to

capture different types of patterns. We found that writing multiple simple regular expres-

sions such as \S+.?[ch].* was sufficient when compared to complex regular expression

such as (\w+\/?)+[a-z\-]+\.?(h|cpp|c|java|py|html|css|js).*.

All of the regular expressions were written to a text file. This was done to all for modi-

fication of the existing regular expressions or to add new patterns without having to change

the software. We passed the original sentences from the bug report comments through

the code identifier without any preprocessing. Then each sentence (or line) was matched

against the patterns in the file to detect codes in comments.

4.3 A Task Relevant Bug Report Summarizer

Having labelled the bug report sentences by their content type or intention, an interface

can be provided to the bug report users which presents the labelling and allows the user to

filter the sentences according to their information needs. Figure 4.7 provides an example

of the user interface for such a tool that supports the creation of task-relevant bug report

48

4.3. A TASK RELEVANT BUG REPORT SUMMARIZER

Figure 4.7: User interface of customizable bug report summary

summaries. The interface is intentionally modelled after Mozilla’s Bugzilla25 interface to

leverage user familiarity with that or similar systems.

The tool provides access to all of the comments from the bug report instead of display-

ing only the automatically selected sentences as in the traditional bug report summarizer.

Similar to Bugzilla and other issue tracking systems, the user can choose to expand or

collapse individual comments at will.

At the top of the interface are checkboxes for the various labels, allowing the user to

show or hide sentences according to the particular sentence label. On the right-hand side is

provided a list of the dominant topic words within the bug report, allowing the user to filter

the sentences by topic.

As mentioned, sentences are displayed with a label indicating to which sentence cate-

gory it belongs. The labels are colour-coded to aid in understanding the relevance of the

sentence category. For example, the Resolution label is green to indicate a high perceived

relevance to a user, and the Off-topic annotation is yellow to indicate that the sentence is

likely not relevant to the user. In Figure 4.7, the user has selected to focus on sentences

25https://bugzilla.mozilla.org/ verified 20/05/2020

49

4.4. SUMMARY

with the labels Des, CW, Qt, Org, Topic, and Res. Sentences that are visible, but are not one

of these categories, are shown greyed out, such as “LOL, me too” which has an OT label.

When the user selects a topic word that they are interested in, the interface highlights

the word in the comments to focus the user’s attention. In Figure 4.7 the user-selected

preference in the topic word list, and the comments with this word are highlighted (e.g.

the sentence at the top of the screen).

4.4 Summary

In this chapter, we introduced a bug report summarization schema and a bug report

sentence intention schema. The schemas were used to identify the content in sentences in

bug report comments. We used regular expressions and substring matching to automatically

identify the content. Our labeling submodules were applied to bug reports extracted from

four bug tracking systems. The off-topic classifier is the only module that has a supervised

learning model. Since we did not use bug report data to train the model, we maintained its

generalizability. Finally, we introduced a task-relevant bug report summarizer that allowed

developers to create a custom bug report summary according to their information needs.

50

Chapter 5

Results and Discussion

In this chapter, we presented our results and discussed our findings of each sub-module. We

have given examples from the bug report corpus to better understand why some sentences

were incorrectly labelled.

5.1 Results

To develop and test our approach for automatically labelling bug report sentences, we

chose to use the bug report corpus curated by Rastkar et al. [38, 39]. This bug report corpus

is a collection of XML documents where sentences are identified by a <Sentence> tag.

Figure 5.1 shows a portion of the Firefox:#449596 bug report from this corpus.

The choice to use Rastkar et al.’s [38, 39] bug report corpus was made for two reasons.

First, the dataset is publicly available and is the bug report corpus used in the previous two

studies of bug report summarization by Mani et al. [31] and Lotufo et al. [30]. Second,

as the comment sentences are already identified and verified, this removes errors that may

occur by a sub-optimal sentence tokenisation approach on a raw bug report dataset.

5.1.1 Manual Labelling of Sentences

To evaluate the quality of our automatic sentence labelling approach, four volunteers

were asked to annotate by hand the sentences in Rastkar et al.’s corpus with the labels

from Section 4.2.3. One annotator examined and labelled the entire corpus. The other

volunteers were assigned non-overlapping thirds of the corpus to label independently. Once

the labelling was completed, the first annotator met individually with the other annotators

51

5.1. RESULTS

Figure 5.1: A portion of Firefox:#449596 bug report in Rastkar et al.’s corpus.

to resolve any disagreements. The agreed upon annotations were then compared with the

labels assigned by the approach.

5.1.2 Results of Automatic Labelling

Table 5.1 shows the precision, recall and F-score for each type of label assigned by our

approach. The remainder of this section provides a discussion for each labelling module of

these results. Equations 5.1 and 5.2 show how the precision and recall were calculated for

each label.

Precision =
o f labels correctly assigned

total # labels assigned
(5.1)

52

5.2. DISCUSSION

Table 5.1: Quality of automatic annotations

Label Precision Recall F-Score

Des 90.91% 48.34% 63.12%
CW 65.33% 63.64% 64.47%
Org 92.31% 98.63% 95.36%
QT 92.68% 98.7% 95.6%
Res 83.97% 77.06% 80.37%
OT (SVM) 58.23% 50% 53.8%
OT (Naïve Bayes) 54.43% 50.59% 52.44%
URL 86.84% 80.48% 83.54%
Code 63.81% 45.12% 52.86%

Recall =
o f labels correctly assigned

total # labels assigned by annotators
(5.2)

5.2 Discussion

5.2.1 Description Labeller

The Description Labeller achieved a 91% precision with a recall of 48%. After

analyzing the false negatives, we found that the automatic annotator missed the root form

similarity of words such as rescale and scaling. For example, in bug report GIMP:#164995

the term scale was in the title. The words rescaled and scaling appeared in the bug report

description. But the module lemmatizer failed to find the root form of those words as scale.

Therefore, the label Des was not assigned.

Most of the bug reporters used plain text to describe expected and actual software be-

haviour in the description. However, some reporters included stack traces along with other

text. This resulted in the Code Detector identifying code fragments and other program-

related sentences that were part of the description. However, recall that the Description

Labeller uses three different strategies to assign a Des label: words in common with the

title, enumerated lists, and structured text. As a result, the Description Labeller would

assign the Des label to the same sentences as those identified by the Code Detector, if

53

5.2. DISCUSSION

the sentences appeared after the identified steps to reproduce, actual behaviour, and ex-

pected behaviour. For example, lines 18-151 of the description in Bugzilla:#429126 is a

stack trace. As the expected behaviour is explained in lines 15-17, the Description La-

beller labelled every sentence afterwards (i.e. the stack trace) as Des. In other words, the

Description Labeller falsely labelled 133 sentences in this bug report.

When investigating the reasons for a low recall rate (48.34%), we found that the De-

scription Labeller failed to distinguish between the use of some words from code,

whereas a person would make this distinction. For example, the title of Eclipse:#260502

has the word class inside brackets (i.e. "class") and the word class is repeated in the first

comment. To a person, it is obvious that the reporter is describing class documentation,

however to the Description Labeller these sentences appeared to be a piece of code

and was not labelled.

5.2.2 Clue word Detector

The Clue word Detector achieved a 65% precision and a 64% recall. We found that

the detector did well at capturing original (Org) and quoted (QT) sentences. However,

capturing clue words (CW) was not as effective.

When investigating the clue words missed by the detector, we found that certain words

were not converted to the expected root form by the lemmatizer. For example, localization

was not converted to the same root as localize. Although a person can identify such words

as clue words, the Clue word Detector failed to identify such words that had similar

semantics.

5.2.3 Off-topic Classifier

The Off-topic Classifier trained using the SVM algorithm had a precision and

recall of 58% and 50%, respectively, whereas the Off-topic Classifier training using

a Naïve Bayes algorithm was a bit worse with a precision and recall of 54% and 51%,

respectively.

54

5.2. DISCUSSION

When training the off-topic classifier, we were careful about choosing our training data.

The positive data set extracted from YouTube contained greeting sentences, which were

usually very short (e.g. “Thank you”, “Thanks”, and “Much appreciated”). With the bug

report comments, we found that the classifier successfully detected short greetings similar

to the greetings in the training data, but the classifier failed when the sentences were long.

For example, in Eclipse:#224588 the sentence “Again, I think it’s a brilliant idea Martin.”

was not correctly labelled as being off-topic.

5.2.4 Code Detector

Our Code Detector achieved precision and recall values of 64% and 45%, respec-

tively. Regarding these values, when detecting code, the regular expression patterns in

the Code Detector captured syntax embedded in regular English sentences as opposed to

proper code snippets. Such sentences were not marked as code by the human annotators

because they observed that the programmers were discussing the code, not providing code

for context or as a solution.

When creating our labelling modules, we chose not to remove symbols and stop words

which are important for detecting programming language syntax. This resulted in some sen-

tences that contain brackets, parenthesis, and special symbols, which are common in pro-

gramming language syntax, being detected as code. For example, Eclipse:#223734 contains

the sentence “According to the JavaDoc in Platform.getResourceString(Bundle,String)...”,

which was labelled as code according to the regular expression (\S+\.?)+\(\S+,\S+\).*

used in the module. Another example is Eclipse:#260502 which describes an issue in a

JavaDoc file. The reporter provided an example of the order of defining a set of classes and

interfaces. As these comments contain the words class and interface we could not write

a regular expression pattern that identifies such a comment as code, but also correctly ex-

cludes sentences that contain the same words. Such situations resulted in the 45.12% recall

rate for the Code Detector.

55

5.3. SUMMARY

5.2.5 Resolution Detector

We found our Resolution Detector to be effective with precision and recall rates of

84% and 77%, respectively. Recall that the Resolution Detector searched for keywords

such as patch, push, commit, attach, and fix. Most of the comments that contained such

keywords, in their various forms, were found by the human annotators to describe either

the solution or an intermediate form of the final resolution for the bug report. However,

certain sentences were questions that inquired about a patch or a fix, or a further explanation

that contained one of the keywords. For example, Eclipse:#154119, contains the sentence

“It would be possible push parts of TextFieldNavigationHandler down to Platform Text...”,

which contains the keyword push but is not a resolution statement.

5.2.6 URL Detector

The URL Detector was effective in correctly identifying links, with a precison of 87%

and a recall of 80%. Although URL regular expressions are well-known and developed, the

reason that this detector did not achieve as a higher score was due to URL patterns in stack

traces. We found that some stack traces contained the text http://localhost which were

labelled as URL by the module. Such URLs were not considered useful to bug report users

by the annotators.

5.3 Summary

We evaluated the automatically assigned labels with manually annotated labels in the

modified bug report corpus. Some of the models received good results while some of those

received moderate results. Except for the off-topic classifier, all of the annotating modules

that we developed are unsupervised models. While our annotation models have room to

improve we believe this is a good starting point to create customized bug report summaries.

56

Chapter 6

Conclusion and Future Work

In this study, we focused on creating customizable bug report summaries. Our rationale for

having customizable summaries is that fixed-length summaries cannot support the different

information needs of diverse software development roles. We analyzed the contribution of

different features to create a bug report summary by partially reproducing Rastkar et al.’s

supervised learning model [38, 39]. Our findings and the comments of the user studies

conducted by Rastkar et al. [39] and Lotufo et al. [30] made us take a different approach to

bug report summarization. Since different users are interested in a variety of information,

we developed two schemas to identify the intentions of sentences in bug report comments.

We developed a set of labelling modules to identify the content or intention of sentences

in bug report comments according to the schemas that we developed. The empirical re-

sults indicate that in general, these labelling modules achieve sufficient precision and recall

scores for practical use. The code detector and off-topic classifier received slightly over

50% F-score. Even though those scores were not as high as the other sub-modules, they

provide a good first step in the direction of bug report sentence labelling.

6.1 Future Work

In examining the evaluation results, we identified a few future directions for this work.

6.1.1 Off-Topic Labeller

We believe that curating a better training dataset for the off-topic classifier would likely

improve the effectiveness of this labelling module. As previously explained, the sentences

57

6.1. FUTURE WORK

in the training data were manually filtered to remove greeting comments from StackOver-

flow data, and non-greeting and non-praising comments from the YouTube data. Although

we could try to gather similar data from bug reports, we believe that investigating NLP

word embedding techniques to further improve the accuracy of the off-topic classifier may

be a more feasible option.

6.1.2 Description Labeller

After implementing the description labeller, we found a study on automatically de-

tecting missing steps-to-reproduce and expected behaviour in bug report descriptions [15].

Their approach encoded 154 discourse patterns to capture steps-to-reproduce, expected be-

haviour, and observed behaviour. An investigation of the use of their approach to improve

the Description Labeller would be a logical next step in this work.

6.1.3 Plan Labeller

As previously mentioned, our work did not include a module to capture sentences with

the Plan intention in bug reports. After examining Chaparro et al.’s work, we believe that

finding appropriate discourse patterns could be a good starting point.

6.1.4 User Study of Customizable Bug Report Summaries

In this work, we evaluated the effectiveness of the labelling modules using a laboratory

experiment. Conducting a user study to determine how useful our automated sentence

annotations are to software developers is needed to further validate our approach. The

user study would involve software project members with different roles to understand the

importance of each label to their tasks and the usefulness of the interface presented in

Chapter 4.3.

58

Bibliography

[1] Apache tomcat bug reporting. https://tomcat.apache.org/bugreport.html#
How_to_write_a_bug_report. Accessed: 2020-02-03.

[2] Bug report writing guidelines - mozilla. https://developer.mozilla.org/
en-US/docs/Mozilla/QA/Bug_writing_guidelines. Accessed: 2020-02-03.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with an open bug repository.
In Margaret-Anne D. Storey, Michael G. Burke, Li-Te Cheng, and André van der
Hoek, editors, Proceedings of the 2005 OOPSLA workshop on Eclipse Technology
eXchange, ETX 2005, San Diego, California, USA, October 16-17, 2005, pages 35–
39. ACM, 2005.

[4] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th International Conference on Software Engineering, ICSE ’06,
pages 361–370, New York, NY, USA, 2006. ACM.

[5] John Anvik and Gail C. Murphy. Reducing the effort of bug report triage: Rec-
ommenders for development-oriented decisions. ACM Trans. Softw. Eng. Methodol.,
20(3):10:1–10:35, August 2011.

[6] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. Communication,
collaboration, and bugs: the social nature of issue tracking in small, collocated teams.
In Kori Inkpen, Carl Gutwin, and John C. Tang, editors, Proceedings of the 2010
ACM Conference on Computer Supported Cooperative Work, CSCW 2010, Savannah,
Georgia, USA, February 6-10, 2010, pages 291–300. ACM, 2010.

[7] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and
Thomas Zimmermann. What makes a good bug report? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, page 308–318, New York, NY, USA, 2008. Association for
Computing Machinery.

[8] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Ex-
tracting structural information from bug reports. In Ahmed E. Hassan, Michele Lanza,
and Michael W. Godfrey, editors, Proceedings of the 2008 International Working Con-
ference on Mining Software Repositories, MSR 2008 (Co-located with ICSE), Leipzig,
Germany, May 10-11, 2008, Proceedings, pages 27–30. ACM, 2008.

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, 2003.

59

BIBLIOGRAPHY

[10] Gerald Bortis and André van der Hoek. Porchlight: a tag-based approach to bug triag-
ing. In David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013, pages 342–351. IEEE Computer Society, 2013.

[11] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Comput. Networks, 30(1-7):107–117, 1998.

[12] Jaime G. Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In W. Bruce Croft, Alistair Moffat,
C. J. van Rijsbergen, Ross Wilkinson, and Justin Zobel, editors, SIGIR ’98: Proceed-
ings of the 21st Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, August 24-28 1998, Melbourne, Australia, pages
335–336. ACM, 1998.

[13] Giuseppe Carenini, Raymond T. Ng, and Xiaodong Zhou. Summarizing email con-
versations with clue words. In Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, page 91–100, New York, NY, USA, 2007. Association
for Computing Machinery.

[14] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Marcus. Reformu-
lating queries for duplicate bug report detection. In Xinyu Wang, David Lo, and Emad
Shihab, editors, 26th IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, pages
218–229. IEEE, 2019.

[15] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting missing information
in bug descriptions. In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and An-
drea Zisman, editors, Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017,
pages 396–407. ACM, 2017.

[16] Shaiful Alam Chowdhury and Abram Hindle. Mining stackoverflow to filter out off-
topic IRC discussion. In Massimiliano Di Penta, Martin Pinzger, and Romain Robbes,
editors, 12th IEEE/ACM Working Conference on Mining Software Repositories, MSR
2015, Florence, Italy, May 16-17, 2015, pages 422–425. IEEE Computer Society,
2015.

[17] Davor Cubranic, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. Hipikat: A
project memory for software development. IEEE Trans. Software Eng., 31(6):446–
465, 2005.

[18] Akalanka Galappaththi and John Anvik. Feature evaluation for automatic bug report
summarization (S). In Angelo Perkusich, editor, The 31st International Conference
on Software Engineering and Knowledge Engineering, SEKE 2019, Hotel Tivoli, Lis-
bon, Portugal, July 10-12, 2019, pages 205–274. KSI Research Inc. and Knowledge
Systems Institute Graduate School, 2019.

60

BIBLIOGRAPHY

[19] Zhongxian Gu, Earl T. Barr, Drew Schleck, and Zhendong Su. Reusing debugging
knowledge via trace-based bug search. In Gary T. Leavens and Matthew B. Dwyer,
editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part
of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 927–942. ACM,
2012.

[20] Zhongxian Gu, Earl T. Barr, Drew Schleck, and Zhendong Su. Reusing debugging
knowledge via trace-based bug search. In Gary T. Leavens and Matthew B. Dwyer,
editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part
of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 927–942. ACM,
2012.

[21] Udo Hahn and Inderjeet Mani. The challenges of automatic summarization. IEEE
Computer, 33(11):29–36, 2000.

[22] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. What
would other programmers do: suggesting solutions to error messages. In Elizabeth D.
Mynatt, Don Schoner, Geraldine Fitzpatrick, Scott E. Hudson, W. Keith Edwards, and
Tom Rodden, editors, Proceedings of the 28th International Conference on Human
Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA, April 10-15, 2010,
pages 1019–1028. ACM, 2010.

[23] Abram Hindle and Curtis Onuczko. Preventing duplicate bug reports by continuously
querying bug reports. Empirical Software Engineering, 24(2):902–936, 2019.

[24] Beibei Huai, Wenbo Li, Qiansheng Wu, and Meiling Wang. Mining intentions to
improve bug report summarization. In Óscar Mortágua Pereira, editor, The 30th In-
ternational Conference on Software Engineering and Knowledge Engineering, Hotel
Pullman, Redwood City, California, USA, July 1-3, 2018, pages 320–319. KSI Re-
search Inc. and Knowledge Systems Institute Graduate School, 2018.

[25] He Jiang, Najam Nazar, Jingxuan Zhang, Tao Zhang, and Zhilei Ren. PRST: A
pagerank-based summarization technique for summarizing bug reports with dupli-
cates. International Journal of Software Engineering and Knowledge Engineering,
27(6):869–896, 2017.

[26] Jaweria Kanwal and Onaiza Maqbool. Bug prioritization to facilitate bug report triage.
J. Comput. Sci. Technol., 27(2):397–412, 2012.

[27] A. Kiani-B, M. . Akbarzadeh-T., and M. H. Moeinzadeh. Intelligent extractive text
summarization using fuzzy inference systems. In 2006 IEEE International Conference
on Engineering of Intelligent Systems, pages 1–4, April 2006.

[28] Farshad Kiyoumarsi. Evaluation of automatic text summarizations based on human
summaries. volume 192, pages 3–91, 2015. The Proceedings of 2nd Global Confer-
ence on Conference on Linguistics and Foreign Language Teaching.

61

BIBLIOGRAPHY

[29] Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. Unsupervised deep bug
report summarization. In Foutse Khomh, Chanchal K. Roy, and Janet Siegmund,
editors, Proceedings of the 26th Conference on Program Comprehension, ICPC 2018,
Gothenburg, Sweden, May 27-28, 2018, pages 144–155. ACM, 2018.

[30] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. Modelling the ‘hurried’ bug
report reading process to summarize bug reports. Empirical Softw. Engg., 20(2):516–
548, April 2015.

[31] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey. Ausum:
Approach for unsupervised bug report summarization. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
FSE ’12, pages 11:1–11:11, New York, NY, USA, 2012. ACM.

[32] Qiaozhu Mei, Jian Guo, and Dragomir R. Radev. Divrank: the interplay of prestige
and diversity in information networks. In Bharat Rao, Balaji Krishnapuram, Andrew
Tomkins, and Qiang Yang, editors, Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
July 25-28, 2010, pages 1009–1018. ACM, 2010.

[33] Gabriel Murray and Giuseppe Carenini. Summarizing spoken and written conver-
sations. In 2008 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2008, Proceedings of the Conference, 25-27 October 2008, Honolulu,
Hawaii, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 773–
782. ACL, 2008.

[34] Mir Tafseer Nayeem. Methods of sentence extraction, abstraction and ordering for
automatic text summarization. Master’s thesis, Universtiy of Lethbridge, Department
of Mathematics and Computer Science, Lethbridge, AB, Canada, 2017.

[35] Ani Nenkova and Kathleen McKeown. A Survey of Text Summarization Techniques.
Springer US, Boston, MA, 2012.

[36] Ani Nenkova, Kathleen McKeown, et al. Automatic summarization. Foundations and
Trends® in Information Retrieval, 5(2–3):103–233, 2011.

[37] Ani Nenkova, Rebecca Passonneau, and Kathleen McKeown. The pyramid method:
Incorporating human content selection variation in summarization evaluation. ACM
Trans. Speech Lang. Process., 4(2):4–es, May 2007.

[38] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Summarizing software artifacts:
A case study of bug reports. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, page 505–514, New York,
NY, USA, 2010. Association for Computing Machinery.

[39] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Automatic summarization of bug
reports. IEEE Trans. Softw. Eng., 40(4):366–380, April 2014.

62

BIBLIOGRAPHY

[40] Simon Tatham. How to report bugs effectively. https://www.chiark.greenend.
org.uk/~sgtatham/bugs.html. Accessed: 2020-02-03.

[41] Ferdian Thung, Pavneet Singh Kochhar, and David Lo. Dupfinder: integrated tool
support for duplicate bug report detection. In Ivica Crnkovic, Marsha Chechik, and
Paul Grünbacher, editors, ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages 871–
874. ACM, 2014.

[42] W.M. Wang, Z. Li, J.W. Wang, and Z.H. Zheng. How far we can go with extractive
text summarization? heuristic methods to obtain near upper bounds. Expert Systems
with Applications, 90:439–463, 2017.

[43] Geunseok Yang, Tao Zhang, and Byungjeong Lee. Towards semi-automatic bug
triage and severity prediction based on topic model and multi-feature of bug reports.
In IEEE 38th Annual Computer Software and Applications Conference, COMPSAC
2014, Vasteras, Sweden, July 21-25, 2014, pages 97–106. IEEE Computer Society,
2014.

[44] Shamima Yeasmin, Chanchal Kumar Roy, and Kevin A. Schneider. Interactive vi-
sualization of bug reports using topic evolution and extractive summaries. In 30th
IEEE International Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3, 2014, pages 421–425. IEEE Computer Soci-
ety, 2014.

[45] Tao Zhang, Geunseok Yang, Byungjeong Lee, and Alvin T. S. Chan. Guiding bug
triage through developer analysis in bug reports. International Journal of Software
Engineering and Knowledge Engineering, 26(3):405–432, 2016.

[46] Xiaojin Zhu, Andrew B. Goldberg, Jurgen Van Gael, and David Andrzejewski. Im-
proving diversity in ranking using absorbing random walks. In Candace L. Sidner,
Tanja Schultz, Matthew Stone, and ChengXiang Zhai, editors, Human Language
Technology Conference of the North American Chapter of the Association of Com-
putational Linguistics, Proceedings, April 22-27, 2007, Rochester, New York, USA,
pages 97–104. The Association for Computational Linguistics, 2007.

63

Appendix A

Annotated Bug Reports

We derived nine labels to identify the content found in bug reports. We asked annotators to
fill a comma separated file (CSV) to indicate the contents of a sentence except for the label
Topic. Tables A.1 - A.36 show the annotated bug reports.

Table A.1: Annotated bug report (Firefox:#495584)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
1.13 1 0 0 0 0 0 0 0
2.1 0 0 0 0 1 0 0 0
2.2 0 0 0 0 1 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0
3.1 0 0 0 0 1 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 1 0 0 0
3.4 0 0 0 0 0 0 0 0
4.1 0 1 0 0 1 0 0 0
4.2 0 1 0 1 0 0 0 0

64

A. ANNOTATED BUG REPORTS

5.1 0 0 0 0 0 0 0 0
5.2 0 0 1 0 0 0 0 0
5.3 0 0 1 0 0 0 0 0
5.4 0 0 0 0 0 1 0 0
5.5 0 0 0 1 0 0 0 0
5.6 0 0 0 1 0 0 0 0
6.1 0 0 0 0 1 0 1 0

Table A.2: Annotated bug report (Firefox:#449596)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
2.1 0 0 0 0 1 0 0 0
2.2 0 0 0 0 0 0 0 0
3.1 0 0 0 0 1 0 0 0
4.1 0 0 0 0 1 0 0 0
4.2 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 1 0 1 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 1 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 1 0 0 0 0 0
6.5 0 1 0 1 0 0 0 0
6.6 0 1 0 1 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 1 0 0 0 0 0
7.3 0 0 0 0 0 1 0 0
7.4 0 0 1 0 0 0 0 0
7.5 0 0 0 1 0 0 0 0
7.6 0 0 0 0 0 0 0 0
8.1 0 0 0 0 1 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0

65

A. ANNOTATED BUG REPORTS

8.4 0 0 0 0 0 0 0 1
8.5 0 0 0 0 0 0 0 1
8.6 0 0 0 0 0 0 0 1
8.7 0 0 0 0 0 0 0 1
8.8 0 1 0 0 0 0 0 0
8.9 0 0 0 0 0 0 0 1
9.1 0 0 0 0 0 0 0 0
9.2 0 0 1 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
9.4 0 0 0 0 0 1 0 0
10.1 0 0 0 0 1 0 0 0
11.1 0 0 0 0 1 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 0 0
11.4 0 0 0 0 0 0 0 0
11.5 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 1 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 1 0 0 0 0 0 0
13.4 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 1 0 0 0 0 0
14.3 0 0 0 0 0 0 0 0
14.4 0 0 0 0 0 0 0 0
14.5 0 0 0 0 0 0 0 0
14.6 0 0 0 0 0 0 0 0
14.7 0 0 0 0 0 0 0 0

Table A.3: Annotated bug report (Firefox:#491925)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0

66

A. ANNOTATED BUG REPORTS

2.2 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 1 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 0 0 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0
5.7 0 0 0 0 0 0 0 0
5.8 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 1
9.3 0 0 0 0 0 0 0 1
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
11.1 0 1 0 1 0 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 1 0 0 0 0 0
12.3 0 0 0 1 0 0 0 0
12.4 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 0
12.6 0 0 0 1 0 0 0 0
12.7 0 0 0 1 0 0 0 0
12.8 0 0 0 1 0 0 0 0
13.1 0 1 0 1 0 0 0 0
13.2 0 1 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 1 0 0 0 0 0

67

A. ANNOTATED BUG REPORTS

14.3 0 0 0 0 0 0 0 0
14.4 0 0 0 1 0 0 0 0
14.5 0 0 0 1 0 0 0 0
14.6 0 0 0 0 0 0 0 0
14.7 0 0 0 1 0 0 0 0
15.1 0 0 0 0 0 0 0 0
15.2 0 0 1 0 0 0 0 0
15.3 0 0 0 0 0 0 0 0
15.4 0 0 1 0 0 0 0 0
15.5 0 0 0 1 0 0 0 0
15.6 0 0 0 0 0 0 0 0
15.7 0 0 0 1 0 0 0 0
16.1 0 0 0 0 0 0 0 0
16.2 0 0 0 0 0 0 0 0
16.3 0 0 0 0 0 1 0 0
17.1 0 0 0 0 1 0 0 0
17.2 0 0 0 0 0 0 0 0
17.3 0 0 0 0 0 0 0 0
17.4 0 0 0 0 0 0 0 0
17.5 0 0 0 0 0 0 0 0
17.6 0 0 0 0 0 0 0 0
17.7 0 0 0 0 0 0 0 0
17.8 0 0 0 0 0 0 0 0
17.9 0 0 0 0 0 0 0 0
18.1 0 0 0 0 1 0 0 0
19.1 0 0 0 0 1 0 0 0
19.2 0 0 0 0 0 0 0 0
19.3 0 0 0 0 0 0 0 0
20.1 0 0 0 0 1 0 0 0
20.2 0 0 0 0 0 0 0 1
21.1 0 0 0 0 0 0 1 0
21.2 0 0 0 0 0 0 0 0
22.1 0 0 0 0 0 0 1 0
23.1 0 0 0 0 1 0 0 0
23.2 0 0 0 0 0 0 0 1
23.3 0 0 0 0 0 0 0 1
24.1 0 0 0 0 0 0 0 0
24.2 0 0 0 0 0 0 0 0
24.3 0 0 0 0 0 0 0 0
24.4 0 0 0 0 0 0 0 0
24.5 0 0 0 0 0 0 0 0

68

A. ANNOTATED BUG REPORTS

25.1 0 0 0 0 0 0 1 0

Table A.4: Annotated bug report (Eclipse:#250125)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 1
1.8 0 0 0 0 0 0 0 1
1.9 0 0 0 0 0 0 0 1
1.10 0 0 0 0 0 0 0 1
1.11 0 0 0 0 0 0 0 1
1.12 0 0 0 0 0 0 0 1
1.13 1 0 0 0 0 0 0 0
1.14 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 1 0 1 0 0 0 0
3.2 0 0 0 0 0 0 0 0
4.1 0 0 1 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 1 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 1 0 0 0 0
4.6 0 0 0 1 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
7.1 0 0 0 0 1 0 0 0
7.2 0 0 0 0 1 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 0
7.5 0 0 0 0 0 0 0 0
7.6 0 0 0 0 1 0 0 0
7.7 0 0 0 0 0 0 0 0
7.8 0 0 0 0 0 0 0 0

69

A. ANNOTATED BUG REPORTS

7.9 0 1 0 1 0 0 0 0
7.10 0 0 0 0 0 0 0 0
7.11 0 0 0 0 0 0 0 0
8.1 0 0 1 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 1 0 0 0 0
8.4 0 0 0 1 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0

Table A.5: Annotated bug report (Eclipse:#224588)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 1
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 0 0 0 0 0 1 0 0
1.11 0 0 0 0 0 1 0 0
1.12 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 1 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 1
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 1
3.8 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0

70

A. ANNOTATED BUG REPORTS

5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 1 0 0 0
5.3 0 0 0 0 1 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 1 0 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0
6.1 0 0 0 0 1 0 0 0
6.2 0 0 0 0 0 0 0 1
7.1 0 0 0 0 0 0 0 0
7.2 0 0 1 0 0 0 0 0
7.3 0 1 0 1 0 0 0 0
7.4 0 1 0 1 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 1 0 0 0 0 0
8.3 0 0 1 0 0 0 0 0
8.4 0 0 1 0 0 0 0 0
8.5 0 0 0 1 0 0 0 0
8.6 0 0 0 0 0 0 0 0
9.1 0 0 0 0 1 0 0 0
9.2 0 0 0 0 1 0 0 0
10.1 0 0 0 0 1 0 0 0
10.2 0 0 0 0 0 0 0 1
11.1 0 0 0 0 1 0 0 0
11.2 0 0 0 0 1 0 0 0
11.3 0 0 0 0 1 0 0 0
11.4 0 0 0 0 0 0 0 0
12.1 0 0 0 0 1 0 0 0
12.2 0 0 0 0 1 0 0 0
12.3 0 0 0 0 1 0 0 0
13.1 0 0 0 0 1 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0
14.1 0 0 0 0 1 0 0 0
14.2 0 0 0 0 0 0 0 0
14.3 0 0 0 0 0 0 0 0
15.1 0 0 0 0 1 0 0 0
15.2 0 0 0 0 0 0 0 0
15.3 0 0 0 0 0 0 0 0
15.4 0 0 0 0 0 0 0 0
15.5 0 0 0 0 0 0 0 0
16.1 0 0 0 0 0 0 0 0

71

A. ANNOTATED BUG REPORTS

16.2 0 0 0 0 0 0 0 0
16.3 0 0 0 0 0 0 0 0
16.4 0 0 0 0 0 0 0 0
16.5 0 0 0 0 0 0 0 0
16.6 0 0 0 0 0 0 0 0
16.7 0 0 0 0 0 0 0 0
16.8 0 0 0 0 0 0 0 1
16.9 0 0 0 0 0 0 0 1
16.10 0 0 0 0 0 0 0 1
16.11 0 0 0 0 0 0 0 0
17.1 0 0 0 0 0 0 0 0
17.2 0 0 0 0 1 0 0 0
17.3 0 0 0 0 0 0 0 0
17.4 0 0 0 0 0 0 0 0
17.5 0 0 0 0 1 0 0 0
17.6 0 0 0 0 1 0 0 0
17.7 0 0 0 0 0 0 0 0
17.8 0 0 0 0 0 0 0 0
17.9 0 0 0 0 0 0 0 0
17.10 0 0 0 0 0 0 0 0
17.11 0 0 0 0 0 0 0 0
17.12 0 0 0 0 0 0 0 0
17.13 0 0 0 0 1 0 0 0
17.14 0 0 0 0 0 0 0 0
17.15 0 0 0 0 0 0 0 0
17.16 0 0 0 0 0 0 0 0
17.17 0 0 0 0 0 1 0 0
17.18 0 0 0 0 0 1 0 0
18.1 0 0 0 0 0 0 0 0
18,2 0 0 0 0 0 0 0 0
19.1 0 0 0 0 0 1 0 0
19.2 0 0 0 0 0 0 0 0
19.3 0 0 0 0 0 0 0 1
19.4 0 0 0 0 0 0 0 1

Table A.6: Annotated bug report (Eclipse:#223734)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0

72

A. ANNOTATED BUG REPORTS

1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
2.1 0 1 0 1 0 0 0 0
2.2 0 1 0 0 0 0 0 0
2.3 0 1 0 0 0 0 0 0
2.4 0 1 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 1 0 0 0 0 0
4.3 0 0 1 0 0 0 0 0
4.4 0 0 1 0 0 0 0 0
4.5 0 0 1 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 0 0 0 0
4.8 0 0 0 1 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 1
7.3 0 0 0 0 0 0 0 1
7.4 0 0 0 0 0 0 0 1
8.1 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0

Table A.7: Annotated bug report (Firefox:#437797)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 1 0 0
3.1 0 0 0 0 0 0 0 0

73

A. ANNOTATED BUG REPORTS

3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
6.1 0 0 0 0 1 0 0 0
6.2 0 0 0 0 1 0 0 0
6.3 0 0 0 0 1 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
7.1 0 1 0 1 0 0 0 0
7.2 0 0 0 0 0 0 1 0
7.3 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 1 0 0 0 0 0
8.3 0 0 0 1 0 0 0 0
8.4 0 0 0 0 0 0 0 0
9.1 0 1 0 0 0 0 0 0
9.2 0 1 0 1 0 0 0 0
9.3 0 1 0 1 0 0 0 0
9.4 0 0 0 0 0 1 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 1 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
10.4 0 0 1 0 0 0 0 0
10.5 0 0 1 0 0 0 0 0
10.6 0 0 0 0 0 1 0 0
10.7 0 0 0 1 0 0 0 0
10.8 0 0 0 1 0 0 0 0
10.9 0 0 0 1 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0

74

A. ANNOTATED BUG REPORTS

14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0
14.3 0 0 0 0 0 1 0 0
15.1 0 0 0 0 0 0 0 0
16.1 0 0 0 0 1 0 0 0
16.2 0 0 0 0 0 0 0 0
16.3 0 0 0 0 0 0 0 0
17.1 0 0 0 0 0 0 1 0

Table A.8: Annotated bug report (Eclipse:#260502)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 0 0 0 0 0 0 0 0
1.10 0 0 0 0 0 0 0 1
1.11 0 0 0 0 0 0 0 1
1.12 0 0 0 0 0 0 0 1
1.13 0 0 0 0 0 0 0 1
1.14 0 0 0 0 0 0 0 0
1.15 1 0 0 0 0 0 0 0
1.16 0 0 0 0 0 0 0 1
1.17 0 0 0 0 0 0 0 1
1.18 0 0 0 0 0 0 0 1
1.19 0 0 0 0 0 0 0 1
1.20 0 0 0 0 0 0 0 1
1.21 0 0 0 0 0 0 0 1
1.22 0 0 0 0 0 0 0 1
1.23 0 0 0 0 0 0 0 1
1.24 0 0 0 0 0 0 0 1
1.25 0 0 0 0 0 0 0 1
1.26 1 0 0 0 0 0 0 0
1.27 0 0 0 0 0 0 0 0
1.28 1 0 0 0 0 0 0 0

75

A. ANNOTATED BUG REPORTS

1.29 0 0 0 0 0 0 0 0
1.30 0 0 0 0 0 0 0 0
1.31 0 0 0 0 0 0 0 0
1.32 0 0 0 0 0 0 0 0
1.33 0 0 0 0 0 0 0 0
1.34 0 0 0 0 0 0 0 0
1.35 1 0 0 0 0 0 0 0
1.36 1 0 0 0 0 0 0 0
1.37 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0
2.6 0 0 0 0 0 0 0 0
2.7 0 0 0 0 0 0 0 0
2.8 0 0 0 0 0 0 0 0
2.9 0 0 0 0 0 0 0 0
2.10 0 0 0 0 0 0 0 0
2.11 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 1 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 0 0 0 0
4.8 0 0 0 0 0 0 0 0
4.9 0 0 0 0 0 0 0 0
4.10 0 0 0 0 0 0 0 0
4.11 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 1 0 0 0
6.1 0 0 0 0 1 0 0 0

76

A. ANNOTATED BUG REPORTS

6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
7.1 0 0 0 0 1 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 1 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
8.6 0 0 0 0 0 0 0 0
8.7 0 0 0 0 0 0 0 0
8.8 0 0 0 0 0 1 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 1 0 0

Table A.9: Annotated bug report (Firefox:#328600)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 1
1.2 0 0 0 0 0 0 0 1
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 1
5.2 0 0 0 0 0 0 0 1
5.3 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0

Table A.10: Annotated bug report (GIMP:#156905)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0

77

A. ANNOTATED BUG REPORTS

1.2 1 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
6.1 0 0 0 0 1 0 0 0
7.1 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
10.1 0 0 0 0 1 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
10.4 0 0 0 0 0 0 0 1
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 1
12.6 0 0 0 0 0 0 0 0
13.1 0 0 0 0 1 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 1 0 0 0
13.4 0 0 0 0 0 0 0 0
13.5 0 0 0 0 1 0 0 0
14.1 0 0 0 0 0 0 0 0

78

A. ANNOTATED BUG REPORTS

15.1 0 0 0 0 1 0 0 0
15.2 0 0 0 0 1 0 0 0
15.3 0 0 0 0 0 0 0 0
16.1 0 0 0 0 0 0 0 0
16.2 0 0 0 0 0 0 0 1
16.3 0 0 0 0 1 0 0 0
16.4 0 0 0 0 0 0 0 0
16.5 0 0 0 0 0 0 0 0

Table A.11: Annotated bug report (GIMP:#164995)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
4.1 0 1 0 0 0 1 0 0
4.2 0 1 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
6.6 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 0
7.5 0 0 0 0 0 0 0 0
7.6 0 0 0 0 0 0 0 0
7.7 0 0 0 0 0 0 0 0
8.1 0 0 1 0 0 0 0 0
8.2 0 0 0 0 0 1 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 1 0
9.1 0 0 0 0 0 0 0 0

79

A. ANNOTATED BUG REPORTS

9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 1 0 0 0
9.4 0 0 0 0 0 0 0 0
9.5 0 0 0 0 0 0 0 0
9.6 0 0 0 0 0 0 0 0
9.7 0 0 0 0 1 0 0 0
9.8 0 0 0 0 0 0 0 1
9.9 0 0 0 0 0 0 0 1
9.10 0 0 0 0 0 0 0 1
9.11 0 0 0 0 0 0 0 1
9.12 0 0 0 0 0 0 0 1
9.13 0 0 0 0 0 0 0 0
9.14 0 0 0 0 0 0 0 1

Table A.12: Annotated bug report (GIMP:#170801)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 0 0 0 0 0 0 0 0
1.13 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0
3.1 0 0 0 0 1 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 1 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0

80

A. ANNOTATED BUG REPORTS

3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
3.8 0 0 0 0 0 0 0 0
3.9 0 0 0 0 0 0 0 0
3.10 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 0 1 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 1 0 0 0
4.8 0 0 0 0 0 0 0 0
4.9 0 0 0 0 0 0 0 1
4.10 0 0 0 0 1 0 0 0
4.11 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 1 0 0
5.2 0 0 0 0 0 1 0 0
5.3 0 0 0 0 0 0 0 0
6.1 0 0 0 0 1 0 0 0
6.2 0 0 0 0 0 0 0 0
7.1 0 0 0 0 1 0 0 0
7.2 0 0 0 0 0 0 0 1
7.3 0 0 0 0 0 0 0 1
7.4 0 0 0 0 0 0 0 1
7.5 0 0 0 0 0 0 0 1
7.6 0 0 0 0 0 0 0 1
7.7 0 0 0 0 0 0 0 1
7.8 0 0 0 0 0 0 0 1
7.9 0 0 0 0 0 0 0 1
7.10 0 0 0 0 0 0 0 1
8.1 0 0 0 0 0 1 0 0
8.2 0 0 0 0 0 1 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 1 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 1 0 1 0 0 0 0

81

A. ANNOTATED BUG REPORTS

12.1 0 0 1 0 0 0 0 0
12.2 0 0 0 1 0 0 0 0
12.3 0 1 0 1 0 0 0 0
12.4 0 0 0 0 0 0 0 0
13.1 0 0 1 0 0 0 0 0
13.2 0 0 0 1 0 0 0 0
13.3 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0

Table A.13: Annotated bug report (GIMP:#364852)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
1.13 1 0 0 0 0 0 0 0
1.14 1 0 0 0 0 0 0 0
1.15 1 0 0 0 0 0 0 0
1.16 1 0 0 0 0 0 0 0
1.17 1 0 0 0 0 0 0 0
1.18 0 0 0 0 0 0 0 0
1.19 0 0 0 0 0 0 0 0
1.20 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0

82

A. ANNOTATED BUG REPORTS

3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 0 0 0 0
4.8 0 0 0 0 0 0 0 0
4.9 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
6.6 0 0 0 0 0 0 0 0
6.7 0 0 0 0 0 0 0 1
6.8 0 0 0 0 0 0 0 1
6.9 0 0 0 0 0 0 0 1
6.10 0 0 0 0 1 0 0 0
6.11 0 0 0 0 0 0 0 1

Table A.14: Annotated bug report (GNUCash:#168803)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
1.13 0 0 0 0 0 0 0 0

83

A. ANNOTATED BUG REPORTS

1.14 0 0 0 0 0 0 0 0
1.15 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 1 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 1 0 0
4.1 0 1 0 0 0 0 0 0
4.2 0 1 0 1 0 0 0 0
4.3 0 1 0 0 0 0 0 0
4.4 0 1 0 0 0 0 0 0
4.5 0 0 0 0 0 1 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 1 0 0 0 0 0
5.3 0 0 1 0 0 0 0 0
5.4 0 0 1 0 0 0 0 0
5.5 0 0 1 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0
5.7 0 0 0 0 0 0 0 0
5.8 0 0 0 1 0 0 0 0
5.9 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
8.6 0 0 0 0 0 0 0 0
8.7 0 0 0 0 1 0 0 0
8.8 0 0 0 0 0 0 0 0
8.9 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0

84

A. ANNOTATED BUG REPORTS

Table A.15: Annotated bug report (gvfs:#522933)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 1 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 1 0 0 0
7.5 0 0 0 0 1 0 0 0
8.1 0 0 0 0 1 0 0 0
8.2 0 0 0 0 1 0 0 0
8.3 0 0 0 0 1 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
8.6 0 0 0 0 1 0 0 0
9.1 0 0 0 0 1 0 0 0
9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
9.4 0 0 0 0 0 0 0 0
9.5 0 0 0 0 0 0 0 1
9.6 0 0 0 0 0 0 0 1
9.7 0 0 0 0 0 0 0 1
9.8 0 0 0 0 0 0 0 1
9.9 0 0 0 0 0 0 0 1
9.10 0 0 0 0 0 0 0 1
9.11 0 0 0 0 0 0 0 1
9.12 0 0 0 0 0 0 0 1
9.13 0 0 0 0 0 0 0 1
9.14 0 0 0 0 0 0 0 1
9.15 0 0 0 0 0 0 0 1
9.16 0 0 0 0 0 0 0 1
9.17 0 0 0 0 0 0 0 1

85

A. ANNOTATED BUG REPORTS

9.18 0 0 0 0 0 0 0 0
9.19 0 0 0 0 0 0 0 0
9.20 0 0 0 0 0 0 0 1
9.21 0 0 0 0 0 0 0 1
9.22 0 0 0 0 0 0 0 1
9.23 0 0 0 0 0 0 0 1
9.24 0 0 0 0 0 0 0 1
9.25 0 0 0 0 0 0 0 1
9.26 0 0 0 0 0 0 0 1
9.27 0 0 0 0 0 0 0 1
9.28 0 0 0 0 0 0 0 1
9.29 0 0 0 0 0 0 0 0
9.30 0 0 0 0 0 0 0 0
9.31 0 0 0 0 0 0 0 1
9.32 0 0 0 0 0 0 0 1
9.33 0 0 0 0 0 0 0 1
9.34 0 0 0 0 0 0 0 1
9.35 0 0 0 0 0 0 0 1
9.36 0 0 0 0 0 0 0 1
9.37 0 0 0 0 0 0 0 1
9.38 0 0 0 0 0 0 0 1
9.39 0 0 0 0 0 0 0 1
9.40 0 0 0 0 0 0 0 1
9.41 0 0 0 0 0 0 0 1
9.42 0 0 0 0 0 0 0 1
9.43 0 0 0 0 0 0 0 1
9.44 0 0 0 0 0 0 0 1
9.45 0 0 0 0 0 0 0 1
9.46 0 0 0 0 0 0 0 1
9.47 0 0 0 0 0 0 0 1
9.48 0 0 0 0 0 0 0 1
9.49 0 0 0 0 0 0 0 1
9.50 0 0 0 0 0 0 0 1
9.51 0 0 0 0 0 0 0 1
9.52 0 0 0 0 0 0 0 1
9.53 0 0 0 0 0 0 0 1
9.54 0 0 0 0 0 0 0 1
9.55 0 0 0 0 0 0 0 1
9.56 0 0 0 0 0 0 0 1
9.57 0 0 0 0 0 0 0 1
9.58 0 0 0 0 0 0 0 1

86

A. ANNOTATED BUG REPORTS

9.59 0 0 0 0 0 0 0 1
9.60 0 0 0 0 0 0 0 1
9.61 0 0 0 0 0 0 0 0
9.62 0 0 0 0 0 0 0 0
9.63 0 0 0 0 0 0 0 0
9.64 0 0 0 0 0 0 0 0
9.65 0 0 0 0 0 0 0 0
9.66 0 0 0 0 0 0 0 0
9.67 0 0 0 0 0 0 0 0
9.68 0 0 0 0 0 0 0 0
9.69 0 0 0 0 1 0 0 0
10.1 0 0 0 0 1 0 0 0
10.2 0 0 0 0 1 0 0 0
10.3 0 0 0 0 1 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
12.1 0 0 0 0 1 0 0 0
12.2 0 0 0 0 1 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0

Table A.16: Annotated bug report (GTK:#64222)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 1
1.9 0 0 0 0 0 0 0 1
1.10 0 0 0 0 0 0 0 1
1.11 0 0 0 0 0 0 0 1
1.12 0 0 0 0 0 0 0 1
1.13 0 0 0 0 0 0 0 1
1.14 0 0 0 0 0 0 0 1
1.15 0 0 0 0 0 0 0 1
1.16 0 0 0 0 0 0 0 1

87

A. ANNOTATED BUG REPORTS

1.17 0 0 0 0 0 0 0 1
1.18 0 0 0 0 0 0 0 1
1.19 0 0 0 0 0 0 0 1
1.20 0 0 0 0 0 0 0 1
1.21 0 0 0 0 0 0 0 1
1.22 0 0 0 0 0 0 0 1
1.23 0 0 0 0 0 0 0 1
1.24 0 0 0 0 0 0 0 1
1.25 0 0 0 0 0 0 0 1
1.26 0 0 0 0 0 0 0 1
1.27 0 0 0 0 0 0 0 1
1.28 0 0 0 0 0 0 0 1
1.29 0 0 0 0 0 0 0 1
1.30 0 0 0 0 0 0 0 1
1.31 0 0 0 0 0 0 0 1
1.32 0 0 0 0 0 0 0 1
1.33 0 0 0 0 0 0 0 1
1.34 0 0 0 0 0 0 0 1
1.35 0 0 0 0 0 0 0 1
1.36 0 0 0 0 0 0 0 1
1.37 0 0 0 0 0 0 0 1
1.38 0 0 0 0 0 0 0 1
1.39 0 0 0 0 0 0 0 1
1.40 0 0 0 0 0 0 0 1
1.41 0 0 0 0 0 0 0 1
1.42 0 0 0 0 0 0 0 1
1.43 0 0 0 0 0 0 0 1
1.44 0 0 0 0 0 0 0 1
1.45 0 0 0 0 0 0 0 1
1.46 0 0 0 0 0 0 0 1
1.47 0 0 0 0 0 0 0 1
1.48 0 0 0 0 0 0 0 1
1.49 0 0 0 0 0 0 0 1
1.50 0 0 0 0 0 0 0 1
2.1 0 0 0 0 0 1 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 1
2.4 0 0 0 0 0 0 0 1
2.5 0 0 0 0 0 0 0 1
2.6 0 0 0 0 0 0 0 0
2.7 0 0 0 0 0 0 0 0

88

A. ANNOTATED BUG REPORTS

2.8 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0

Table A.17: Annotated bug report (GTK:#514396)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 1 0
2.1 0 0 0 0 1 0 0 0
2.2 0 0 0 0 1 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 1 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
7.1 0 0 0 0 1 0 0 0

89

A. ANNOTATED BUG REPORTS

8.1 0 0 0 0 1 0 0 0
8.2 0 0 0 0 1 0 0 0
9.1 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0
14.1 0 0 0 0 1 0 0 0
14.2 0 0 0 0 1 0 0 0
14.3 0 0 0 0 0 1 0 0
14.4 0 0 0 0 0 1 0 0
15.1 0 0 0 0 0 0 0 0
16.1 0 0 0 0 0 0 0 0
16.2 0 0 0 0 0 1 0 0
17.1 0 0 0 0 0 0 0 0
17.2 0 0 0 0 0 0 0 0
17.3 0 0 0 0 0 0 0 0
17.4 0 0 0 0 0 0 0 0
17.5 0 0 0 0 0 0 0 0
17.6 0 0 0 0 0 0 0 0
17.7 0 0 0 0 0 0 0 0
17.8 0 0 0 0 0 0 0 0
18.1 0 0 0 0 1 0 0 0
18.2 0 0 0 0 1 0 0 0
18.3 0 0 0 0 0 1 0 0
18.4 0 0 0 0 1 0 0 0
18.5 0 0 0 0 0 0 0 0
18.6 0 0 0 0 0 0 0 0
18.7 0 0 0 0 0 0 0 0
18.8 0 0 0 0 0 0 0 0
18.9 0 0 0 0 0 0 0 0
18.10 0 0 0 0 0 0 0 0
19.1 0 0 0 0 0 0 0 0
19.2 0 0 0 0 0 0 0 0
19.3 0 0 0 0 0 0 0 0

90

A. ANNOTATED BUG REPORTS

20.1 0 0 0 0 0 0 0 0
20.2 0 0 0 0 0 0 0 0
20.3 0 0 0 0 0 0 0 0
20.4 0 0 0 0 0 0 0 0
20.5 0 0 0 0 0 0 0 0
20.6 0 0 0 0 0 0 0 0
20.7 0 0 0 0 0 0 0 0
21.1 0 0 0 0 0 0 0 0
21.2 0 0 0 0 0 0 0 0
21.3 0 0 0 0 0 0 0 0
22.1 0 0 0 0 1 0 0 0
22.2 0 0 0 0 0 0 0 0
22.3 0 0 0 0 0 0 0 0
22.4 0 0 0 0 0 0 0 1
22.5 0 0 0 0 0 0 0 1
22.6 0 0 0 0 0 0 0 1
22.7 0 0 0 0 0 0 0 1
22.8 0 0 0 0 0 0 0 1
22.9 0 0 0 0 0 0 0 0
22.10 0 0 0 0 1 0 0 0

Table A.18: Annotated bug report (Eclipse:#215879)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 1
1.5 0 0 0 0 0 0 0 1
1.6 0 0 0 0 0 0 0 1
1.7 0 0 0 0 0 0 0 1
1.8 0 0 0 0 0 0 0 1
1.9 0 0 0 0 0 0 0 1
1.10 0 0 0 0 0 0 0 1
1.11 0 0 0 0 0 0 0 1
1.12 0 0 0 0 0 0 0 1
1.13 0 0 0 0 0 0 0 1
1.14 0 0 0 0 0 0 0 1
1.15 0 0 0 0 0 0 0 1
1.16 1 0 0 0 0 0 0 0

91

A. ANNOTATED BUG REPORTS

1.17 1 0 0 0 0 0 0 0
1.18 0 0 0 0 0 0 0 0
1.19 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 1
4.3 0 0 0 0 0 0 0 1
4.4 0 0 0 0 0 0 0 1
4.5 0 0 0 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 1 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 1 0 0
8.6 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 1 0

Table A.19: Annotated bug report (Eclipse:#69350)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 1 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0

92

A. ANNOTATED BUG REPORTS

2.4 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0
2.6 0 0 0 0 0 0 0 0
2.7 0 0 0 0 0 0 0 0
2.8 0 0 0 0 0 0 0 0
2.9 0 0 0 0 0 0 0 0
2.10 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 1 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
3.8 0 0 0 0 0 0 0 0
3.9 0 0 0 0 0 0 0 0
3.10 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 0 0 0 1
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 0 0 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0
5.7 0 0 0 0 0 0 0 0
5.8 0 0 0 0 0 0 0 0
5.9 0 0 0 0 0 0 0 0
6.1 0 0 0 0 1 0 0 0
6.2 0 0 0 0 0 0 0 1
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
9.1 0 0 0 0 1 0 0 0
9.2 0 0 0 0 0 0 0 1

93

A. ANNOTATED BUG REPORTS

10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 1 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 1 0 0
13.1 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0

Table A.20: Annotated bug report (Eclipse:#226688)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 1 0 0
1.2 1 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 0 0 0 0 0 1 0 0
2.1 0 0 0 0 0 1 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0
2.6 0 0 0 0 0 0 0 0
2.7 0 0 0 0 0 0 0 0
2.8 0 0 0 0 0 0 0 0
2.9 0 0 0 0 0 0 0 0
2.10 0 0 0 0 0 0 0 0
2.11 0 0 0 0 0 0 0 0
2.12 0 0 0 0 0 1 0 0
3.1 0 0 0 0 1 0 0 0
3.2 0 0 0 0 0 0 0 0
4.1 0 0 0 0 1 0 0 0
4.2 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 0 0 0 0

94

A. ANNOTATED BUG REPORTS

6.1 0 0 0 0 0 1 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 1 0 0
6.5 0 0 0 0 0 1 0 0
7.1 0 0 0 0 0 1 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 0
7.5 0 0 0 0 0 1 0 0
8.1 0 0 0 0 0 1 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
8.6 0 0 0 0 0 1 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 1 0 0 0

Table A.21: Annotated bug report (Eclipse:#276131)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
2.1 0 0 0 0 1 0 0 0
3.1 0 0 0 0 1 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
6.1 0 0 0 0 1 0 0 0
6.2 0 0 0 0 1 0 0 0
7.1 0 0 0 0 1 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0

95

A. ANNOTATED BUG REPORTS

8.2 0 0 0 0 1 0 0 0

Table A.22: Annotated bug report (Bugzilla Calendar:#429126)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 1
1.2 0 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
1.13 1 0 0 0 0 0 0 0
1.14 1 0 0 0 0 0 0 0
1.15 1 0 0 0 0 0 0 0
1.16 1 0 0 0 0 0 0 0
1.17 1 0 0 0 0 0 0 0
1.18 0 0 0 0 0 0 0 0
1.19 0 0 0 0 0 0 0 1
1.20 0 0 0 0 0 0 0 1
1.21 0 0 0 0 0 0 0 1
1.22 0 0 0 0 0 0 0 1
1.23 0 0 0 0 0 0 0 1
1.24 0 0 0 0 0 0 0 1
1.25 0 0 0 0 0 0 0 1
1.26 0 0 0 0 0 0 0 1
1.27 0 0 0 0 0 0 0 1
1.28 0 0 0 0 0 0 0 1
1.29 0 0 0 0 0 0 0 1
1.30 0 0 0 0 0 0 0 1
1.31 0 0 0 0 0 0 0 1
1.32 0 0 0 0 0 0 0 1
1.33 0 0 0 0 0 0 0 1
1.34 0 0 0 0 0 0 0 1
1.35 0 0 0 0 0 0 0 1

96

A. ANNOTATED BUG REPORTS

1.36 0 0 0 0 0 0 0 1
1.37 0 0 0 0 0 0 0 1
1.38 0 0 0 0 0 0 0 1
1.39 0 0 0 0 0 0 0 1
1.40 0 0 0 0 0 0 0 1
1.41 0 0 0 0 0 0 0 1
1.42 0 0 0 0 0 0 0 1
1.43 0 0 0 0 0 0 0 1
1.44 0 0 0 0 0 0 0 1
1.45 0 0 0 0 0 0 0 1
1.46 0 0 0 0 0 0 0 1
1.47 0 0 0 0 0 0 0 1
1.48 0 0 0 0 0 0 0 1
1.49 0 0 0 0 0 0 0 1
1.50 0 0 0 0 0 0 0 1
1.51 0 0 0 0 0 0 0 1
1.52 0 0 0 0 0 0 0 1
1.53 0 0 0 0 0 0 0 1
1.54 0 0 0 0 0 0 0 1
1.55 0 0 0 0 0 0 0 1
1.56 0 0 0 0 0 0 0 1
1.57 0 0 0 0 0 0 0 1
1.58 0 0 0 0 0 0 0 1
1.59 0 0 0 0 0 0 0 1
1.60 0 0 0 0 0 0 0 1
1.61 0 0 0 0 0 0 0 1
1.62 0 0 0 0 0 0 0 1
1.63 0 0 0 0 0 0 0 1
1.64 0 0 0 0 0 0 0 1
1.65 0 0 0 0 0 0 0 1
1.66 0 0 0 0 0 0 0 1
1.67 0 0 0 0 0 0 0 1
1.68 0 0 0 0 0 0 0 1
1.69 0 0 0 0 0 0 0 1
1.70 0 0 0 0 0 0 0 1
1.71 0 0 0 0 0 0 0 1
1.72 0 0 0 0 0 0 0 1
1.73 0 0 0 0 0 0 0 1
1.74 0 0 0 0 0 0 0 1
1.75 0 0 0 0 0 0 0 1
1.76 0 0 0 0 0 0 0 1

97

A. ANNOTATED BUG REPORTS

1.77 0 0 0 0 0 0 0 1
1.78 0 0 0 0 0 0 0 1
1.79 0 0 0 0 0 0 0 1
1.80 0 0 0 0 0 0 0 1
1.81 0 0 0 0 0 0 0 1
1.82 0 0 0 0 0 0 0 1
1.83 0 0 0 0 0 0 0 1
1.84 0 0 0 0 0 0 0 1
1.85 0 0 0 0 0 0 0 1
1.86 0 0 0 0 0 0 0 1
1.87 0 0 0 0 0 0 0 1
1.88 0 0 0 0 0 0 0 1
1.89 0 0 0 0 0 0 0 1
1.90 0 0 0 0 0 0 0 1
1.91 0 0 0 0 0 0 0 1
1.92 0 0 0 0 0 0 0 1
1.93 0 0 0 0 0 0 0 1
1.94 0 0 0 0 0 0 0 1
1.95 0 0 0 0 0 0 0 1
1.96 0 0 0 0 0 0 0 1
1.97 0 0 0 0 0 0 0 1
1.98 0 0 0 0 0 0 0 1
1.99 0 0 0 0 0 0 0 1
1.100 0 0 0 0 0 0 0 1
1.101 0 0 0 0 0 0 0 1
1.102 0 0 0 0 0 0 0 1
1.103 0 0 0 0 0 0 0 1
1.104 0 0 0 0 0 0 0 1
1.105 0 0 0 0 0 0 0 1
1.106 0 0 0 0 0 0 0 1
1.107 0 0 0 0 0 0 0 1
1.108 0 0 0 0 0 0 0 1
1.109 0 0 0 0 0 0 0 1
1.110 0 0 0 0 0 0 0 1
1.111 0 0 0 0 0 0 0 1
1.112 0 0 0 0 0 0 0 1
1.113 0 0 0 0 0 0 0 1
1.114 0 0 0 0 0 0 0 1
1.115 0 0 0 0 0 0 0 1
1.116 0 0 0 0 0 0 0 1
1.117 0 0 0 0 0 0 0 1

98

A. ANNOTATED BUG REPORTS

1.118 0 0 0 0 0 0 0 1
1.119 0 0 0 0 0 0 0 1
1.120 0 0 0 0 0 0 0 1
1.121 0 0 0 0 0 0 0 1
1.122 0 0 0 0 0 0 0 1
1.123 0 0 0 0 0 0 0 1
1.124 0 0 0 0 0 0 0 1
1.125 0 0 0 0 0 0 0 1
1.126 0 0 0 0 0 0 0 1
1.127 0 0 0 0 0 0 0 1
1.128 0 0 0 0 0 0 0 1
1.129 0 0 0 0 0 0 0 1
1.130 0 0 0 0 0 0 0 1
1.131 0 0 0 0 0 0 0 1
1.132 0 0 0 0 0 0 0 1
1.133 0 0 0 0 0 0 0 1
1.134 0 0 0 0 0 0 0 1
1.135 0 0 0 0 0 0 0 1
1.136 0 0 0 0 0 0 0 1
1.137 0 0 0 0 0 0 0 1
1.138 0 0 0 0 0 0 0 1
1.139 0 0 0 0 0 0 0 1
1.140 0 0 0 0 0 0 0 1
1.141 0 0 0 0 0 0 0 1
1.142 0 0 0 0 0 0 0 1
1.143 0 0 0 0 0 0 0 1
1.144 0 0 0 0 0 0 0 1
1.145 0 0 0 0 0 0 0 1
1.146 0 0 0 0 0 0 0 1
1.147 0 0 0 0 0 0 0 1
1.148 0 0 0 0 0 0 0 1
1.149 0 0 0 0 0 0 0 1
1.150 0 0 0 0 0 0 0 0
1.151 0 0 0 0 0 0 0 1
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 1
3.4 0 0 0 0 0 0 0 1
3.5 0 0 0 0 0 0 0 1
3.6 0 0 0 0 0 0 0 1

99

A. ANNOTATED BUG REPORTS

3.7 0 0 0 0 0 0 0 1
3.8 0 0 0 0 0 0 0 0
3.9 0 0 0 0 0 0 0 0
3.10 0 0 0 0 0 0 0 0
3.11 0 0 0 0 0 0 0 0
3.12 0 0 0 0 0 0 0 1
3.13 0 0 0 0 0 0 0 1
3.14 0 0 0 0 0 0 0 1
3.15 0 0 0 0 0 0 0 1
3.16 0 0 0 0 0 0 0 0
3.17 0 0 0 0 0 0 0 1
3.18 0 0 0 0 0 0 0 1
3.19 0 0 0 0 0 0 0 1
3.20 0 0 0 0 0 0 0 1
3.21 0 0 0 0 0 0 0 1
3.22 0 0 0 0 0 0 0 0
3.23 0 0 0 0 0 0 0 1
3.24 0 0 0 0 0 0 0 1
3.25 0 0 0 0 0 0 0 1
3.26 0 0 0 0 0 0 0 1
3.27 0 0 0 0 0 0 0 0
3.28 0 0 0 0 0 0 0 1
3.29 0 0 0 0 0 0 0 1
3.30 0 0 0 0 0 0 0 1
3.31 0 0 0 0 0 0 0 1
3.32 0 0 0 0 0 0 0 1
3.33 0 0 0 0 0 0 0 0
4.1 0 0 0 0 1 0 0 0
4.2 0 0 0 0 1 0 0 0
4.3 0 0 0 0 0 0 0 0
5.1 0 0 0 0 1 0 0 0
5.2 0 0 0 0 0 1 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
6.1 0 0 0 0 1 0 1 0
6.2 0 0 0 0 1 0 0 0

Table A.23: Annotated bug report (Thunderbird:#403907)

Sentence ID Des Org QT CW Res OT URL Code

100

A. ANNOTATED BUG REPORTS

1.1 0 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 0
1.9 0 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
1.13 1 0 0 0 0 0 0 0
1.14 0 0 0 0 0 0 0 0
1.15 0 0 0 0 0 0 0 0
1.16 0 0 0 0 0 0 0 0
1.17 0 0 0 0 0 0 0 0
1.18 0 0 0 0 0 0 0 0
1.19 0 0 0 0 0 0 0 1
1.20 0 0 0 0 0 0 0 0
1.21 0 0 0 0 0 0 0 0
1.22 0 0 0 0 0 0 0 0
1.23 0 0 0 0 0 0 0 0
1.24 0 0 0 0 0 0 0 0
1.25 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 1 0 0 0 0 0 0
3.2 0 1 0 0 0 0 0 0
3.3 0 1 0 0 0 0 0 0
3.4 0 1 0 1 0 0 0 0
3.5 0 1 0 1 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 1 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 1 0 0 0 0 0
5.5 0 0 0 0 0 0 0 0
5.6 0 0 1 0 0 0 0 0
5.7 0 0 0 0 0 0 0 0

101

A. ANNOTATED BUG REPORTS

5.8 0 0 1 0 0 0 0 0
5.9 0 0 0 0 0 0 0 0
5.10 0 0 1 0 0 0 0 0
5.11 0 0 0 0 0 0 0 0
5.12 0 0 0 1 0 0 0 0
5.13 0 0 0 0 0 0 0 0
5.14 0 0 0 1 0 0 0 0
5.15 0 0 0 1 0 0 0 0
5.16 0 0 0 1 0 0 0 0
5.17 0 0 0 1 0 0 0 0
5.18 0 0 0 0 0 0 0 0
5.19 0 0 0 1 0 0 0 0
5.20 0 0 0 1 0 0 0 0
5.21 0 0 0 0 0 0 0 0
5.22 0 0 0 0 0 0 0 0
6.1 0 1 0 0 0 1 0 0
6.2 0 1 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 1 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 1 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
9.1 0 0 0 0 1 0 0 0
10.1 0 0 0 0 0 0 0 0

Table A.24: Annotated bug report (Thunderbird:#296655)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 1
1.2 0 0 0 0 0 0 0 1
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0

102

A. ANNOTATED BUG REPORTS

1.12 1 0 0 0 0 0 0 0
1.13 1 0 0 0 0 0 0 0
1.14 0 0 0 0 0 0 0 0
1.15 1 0 0 0 0 0 0 0
1.16 1 0 0 0 0 0 0 0
1.17 1 0 0 0 0 0 0 0
1.18 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0
2.6 0 0 0 0 0 0 0 0
2.7 0 0 0 0 0 0 0 0
2.8 0 0 0 0 0 0 0 0
2.9 0 0 0 0 0 0 0 0
2.10 0 0 0 0 0 0 0 0
2.11 0 0 0 0 0 0 1 0
2.12 0 0 0 0 0 0 1 0
2.13 0 0 0 0 0 0 1 0
3.1 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 1
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0
15.1 0 0 0 0 0 0 0 0
16.1 0 0 0 0 0 0 0 0
17.1 0 0 0 0 0 0 0 0

103

A. ANNOTATED BUG REPORTS

18.1 0 0 0 0 0 0 0 0
19.1 0 0 0 0 1 0 0 0
19.2 0 0 0 0 1 0 0 0
19.3 0 0 0 0 0 0 0 0
19.4 0 0 0 0 0 0 0 0
19.5 0 0 0 0 0 0 0 0
19.6 0 0 0 0 0 0 0 0
19.7 0 0 0 0 0 0 0 0
19.8 0 0 0 0 0 0 0 0
19.9 0 0 0 0 0 0 0 0
19.10 0 0 0 0 0 0 0 0
19.11 0 0 0 0 0 0 0 0
19.12 0 0 0 0 0 0 0 0
19.13 0 0 0 0 0 0 0 0
19.14 0 0 0 0 0 0 0 0
19.15 0 0 0 0 0 0 0 0
19.16 0 0 0 0 0 0 0 0
19.17 0 0 0 0 0 0 0 0
19.18 0 0 0 0 0 0 0 0
19.19 0 0 0 0 0 0 0 0
19.20 0 0 0 0 0 0 0 0
19.21 0 0 0 0 0 0 0 0
19.22 0 0 0 0 0 0 0 0
19.23 0 0 0 0 0 0 0 0
19.24 0 0 0 0 0 0 0 0
19.25 0 0 0 0 0 0 0 0
20.1 0 0 0 0 1 0 0 0
20.2 0 0 0 0 0 1 0 0
20.3 0 0 0 0 0 0 0 0
20.4 0 0 0 0 0 0 0 0
21.1 0 0 0 0 1 0 0 0
21.2 0 0 0 0 0 1 0 0
22.1 0 0 0 0 0 0 0 0
23.1 0 0 0 0 0 0 0 0
23.2 0 0 0 0 0 0 1 0
23.3 0 0 0 0 1 0 0 0
23.4 0 0 0 0 0 0 0 0
23.5 0 0 0 0 0 0 0 0

104

A. ANNOTATED BUG REPORTS

Table A.25: Annotated bug report (KDE:#153211)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
10.1 0 0 0 0 1 0 0 0
10.2 0 0 0 0 1 0 0 0
10.3 0 0 0 0 0 0 0 1
10.4 0 0 0 0 0 0 1 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 1 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 0
12.6 0 0 0 0 0 0 0 0
12.7 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0
13.4 0 0 0 0 0 0 0 0

105

A. ANNOTATED BUG REPORTS

14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0
14.3 0 0 0 0 0 0 0 0
14.4 0 0 0 0 0 0 0 0
14.5 0 0 0 0 1 0 0 0
14.6 0 0 0 0 1 0 0 0
15.1 0 0 0 0 0 0 0 0
15.2 0 0 0 0 0 0 0 0
16.1 0 0 0 0 0 0 0 0
17.1 0 0 0 0 0 0 0 0
18.1 0 0 0 0 1 0 0 0
18.2 0 0 0 0 0 0 0 0
18.3 0 0 0 0 0 0 0 0
18.4 0 0 0 0 0 0 0 1
18.5 0 0 0 0 0 0 0 1
18.6 0 0 0 0 0 0 0 1
18.7 0 0 0 0 0 0 1 0
19.1 0 0 0 0 0 0 0 0
20.1 0 0 0 0 0 0 0 0
20.2 0 0 0 0 0 0 0 0
21.1 0 0 0 0 0 0 0 0
21.2 0 0 0 0 0 0 0 0
21.3 0 0 0 0 0 0 0 0

Table A.26: Annotated bug report (KDE:#61263)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 1
1.3 1 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
2.1 0 1 0 1 0 0 0 0
2.2 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 1 0 0 0 0
3.3 0 0 0 0 0 0 0 0

106

A. ANNOTATED BUG REPORTS

3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
3.8 0 0 0 0 0 0 1 0
3.9 0 0 0 0 0 0 0 0
3.10 0 0 0 0 0 0 0 0
3.11 0 0 0 0 0 0 0 0
3.12 0 0 0 0 0 0 0 0
3.13 0 0 0 0 0 0 0 0
3.14 0 0 0 0 0 0 0 0
3.15 0 0 0 0 0 0 0 0
3.16 0 0 0 0 0 0 0 0
3.17 0 0 0 0 0 0 0 0
3.18 0 0 0 0 0 0 0 0
3.19 0 0 0 0 0 0 0 0
3.20 0 0 1 0 0 0 0 0
4.1 0 1 0 0 0 0 0 0
4.2 0 1 0 0 0 0 0 0
4.3 0 1 0 0 0 0 1 0
4.4 0 1 0 0 0 0 0 0
4.5 0 1 0 0 0 0 0 0
4.6 0 1 0 0 0 0 1 0
4.7 0 1 0 0 0 0 0 0
4.8 0 1 0 0 0 0 0 0
4.9 0 1 0 0 0 0 0 0
4.10 0 1 0 0 0 0 0 0
4.11 0 1 0 0 0 0 0 0
4.12 0 1 0 0 0 0 0 0
4.13 0 1 0 0 0 0 0 0
4.14 0 1 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 1 0 0
5.5 0 0 0 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0
5.7 0 0 0 0 0 0 0 0
5.8 0 0 0 0 0 0 0 0
5.9 0 0 0 0 0 0 0 0
5.10 0 0 0 0 0 0 1 0

107

A. ANNOTATED BUG REPORTS

5.11 0 0 0 0 0 0 0 0
5.12 0 0 0 0 0 0 0 0
5.13 0 0 0 0 0 0 0 0
5.14 0 0 0 0 0 0 0 0
5.15 0 0 0 0 0 0 0 0
5.16 0 0 0 0 0 0 0 0
5.17 0 0 0 0 0 0 0 0
5.18 0 0 0 0 0 0 0 0
5.19 0 0 0 0 0 0 0 0
5.20 0 0 0 0 0 0 0 0
5.21 0 0 0 0 0 0 0 0
5.22 0 0 1 0 0 0 0 0
5.23 0 0 0 0 0 0 0 0
5.24 0 0 1 0 0 0 0 0
5.25 0 0 1 0 0 0 1 0
5.26 0 0 1 0 0 0 0 0
5.27 0 0 1 0 0 0 0 0
5.28 0 0 1 0 0 0 1 0
5.29 0 0 1 0 0 0 0 0
5.30 0 0 1 0 0 0 0 0
5.31 0 0 0 0 0 0 0 0
5.32 0 0 1 0 0 0 0 0
5.33 0 0 1 0 0 0 0 0
5.34 0 0 1 0 0 0 0 0
5.35 0 0 1 0 0 0 0 0
5.36 0 0 0 0 0 0 0 0
5.37 0 0 1 0 0 0 0 0
5.38 0 0 1 0 0 0 0 0
6.1 0 1 0 0 0 0 1 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 1 0 0
7.5 0 0 0 0 0 0 0 0
7.6 0 0 0 0 0 0 0 0
7.7 0 0 0 0 0 0 0 0
7.8 0 0 0 0 0 0 0 0
7.9 0 0 0 0 0 0 0 0
7.10 0 0 0 0 0 0 0 0
7.11 0 0 0 0 0 0 0 1
7.12 0 0 0 0 0 0 0 0

108

A. ANNOTATED BUG REPORTS

7.13 0 0 0 0 0 0 0 0
7.14 0 0 0 0 0 0 0 0
7.15 0 0 0 0 0 0 0 0
7.16 0 0 0 0 0 0 0 0
7.17 0 0 0 0 0 0 0 0
7.18 0 0 0 0 0 0 0 0
7.19 0 0 0 0 0 0 0 0
7.20 0 0 0 0 0 0 1 0
7.21 0 0 0 0 0 0 0 0
7.22 0 0 0 0 0 0 0 0
7.23 0 0 0 0 0 0 0 0
7.24 0 0 0 0 0 0 0 0
7.25 0 0 0 0 0 0 0 0
7.26 0 0 0 0 0 0 0 0
7.27 0 0 1 0 0 0 1 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
8.6 0 0 0 0 0 0 0 0
8.7 0 0 0 0 0 0 0 0
8.8 0 0 0 0 0 0 0 0
8.9 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
10.4 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
15.1 0 0 0 0 1 0 0 0

109

A. ANNOTATED BUG REPORTS

15.2 0 0 0 0 0 0 1 0

Table A.27: Annotated bug report (KDE:#188311)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 1 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 1 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 1 0 0
8.1 0 0 0 0 1 0 0 0
8.2 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 1 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
10.4 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0

110

A. ANNOTATED BUG REPORTS

14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0
15.1 0 0 0 0 0 1 0 0
16.1 0 0 0 0 0 0 0 0
17.1 0 0 0 0 0 0 0 0
17.2 0 0 0 0 0 0 0 0
17.3 0 0 0 0 0 0 0 0
18.1 0 0 0 0 0 1 0 0
18.2 0 0 0 0 0 0 0 0
18.3 0 0 0 0 0 0 0 0
18.4 0 0 0 0 0 0 0 0
18.5 0 0 0 0 0 0 0 0
18.6 0 0 0 0 0 0 0 0
18.7 0 0 0 0 0 0 0 0
19.1 0 0 0 0 0 0 0 0
20.1 0 0 0 0 1 0 0 0
21.1 0 0 0 0 1 0 0 0
21.2 0 0 0 0 0 0 0 0
21.3 0 0 0 0 0 1 0 0
22.1 0 0 0 0 0 1 0 0

Table A.28: Annotated bug report (KDE:#88340)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 1
1.2 0 0 0 0 0 0 0 1
1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
3.1 0 1 0 0 0 0 0 0
3.2 0 1 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 1 0 0 0 0 0
4.3 0 0 1 0 0 0 0 0
4.4 0 1 0 1 0 0 0 0
4.5 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0

111

A. ANNOTATED BUG REPORTS

5.2 0 0 1 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 1 0 0 0 0
5.5 0 0 0 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
8.1 0 0 0 0 1 0 0 0

Table A.29: Annotated bug report (KDE:#66526)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 1 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 0 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 0
1.9 0 0 0 0 0 0 0 0
1.10 0 0 0 0 0 0 0 0
1.11 0 0 0 0 0 0 0 0
1.12 0 0 0 0 0 0 0 0
1.13 0 0 0 0 0 1 0 0
1.14 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
3.8 0 0 0 0 0 0 0 0
3.9 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 1 0 0

112

A. ANNOTATED BUG REPORTS

4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 0 0 0 0 0 0 1
5.6 0 0 0 0 0 0 0 1
5.7 0 0 0 0 0 0 0 1
5.8 0 0 0 0 0 0 0 1
5.9 0 0 0 0 0 0 0 1
5.10 0 0 0 0 0 0 0 0
5.11 0 0 0 0 0 0 0 0
5.12 0 0 0 0 0 0 0 0
5.13 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
6.6 0 0 0 0 0 0 0 0
6.7 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
9.4 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 1
10.4 0 0 0 0 0 0 0 1
10.5 0 0 0 0 0 0 0 1
10.6 0 0 0 0 0 0 0 1
10.7 0 0 0 0 0 0 0 0
10.8 0 0 0 0 0 0 0 0
10.9 0 0 0 0 0 0 0 1
10.10 0 0 0 0 0 0 0 1
10.11 0 0 0 0 0 0 0 1
10.12 0 0 0 0 0 0 0 1
10.13 0 0 0 0 0 0 0 1

113

A. ANNOTATED BUG REPORTS

10.14 0 0 0 0 0 0 0 1
10.15 0 0 0 0 0 0 0 1
10.16 0 0 0 0 0 0 0 1
10.17 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 0 0
11.4 0 0 0 0 0 0 0 0
11.5 0 0 0 0 0 0 0 0
12.1 0 0 0 0 0 1 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 1
12.4 0 0 0 0 0 0 0 1
12.5 0 0 0 0 0 0 0 0
12.6 0 0 0 0 0 0 0 0
12.7 0 0 0 0 0 1 0 0
12.8 0 0 0 0 0 0 0 0
12.9 0 0 0 0 0 1 0 0
12.10 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0
13.4 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0

Table A.30: Annotated bug report (GIMP:#326962)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 0 0 0 0 0 0 0
5.6 0 0 0 0 0 0 0 0

114

A. ANNOTATED BUG REPORTS

5.7 0 0 0 0 0 0 0 0
5.8 0 0 0 0 0 0 0 0
5.9 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
8.5 0 0 0 0 0 0 0 0
8.6 0 0 0 0 0 0 0 0
8.7 0 0 0 0 0 0 0 0
8.8 0 0 0 0 0 0 0 0
8.9 0 0 0 0 0 0 0 0
8.10 0 0 0 0 0 0 0 0
8.11 0 0 0 0 0 0 0 0
8.12 0 0 0 0 0 1 0 0
8.13 0 0 0 0 0 1 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
9.4 0 0 0 0 0 0 0 0
9.5 0 0 0 0 0 0 0 0
9.6 0 0 0 0 0 0 0 0
9.7 0 0 0 0 0 0 0 0
9.8 0 0 0 0 0 0 0 0
9.9 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 1 0 0
10.4 0 0 0 0 0 0 0 0
10.5 0 0 0 0 0 0 0 0
10.6 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 1 0 0 0

115

A. ANNOTATED BUG REPORTS

Table A.31: Annotated bug report (Eclipse:#154119)

Sentence ID Des Org QT CW Res OT URL Code
1.1 1 1 0 1 0 0 0 0
2.1 0 0 1 0 0 0 0 0
2.2 0 0 0 1 0 0 0 0
2.3 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 1 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
4.1 0 0 1 1 0 0 0 0
4.2 0 0 0 0 0 0 0 0
5.1 0 0 1 0 0 0 0 0
5.2 0 0 0 1 0 0 0 0
5.3 0 0 0 1 0 0 0 0
5.4 0 0 0 0 0 0 0 0
5.5 0 0 0 1 0 0 0 0
5.6 0 0 0 0 0 0 0 0
5.7 0 0 0 0 0 0 0 0
5.8 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 1 0 0 0 0 0
6.3 0 0 0 1 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
8.1 0 1 0 1 0 0 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 0 0 0
8.4 0 0 0 0 0 0 0 0
9.1 0 0 1 0 0 0 0 0
9.2 0 0 0 0 0 1 0 0
9.3 0 0 0 1 0 0 0 0
9.4 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0

116

A. ANNOTATED BUG REPORTS

11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0

Table A.32: Annotated bug report (Firefox:#238215)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 1
1.2 0 0 0 0 0 0 0 1
1.3 1 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 0 0 0 0 0 1 0 0
1.10 0 0 0 0 0 0 0 0
1.11 0 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
3.8 0 0 0 0 0 0 0 0
3.9 0 0 0 0 0 0 0 0
3.10 0 0 0 0 0 0 0 0
3.11 0 0 0 0 0 0 0 0
3.12 0 0 0 0 0 0 1 0
3.13 0 0 0 0 0 0 1 0
3.14 0 0 0 0 0 0 1 0
3.15 0 0 0 0 0 0 0 1
3.16 0 0 0 0 0 0 0 0
3.17 0 0 0 0 0 0 0 0
3.18 0 0 0 0 0 0 0 0
3.19 0 0 0 0 0 0 0 0
4.1 0 1 0 0 0 0 0 0
4.2 0 1 0 0 0 0 0 0

117

A. ANNOTATED BUG REPORTS

4.3 0 1 0 0 0 0 1 0
4.4 0 1 0 1 0 0 0 0
4.5 0 0 0 0 0 0 0 0
4.6 0 1 0 0 0 0 0 0
4.7 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 1 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 1 0 0 0 0 0
6.5 0 0 1 0 0 0 0 0
6.6 0 0 0 0 0 0 0 0
6.7 0 0 1 0 0 0 0 0
6.8 0 0 1 0 0 0 0 0
6.9 0 0 0 1 0 0 0 0
6.10 0 0 0 1 0 0 0 0
6.11 0 0 0 0 0 0 1 0
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 0
7.5 0 0 0 0 0 0 0 0

Table A.33: Annotated bug report (KDE:#173341)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 1 0 0 0
1.7 0 0 0 0 0 0 0 0
2.1 0 0 0 0 1 0 0 0
2.2 0 0 0 0 1 0 0 0
2.3 0 0 0 0 1 0 0 0
2.4 0 0 0 0 1 0 0 0
2.5 0 0 0 0 0 0 0 0

118

A. ANNOTATED BUG REPORTS

3.1 0 0 0 0 1 0 0 0
4.1 0 0 0 0 1 0 0 0
4.2 0 0 0 0 1 0 0 0
4.3 0 0 0 0 1 0 0 0
4.4 0 0 0 0 1 0 0 0
4.5 0 0 0 0 1 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 1 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 1 0
6.1 0 0 0 0 1 0 0 0
6.2 0 0 0 0 1 0 0 0
6.3 0 0 0 0 0 1 0 0
6.4 0 0 0 0 1 0 0 0
6.5 0 0 0 0 1 0 0 0
6.6 0 0 0 0 1 0 0 0
7.1 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 1 0 0
8.2 0 0 0 0 0 0 0 0
8.3 0 0 0 0 0 1 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 0 0 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
9.4 0 0 0 0 0 0 0 0
9.5 0 0 0 0 0 0 0 0
9.6 0 0 0 0 0 0 0 0
10.1 0 0 0 0 0 1 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
10.4 0 0 0 0 0 0 0 0
10.5 0 0 0 0 0 0 0 0
10.6 0 0 0 0 0 0 0 0
10.7 0 0 0 0 0 0 0 0
10.8 0 0 0 0 0 0 0 0
10.9 0 0 0 0 0 0 0 0
10.10 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 0 0
11.4 0 0 0 0 0 0 0 0

119

A. ANNOTATED BUG REPORTS

12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0
15.1 0 0 0 0 1 0 0 0
15.2 0 0 0 0 0 0 0 0
15.3 0 0 0 0 0 0 0 0
15.4 0 0 0 0 0 0 0 0
15.5 0 0 0 0 0 0 0 0
15.6 0 0 0 0 0 0 0 0
15.7 0 0 0 0 0 0 0 0
15.8 0 0 0 0 0 0 0 0
16.1 0 0 0 0 0 0 0 0
16.2 0 0 0 0 0 0 0 0
17.1 0 0 0 0 1 0 0 0
17.2 0 0 0 0 0 0 0 0
17.3 0 0 0 0 0 0 0 0
17.4 0 0 0 0 0 0 0 0
17.5 0 0 0 0 0 0 0 0
17.6 0 0 0 0 0 0 0 0
17.7 0 0 0 0 0 0 0 1
17.8 0 0 0 0 0 0 0 1
17.9 0 0 0 0 0 0 0 1
17.10 0 0 0 0 0 0 0 1
17.11 0 0 0 0 0 0 0 1
17.12 0 0 0 0 0 0 0 1
17.13 0 0 0 0 0 0 1 0

Table A.34: Annotated bug report (KDE:#155920)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0

120

A. ANNOTATED BUG REPORTS

1.5 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
4.1 0 1 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 1 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 1 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 1 0 0 0 0 0
6.6 0 1 0 1 0 0 0 0
7.1 0 0 1 0 0 0 0 0
7.2 0 0 0 1 0 0 0 0
7.3 0 0 0 1 0 0 0 0
8.1 0 1 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
10.1 0 0 1 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
11.1 0 0 0 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 1 0
12.1 0 0 0 0 0 0 0 0
12.2 0 0 0 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0
13.1 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0
13.4 0 0 0 0 0 0 0 0
14.1 0 0 0 0 0 0 0 0
14.2 0 0 0 0 0 0 0 0

121

A. ANNOTATED BUG REPORTS

15.1 0 0 0 0 0 0 0 0
15.2 0 1 0 0 0 0 0 0
15.3 0 0 0 0 0 0 0 0
15.4 0 0 0 0 0 0 0 0
15.5 0 0 0 0 0 0 0 0
15.6 0 0 0 0 0 0 0 0
15.7 0 1 0 0 0 0 0 0
15.8 0 0 0 0 0 0 0 0
15.9 0 0 0 0 0 0 0 0
16.1 0 0 1 0 0 0 0 0
16.2 0 0 0 0 0 0 0 0
16.3 0 0 0 0 0 0 0 0
16.4 0 0 1 0 0 0 0 0
16.5 0 1 0 0 0 0 0 0
16.6 0 0 1 0 0 0 0 0
16.7 0 1 0 0 0 0 0 0
16.8 0 1 0 0 0 0 0 0
17.1 0 0 0 0 0 0 0 0
17.2 0 0 0 0 0 0 0 0
17.3 0 0 0 0 0 0 0 1
17.4 0 0 0 0 0 0 0 1
17.5 0 0 0 0 0 0 0 1
17.6 0 0 0 0 0 0 0 1
17.7 0 0 0 0 0 0 0 1
17.8 0 0 0 0 0 0 0 1
17.9 0 0 0 0 0 0 0 1
17.10 0 0 0 0 0 0 0 1
17.11 0 1 0 0 0 0 0 0
18.1 0 0 1 0 0 0 0 0
18.2 0 0 0 0 0 0 0 0
18.3 0 0 0 0 0 0 0 0
18.4 0 0 1 0 0 0 0 0
18.5 0 0 1 0 0 0 0 0
18.6 0 0 0 0 0 0 0 0
18.7 0 0 0 0 0 0 0 0
19.1 0 0 1 0 0 0 0 0
19.2 0 0 0 0 0 0 0 0
19.3 0 0 0 0 0 0 0 0
19.4 0 0 0 0 0 0 0 0
19.5 0 0 0 0 0 0 0 0
19.6 0 0 0 0 0 0 0 0

122

A. ANNOTATED BUG REPORTS

20.1 0 0 0 0 0 0 0 0
20.2 0 0 0 0 0 0 0 0
20.3 0 0 0 0 0 0 0 0
20.4 0 0 0 0 0 0 0 0
20.5 0 0 0 0 0 0 0 0
20.6 0 1 0 1 0 0 0 0
21.1 0 0 0 0 0 0 0 0
21.2 0 0 0 0 0 0 0 0
22.1 0 0 1 0 0 0 0 0
22.2 0 0 0 1 0 0 0 0
22.3 0 0 0 0 0 0 0 0
22.4 0 0 0 1 0 0 0 0
22.5 0 0 0 1 0 0 0 0
23.1 0 0 0 0 0 0 0 0
23.2 0 0 0 0 0 0 0 0
24.1 0 0 0 0 1 0 0 0
24.2 0 0 0 0 0 0 0 0
24.3 0 0 0 0 0 0 0 0

Table A.35: Annotated bug report (KDE:#164545)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 1 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
1.13 1 0 0 0 0 0 0 0
1.14 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0

123

A. ANNOTATED BUG REPORTS

4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
7.1 0 0 0 0 0 0 0 0
8.1 0 0 0 0 0 0 0 0
9.1 0 0 0 0 0 0 0 0
9.2 0 1 0 0 0 0 0 0
9.3 0 0 0 0 0 0 0 0
9.4 0 0 0 0 0 0 0 0
9.5 0 1 0 0 0 0 0 0
10.1 0 0 0 0 0 0 0 0
10.2 0 0 0 0 0 0 0 0
10.3 0 0 0 0 0 0 0 0
10.4 0 0 0 0 0 0 0 0
11.1 0 0 1 0 0 0 0 0
11.2 0 0 0 0 0 0 0 0
11.3 0 0 0 0 0 0 0 0
11.4 0 0 1 0 0 0 0 0
11.5 0 0 0 0 0 0 0 0
11.6 0 0 0 0 0 0 0 0
11.7 0 0 0 0 0 0 0 0
11.8 0 0 0 0 0 0 0 0
12.1 0 0 0 0 1 0 0 0
12.2 0 0 0 0 1 0 0 0
12.3 0 0 0 0 0 0 0 0
12.4 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 1
12.6 0 0 0 0 0 0 1 0

Table A.36: Annotated bug report (KDE:#174533)

Sentence ID Des Org QT CW Res OT URL Code
1.1 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0

124

A. ANNOTATED BUG REPORTS

1.3 0 0 0 0 0 0 0 0
1.4 1 0 0 0 0 0 0 0
1.5 1 0 0 0 0 0 0 0
1.6 1 0 0 0 0 0 0 0
1.7 1 0 0 0 0 0 0 0
1.8 1 0 0 0 0 0 0 0
1.9 1 0 0 0 0 0 0 0
1.10 0 0 0 0 0 0 0 0
1.11 1 0 0 0 0 0 0 0
1.12 1 0 0 0 0 0 0 0
2.1 0 0 0 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
3.1 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0
3.6 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0
3.8 0 0 0 0 0 0 0 0
3.9 0 0 0 0 0 0 0 0
3.10 0 0 0 0 0 0 0 0
3.11 0 0 0 0 0 0 0 0
3.12 0 0 0 0 0 0 0 0
3.13 0 0 0 0 0 0 0 0
3.14 0 0 0 0 0 0 0 0
3.15 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0
4.2 0 0 0 0 0 0 0 0
4.3 0 0 0 0 0 0 0 0
4.4 0 0 0 0 0 0 0 0
4.5 0 0 0 0 0 0 0 0
4.6 0 0 0 0 0 0 0 0
4.7 0 0 0 0 0 0 0 0
4.8 0 0 0 0 0 0 0 0
4.9 0 0 0 0 0 0 0 0
4.10 0 0 0 0 0 0 0 0
4.11 0 0 0 0 0 0 0 0
5.1 0 0 0 0 0 0 0 0

125

BIBLIOGRAPHY

5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
6.1 0 0 0 0 0 0 0 0
6.2 0 0 0 0 0 0 0 0
6.3 0 0 0 0 0 0 0 0
6.4 0 0 0 0 0 0 0 0
6.5 0 0 0 0 0 0 0 0
6.6 0 0 0 0 0 0 0 0
6.7 0 0 0 0 0 0 0 0
6.8 0 0 0 0 0 0 0 0
7.1 0 0 0 0 1 0 0 0
7.2 0 0 0 0 1 0 0 0
7.3 0 0 0 0 0 0 0 0
7.4 0 0 0 0 0 0 0 1
7.5 0 0 0 0 0 0 0 1
7.6 0 0 0 0 0 0 1 0

126

