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Abstract

Assume G is a finite group, such that |G| “ 6pq or 7pq, where p and q are distinct

prime numbers, and let S be a generating set of G. We prove there is a Hamiltonian

cycle in the corresponding Cayley graph CaypG;Sq.
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Chapter 1

Introduction

1.1 Statement of the main result

Arthur Cayley [9] introduced the definition of Cayley graph in 1878. All graphs

in this thesis are undirected.

Definition 1.1.1 (cf. [23, p. 34]). Let S be a subset of a finite group G. The Cayley

graph CaypG;Sq is the graph whose vertices are elements of G, with an edge joining

g and gs, for every g P G and s P S.

Since then, the theory of Cayley graphs has grown into a substantial branch in

algebraic graph theory. It is an interesting topic to work on because not only is it

related to pure mathematics problems, but it is connected to fascinating problems

studied by computer scientists, molecular biologists, and coding theorists (see [30] for

more information).

Recall that a Hamiltonian cycle is a cycle that visits every vertex of a graph.

Finding Hamiltonian cycles is a fundamental question in graph theory, but in general,

it is extremely difficult. To be precise, it is an NP-complete problem, which means

most mathematicians do not believe there exists an efficient algorithm to determine

whether an arbitrary graph contains such a cycle. (Finding a method would win a

US$1,000,000 prize from the Clay Mathematics Institute [27].) Because the general

case is so hard, it is natural to look at special cases.

Cayley graphs are one of these cases that mathematicians are interested in working

on. There have been many papers on the topic, but it is still an open question whether

1



1.1. STATEMENT OF THE MAIN RESULT

every connected Cayley graph has a Hamiltonian cycle. (See survey papers [14, 50, 42]

for more information. We ignore the trivial counterexamples on 1 or 2 vertices.) There

are several different lines of research in the area. We mention some of the approaches

that have been taken:

• Restrictions on |G| that imply every connected Cayley graph on G has a Hamil-

tonian cycle (see Theorem 1.1.2 below). The main results of this thesis are a

contribution to this topic (see Theorem 1.1.3 and Proposition 1.1.4 below).

• Cayley graphs on groups that are almost abelian: commutator subgroup of prime

order [17, 18, 37] (or cyclic of prime-power order [29]), commutator subgroup

that is cyclic of order pq (where p and q are prime) [40, 39], dihedral groups ([6]

and [51, Proposition 5.5]), nilpotent groups [22, 38, 49].

• Existence of small-valency Cayley graphs that have a Hamiltonian cycle: [42,

Theorem 1] and [51, Theorem 3.1].

• Random Cayley graphs: [31, Theorem 4.1].

• Hamiltonian paths (or cycles) in certain Cayley graphs on symmetric groups:

These provide a list of all the permutations of a set. Several examples are

described in [45, Section 3].

• Hamiltonian cycles in vertex-transitive graphs (graphs such that all vertices are

in the same orbit of the automorphism group): See the survey [32]. Cayley

graphs are examples of vertex-transitive graphs.

• Directed Hamiltonian paths or cycles in Cayley digraphs: [16, 38, 43, 44].

• Stronger or weaker results than Hamiltonian cycles (for Cayley graphs): Hamil-

tonian connected or Hamiltonian laceable: [4, 5, 13, 47], Hamiltonian decom-

posable [3, 8, 48], edge-Hamiltonian [10, 35, 36], Hamiltonian paths [38].

The following result combines the work of several authors (C. C. Chen and N. Quimpo

[11], S. J. Curran, J. Morris and D. W. Morris [15], E. Ghaderpour and D. W. Mor-

2



1.1. STATEMENT OF THE MAIN RESULT

ris [20, 21], D. Jungreis and E. Friedman [28], Kutnar et al. [33], K. Keating and

D. Witte [29], D. Li [34], D. W. Morris and K. Wilk [41], and D. Witte [49]).

Theorem 1.1.2 ([33, 41, 49]). Let G be a finite group. Every connected Cayley graph

on G has a Hamiltonian cycle if |G| has any of the following forms (where p, q, and

r are distinct primes):

1. kp, where 1 ď k ď 47,

2. kpq, where 1 ď k ď 5,

3. pqr,

4. kp2, where 1 ď k ď 4,

5. kp3, where 1 ď k ď 2,

6. pk, where 1 ď k ă 8.

This thesis extends part (2) of Theorem 1.1.2 by improving the condition on k:

we show that 5 can be replaced with 7. The hard part is when k “ 6:

Theorem 1.1.3. Assume G is a finite group of order 6pq, where p and q are distinct

prime numbers. Then every connected Cayley graph on G contains a Hamiltonian

cycle.

This generalizes [21], which considered only the case where q “ 5. The proof takes

up all of Chapter 3, after some preliminaries in Chapter 2.

Unlike Theorem 1.1.3, the following observation follows easily from known results,

and may be known to experts. The proof is on page 35.

Proposition 1.1.4. Assume G is a finite group of order 7pq, where p and q are

distinct prime numbers. Then every connected Cayley graph on G contains a Hamil-

tonian cycle.

The remainder of this chapter explains some of the key ideas in the subject. Sec-

tion 1.2 provides a brief description of the new part of the proof of Theorem 1.1.3,

3



1.2. BASIC METHODS

and gives a fairly complete proof of an illustrative special case. The other sections

discuss results that are already in the literature. Section 1.3 explains the structure

of groups of square-free order. Section 1.4 explains the key ideas in the proof of the

previously known special case where the commutator subgroup has prime order. Sec-

tion 1.5 explains the proof of parts (2) and (3) of Theorem 1.1.2. Section 1.6 describes

a method that has been used to prove part (1) of Theorem 1.1.2.

The other chapters are devoted to the proof of Theorem 1.1.3: Chapter 2 covers

preliminaries, and the proof is carried out in Chapter 3.

1.2 Basic methods

In this section we explain some of the key ideas in the proof of our main re-

sult (Theorem 1.1.3). We use standard terminology of graph theory and group theory

that can be found in textbooks, such as [23, 25].

It is easy to see that CaypG;Sq is connected if and only if S generates G ([23,

Lemma 3.7.4]). Also, if S is a subset of S0, then CaypG;Sq is a subgraph of CaypG;S0q

that contains all of the vertices. Therefore, in order to show that every connected

Cayley graph on G contains a Hamiltonian cycle, it suffices to consider CaypG;Sq,

where S is a generating set that is minimal, which means that no proper subset of S

generates G.

Notation 1.2.1 ([21, Notation on page 3615]). For S Ď G, a sequence ps1, s2, . . . , snq

of elements of S Y S´1 specifies the walk in CaypG;Sq that visits the vertices

e, s1, s1s2, . . . , s1s2 ¨ ¨ ¨ sn.

Additional notation, terminology, and basic results can be found in Chapter 2.

The following well known (and easy) result handles the case of Theorem 1.1.3 where

G is abelian.

4



1.2. BASIC METHODS

Note CaypC2; tauq is a Cayley graph with two vertices, where C2 “ xay. We consider

pa, aq as its Hamiltonian cycle which is:

e
a
Ñ a

a
Ñ a2 “ e.

Although graph theorists would not typically consider this a cycle, it satisfies the

basic property of visiting each vertex exactly once. In some of our inductive proofs,

we require a Hamiltonian cycle in a Cayley graph on a quotient group. When this

quotient group is C2, this Hamiltonian cycle provide the structure we need for our

inductive arguments to work.

Lemma 1.2.2 ([12, Corollary on page 257]). Assume G is an abelian group. Then

every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Let S “ ts1, s2, . . . , snu be a minimal generating set for G. By induction on

n “ |S|, we prove that CaypG;Sq has a Hamiltonian cycle. If n “ 1, then G is cyclic

and CaypG;Sq has a Hamiltonian cycle:

e
s1
Ñ s1

s1
Ñ s21

s1
Ñ ¨ ¨ ¨

s1
Ñ s

|G|
1 “ e.

Now assume n ą 1, and let G “ G{xs1y. Then |Szts1u| ď n ´ 1, so by the induction

hypothesis CaypG;Sq has a Hamiltonian cycle pt1, t2, . . . , tmq. Clearly, |G{xs1y| “ m.

Let |s1| “ k. If m is even, then by considering tt1, t2, . . . , tmu as the horizontal edges

and s1 as the vertical edges, we can see in Figure 1.1 that

pt1, t2, . . . , tm´1, s
k´1
1 , t´1m´1, s

´pk´2q
1 , t´1m´2, s

k´2
1 , . . . , t´11 , s

´pk´1q
1 q

is a Hamiltonian cycle in CaypG;Sq. If m is odd, then with the same understanding

5



1.2. BASIC METHODS

e

Figure 1.1: A zig-zag Hamiltonian cycle when the number of columns is even

e

Figure 1.2: A zig-zag Hamiltonian cycle when the number of columns is odd

6



1.2. BASIC METHODS

of the edges, we can see in Figure 1.2 that

pt1, t2, . . . , tm´1, s
k´1
1 , t´1m´1, s

´pk´2q
1 , t´1m´2, s

k´2
1 , . . . , t´11 , s

pk´1q
1 q

is a Hamiltonian cycle in CaypG;Sq.

Theorem 1.2.3 (Marušič [37], Durnberger [17, 18], and Keating-Witte [29]). If the

commutator subgroup G1 of G is a cyclic p-group, then every connected Cayley graph

on G has a Hamiltonian cycle.

Theorem 1.2.4 (Chen-Quimpo [13]). Let v and w be two distinct vertices of a con-

nected Cayley graph CaypG;Sq. Assume G is abelian, |G| is odd, and the valency of

CaypG;Sq is at least 3. Then CaypG;Sq has a Hamiltonian path that starts at v and

ends at w.

We will always let G1 “ rG,Gs be the commutator subgroup of G. Then G “ G{G1

is always abelian, so Lemma 1.2.2 provides a Hamiltonian cycle in CaypG;Sq. The

following lemma (and its corollary) often provide a way to lift this Hamiltonian cycle

to a Hamiltonian cycle in CaypG;Sq. Before stating the results, we introduce a useful

piece of notation.

Notation 1.2.5. LetN be a normal subgroup ofG, andG “ G{N . For a Hamiltonian

cycle C “ ps1, s2, . . . , snq in CaypG;Sq, VpCq “ s1s2 ¨ ¨ ¨ sn is the voltage of C.

Factor Group Lemma 1.2.6 ([50, Section 2.2]). Suppose:

• S is a generating set of G,

• N is a cyclic normal subgroup of G,

• G “ G{N ,

• C “ ps1, s2, . . . , snq is a Hamiltonian cycle in CaypG{N ;Sq, and

• the voltage VpCq generates N .

7



1.2. BASIC METHODS

Then there is a Hamiltonian cycle in CaypG;Sq.

Proof. Let a “ VpCq “ s1s2 ¨ ¨ ¨ sn. We claim that C |N | “ ps1, s2, . . . , snq
|N | is a

Hamiltonian cycle in CaypG;Sq. Here is the walk C |N |:

e
s1
Ñ s1

s2
Ñ s1s2

s3
Ñ ¨ ¨ ¨

sn
Ñ s1s2 ¨ ¨ ¨ sn “ a

s1
Ñ as1

s2
Ñ as1s2

s3
Ñ ¨ ¨ ¨

sn
Ñ as1s2 ¨ ¨ ¨ sn “ a2

...

s1
Ñ a|N |´1s1

s2
Ñ a|N |´1s1s2

s3
Ñ ¨ ¨ ¨

sn
Ñ a|N |´1s1s2 ¨ ¨ ¨ sn “ a|N |.

Since a|N | “ ps1s2 ¨ ¨ ¨ snq
|N | “ e, then the walk is closed. Also, since C is a Hamiltonian

cycle in CaypG{N ;Sq, then its length is |G|{|N |. So the length of the walk C |N | is

equal to p|G|{|N |q ¨ |N | “ |G|, which is the correct length for a Hamiltonian cycle in

CaypG;Sq.

Therefore, if the walk is not a Hamiltonian cycle, then there must be a repeated

vertex, which means

aips1s2 ¨ ¨ ¨ skq “ ajps1s2 ¨ ¨ ¨ slq,

and pi, jq ‰ pk, lq where 0 ď i, j ď |N |´1 and 1 ď k, l ď n´1. If k ‰ l, then they are

in two different cosets of N which is a contradiction, so k “ l. Now we may assume

j ě i, then multiplying by a´i from the left side we have

aj´ips1s2 ¨ ¨ ¨ skq “ ps1s2 ¨ ¨ ¨ skq.

8



1.2. BASIC METHODS

Therefore,

aj´ips1s2 ¨ ¨ ¨ skqps
´1
k s´1k´1 ¨ ¨ ¨ s

´1
1 q “ ps1s2 ¨ ¨ ¨ skqps

´1
k s´1k´1 ¨ ¨ ¨ s

´1
1 q.

This implies that aj´i “ e, which means ai “ aj, so i “ j. Therefore, C |N | is a

Hamiltonian cycle in CaypG;Sq.

Corollary 1.2.7 ([21, Corollary 2.3]). Suppose:

• S is a generating set of G,

• N is a normal subgroup of G, such that |N | is prime,

• sN “ tN for some s, t P S with s ‰ t, and

• there is a Hamiltonian cycle in CaypG{N ;Sq that uses at least one edge labeled s.

Then there is a Hamiltonian cycle in CaypG;Sq.

Proof. Let C “ ps1, s2, . . . , snq be a Hamiltonian cycle in CaypG{N ;Sq, such that

si “ s for some i, and assume, for simplicity, that i “ n. If VpCq ‰ e, then since

|N | is a prime number, the subgroup generated by VpCq is N . Thus, Factor Group

Lemma 1.2.6 applies. Now if VpCq “ e, then let C1 “ ps1, s2, . . . , sn´1, tq. Since

t “ tN “ sN “ snN , this is another representation of the Hamiltonian cycle C.

However,

VpC1q “ s1s2 ¨ ¨ ¨ sn´1t “ s1s2 ¨ ¨ ¨ sn´1sn ¨ psnq
´1t “ e ¨ ps´1tq ‰ e

since s ‰ t. So Factor Group Lemma 1.2.6 applies.

Definition 1.2.8. The Cartesian product X1˝X2 of graphs X1 and X2 is a graph such

that the vertex set of X1 ˝ X2 is V pX1q ˆ V pX2q “ tpv, v
1q; v P V pX1q, v

1 P V pX2qu,

and two vertices pv1, v2q and pv11, v
1
2q are adjacent in X1 ˝ X2 if and only if either

• v1 “ v11 and v2 is adjacent to v12 in X2 or

9



1.2. BASIC METHODS

• v2 “ v12 and v1 is adjacent to v11 in X1.

Lemma 1.2.9 ([13, Lemma 5 on page 28]). The Cartesian product of a path and a

cycle is Hamiltonian.

Proof. Let Ln ˝ Cm be a Cartesian product of a path and a cycle, where m ě 3. (Ln

is a path and Cm is a cycle of length m.) Figures 1.1 on page 6 and 1.2 on page 6

show a Hamiltonian cycle in Ln ˝ Cm depending on whether n is even or not.

Corollary 1.2.10 (cf. [13, Corollary on page 29]). The Cartesian product of two

Hamiltonian graphs is Hamiltonian.

Proof. Let Xn ˝ Xm be a Cartesian product of two Hamiltonian graphs. Assume Cn

and Cm are Hamiltonian cycles ofXn andXm, respectively. Then Cn˝Cm is a spanning

subgraph of Xn ˝ Xm. Also, since Cn is a Hamiltonian cycle, then clearly there is a

Hamiltonian path Ln of Cn, so Ln ˝ Cm is a spanning subgraph of Cn ˝ Cm. This

implies that Ln ˝Cm is a spanning subgraph of Xn ˝Xm, so Lemma 1.2.9 applies.

Lemma 1.2.11 ([33, Lemma 2.27]). Let S generate the finite group G, and let s P S,

such that xsy ŸG. If CaypG{xsy;Sq has a Hamiltonian cycle, and either

1. s P ZpGq , or

2. ZpGq X xsy “ teu,

then CaypG;Sq has a Hamiltonian cycle.

Proof. ([33, Lemma 2.27]) Let ps1, s2, . . . , snq be a Hamiltonian cycle in CaypG{xsy;Sq,

and let k “ |s1s2 ¨ ¨ ¨ sn|, so ps1, s2, . . . , snq
k is a cycle in CaypG;Sq.

p1q Since s P ZpGq, by considering a Cartesian coordinate system such that the

vertical axis has vertices labeled

pe, s, s2, . . . , s|s|´1q

10



1.2. BASIC METHODS

and the horizontal axis has vertices labeled

pe, s1, s1s2, . . . , s1s2 ¨ ¨ ¨ sn´1q

it is easy to see that CaypG;Sq contains a spanning subgraph isomorphic to the

Cartesian product Pn ˝C|s| of a path with n vertices and a cycle with |s| vertices. By

Lemma 1.2.9 this Cartesian product is Hamiltonian, so we conclude that CaypG;Sq

has a Hamiltonian cycle.

p2q Let m “ |G|{pnkq. We claim that

psm´1, s1, s
m´1, s2, ..., s

m´1, snq
k

is a Hamiltonian cycle in CaypG;Sq. Let

gi “ ps1s2...siq
´1 for 0 ď i ď n, so gig

´1
i`1 “ si`1

and note that, since ps1, s2, . . . , snq is a Hamiltonian cycle in CaypG{xsy;Sq, we know

that t1, g1, g2, . . . , gn´1u is a complete set of coset representatives for xsy in G. Then

for any h P G,

th, g1h, g2h, . . . , gn´1hu

is also a set of coset representatives. Also, since xsy is abelian, we know that if x and

y are elements in the same coset of xsy, then sx “ sy. Thus, for any t P xsy, we have

tt, tg1 , tg2 , . . . , tgn´1u “ tth, tg1h, tg2h, . . . , tgn´1hu

so

ttg1tg2 ¨ ¨ ¨ tgn´1 “ thtg1htg2h ¨ ¨ ¨ tgn´1h

because both products have exactly the same factors (but possibly in a different

11



1.2. BASIC METHODS

order) and all factors are in the abelian group xsy. Since the right-hand product is

pttg1tg2 ¨ ¨ ¨ tgn´1qh, and h is an arbitrary element ofG, we conclude that ttg1tg2 ¨ ¨ ¨ tgn´1 P

ZpGq. Since ZpGq has trivial intersection with xsy, this implies that

ttg1tg2 ¨ ¨ ¨ tgn´1 “ e.

Therefore, by letting t “ sm´1, we see that

psm´1qs1ps
m´1

qs2 ¨ ¨ ¨ ps
m´1

qsn “ pps
m´1

qpsm´1qg1psm´1qg2 ¨ ¨ ¨ psm´1qgn´1qg´1n “ g´1n .

Then,

ppsm´1qs1ps
m´1

qs2 ¨ ¨ ¨ ps
m´1

qsnq
k
“ g´kn “ ps1s2 ¨ ¨ ¨ snq

k
“ e,

so the walk is closed. Furthermore, since m “ |xsy{xgny|, it is clear that the walk

visits every element of xsy, and it is similarly easy to see that it visits every element

of all of the other cosets. So it visits every element of G. Since it is also a closed walk

of the correct length, we conclude that it is a Hamiltonian cycle.

Known results easily imply many cases of our main theorem. Almost all of the

remaining cases are proved by using the Factor Group Lemma 1.2.6 (or its corollary).

In most of these cases, we apply the Factor Group Lemma 1.2.6 to G “ G{G1.

Let S be a minimal generating set of G. As explained in Lemma 1.2.2, it is easy to

find Hamiltonian cycles in CaypG;Sq since G “ G{G1 is abelian. However, we need to

find a Hamiltonian cycle whose voltage generates G1. This requires a careful choice of

the Hamiltonian cycle, and also requires calculating the product s1s2 . . . sn, to show

that it generates G1. This calculation can be rather complicated. Also, there are many

different possibilities for the generating set S, so we need to find Hamiltonian cycles

in many different Cayley graphs CaypG;Sq, and calculating the voltage s1s2 . . . sn

depends on the particular generating set S, not only on its image in G. In a few

12



1.2. BASIC METHODS

cases, there does not exist a Hamiltonian cycle in CaypG;Sq whose voltage generates

G1. In these situations, we apply Factor Group Lemma 1.2.6 to a Cayley graph on a

quotient G{N , where N is a proper subgroup of G1 that has prime order. Since G{N

is not abelian, it is more difficult to find Hamiltonian cycles in this Cayley graph.

We now describe the main ideas of our proof, which is in Chapter 3. We may

assume |G| is square-free, for otherwise tp, quXt2, 3u ‰ H, so Theorem 1.1.2(1) applies

(because |G| P t12p, 12q, 18p, 18qu). Now elementary group theory implies that G1 is

cyclic (see Proposition 1.3.12(1)). Now, known results apply unless G1 is either CpˆCq

or C3ˆ Cp, perhaps after interchanging p and q (see Proposition 2.3.2). (We use Cn to

denote the cyclic group of order n.) The proof is divided into three parts, depending

on the cardinality of S: |S| “ 2, |S| “ 3 or |S| ě 4. (Note if |S| “ 1, then G is abelian

and Lemma 1.2.2 applies.) This is the same general argument as in [21], which is the

case where q “ 5 and we use similar techniques. However, one of the reasons that

our result is harder to prove is that C3 does not need to centralize Cq in our situation

unlike when q “ 5. Thus, the arguments of [21] did not apply to any of the cases we

consider in which C3 does not centralize Cq.

The easiest part of our proof is when |S| ě 4. Section 3.9 (which is very short)

shows that if we make some additional assumptions to rule out cases that are already

known, then CaypG;Sq is a Cartesian product of smaller connected Cayley graphs.

Each of these smaller Cayley graphs is known to have a Hamiltonian cycle (by Theo-

rem 1.1.2), and it is well known that the Cartesian product of Hamiltonian graphs is

Hamiltonian (see Lemma 1.2.10).

The hardest part of our proof is when |S| “ 3. This part of the argument is in

Sections 3.3´3.8. Since there are many different possible minimal generating sets,

it is broken into many cases and subcases. (See Figures 3.1, 3.2 and 3.3 on pages 51

and 52 for a list of the cases.) In most situations, we apply Factor Group Lemma 1.2.6

to G{G1. Indeed, there are only three cases where this is not possible. These are in

13
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Cases 2, 3, and 4 of Section 3.4, where we apply the Factor Group Lemma 1.2.6 to

G{Cp or G{Cq.

The other part is when |S| “ 2. This part of the argument is in Sections 3.1 and 3.2.

To give the flavour of the general arguments, we provide some details of one special

case here.

We remark that in our notation for cycles, if |a| “ n we use an´i to indicate n´ i

copies of a, while a´i indicates i copies of a´1. Additionally, even when |a| “ 2, we

may write a´1 in a cycle, if |a| ‰ 2. This is used to indicate that when calculating

the voltage, we will using a´1 rather than a.

Proposition 1.2.12. Assume

• G “ pC2 ˆ C3q ˙G1,

• G1 “ Cp ˆ Cq, where p and q are distinct primes greater than 3,

• G “ G{G1,

• S “ ta, bu,

• |a| “ 6 and |b| “ 2.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Since |a| “ 6, then |a| P t6, 6p, 6q, 6pqu. If |a| “ 6pq, then G “ xay, which

contradicts the minimality of S. If |a| “ 6p, then Cp Ď xay, so Cp centralizes C2 ˆ C3,

and we already know that Cp centralizes Cq. Therefore, Cp Ď ZpGq, which contradicts

the fact that ZpGq XG1 “ teu (see Proposition 1.3.12(2)). If |a| “ 6q, then the same

argument as when |a| “ 6p works, by interchanging p and q. Thus, |a| “ 6. So we

have b “ a3, then b “ a3γ, where G1 “ xγy (otherwise xa, by “ xa, a3γy “ xa, γy ‰ G

which contradicts the fact that G “ xa, by).

Now by Proposition 1.3.12(4), we have τ P Z` such that aγa´1 “ γτ and τ 6 ” 1

pmod pqq, and gcdpτ´1, pqq “ 1. This implies that gcdpτ´1, pq “ 1 and gcdpτ´1, qq “

14
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1. Therefore, τ ı 1 pmod pq and τ ı 1 pmod qq. Since τ 6 ” 1 pmod pqq, then

0 ” τ 6 ´ 1 “ pτ 3 ´ 1qpτ 3 ` 1q “ pτ ´ 1qpτ 2 ` τ ` 1qpτ ` 1qpτ 2 ´ τ ` 1q pmod pqq.

Since τ ı 1 pmod pq and τ ı 1 pmod qq, then we conclude that

0 ” pτ 2 ` τ ` 1qpτ ` 1qpτ 2 ´ τ ` 1q pmod pqq. (eq.1)

Up to automorphisms, there are only three different Hamiltonian cycles in CaypG;Sq,

which are: C1 “ pa
6q, C2 “ ppa, bq

3q and C3 “ pa
2, b, a´2, bq. Now we calculate their

voltages. We have VpC1q “ a6 “ e, so clearly it does not generate G1. We have

VpC2q “ pabq
3
“ pa ¨ a3γq3 “ pa4γq3 “ a4γ ¨ a4γ ¨ a4γ “ γτ

4

a4 ¨ a4γ ¨ a4γ

“ γτ
4

¨ a8γ ¨ a4γ “ γτ
4

¨ a2γ ¨ a4γ “ γτ
4

¨ γτ
2

a2 ¨ a4γ “ γτ
4

¨ γτ
2

¨ a6γ

“ γτ
4`τ2

¨ γ “ γτ
4`τ2`1

“ γpτ
2`τ`1qpτ2´τ`1q.

We may assume the subgroup generated by VpC2q does not contain G1, for otherwise

Factor Group Lemma 1.2.6 applies. Therefore,

gcdppτ 2 ` τ ` 1qpτ 2 ´ τ ` 1q, pqq ‰ 1,

which by looking into eq.1, we see is possible. Assume, without loss of generality,

that either τ 2` τ ` 1 ” 0 pmod pq or τ 2´ τ ` 1 ” 0 pmod pq. Note that this implies

τ ı ˘1 pmod pq.

We can now calculate the voltage of C3.

VpC3q “ a2ba´2b “ a2 ¨ a3γ ¨ a´2 ¨ a3γ “ a5γaγ “ γτ
5`1.

We may assume this does not generate G1, for otherwise Factor Group Lemma 1.2.6

15
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applies. So gcdpτ 5 ` 1, pqq ‰ 1. This implies that τ 5 ` 1 ” 0 pmod pq or τ 5 ` 1 ” 0

pmod qq. Therefore, τ ” ´1 pmod pq or τ ” ´1 pmod qq. Since τ ı ´1 pmod pq,

this implies τ ” ´1 pmod qq.

We are now in a situation where the voltages of C1, C2 and C3 do not generate G1.

Since |b| “ 2, we could try to obtain different voltages by replacing some occurrences

of b with b
´1

. However, if τ 2 ´ τ ` 1 ” 0 pmod pq, then τ 3 ” ´1 pmod pq. Since

τ 3 ” p´1q3 “ ´1 pmod qq, this implies that b has order 2, so b “ b´1. Hence replacing

b with b
´1

will not change the voltages of Hamiltonian cycles in this case. Thus, the

Factor Group Lemma 1.2.6 cannot be applied to G{G1. In this situation, we will

therefore look at pG “ G{Cp.

Consider pG “ G{Cp “ pC2 ˆ C3q ˙ Cq. Since b “ a3γ, where xγy “ G1, we have

pb “ pa3aq, where xaqy “ Cq. Since τ ” ´1 pmod qq, then a2 centralizes γ and a3 inverts

γ, so C3 centralizes Cq and C2 does not centralize Cq. Therefore, pG – D2q ˆ C3, where

D2q is the dihedral group of order 2q. Now we have

C4 “ pppa
5,pb,pa´5,pbqpq´3q{2, ppa5,pbq3q

as a Hamiltonian cycle in Cayp pG; pSq. The picture in Figure 3.4 shows the Hamiltonian

cycle when q “ 7.

If in C4 we change one occurrence of ppa5,pb,pa´5,pbq to ppa´5,pb,pa5,pbq we have another

Hamiltonian cycle. Note that,

a5ba´5b “ a5 ¨ a3γ ¨ a´5 ¨ a3γ “ a2γa´2γ “ γτ
2`1,

and

a´5ba5b “ a´5 ¨ a3γ ¨ a5 ¨ a3γ “ a´2γa2γ “ γτ
´2`1.
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Since τ 4 ı 0 pmod pq we see that τ 2 ` 1 ı τ´2 ` 1 pmod pq. Therefore, the voltages

of these two Hamiltonian cycles are different, so one of these Hamiltonian cycles has

a nontrivial voltage. Thus, Factor Group Lemma 1.2.6 applies.

1.3 Groups of square-free order

In this section we describe the structure of groups of square-free order. We start

the section by stating the following proposition about the solvability of groups of

square-free order.

Proposition 1.3.1 ([19, Proposition 17]). Every group of square-free order is solvable.

The proof of this proposition needs a concept in group theory named transfer

homomorphism. Since the goal of this thesis is to prove Theorem 1.1.3 in which the

order of the group is 6pq (p and q are distinct primes which can be assumed to be

greater than 7 by Assumption 3.0.1(1)), then it suffices for our purposes to prove the

following special case, which does not require the transfer homomorphism.

Proposition 1.3.2. Assume |G| “ 2pqr, where p, q and r are distinct odd prime

numbers. Then G is solvable.

Before proving this proposition, we establish several well known lemmas.

Lemma 1.3.3. Assume |G| “ pq, where p and q are distinct prime numbers and

p ą q. Then G has a unique subgroup of order p (this subgroup is normal) and G is

solvable.

Proof. By the Sylow existence theorem, there exists a Sylow p-subgroup of G. Let np

be the number of Sylow p-subgroups of G. Then by Sylow’s theorem we have np ” 1

pmod pq and np|q. Since p ą q, then np “ 1, which implies that there is a unique P

as the Sylow p-subgroup of G. This implies that P ŸG, where |P | “ p.

Since we have xey Ÿ P Ÿ G as a normal series with abelian quotients, then G is

solvable.

17
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Lemma 1.3.4. Assume |G| “ pqr, where p, q and r are distinct prime numbers and

p ą q ą r. Then G contains a normal subgroup of order either p, q or r.

Proof. Let np, nq and nr be the number of Sylow p-subgroups, Sylow q-subgroups

and Sylow r-subgroups of G, respectively. We may assume np ą 1, for otherwise we

have a unique Sylow p-subgroup of G, which is normal and we are done. Similarly,

assume nq ą 1 and nr ą 1. By Sylow’s theorem, we have np ” 1 pmod pq and

np|qr. This implies that np P t1, r, q, qru. Since np ą 1 and p ą q, r, then np “ qr.

Also, by Sylow’s theorem, we have nq ” 1 pmod qq and nq|pr. This implies that

nq P t1, p, r, pru. Since nq ą 1 and q ą r, then nq ě p. By applying Sylow’s theorem

we also have, nr ” 1 pmod rq and nr|pq. This implies that nr P t1, p, q, pqu. Since

nr ą 1, then we have nr ě q. Each Sylow p-subgroup contains p´ 1 elements of order

p. Since distinct Sylow p-subgroups intersect trivially, there are pp´ 1qnp “ pp´ 1qqr

elements of order p in G. By a similar argument, the number of elements of order

either p, q or r is greater than or equal to

pr ´ 1qq ` pq ´ 1qp` pp´ 1qqr “ qr ´ q ` pq ´ p` pqr ´ qr “ pqr ` pq ´ q ´ p.

Clearly, this number must be less than or equal to |G| “ pqr. Therefore,

pqr ` pq ´ q ´ p ď pqr.

This implies that (since p ą q ą r ě 2)

q ď p{pp´ 1q ă 2,

which is a contradiction.

Lemma 1.3.5. Assume |G| “ pqr, where p, q and r are distinct prime numbers and

p ą q ą r. Then the Sylow p-subgroup of G is normal.

18



1.3. GROUPS OF SQUARE-FREE ORDER

Proof. By Lemma 1.3.4 we know that there exists a normal subgroup of order either

p, q or r. If the normal subgroup of G has order p, then we are done. So we may

assume N Ÿ G, where the order of N is either q or r. Now G{N has order either

pr or pq. Thus, by Lemma 1.3.3 we have M as a Sylow p-subgroup of G{N , which

is normal. Since M Ÿ G{N , then by the Correspondence Theorem, it corresponds

to a normal subgroup N1 of G of order pr or pq (depending on whether |N | “ q

or |N | “ r). Now by applying Lemma 1.3.3 to N1, we conclude that there exists

M1 Ÿ N1 as a unique Sylow p-subgroup of N1. Let g P G be an arbitrary element.

Then gM1g
´1 ď gN1g

´1 “ N1. Since |gM1g
´1| “ |M1|, and we know that M1 is a

unique Sylow p-subgroup of N1, then gM1g
´1 “M1. This implies that M1 ŸG.

Lemma 1.3.6. Assume |G| “ pqr, where p, q and r are distinct prime numbers and

p ą q ą r. Then G is solvable.

Proof. By Lemma 1.3.5 we know M Ÿ G as a Sylow p-subgroup of G. We have

|G{M | “ qr, so by Lemma 1.3.3, there exists Q Ÿ G{M as a Sylow q-subgroup of

G{M . By the Correspondence Theorem, Q corresponds to N Ÿ G with |N | “ pq.

Therefore, xey Ÿ Q ŸN Ÿ G is a subnormal series of G with abelian quotients. This

implies that G is solvable.

Lemma 1.3.7. Assume |G| “ 2k, where k is odd. Then G has a subgroup of index 2.

Proof. Let Φ : G Ñ S2k, by Φpgq “ σg for every g P G, where σg is the permutation

in S2k defined by σgpg
1q “ gg1 for every g1 P G. For arbitrary g1, g2 P G, we have

Φpg1g2q “ σg1g2 “ σg1σg2 “ Φpg1qΦpg2q.

So Φ is a group homomorphism. Since |G| “ 2k, then there is an element of order 2

in G, say a. Note that σapagq “ a2g “ g. So for every g P G, pg, agq is a transposition

in σa. Thus, σa is a product of transpositions. Since every g P G belongs to exactly one

transposition, and |G| “ 2k, then σa has k transpositions, so σa is an odd permutation.
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Now define Ψ : S2k Ñ t1,´1u by Ψpσq “ 1 if the permutation σ is even, and

Ψpσq “ ´1 if the permutation σ is odd. We claim that Ψ is a group homomorphism.

Suppose not, then there exists σ1, σ2 P S2k, such that Ψpσ1σ2q ‰ Ψpσ1qΨpσ2q. Without

loss of generality assume Ψpσ1σ2q “ 1 and Ψpσ1qΨpσ2q “ ´1. Since Ψpσ1σ2q “ 1,

then either both σ1 and σ2 are even or both σ1 and σ2 are odd. So Ψpσ1qΨpσ2q “ 1,

which is a contradiction. Now since Φ and Ψ are group homomorphisms, then Ψ ˝Φ :

GÑ t1,´1u is a group homomorphism. Since

Ψ ˝ Φpaq “ ΨpΦpaqq “ Ψpσaq “ ´1

and Ψ˝Φpeq “ 1, then Ψ˝Φ is onto. Now by the First Isomorphism Theorem, we have

G{KerpΨ ˝ Φq – t1,´1u. This implies that KerpΨ ˝ Φq is a subgroup of index 2.

Lemma 1.3.8. Assume |G| “ 2k, where k is odd. Then |G1| is odd.

Proof. By Lemma 1.3.7, there is a normal subgroup H of G such that rG : Hs “

2. Now since G{H has order 2, then G{H is abelian, so G1 Ď H. Therefore, |G1|

is odd.

Lemma 1.3.9. If N is a normal subgroup of G, such that N and G{N are solvable,

then G is solvable.

Proof. By induction on r, we see that pG{Nqprq “ GprqN . (Note that Gprq is the rth

derived subgroup of G.) However, since G{N is solvable, there is some r, such that

pG{Nqprq is trivial. Therefore, we must have Gprq Ď N . By induction on s, we see that

Gpr`sq “ pGprqqpsq for all s P Z`. However, since N is solvable, there is some s P Z`,

such that N psq “ teu. Then Gpr`sq “ pGprqqpsq Ď N psq “ teu.

Proof of Proposition 1.3.2. Since |G| “ 2 ˆ odd, then by Lemma 1.3.7 there is a

subgroup N of index 2 in G. Since |G : N | “ 2, then NŸG. Since |N | “ pqr, then by

Lemma 1.3.6 N is solvable. Also, clearly |G{N | “ 2 and G{N is solvable. Therefore,

by Lemma 1.3.9 G is solvable.
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Lemma 1.3.10. If N ŸG, N Ď ZpGq, and G{N is cyclic, then G is abelian.

Proof. By the Third Isomorphism Theorem, we have G{ZpGq – pG{Nq{pZpGq{Nq.

Since pG{Nq{pZpGq{Nq is a quotient of G{N (which is cyclic), then pG{Nq{pZpGq{Nq

is cyclic. This implies that G{ZpGq is cyclic. Let gZpGq be a generator of G{ZpGq,

where g P G. Now let g1 P G be an arbitrary element in G. So g1ZpGq “ gnZpGq

for some n P Z`. Therefore, g´ng1 P ZpGq, so there exists z1 P ZpGq such that

z1 “ g´ng1. Thus, g1 “ gnz1. Let g2 P G be another arbitrary element in G, by the

same argument we have g2 “ gmz2, where z2 P ZpGq, and m P Z`. Now we have

g1g2 “ gnz1 ¨ g
mz2 “ gn`mz1z2 “ gmgnz2z1 “ gmz2 ¨ g

nz1 “ g2g1.

This implies that G is abelian.

Lemma 1.3.11 ([46, 12.6.16 on page 356]). If G is a group and Gpi´1q{Gpiq and

Gpiq{Gpi`1q are cyclic for some i ě 2, then Gpiq{Gpi`1q “ teu.

Proof. Let H “ Gpi´2q{Gpi`1q. Then H 1{H2 – Gpi´1q{Gpiq and H2 “ Gpiq{Gpi`1q

are cyclic and H3 “ Gpi`1q{Gpi`1q “ teu. Define Φ : NHpH
2q Ñ AutpH2q, where

Φphq “ Ψh for every h P H, and Ψh “ hh2h´1 for every h2 P H2. Let h1, h2 P NHpH
2q

be arbitrary elements. Then

Φph1h2q “ Ψh1h2 “ Ψh1Ψh2 “ Φph1qΦph2q.

This implies that Φ is a homomorphism. We claim that KerpΦq “ CHpH
2q. Assume

h P KerpΦq, then Φphq “ Ψh “ hh2h´1 “ h2 “ Ψe, for every h2 P H2. This implies

that h P CHpH
2q. So KerpΦq Ď CHpH

2q. Now assume h P CHpH
2q, then Φphq “ Ψh “

hh2h´1 “ h2 “ Ψe. This implies that h P KerpΦq. Therefore, CHpH
2q Ď KerpΦq. We

conclude that KerpΦq “ CHpH
2q. By the First Isomorphism Theorem

NHpH
2
q{CHpH

2
q “ NHpH

2
q{KerpΦq – ΦpNHpH

2
qq
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which is a subgroup of AutpH2q. Now it is clear that NHpH
2q{CHpH

2q “ H{CHpH
2q.

So H{CHpH
2q is isomorphic to a subgroup of AutpH2q. We know that H2 is cyclic.

So H2 “ xh2y. Now let Φ1,Φ2 P AutpH2q. Since H2 is cyclic, then Φ1ph
2q “ ph2qa

and Φ2ph
2q “ ph2qb for some a, b P Z`. Thus,

Φ1 ˝ Φ2ph
2
q “ Φ1pΦ2ph

2
qq “ Φ1pph

2
q
b
q “ ph2qba “ pph2qaqb “ Φ2 ˝ Φ1ph

2
q.

This implies that AutpH2q is abelian. So H{CHpH
2q is abelian. Therefore, H 1 Ď

CHpH
2q. Thus, H2 Ď ZpH 1q. Now since H 1{H2 is cyclic and H2 Ď ZpH 1q, then H 1

is abelian (see Lemma 1.3.10). Since H 1 is abelian, then H2 “ teu, which means

Gpiq{Gpi`1q “ teu as desired.

We can now prove the main result of this section.

Proposition 1.3.12 ([25, Theorem 9.4.3 on page 146], cf. [21, Lemma 2.11]). Assume

|G| is square-free. Then:

1. G1 and G{G1 are cyclic,

2. ZpGq XG1 “ teu,

3. G – Cn ˙G
1, for some n P Z`,

4. If b and γ are elements of G such that xbG1y “ G{G1 and xγy “ G1, then

xb, γy “ G, and there are integers m, n, and τ , such that |γ| “ m, |b| “ n,

bγb´1 “ γτ , mn “ |G|, gcdpτ ´ 1,mq “ 1, and τn ” 1 pmod mq.

Proof. Since |G| is square-free, then by Proposition 1.3.1 G is solvable. (We proved

in Proposition 1.3.2 that the group we are working on in Theorem 1.1.3 is solvable.)

Since G{G1 is an abelian group of square-free order, then G{G1 is cyclic. By the same

argument, G1{G2 and G2{G3 are also cyclic. Now by Lemma 1.3.11 (with i “ 2),

G2 “ G3. Since G is solvable, then there exists r P Z` such that Gprq “ teu. By
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Lemma 1.3.11 (with i P t3, 4, . . . , r ´ 1u) we have

G2 “ G3 “ Gp4q “ . . . “ Gpr´1q “ Gprq “ teu.

This implies that G2 “ teu. Since G1{G2 is cyclic, this implies G1 is cyclic. Thus we

have shown that G1 and G{G1 are cyclic, as desired.

Let G1 “ xγy, m “ |γ| “ |G1|, and let G{G1 “ xbG1y. Hence b and γ generate G

and bγb´1 “ γτ for some τ P Z`. If G{G1 is of order n, then bn P G1 “ xγy so bn

centralizes γ. Therefore, bnγb´n “ γ. Since bγb´1 “ γτ , then

γτ
n

“ pbγb´1qn “ bnγb´n “ γ.

So τn ” 1 pmod mq. Note that G “ xb, γy and rb, γs “ bγb´1γ´1 “ γτ´1. Hence γτ´1

generates G1 (see Lemma 2.2.1), therefore, gcdpτ ´ 1,mq “ 1. Also, we know that

bn P G1, so there exists k P Z` such that bn “ γk. We have

γk`τ “ γkγτ “ bnγτ “ bnpbγb´1q “ bbnγb´1 “ bγk`1b´1 “ γpk`1qτ .

This implies that k ` τ ” pk ` 1qτ pmod mq, so kτ ´ k ” 0 pmod mq. Therefore,

kpτ´1q ” 0 pmod mq. Since gcdpτ´1,mq “ 1, then k ” 0 pmod mq, so bn “ γk “ e.

Assume ZpGq X G1 ‰ teu. Then there exists z P ZpGq such that z P G1. Since

G1 “ xγy, then z “ γ` for some ` P Z`. We have

γ``τ “ γ`γτ “ zγτ “ zpbγb´1q “ bpzγb´1q “ bγ`γb´1 “ bγ``1b´1 “ γp``1qτ .

This implies that `` τ ” p`` 1qτ pmod mq. Therefore, `pτ ´ 1q ” 0 pmod mq, which

implies that ` ” 0 pmod mq (because gcdpτ ´ 1,mq “ 1). So ZpGq XG1 “ teu.

Since G “ xb, γy, then every element in G can be written in the form of biγj P

xbyxγy, soG Ď xbyxγy, and every element in xbyxγy belongs toG, therefore,G “ xbyxγy.
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Since xby X xγy Ď ZpGq, xγy “ G1, and ZpGq XG1 “ teu we see that xby X xγy “ teu.

Since G “ xbyxγy and xby X xγy “ teu, then G “ xby ˙ xγy. Also, since |b| “ n and

xγy “ G1, then G – Cn ˙G1.

Notation 1.3.13. For τ as defined in Proposition 1.3.12(4), we use τ´1 to denote the

inverse of τ modulo m (so τ´1 ” τn´1 pmod mq).

1.4 Marušič’s method and an application

Throughout this section, firstly, we state and prove Marušič’s method, which is

a fundamental technique that was introduced in [37]. Then we see an application of

this method in proving a case of our main result.

Lemma 1.4.1 (Marušič’s method [29, Lemma 3.1]). Let G “ xSy with |G1| “ p,

where p is prime. Choose a subset T of S with H “ xT y non-abelian. Suppose

there are Hamiltonian cycles py1, y2, . . . , ymq and py˚1 , y
˚
2 , . . . , y

˚
mq in CaypH{H 1;T q

such that ym “ y˚m and y1y2 ¨ ¨ ¨ ym ‰ y˚1y
˚
2 ¨ ¨ ¨ y

˚
m. Then there is a Hamiltonian cycle

px1, x2, . . . , xnq in CaypG{G1;Sq such that px1, x2, . . . , xnq
|G1| is a Hamiltonian cycle

in CaypG;Sq.

Proof. ([29, Proof of Lemma 3.1]) Since |G1| is prime, we must have H 1 “ G1 so

py1, y2, . . . , ymq and py˚1 , y
˚
2 , . . . , y

˚
mq are Hamiltonian cycles in CaypH{G1;T q. Since

G1 Ď H, then G{H is an abelian group. Let pz1, z2, . . . , zkq be a Hamiltonian path in

CaypG{H;SzT q, and let L “ py1, y2, . . . , ym´1q. If m is even we have

C “ pz1, z2, . . . , zk, L, z
´1
k , y´1m´1, y

´1
m´2 . . . , y

´1
2 , z´1k´1, . . . , z

´1
1 , y´1m´1, y

´1
m´2, . . . , y

´1
1 q

as a Hamiltonian cycle in CaypG{G1;Sq (see Figure 1.1 on page 6). If m is odd we have

C “ pz1, z2, . . . , zk, L, z
´1
k , y´1m´1, y

´1
m´2, . . . , y

´1
2 , z´1k´1, . . . , z

´1
1 , y2, y3, . . . , ymq
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1.4. MARUŠIČ’S METHOD AND AN APPLICATION

as a Hamiltonian cycle in CaypG{G1;Sq (see Figure 1.2 on page 6). Now we construct

another Hamiltonian cycle C˚ in CaypG{G1;Sq by replacing L with py˚1 , y
˚
2 , . . . , y

˚
m´1q

in C. Since y1y2 ¨ ¨ ¨ ym ‰ y˚1y
˚
2 ¨ ¨ ¨ y

˚
m, then VpCq ‰ V pC˚q. Since |G1| is prime,

then one of VpCq or V pC˚q must be nontrivial, therefore, this voltage generates G1.

So Factor Group Lemma 1.2.6 applies. This means that either C |G
1| or C˚|G

1| is a

Hamiltonian cycle in CaypG;Sq.

Corollary 1.4.2 (cf. [29, Case 5.3]). Assume S is a minimal generating set of G

such that |G1| “ p where p is prime, and let G “ G{G1. Also, assume a, b P S with

a R CGpG
1q, ab ‰ ba, and either |a| ą 2 and b R xay or aγa´1 ‰ γ´1 for some

generator γ of G1. Then CaypG;Sq has a Hamiltonian cycle.

Proof. (cf. [29, Case 5.3]) Let T “ ta, bu and H “ xa, by.

Case 1. Assume |a| ą 2 and b R xay. Then one of the following is a Hamiltonian

cycle in CaypH{H 1;T q, depending on whether k “ |H : xa,G1y| is even or odd (see

Figures 1.1, and 1.2 on page 6):

C “ pb
k´1

, a, pa|a|´2, b
´1
, a´p|a|´2q, b

´1
q
pk´2q{2, a|a|´1, b

´1
, a´p|a|´1qq

or

C “ pb
k´1

, a, pa|a|´2, b
´1
, a´p|a|´2q, b

´1
q
pk´1q{2, a|a|´1q.

Since |a| ą 2 and k ą 1, then each of the above Hamiltonian cycles contains the

string pb, a|a|´1, b
´1
, a´1q (This is at the right end of Figures 1.1 and 1.2). Now we

form a new Hamiltonian cycle by replacing this string with pa´1, b, a|a|´1, b
´1
q. This

Hamiltonian cycle has a different voltage than the original, for otherwise if we let
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γ “ rb, a´1s, then

γa´1 “ pba´1b´1aqa´1 “ pba´1b´1a´1qa “ pa´1ba´1b´1qa “ a´1rb, a´1s “ a´1γ.

This contradicts the fact that a R CGpG
1q. Therefore, Lemma 1.4.1 applies.

Case 2. Assume aγa´1 ‰ γ´1. Then |a| ą 2. So we may assume b P xay, for otherwise

the Case 1 applies. Thus, b “ ai, where 0 ď i ď |a| ´ 1. By Proposition 1.3.12(2)

G1 X ZpGq “ teu, so we may assume S X G1 “ H, for otherwise Lemma 1.2.11(2)

applies since G{xsy is abelian, so CaypG{xsy;Sq has a Hamiltonian cycle. Therefore,

i ‰ 0. Also, we may assume i ‰ 1, |a| ´ 1, for otherwise Corollary 1.2.7 applies

with s “ a and t “ b˘1. Since b “ ai, then b “ aiγ, where γ P G1, and G1 “ xγy,

for otherwise b “ ai which contradicts the fact that ba ‰ ab. We have pa|a|q and

pb, a´pi´1q, b, ap|a|´i´1qq as Hamiltonian cycles in CaypH{H 1;T q. We may assume they

have the same voltage, for otherwise Lemma 1.4.1 applies. Therefore,

e “ a|a| “ ba´pi´1qba|a|´i´1 “ ba´i`1ba´i´1 “ aiγ ¨ a´i`1 ¨ aiγ ¨ a´i´1 “ aiγaγa´i´1.

Multiplying by ai`1 on the right side and by a´i on the left side we have

a “ γaγ.

This implies that a inverts γ which is a contradiction.

Corollary 1.4.3. Assume |G| is odd and |G1| “ p, where p is prime. Then every

connected Cayley graph on G has a Hamiltonian cycle.

Proof. Let S be a minimal generating set of G. Since |G1| ‰ 1, then CGpG
1q ‰ G.

So there exists a P S such that a R CGpG
1q. We choose b P S such that b does not

commute with a. Since |a| is odd, it does not invert G1, so Corollary 1.4.2 applies.
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Corollary 1.4.4 (cf. [11]). Assume |G| “ pq, where p and q are distinct prime

numbers. Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. If G is abelian, then Lemma 1.2.2 applies. Additionally, if |G| is odd, then

Corollary 1.4.3 applies. So we may assume |G| is even and G is not abelian. By

Proposition 1.3.12 we have G – C2 ˙ Cp – D2p. Let S be a minimal generating set of

G. For all s P S, we may assume |s| “ 2. (Note that if |s| “ 2p, then G is abelian.

Also, if |s| “ p, then Lemma 1.2.11(2) applies.) Let a, b P S such that a “ a2 and

b “ a2γp, where a2 and γp are generators of C2 and Cp, respectively. Then we have

pa, bqp as a Hamiltonian cycle in CaypG;Sq.

Corollary 1.4.5. Assume |G| “ 2pqr, where p, q and r are distinct odd primes, and

|G1| is prime. Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. (cf. [29, Case 5.3]) Let S be a minimal generating set of G. We consider

two cases.

Case 1. Assume |G : CGpG
1q| ‰ 2. Then there exists a P S such that a R CGpG

1q and

|a| is odd. (Note that since |G1| is prime, then |G : CGpG
1q| ‰ 1.) Choose b P S such

that ab ‰ ba. Since |a| is odd, then a does not invert G1, so Corollary 1.4.2 applies.

Case 2. Assume |G : CGpG
1q| “ 2. This implies that G “ D2p ˆ Cq ˆ Cr (up to

permuting p, q, and r).

Subcase 2.1. Assume S has no elements of odd order. Let a and b be two elements of

S whose orders are divisible by q and r, respectively. (So |a| is divisible by 2q and |b|

is divisible by 2r.) Now if |a| “ 2q, |b| “ 2r and xa, by “ G, then by Theorem 1.1.2(2)

there is a Hamiltonian cycle in Cayp qG; tqa,qbuq, and since xqa,qby “ G any such cycle

uses both qa and qb, so Corollary 1.2.7 applies with N “ Cq, s “ a and t “ a´1. If

xa, by ‰ G, then there should be another element c P S such that xa, b, cy “ G. Then

there is a Hamiltonian cycle in Cayp qG; tqa,qb,qcuq and since qc cannot be the only element

in the Hamiltonian cycle, it must use either qa or qb, so Corollary 1.2.7 applies with
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N “ Cq and (by interchanging q and r if necessary), s “ a and t “ a´1. So we may

assume |a| “ 2qr. We may write G “ pC2 ˙ Cpq ˆ Cq ˆ Cr. Let a2, γp, aq, and ar

be generators of C2, Cp, Cq, and Cr, respectively. Now, let b be another element of S.

Write a “ a2aqar and b “ a2γpa
i
qa
j
r, where 0 ď i ď q ´ 1 and 0 ď j ď r ´ 1.

Let qG “ G{pCq ˆ Crq, then qa “ a2 and qb “ a2γp. We have C1 “ pqa,qbqp is a

Hamiltonian cycle in Cayp qG; tqa, qbuq. Now we calculate its voltage modulo Cp.

VpC1q “ pabq
p
” pa2aqar ¨ a2a

i
qa
j
rq
p
pmod Cpq

“ pai`1q aj`1r q
p

“ api`1qpq apj`1qpr .

We may assume this does not generate CqˆCr, for otherwise Factor Group Lemma 1.2.6

applies. Therefore, either i “ ´1 or j “ ´1. We may assume j “ ´1. (Note that

since p, q and r are distinct primes, then p ı 0 pmod rq and p ı 0 pmod qq.)

We also have C2 “ pqa,qb
´1qp as a Hamiltonian cycle in Cayp qG; tqa,qbuq. By a similar

argument and calculating the voltage of C2, we see that if i ‰ 1, then the Factor

Group Lemma 1.2.6 applies. Therefore, we may assume i “ 1. Then b “ a2γpaqa
´1
r .

We consider pG “ G{pCp ˆ Crq – C2 ˆ Cq. So we have pa “ pb “ a2aq. We have

C3 “ ppa
q,pb,pa,pbq´2q as a Hamiltonian cycle in CayppC2ˆ Cqq; tpa,pbuq. Now we calculate

its voltage modulo Cp and modulo Cr.

VpC3q “ aqbabq´2

” pa2aqarq
q
¨ a2aqa

´1
r ¨ a2aqar ¨ pa2aqa

´1
r q

q´2
pmod Cpq

“ a2a
q
qa
q
r ¨ a2aqa

´1
r ¨ a2aqar ¨ a2a

q´2
q a´pq´2qr

“ aq´1`1´q`2r aq`2`q´2q

“ a2r
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which generates Cr. So xVpC3qy contains Cr (cf. Lemma 2.5.1). Also,

VpC3q “ aqbabq´2

” pa2aqq
q
¨ a2γpaq ¨ a2aq ¨ pa2γpaqq

q´2
pmod Crq

“ a2a
q
q ¨ a2γpaq ¨ a2aq ¨ a2γpa

q´2
q

“ aq`2`q´2q γ2p

“ γ2p

which generates Cp. So xVpC3qy contains Cp (cf. Lemma 2.5.1). Therefore, the sub-

group generated by VpC3q is Cp ˆ Cr. So Factor Group Lemma 1.2.6 applies.

Subcase 2.2. Assume S has exactly one element of odd order. Let b be the element

of odd order. If |b| “ pqr, then there exists a P S such that |a| is divisible by 2. Let

n “ |b| “ pqr. Since xby is normal in G (because |G : xby| “ 2), there is some k P Z`,

such that aba´1 “ bk. For 0 ď i ă n, let vi “ bi and wi “ bia, so V pGq “ tviu Y twiu.

Then, for each i, CaypG;Sq contains edges (labeled b˘1) from vi to vi˘1 and from wi

to wib
˘1 “ biab˘1 “ bib˘ka “ bi˘ka “ wi˘k. It also contains the edge (labeled a) from

vi to via “ wi. This means that CaypG;Sq contains a copy of the generalized Petersen

graph GPpn, kq. Work of Bannai [7] and Alspach [1] has determined precisely which

generalized Petersen graphs are Hamiltonian. Since xby is of index 2, then a2 P xby,

so a2b “ ba2. This implies that k2 ” 1 pmod nq. Therefore, gcdpn, kq “ 1, and

k ‰ ˘2,˘pn´ 1q{2. Therefore, GPpn, kq has a Hamiltonian cycle. This Hamiltonian

cycle is also a Hamiltonian cycle in CaypG;Sq.

So we may assume |b| ‰ pqr. Also, we can assume b R ZpGq and xbyXZpGq ‰ teu,

for otherwise since xby Ÿ G, then Lemma 1.2.11(2) applies. (A Hamiltonian cycle in

CaypG{xby;Sq exists by Theorem 1.1.2(2) or Theorem 1.2.3 depending on |b|.) So |b|

is either pq or pr. Without loss of generality we may assume |b| “ pq. Then there is

a P S such that |a| is divisible by r. Since b is the only element in S of odd order, |a|
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is divisible by 2r. We can assume |a| ‰ 2r, for otherwise Corollary 1.2.7 applies with

N “ Cr, s “ a and t “ a´1 (since S is minimal and G “ xa, by, a Hamiltonian cycle in

CaypG{N ; tua,ubuq must use ua). So we have |a| “ 2qr. We may assume a “ a2aqar and

b “ γpa
i
q, where i ‰ 0. Let qG “ G{pCqˆCrq – D2p. Then qa “ a2 and qb “ γp. We have

C1 “ p
qbp´1,qa,qbp´1,qaq as a Hamiltonian cycle in Cayp qG; tqa,qbuq. Now we calculate its

voltage modulo Cp.

VpC1q “ bp´1abp´1a

” paiqq
p´1

¨ a2aqar ¨ pa
i
qq
p´1

¨ a2aqar pmod Cpq

“ a2pipp´1q`1qq a2r

We may assume this does not generate CqˆCr, for otherwise Factor Group Lemma 1.2.6

applies. Therefore,

0 ” ipp´ 1q ` 1 pmod qq. (2.2.A)

By replacing qa with qa´1 in C1, we have C2 “ p
qbp´1,qa´1,qbp´1,qa´1q as a Hamiltonian

cycle in CaypG{pCqˆ Crq; tqa,qbuq. By the same argument above and calculating VpC2q

modulo Cp, we have

VpC2q ” a2pipp´1q´1qq a´2r pmod Cpq.

We may assume this does not generate CqˆCr, for otherwise Factor Group Lemma 1.2.6

applies. Therefore,

0 ” ipp´ 1q ´ 1 pmod qq.

By subtracting the above equation from 2.2.A, we have 0 ” 2 pmod qq which is a
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contradiction.

Subcase 2.3. Assume S has more than 1 element of odd order. Assume b and c have

odd order. Now since xb, cy is abelian, |xb, cy| is odd, and the valency of the Cayley

graph Caypxb, cy; tb, cuq is at least 3 (in fact it is 4). If either xby or xcy does not

contain Cp, then we claim that CaypG;Sq has a Hamiltonian cycle. Without loss of

generality we may assume xby does not contain Cp. We know xby ŸG, CaypG{xby;Sq

has a Hamiltonian cycle (G{xby is isomorphic to either D2p or D2p ˆ Cq or D2p ˆ Cr,

so Theorem 1.1.2(2) or Theorem 1.1.2(3) applies), and b P ZpGq, so Lemma 1.2.11(1)

applies.

So we may assume both xby and xcy contain Cp. Then clearly Cp Ÿ xb, cy, and

Cp X ZpGq “ teu (see Proposition 1.3.12(2)). Let a P S be an element of even order.

Now by Theorem 1.2.4 we can choose L “ ps1, s2, . . . , smq as a Hamiltonian path in

Caypxb, cy; tb, cuq such that s1s2 ¨ ¨ ¨ sm P Cp. So pL, a, L, a´1q is a Hamiltonian cycle in

CaypG;Sq.

1.5 Proof of some parts of Theorem 1.1.2

In this section, we prove most cases in Theorem 1.1.2(2). Then we prove Theo-

rem 1.1.2(3), and Proposition 1.1.4. In order to prove these results, firstly, we state

some well known lemmas and propositions.

Lemma 1.5.1 (cf. [33, Corollary 2.16]). Every connected Cayley graph on the alter-

nating group A4 has a Hamiltonian cycle.

Proposition 1.5.2 ([28, Theorem 5.4]). If G “ C2 ˙ A such that ZpGq “ teu, A is

abelian, and |A| is the product of at most three primes (not necessarily distinct), then

every connected Cayley graph on G has a Hamiltonian cycle.

Lemma 1.5.3 ([33, Corollary 2.3]). If |G| “ pq2, where p and q are distinct primes

with q2 ı 1 pmod pq, then every connected Cayley graph on G has a Hamiltonian
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cycle.

Proof. ([33, Corollary 2.3]) Let P be a Sylow p-subgroup of G. By Sylow’s Theorem

we have np|q
2, and np ” 1 pmod pq, where np is the number of Sylow p-subgroups in

G. Since q2 ı 1 pmod pq, this implies that q ı 1 pmod pq, we must have np “ 1.

Therefore, P Ÿ G. Now |G{P | “ q2, so G{P is abelian. Therefore, G1 Ď P . This

implies that |G1| is either 1 or p. If |G1| “ 1, then G is abelian, so Lemma 1.2.2

applies. If |G1| “ p, then Theorem 1.2.3 applies.

Lemma 1.5.4 ([33, Corollary 2.24]). If |G| “ 2p2, where p is odd, then every con-

nected Cayley graph on G has a Hamiltonian cycle.

Proof. ([33, Corollary 2.24]) By Lemma 1.3.8 |G1| is odd. If |G1| “ 1, then Lemma 1.2.2

applies. If |G1| is cyclic of order p, then Theorem 1.2.3 applies. If |G1| “ p2, then

Proposition 1.5.2 applies.

Proposition 1.5.5 ([33, Proposition 4.1]). If |G| “ 3p2, where p is prime, then every

connected Cayley graph on G has a Hamiltonian cycle.

Proposition 1.5.6 ([33, Proposition 6.1]). Assume |G| “ 2pq, where p and q are

prime numbers. Then every Cayley graph on G has a Hamiltonian cycle.

Proof. ([33, Proposition 6.1]) Let S be a minimal generating set of G. We may assume

p and q are distinct, for otherwise |G| “ 2p2, so Proposition 1.5.4 applies. Without

loss of generality assume p ą q. If q “ 2, then |G| “ 4p. By Sylow’s Theorem we

have np|4, and np ” 1 pmod pq, where np is the number of Sylow p-subgroups in

G. Since p ą q, then p ě 3. Now if p ě 5, then Lemma 1.5.3 applies. Now we

may assume p “ 3. If a Sylow 3-subgroup P is normal in G, then |G{P | “ 4, so

G{P is abelian. (Since P is normal it is the unique Sylow 3-subgroup.) This implies

that G1 Ď P , therefore, |G1| P t1, 3u. If |G1| “ 1, then Lemma 1.2.2 applies, and if

|G1| “ 3, then Theorem 1.2.3 applies. So we may assume a Sylow 3-subgroup of G is

not normal. Then G – A4, so Lemma 1.5.1 applies. Thus, we may assume p, q ě 3.
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Now we may assume |G| is square-free. By Lemma 1.3.8 |G1| is odd and by

Proposition 1.3.12(1) G1 is cyclic. If |G1| “ 1, then G is abelian, so Lemma 1.2.2

applies. If |G1| is prime, then Theorem 1.2.3 applies. If |G1| “ pq, thenG – C2˙pCpqq –

D2pq, so Proposition 1.5.2 applies.

Proposition 1.5.7 ([33, Proposition 6.2]). Assume |G| “ pqr, where p, q and r are

distinct prime numbers. Then every connected Cayley graph on G has a Hamiltonian

cycle.

Proof. (cf. [33, Proposition 6.2]) Since |G| is square-free, then by Proposition 1.3.12(1)

G1 is cyclic. If |G| “ 2pq, then Proposition 1.5.6 applies. So we may assume |G| is odd.

If |G1| “ 1, then G is abelian, so Lemma 1.2.2 applies. If |G1| is prime, then

Corollary 1.4.3 applies. So we may assume G “ Cr ˙ pCp ˆ Cqq (up to permuting p, q,

and r), where G1 “ Cp ˆ Cq. By Proposition 1.3.12(2) we know G1 X ZpGq “ teu, so

CG1pCrq “ teu. Let S be a minimal generating set of G. We may assume SXG1 “ H,

for otherwise Lemma 1.2.11(2) applies. Therefore, every element of S has order r.

(Note since G1 X ZpGq “ teu (see Proposition 1.3.12(2)), Cr cannot commute with Cp

or Cq, so no element belonging to S can have order rp or rq.)

Case 1. Assume |S| “ 2. We may write S “ ta, bu. Consider G “ G{G1 “ Cr. Then

|a| “ |b| “ r. So b “ ak, where 1 ď k ď r ´ 1. Therefore, b “ akγ, where G1 “ xγy,

for otherwise

xa, by “ xa, akγy “ xa, γy ‰ G

which contradicts our assumption that G “ xSy. We also have aγa´1 “ γτ , where

τ r ” 1 pmod pqq (see Proposition 1.3.12(4)). So gcdpτ, pq “ 1 and gcdpτ, qq “ 1.

Also, since |a| “ r is odd, a cannot invert γp or γq, so τ ı ´1 pmod pq and τ ı ´1

pmod qq.

We have C “ pb, a´pk´1q, b, ar´k´1q as a Hamiltonian cycle in CaypG;Sq. Now we
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calculate its voltage.

VpCq “ ba´pk´1qbar´k´1

“ akγ ¨ a´k`1 ¨ akγ ¨ ar´k´1

“ akγaγa´k´1

“ γτ
kp1`τq

which generates G1. So Factor Group Lemma 1.2.6 applies.

Case 2. Assume |S| “ 3. We may write S “ ta, b, cu with |a| “ |b| “ |c| “ r. Also,

since S is minimal, then |a| “ |b| “ |c| “ r. So we may assume b “ ajaq and c “ akγp,

where 1 ď j, k ď r ´ 1. Therefore, xb, cy “ G which contradicts the minimality

of S.

Proposition 1.5.8 ([33, Corollary 6.3]). Assume |G| “ 3pq, where p and q are prime

numbers. Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. ([33, Corollary 6.3]) We may assume p, q ě 3, for otherwise |G| is of the form

2pq or 2p2, so Proposition 1.5.6 or Lemma 1.5.4 applies. We may also assume p, q ą 3,

for otherwise |G| is of the form pq2 with q2 ı 1 pmod pq, so Lemma 1.5.3 applies.

Thus, |G| is a product of three distinct primes, so Proposition 1.5.7 applies.

Proposition 1.5.9 ([33, Corollary 6.4]). Assume |G| “ 5pq, where p and q are

distinct prime numbers. Then every Cayley graph on G has a Hamiltonian cycle.

Proof. ([33, Corollary 6.4]) We may assume p, q ě 5, for otherwise |G| is of the form

2pq or 2p2 or 3pq or 3p2, so Proposition 1.5.6 or Lemma 1.5.4 or Proposition 1.5.8 or

Proposition 1.5.5 applies. We may also assume p, q ‰ 5, for otherwise |G| is of the

form pq2 with q2 ı 1 pmod pq, so Lemma 1.5.3 applies. Thus, |G| is a product of

three distinct primes, so Proposition 1.5.7 applies.
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Proof of Proposition 1.1.4. If p ‰ 7 and q ‰ 7, then Theorem 1.1.2(3) applies. So we

may assume q “ 7, which means |G| “ 49p (and p ‰ 7). We may also assume that G

is not abelian, for otherwise Lemma 1.2.2 applies.

If a Sylow p-subgroup P of G is normal, then |G{P | “ 49, so the quotient G{P is

abelian. (Because if q is prime, then every group of order q2 is abelian). Therefore,

since P is normal and G{P is abelian, then G1 is contained in P . So |G1| “ p.

Therefore, Theorem 1.2.3 applies.

Now we may assume P is not normal in G. Then by Sylow’s Theorem, np|49 and

np ” 1 pmod pq, where np is the number of Sylow p-subgroups in G. Thus, p P t2, 3u,

so |G| P t14q, 21qu. Therefore, Theorem 1.1.2(1) applies.

1.6 Description of the proof of part (1) of Theorem 1.1.2

In this section we provide a very brief description of methods that D. Morris and

K. Wilk have used in [41] to prove Theorem 1.1.2 (1).

In a series of papers published in 2011 and 2012 [15, 20, 21, 33], it has been proved

that every connected Cayley graph on G of order kp has a Hamiltonian cycle (unless

kp “ 2), where 1 ď k ď 31 (k ‰ 24) and p is prime. These results were verified by

hand and the proofs contain many calculations and other details that are not very easy

to check quickly. On the other hand, most of the results in Morris-Wilk’s paper are

established by using a computer, instead of being verified by hand. In fact, they used

the computer algebra system GAP [24] for group-theoretic calculations, and used G.

Helsgaun’s computer program LKH [26] to find Hamiltonian cycles in many thousands

of Cayley graphs. In the following paragraph we state the Schur-Zassenhaus Theorem,

then we describe Morris-Wilk’s method.

Theorem 1.6.1 (Schur-Zassenhaus Theorem [25, Theorem 15.2.2 on page 224]). If

G is a finite group, and N is a normal subgroup whose order is coprime to the order

of the quotient group G{N , then G is semidirect product of N and G{N .
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Idea of proof of Theorem 1.1.2(1)[41, page 2]. If kp is not too large, then the com-

puter program LKH can find a Hamiltonian cycle in any Cayley graph of order kp.

So large primes are the main problem. If G is a group of order kp, where p ą k, then

Sylow’s Theorem implies G has a unique Sylow p-subgroup which can be identified

with Cp. The uniqueness implies Cp Ÿ G. Let G “ G{Cp, so |G| “ k. Since Cp is

cyclic, then by Factor Group Lemma 1.2.6, it suffices to find a Hamiltonian cycle in

CaypG;Sq whose voltage generates Cp.

The problem is that there are infinitely many primes p so a given group G of order

k is the quotient of infinitely many different groups G of order kp. By Theorem 1.6.1

G “ G ˙ Cp. Using this fact, Morris and Wilk construct finitely many semidirect

products of the form rG “ G˙Z (where Z is a finitely generated abelian group), such

that, for every p ą k, every group G of order kp is a quotient of some rG. In almost all

of the cases, they used a computer search to find a Hamiltonian cycle whose voltage

in Z is non-trivial. Then if p is not a divisor of that voltage, they could apply Factor

Group Lemma 1.2.6. Finally, they verified the exceptional cases by hand to complete

the proof of their result.
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Chapter 2

Preliminaries

This chapter establishes basic terminology and notation, and proves a number of

technical results that will be used in the proof of Theorem 1.1.3. In particular, it is

shown we may assume that |G| is square-free, so the Sylow subgroups of G are C2,

C3, Cp, and Cq, and that |G1| has precisely 2 prime factors, so G1 is either Cp ˆ Cq or

C3 ˆ Cp.

2.1 Basic notation and definitions

Throughout the thesis, as already mentioned in Section 1.2, we have used standard

terminology of graph theory and group theory that can be found in textbooks, such

as [23, 25].

The following notation is used through the thesis:

• The commutator of g and h is denoted by rg, hs “ ghg´1h´1.

• CG1pSq denotes the centralizer of S in G1.

• G˙H denotes a semidirect product of groups G and H.

• D2n denotes the dihedral group of order 2n.

• e denotes the identity element of G.

• Given a fixed normal subgroup N of G, we define G “ G{N , g “ gN for any

g P G, and S “ tg; g P Su for any S Ď G.

• For S Ď G, a sequence ps1, s2, . . . , snq of elements of S Y S´1 specifies the walk

in the Cayley graph CaypG;Sq that visits the vertices: e, s1, s1s2, . . . , s1s2 ¨ ¨ ¨ sn.
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2.2. SOME FACTS FROM GROUP THEORY

Also, ps1, s2, . . . , snq
´1 “ ps´1n , s´1n´1, . . . , s

´1
1 q.

• We use ps1, s2, s3, . . . , snq to denote the image of this walk in the quotient

CaypG{G1;Sq “ CaypG;Sq.

• If the walk C “ ps1, s2, . . . , snq in CaypG{G1;Sq is closed, then its voltage is the

product VpCq “ s1s2 ¨ ¨ ¨ sn. This is an element of G1.

• For k P Z`, we use ps1, s2, . . . , smq
k to denote the concatenation of k copies of

the sequence ps1, s2, . . . , smq.

• Cn denotes the cyclic group of order n. When |G| “ 6pq (as is usually the case in

Chapter 3), the Sylow subgroups are C2, C3, Cp, and Cq. Also, the commutator

subgroup G1 will usually be either CpˆCq or C3ˆCp, so Cp is a normal subgroup

and either Cq or C3 is also a normal subgroup.

• G “ G{G1 and pG “ G{Cp. Also, we let qG “ G{Cq when Cq is a normal subgroup,

and let uG “ G{C3 when C3 is a normal subgroup.

• We let a2, a3, γp, and aq be elements of G that generate C2, C3, Cp, and Cq,

respectively.

2.2 Some facts from group theory

In this section we state some facts in group theory, which are used to prove our

main result. The following lemmas often makes it possible to use Factor Group

Lemma 1.2.6 for finding Hamiltonian cycles in connected Cayley graphs of G.

Lemma 2.2.1 ([15, Corollary 4.4]). Assume G “ xa, by and G1 is cyclic. Then G1 “

xra, bsy.

Proof. Since every subgroup of a cyclic, normal subgroup is normal in the larger

group, we know xra, bsy Ÿ G. Since xa, by “ G, and a commutes with b in G{xra, bsy,

then G{xra, bsy is abelian. So G1 Ď xra, bsy. Also, clearly xra, bsy Ď G1. Therefore,

G1 “ xra, bsy.
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2.3. CAYLEY GRAPHS THAT CONTAIN A HAMILTONIAN CYCLE

Corollary 2.2.2. Assume G “ xa, by and gcdpk, |a|q “ 1, where k P Z, and G1 is

cyclic. Then G1 “ xrak, bsy.

Lemma 2.2.3. Assume G “ pCp ˆ Cqq ˙ pCr ˆ Ctq, where p, q, r and t are distinct

primes. If |a| “ pq, then |a| “ pq.

Proof. Suppose |a| ‰ pq. Without loss of generality, assume |a| is divisible by r. Then

(after replacing a by a conjugate) the abelian group xay contains Cp ˆ Cq and Cr, so

Cr centralizes Cp ˆ Cq. Since Cr also centralizes Ct, this implies that Cr Ď ZpGq. This

contradicts the fact that G1 X ZpGq “ teu (see Proposition 1.3.12(2)).

2.3 Cayley graphs that contain a Hamiltonian cycle

In this section we show that there exists a Hamiltonian cycle in some special

connected Cayley graphs. The following proposition shows that in our proof of Theo-

rem 1.1.3 we can assume |G| is square-free, since the cases where |G| is not square-free

have already been dealt with.

Proposition 2.3.1. Assume:

• |G| “ 6pq, where p and q are distinct prime numbers, and

• |G| is not square-free (i.e. tp, qu X t2, 3u ‰ H).

Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Without loss of generality we may assume q P t2, 3u. Then |G| P t12p, 18pu.

Therefore, Theorem 1.1.2(1) applies.

The following proposition demonstrates that we can assume |G1| in Theorem 1.1.3

is a product of two distinct prime numbers.

Proposition 2.3.2. Assume |G| “ 2pqr, where p, q and r are distinct odd prime

numbers. Now if |G1| P t1, pqru or |G1| is prime, then every connected Cayley graph

on G has a Hamiltonian cycle.
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2.3. CAYLEY GRAPHS THAT CONTAIN A HAMILTONIAN CYCLE

Proof. If |G1| “ 1, then G1 “ teu. So G is an abelian group. Therefore, Lemma 1.2.2

applies. Now if |G1| is prime, then Corollary 1.4.5 applies. Finally, if |G1| “ pqr, then

G “ C2 ˙ pCp ˆ Cq ˆ Crq – D2pqr.

So Proposition 1.5.2 applies.

The next theorem tells us that if we have a finite group that can be broken into a

semidirect product of two cyclic subgroups, then there is a Hamiltonian cycle in the

connected Cayley graph of this group that comes from the generators of the factors.

Theorem 2.3.3 (B. Alspach [2, Corollary 5.2]). If G “ xsy ˙ xty, for some elements

s and t of G, then CaypG; ts, tuq has a Hamiltonian cycle.

The following lemmas show that some special Cayley graphs have a Hamiltonian

cycle, and we use these facts in Chapter 3 in order to prove our main result.

Lemma 2.3.4. Assume G “ pC2 ˆ Crq ˙ G1, and G1 “ Cp ˆ Cq, where p, q and r

are distinct prime numbers and let S “ ta, bu be a generating set of G. Additionally,

assume |a| P t2, 2ru, |b| “ r and gcdp|b|, r ´ 1q “ 1. Then CaypG;Sq contains a

Hamiltonian cycle.

Proof. We have C “ pb
r´1

, a, b
´pr´1q

, a´1q as a Hamiltonian cycle in CaypG;Sq. Now

we calculate its voltage

VpCq “ br´1ab´pr´1qa´1 “ rbr´1, as.

Since gcdp|b|, r ´ 1q “ 1, then by Lemma 2.2.2 we have rbr´1, as “ G1. Therefore,

Factor Group Lemma 1.2.6 applies.

Lemma 2.3.5 (cf. [21, Case 2 of proof of Theorem 1.1, pages 3619-3620]). Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
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2.3. CAYLEY GRAPHS THAT CONTAIN A HAMILTONIAN CYCLE

• |S| “ 3,

• pS is a minimal generating set of pG “ G{Cp,

• Cr centralizes Cq,

• C2 inverts Cq.

Then, CaypG;Sq contains a Hamiltonian cycle.

Lemma 2.3.6 ([21, Lemma 2.6]). Assume:

• G “ xay ˙ xS0y, where xS0y is an abelian subgroup of odd order,

• |pS0 Y S
´1
0 q| ě 3, and

• xS0y has a nontrivial subgroup H, such that H ŸG and H X ZpGq “ teu.

Then CaypG;S0 Y tauq has a Hamiltonian cycle.

Proof. ([21, Lemma 2.6]) Since xS0y is abelian of odd order, and |pS0 Y S´10 q| ě 3,

by Theorem 1.2.4 CaypxS0y;S0q has a Hamiltonian path ps1, s2, . . . , smq, such that

s1s2 ¨ ¨ ¨ sm P H. Note that

ps1s2 ¨ ¨ ¨ smaq
|a|
“ paa´1s1s2 ¨ ¨ ¨ smaq

|a|
“ paps1s2 ¨ ¨ ¨ smq

a
q
|a|

“ ps1s2 ¨ ¨ ¨ smq
a|a|´1`a|a|´2`¨¨¨`a`1.

Since this is a product of all possible xay-conjugation of s1s2 ¨ ¨ ¨ sm and it is abelian,

then it commutes with a and xS0y. So

ps1s2 ¨ ¨ ¨ smq
a|a|´1`a|a|´2`¨¨¨`a`1

P ZpGq XH.

Therefore,

ps1s2 ¨ ¨ ¨ smq
a|a|´1`a|a|´2`¨¨¨`a`1

“ e.

Therefore, we have ps1, s2, . . . , sm, aq
|a| as a Hamiltonian cycle in CaypG;S0Ytauq.
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Lemma 2.3.7 ([21, Lemma 2.9]). If G “ D2pq ˆ Cr, where p, q and r are distinct odd

primes, then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. ([21, Lemma 2.9]) Let S be a minimal generating set of G, let ϕ : G Ñ D2pq

be the projection such that ϕpF, iq “ F , where F P D2pq and i P Cr, and let T be the

group of rotations in D2pq, so it is obvious that T “ Cp ˆ Cq.

For s P S we may assume that ϕpsq is nontrivial, because otherwise s P Cr Ď ZpGq,

therefore Lemma 1.2.11 applies.

Suppose there exists s P S such that ϕpsq has order 2, but |s| ‰ 2. Then we

may assume ϕpSq is not minimal, for otherwise Corollary 1.2.7 applies with N “ Cr

and t “ s´1. Therefore, if we let S 1 “ Sztsu, then xS 1y “ D2pq “ C2 ˙ pCp ˆ Cqq.

We may assume S 1 X pCp ˆ Cqq “ H, for otherwise there is an element s11 P S 1

such that s11 P Cp ˆ Cq, and there is a Hamiltonian cycle in CaypD2pq{xs
1
1y;S

1q (see

Proposition 1.5.2), so Lemma 1.2.11(2) applies. Thus, |s1| “ 2 for all s1 P S 1.

We may now assume a2 P S
1. Let b “ a2a

i
pa
j
q be another element of S 1. Since i

and j cannot both be 0, we may assume i “ 1.

We claim that xa2, by “ D2pq. If not, then j “ 0. There is some c “ a2a
k
pa

`
q P S

1

with ` ‰ 0. The minimality of S implies xa2, cy ‰ D2pq, so k “ 0. Then xb, cy “ D2pq,

which contradicts the minimality of S. This completes the proof of the claim.

This claim means j ‰ 0, so we may assume j “ 1, which means b “ a2apaq. Write

s “ a2a
m
p a

n
q ar. The minimality of S implies that xa2, sy ‰ G, so either m “ 0 or

n “ 0. Assume, without loss of generality, that n “ 0. Now, the minimality of S

implies that xb, sy ‰ G, so we must have m “ 1. This means s “ a2apar. So s ” b

pmod Cq ˆ Crq.

Let Ğ “ G{pCq ˆ Crq – D2p, so s̆ “ b̆. We have the following two Hamiltonian

cycles in CaypĞ; S̆q:

C1 “ ppă2, b̆q
p´1, pă2, s̆qq,
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2.3. CAYLEY GRAPHS THAT CONTAIN A HAMILTONIAN CYCLE

C2 “ ppă2, b̆q
p´2, pă2, s̆q

2
q.

Their voltages are:

V pC1q “ pa2bq
p´1
pa2sq “ pa2 ¨ a2apaqq

p´1
pa2 ¨ a2aparq “ ap´1q ar,

V pC2q “ pa2bq
p´2
pa2sq

2
“ pa2 ¨ a2apaqq

p´2
pa2 ¨ a2aparq

2
“ ap´2q a2r.

Since at least one of p´1 and p´2 is relatively prime to q (and 1 and 2 are relatively

prime to r), we know that at least one of these voltages generates Cq ˆ Cr. So Factor

Group Lemma 1.2.6 applies.

Thus, we may assume that for any s P S, if ϕpsq has order 2, then s “ ϕpsq has

order 2.

Since ϕpSq generates D2pq, it must contain at least one reflection (which is an

element of order 2). So S XD2pq contains a reflection.

Case 1. Assume S XD2pq contains only one reflection. Let a P S XD2pq, such that

a is a reflection. Let S0 “ Sztau. Since xS0y is a subgroup of the cyclic, normal

subgroup T ˆ Cr, we know xS0y is normal. Therefore G “ xay ˙ xS0y, so:

• If |S0| “ 1, then Theorem 2.3.3 applies.

• If |S0| ě 2, then 2.3.6 applies with H “ T , because TˆCr is an abelian subgroup

of odd order.

Case 2. Assume S XD2pq contains at least two reflections. Since no minimal gener-

ating set of D2pq contains three reflections, the minimality of S implies that S XD2pq

contains exactly two reflections; a and b are reflections. Let c P SztD2pqu, so Cr Ď xcy.

Since |c| ą 2, we know ϕpcq is not a reflection, so ϕpcq P T . The minimality of S

and the fact that |S| ą 2 implies xϕpcqy ‰ T . Since ϕpcq is nontrivial, this implies

we may assume xϕpcqy “ Cp (by interchanging p and q if necessary). Hence, we may

write c “ wz with xwy “ Cp and xzy “ Cr. We now use the argument of ([29, Case
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2.3. CAYLEY GRAPHS THAT CONTAIN A HAMILTONIAN CYCLE

5.3, p. 96]), which is based on ideas of Marušič [37] that are explained in Section 1.4.

Let G “ G{Cp “ D2pqˆCr “ D2pqˆxcy. Then D2pq ” D2q, so pa, bqq is a Hamiltonian

cycle in CaypD2pq; ta, buq. With this in mind it is easy to see that

pcr´1, a, ppb, aqq´1, c´1, pa, bqq´1, c´1qpr´1q{2, pb, aqq´1, bq

is a Hamiltonian cycle in CaypG;Sq. This contains the string

pc, a, pb, aqq´1, c´1, aq,

which can be replaced with the string

pb, c, pb, aqq´1, b, c´1q

to obtain another Hamiltonian cycle. Since ba P T is inverted by a

capbaqq´1c´1a “ pcac´1aqpbaq´pq´1q

c “ wz, therefore

pcac´1aqpbaq´pq´1q “ ppwzqapwzq´1aqpbaq´pq´1q

now a inverts w and centralizes z, then

ppwzqapwzq´1aqpbaq´pq´1q “ pw2
qpbaq´pq´1q,

clearly

pw2
qpbaq´pq´1q ‰ pw´2qpbaq´pq´1q
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we know that b inverts w and centralizes z, so

pw´2qpbaq´pq´1q “ pbpwzqbpwzq´1qpbaq´pq´1q “ pbcbc´1qpbaq´pq´1q,

since ba P T is inverted by b, then

pbcbc´1qpbaq´pq´1q “ bcpbaqq´1bc´1.

Therefore,

pcac´1aqpbaq´pq´1q ‰ bcpbaqq´1bc´1.

And this implies that we have two Hamiltonian cycles that have different voltages.

Therefore at least one of them must have a nontrivial voltage. This nontrivial voltage

must generate Cp, so Factor Group Lemma 1.2.6 applies and there is a Hamiltonian

cycle in CaypG;Sq.

2.4 Some specific sets that generate G

This section presents a few results that provide conditions under which certain

2-element subsets generate G. Obviously, no 3-element minimal generating set can

contain any of these subsets.

Lemma 2.4.1. Assume G “ pC2ˆC3q˙G1, and G1 “ CpˆCq. Also, assume CG1pC3q “

Cq and Cq Ę CG1pC2q. If pa, bq is one of the following ordered pairs

1. pa3aq, a2a
j
3a
k
qγpq,

2. pa2a3, a
j
3a
k
qγpq, where k ı 0 pmod qq,

3. pa2a3aq, a
j
3a
k
qγpq, where k ı 0 pmod qq,

4. pa2a3aq, a2a
j
3a
k
qγpq, where k ı 1 pmod qq,

then xa, by “ G.
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Proof. It is easy to see that pa, bq “ G, so it suffices to show that xa, by contains Cp and

Cq. Thus, it suffices to show that Ğ and qG are nonabelian, where Ğ “ G{pC3 ˙ Cpq –

D2q and qG “ G{Cq.

Since a3 does not centralize Cp, it is clear in each of p1q ´ p4q that qa does not

centralize γp (and γp is one of the factors in qb), so qG is not abelian.

The pair pă, b̆q is either paq, a2a
k
qq, pa2, a

k
qq where k ı 0 pmod qq, pa2aq, a

k
qq where

k ı 0 pmod qq, or pa2aq, a2a
k
qq where k ı 1 pmod qq. Each of these is either a

reflection and a nontrivial rotation or two different reflections, and therefore generates

the (nonabelian) dihedral group D2q “ Ğ.

Lemma 2.4.2. Assume G “ pC2ˆC3q˙G1, and G1 “ CpˆCq. Also, assume CG1pC3q “

teu. If pa, bq is one of the following ordered pairs

1. pa2a3, a
i
2a
j
3a
k
qγpq, where k ı 0 pmod qq,

2. pa3aq, a2a
j
3γpq, where j ı 0 pmod 3q,

3. pa3, a2a
j
3a
k
qγpq, where k ı 0 pmod qq,

4. pa2a3aq, a
i
2a
j
3γpq, where j ı 0 pmod 3q,

then xa, by “ G.

Proof. It is easy to see that pa, bq “ G, so it suffices to show that xa, by contains Cp and

Cq. we need to show that pG and qG are nonabelian, where pG “ G{Cp and qG “ G{Cq,

as usual.

As in the proof of Lemma 2.4.1, since a3 does not centralize Cp, it is clear in each

of p1q ´ p4q that qa does not centralize γp (and γp is one of the factors in qb), so qG is

not abelian.

In p1q ´ p4q, aq appears in one of the generators in ppa,pbq, but not the other, and

the other generator does have an occurrence of a3. Since a3 does not centralize aq,

this implies that pG is not abelian.
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Lemma 2.4.3. Assume G “ pC2ˆCqq˙G1, and G1 “ C3ˆCp. Also, assume CG1pCqq “

C3 and C3 Ę CG1pC2q. If pa, bq is one of the following ordered pairs

1. pa2aq, a
i
2a
j
qa
k
3γpq, where k ı 0 pmod qq,

2. paqa3, a2a
j
qa
k
3γpq,

3. pai2a
m
q a3, a2a

j
qγpq, where m ı 0 pmod qq,

then G “ xa, by.

Proof. It is easy to see that pa, bq “ G, so it suffices to show that xa, by contains Cp

and C3. We need to show that Ğ and uG are nonabelian, where Ğ “ G{pCq ˙ Cpq – D6

and uG “ G{C3.

In each of p1q ´ p4q, aq appears in ua, and γp appears in ub (but not in ua). Since aq

does not centralize γp, this implies that uG is not abelian.

In each of p1q´p4q, pua,ubq consists of either a reflection and a nontrivial rotation or

two different reflections, so it generates the (nonabelian) dihedral group D6 “ uG.

2.5 Methods of calculating voltage

In this section, we present some methods of calculating the voltage of a Hamilto-

nian cycle. These techniques will be used repeatedly in Chapter 3.

Lemma 2.5.1. Assume G “ H ˙ pCp ˆ Cqq, where G1 “ Cp ˆ Cq, and let S be a

generating set of G. As usual, let pG “ G{Cp and qG “ G{Cq. If zVpCq and ~VpCq are

nontrivial elements of G1, then VpCq generates G1.

Proof. Since VpCq is contained in G1, then VpCq “ aiqγ
j
p, where 0 ď i ď q ´ 1 and

0 ď j ď p ´ 1. Then aiq “
zVpCq is nontrivial, so i ‰ 0. Similarly, γjp “

~VpCq is

nontrivial, so j ‰ 0. Therefore aiqγ
j
p generates Cp ˆ Cq “ G1.

The above lemma means that if VpCq is nontrivial modulo Cp and is also nontrivial

modulo Cq, then VpCq generates G1. This observation will be used repeatedly in

Chapter 3.
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Lemma 2.5.2. Assume G “ H ˙ pCp ˆ Cqq, where G1 “ Cp ˆ Cq, and let S be a

generating set of G. As usual, let G “ G{G1 – H. Assume there is a unique element

c of S that is not in H ˙ Cq, and C is a Hamiltonian cycle in CaypG;Sq such that c

occurs precisely once in C. Then the subgroup generated by VpCq contains Cp.

Proof. Write C “ ps1, s2, ¨ ¨ ¨ , snq, and let H` “ H ˙ Cq. By assumption, there is a

unique k, such that sk “ c, and all other elements of S are in H`. Therefore,

VpCq “ s1s2...sn P H
`
¨H`

¨ ¨ ¨H`
¨ c ¨H`

¨H`
¨ ¨ ¨H`

“ H`cH`.

Since c R H`, we conclude that VpCq R H`.

On the other hand, since VpCq is an element of G1 “ Cp ˆ Cq, we have VpCq “

aiqγ
j
p P H

`γjp. Since VpCq R H`, this implies j ı 0 pmod pq, so xaiqγ
j
py contains Cp.

Lemma 2.5.3. Assume a, γ P G, and there exists τ P Z, such that aγa´1 “ γτ . If

τ k ‰ 1, then

pakγmqn “ γmτ
kpτnk´1q{pτk´1qank.

Proof. For all i P Z, we have aikγm “ γmτ
ik
aik. Therefore,

pakγmqn “ akγm ¨ pakγmqpn´1q

“ γmτ
k

ak ¨ akγm ¨ pakγmqpn´2q

“ γmτ
k`mτ2ka2k ¨ akγm ¨ pakγmqpn´3q

...

“ γmτ
k`mτ2k`¨¨¨`mτnk

¨ ank

“ γmτ
kp1`τk`τ2k`¨¨¨`τ pn´1qkq

¨ ank

“ γmτ
kpτnk´1q{pτk´1q

¨ ank.
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Remark 2.5.4. In the situation of Lemma 2.5.3, if τ k “ 1, then ak commutes with γ.

So pakγmqn “ γnmank.
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Chapter 3

Proof of the Main Result

In this chapter we prove Theorem 1.1.3, which is the main result. We are given a

generating set S of a finite group G of order 6pq, where p and q are distinct prime

numbers, and we wish to show CaypG;Sq contains a Hamiltonian cycle. The proof is

a long case-by-case analysis. (See Figures 3.1, 3.2 and 3.3 on pages 51´53 for outlines

of the many cases that are considered.) Here are our main assumptions through the

whole chapter.

Assumption 3.0.1. We assume:

1. p, q ą 7, otherwise Theorem 1.1.2(1) applies.

2. |G| is square-free, otherwise Proposition 2.3.1 applies.

3. G1 X ZpGq “ teu, by Proposition 1.3.12(2).

4. G – Cn ˙G1, by Proposition 1.3.12(3).

5. |G1| P tpq, 3pu, by Lemma 1.3.8.

6. For every element s P S, |s| ‰ 1. Otherwise, if |s| “ 1, then s P G1, so G1 “ xsy

or |s| is prime. In each case CaypG{xsy;Sq has a Hamiltonian cycle by part 2

or 3 of Theorem 1.1.2. By Assumption 3.0.1(3), xsy X ZpGq “ teu, therefore,

Lemma 1.2.11(2) applies.

7. S is a minimal generating set of G. (Note that S must generate G, for otherwise

CaypG;Sq is not connected. Also, in order to show that every connected Cayley

graph on G contains a Hamiltonian cycle, it suffices to consider CaypG;Sq,

where S is a generating set that is minimal.)
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3.1. ASSUME |S| “ 2 AND G1 “ Cp ˆ Cq

See Figures 3.1, 3.2 and 3.3 for outlines of the cases that are considered.

3.1 Assume |S| “ 2 and G1 “ Cp ˆ Cq
In this section we prove the part of Theorem 1.1.3 where, |S| “ 2 and G1 “ CpˆCq.

Recall G “ G{G1 and pG “ G{Cp.

I. |S| “ 2.

A. G1 “ Cp ˆ Cq (Section 3.1).

1. S is a minimal generating set.

2. S is not a minimal generating set.

B. G1 “ C3 ˆ Cp (Section 3.2).

1. |a| “ |b| “ 2q.

2. |a| “ q.

3. |a| “ 2q and |b| “ 2.

4. None of the previous cases apply.

Figure 3.1: Outline of the cases in the proof of Theorem 1.1.3 where |S| “ 2

Proposition 3.1. Assume

• G “ pC2 ˆ C3q ˙ pCp ˆ Cqq,

• |S| “ 2.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, bu. For every s P S, |s| ‰ 1, by Assumption 3.0.1(6).

Case 1. Assume S is minimal. Then |a|, |b| P t2, 3u. When |a| “ |b| “ 2 or |a| “ |b| “

3, then G ‰ xa, by. Therefore, G ‰ xa, by which contradicts the fact that G “ xa, by.

So we may assume |a| “ 2 and |b| “ 3. Since |b| P t3, 3p, 3q, 3pqu, then gcdp|b|, 2q “ 1.

Thus, Lemma 2.3.4 applies.
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3.1. ASSUME |S| “ 2 AND G1 “ Cp ˆ Cq

II. |S| “ 3.

A. G1 “ Cp ˆ Cq.

a. CG1pC3q ‰ teu or pS is minimal.

i. CG1pC3q ‰ teu (Section 3.3).

1. a “ a2 and b “ aqa3.

2. a “ a2 and b “ a2aqa3.

3. a “ a2a3 and b “ a2aq.

4. a “ a2a3 and b “ aqa3.

5. a “ a2a3 and b “ a2a3aq.

ii. pS is minimal (Section 3.4).

1. CG1pC2q “ Cp ˆ Cq.

2. CG1pC2q “ Cq.

3. CG1pC2q “ Cp.

4. CG1pC2q “ teu.

b. CG1pC3q “ teu and pS is not mini-
mal.

i. CG1pC2q “ CpˆCq (Section 3.5).

1. a “ a3 and b “ a2aq.

2. a “ a3 and b “ a2a3aq.

3. a “ a2a3 and b “ a3aq.

4. a “ a2a3 and b “ a2aq.

5. a “ a2a3 and b “ a2a3aq.

ii. CG1pC2q ‰ teu (Section 3.6).

1. a “ a2a3 and b “ a2a3aq.

2. a “ a2a3 and b “ a2aq.

3. a “ a2a3 and b “ a3aq.

4. a “ a3 and b “ a2aq.

iii. CG1pC2q “ teu (Section 3.7).

1. a “ a2a3 and b “ a2a3aq.

2. a “ a2a3 and b “ a2aq.

3. a “ a2a3 and b “ a3aq.

4. a “ a3 and b “ a2aq.

B. G1 “ C3 ˆ Cp. (Section 3.8).

1. a “ a2aq and b “ a2a
m
q a3.

2. a “ a2aq and b “ a2a3.

3. a “ a2aq and b “ amq a3.

4. a “ a2 and b “ aqa3.

Figure 3.2: Outline of the cases in the proof of Theorem 1.1.3 where |S| “ 3

Case 2. Assume S is not minimal. Then t|a|, |b|u is either t6, 2u, t6, 3u, or t6u. We

may assume |a| “ 6.

Subcase 2.1. Assume |b| “ 2. So we have b “ a3, then b “ a3γ, where G1 “ xγy
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3.1. ASSUME |S| “ 2 AND G1 “ Cp ˆ Cq

III. |S| ě 4 (Section 3.9). This part of the proof applies whenever |G| “ pqrt with
p, q, r, and t distinct primes.

1. |G1| has only two prime factors.

2. |G1| has three prime factors.

Figure 3.3: Outline of the cases in the proof of Theorem 1.1.3 where |S| ě 4

(otherwise xa, by “ xa, a3γy “ xa, γy ‰ G which contradicts the fact that G “ xa, by).

Now by Proposition 1.3.12(4), we have τ P Z` such that aγa´1 “ γτ and τ 6 ” 1

pmod pqq, also gcdpτ ´ 1, pqq “ 1. This implies that τ ı 1 pmod pq and τ ı 1

pmod qq. We have C1 “ pa
2, b, a´2, b

´1
q as a Hamiltonian cycle in CaypG;Sq. Now

we calculate its voltage.

VpC1q “ a2ba´2b´1 “ a2a3γa´2γ´1a´3 “ γτ
5´τ3

“ γτ
3pτ2´1q.

We may assume gcdpτ 2 ´ 1, pqq ‰ 1 (otherwise Factor Group Lemma 1.2.6 applies).

Without loss of generality let τ 2 ” 1 pmod qq, then τ ” ´1 pmod qq. We may assume

τ ı ´1 pmod pq, for otherwise G – D2pq ˆ C3, so Lemma 2.3.7 applies.

Consider pG “ G{Cp “ C6 ˙ Cq. Since |a| “ 6, then by Lemma 2.2.3 |a| “ 6, so

|pa| “ 6. We may assume |pb| “ 2, for otherwise Corollary 1.2.7 applies with s “ b and

t “ b´1 since xpay ‰ pG, so any Hamiltonian cycle must use an edge labeled pb. Thus,

pb “ pa3aq, where xaqy “ Cq. Since τ ” ´1 pmod qq, then C3 centralizes Cq and C2

inverts Cq. Therefore, pG – D2q ˆ C3. Now we have

C2 “ pppa
5,pb,pa´5,pbqpq´3q{2, ppa5,pbq3q

as a Hamiltonian cycle in Cayp pG; pSq. The picture in Figure 3.4 on page 55 shows the

Hamiltonian cycle when q “ 7. If in C2 we change one occurrence of ppa5,pb,pa´5,pbq to
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3.2. ASSUME |S| “ 2 AND G1 “ C3 ˆ Cp

ppa´5,pb,pa5,pbq we have another Hamiltonian cycle. Note that,

a5ba´5b “ a5 ¨ a3γ ¨ a´5 ¨ a3γ “ a2γa´2γ “ γτ
2`1,

and

a´5ba5b “ a´5 ¨ a3γ ¨ a5 ¨ a3γ “ a´2γa2γ “ γτ
´2`1.

Since τ 4 ı 0 pmod pq we see that τ 2 ` 1 ı τ´2 ` 1 pmod pq. Therefore, the voltages

of these two Hamiltonian cycles are different, so one of these Hamiltonian cycles has

a nontrivial voltage. Thus, Factor Group Lemma 1.2.6 applies.

Subcase 2.2. Assume |b| “ 3. Since |b| “ 3, then |b| P t3, 3p, 3q, 3pqu. Since |a| “ 6,

then by 2.2.3 |a| “ 6. Since gcdp|b|, 2q “ 1, then Lemma 2.3.4 applies.

Subcase 2.3. Assume |b| “ 6. Then we have a “ b or a “ b
´1

. Additionally, by

Lemma 2.2.3 we have |a| “ |b| “ 6. We may assume a “ b by replacing b with its

inverse if necessary. Then b “ aγ, where G1 “ xγy, because G “ xa, by. We have

C “ pa5, bq as a Hamiltonian cycle in CaypG,Sq. Now we calculate its voltage

VpCq “ a5b “ a5aγ “ a6γ “ γ

which generates G1. Therefore, Factor Group Lemma 1.2.6 applies.

3.2 Assume |S| “ 2 and G1 “ C3 ˆ Cp
In this section we prove the part of Theorem 1.1.3 where, |S| “ 2 and G1 “ C3ˆCp.

Recall G “ G{G1 and pG “ G{Cp.

Proposition 3.2. Assume

• G “ pC2 ˆ Cqq ˙ pC3 ˆ Cpq,
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3.2. ASSUME |S| “ 2 AND G1 “ C3 ˆ Cp

• |S| “ 2.

Then CaypG;Sq contains a Hamiltonian cycle.

1 1

2 2

3 3

44

5

5

pe

Figure 3.4: The Hamiltonian cycle C1: pa edges are solid and pb edges are dashed.

Proof. Let S “ ta, bu. Since the only non-trivial automorphism of C3 is inversion,

Cq centralizes C3. Since G1 X ZpGq “ teu (see Proposition 1.3.12(4)), C2 does not

centralize C3.

Case 1. Assume |a| “ |b| “ 2q. Then b “ am, where 1 ď m ď q ´ 1 by replacing b

with its inverse if needed. Therefore, b “ amγ, where G1 “ xγy. Also, gcdpm, 2qq “

1. So, by Proposition 1.3.12(4) we have aγa´1 “ γτ where τ 2q ” 1 pmod 3pq and

gcdpτ ´ 1, 3pq “ 1. Consider G “ C2q.
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3.2. ASSUME |S| “ 2 AND G1 “ C3 ˆ Cp

Subcase 1.1. Assume m ą 3. Then we have

C “ pb
´2
, a´2, b, a, b, a´pm´2q, b

´1
, am´4, b

´1
, a´p2q´2m´3qq

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ b´2a´2baba´pm´2qb´1am´4b´1a´p2q´2m´3q

“ γ´1a´mγ´1a´ma´2amγaamγa´m`2γ´1a´mam´4γ´1a´ma´2q`2m`3

“ γ´1a´mγ´1a´2γam`1γa´m`2γ´1a´4γ´1am`3

“ γ´1´τ
´m`τ´m´2`τ´1´τ´m`1´τ´m´3

“ γ´1`τ
´1´τ´m`1´τ´m`τ´m´2´τ´m´3

.

We may assume VpCq does not generate G1 “ C3 ˆ Cp. Therefore, the subgroup

generated by VpCq either does not contain C3, or does not contain Cp. We already

know τ ” ´1 pmod 3q, then we have

´1` τ´1 ´ τ´m`1 ´ τ´m ` τ´m´2 ´ τ´m´3 ” ´1´ 1´ 1` 1´ 1´ 1 pmod 3q

“ ´4 “ ´1.

This implies that the subgroup generated by VpCq contains C3. So we may assume

the subgroup generated by VpCq does not contain Cp, then

0 ” ´1` τ´1 ´ τ´m`1 ´ τ´m ` τ´m´2 ´ τ´m´3 pmod pq. (1.1A)

Multiplying by ´τm`3 we have

0 ” τm`3 ´ τm`2 ` τ 4 ` τ 3 ´ τ ` 1 pmod pq. (1.1B)
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3.2. ASSUME |S| “ 2 AND G1 “ C3 ˆ Cp

Replacing ta, bu with ta´1, b
´1
u replaces τ with τ´1. Therefore, applying the above

argument to ta´1, b
´1
u establishes that 1.1A holds with τ´1 in the place of τ , which

means we have

0 ” ´τm`3 ` τm`2 ´ τm ´ τm´1 ` τ ´ 1 pmod pq. (1.1C)

By adding 1.1B and 1.1C we have

0 ” ´τm ´ τm´1 ` τ 4 ` τ 3 “ τ 3pτ ` 1qp1´ τm´4q pmod pq.

If τ ” ´1 pmod pq, then C2q inverts C3p, so Cq centralizes Cp. This implies that

G – D6p ˆ Cq, so Lemma 2.3.7 applies. The only other possibility is τm´4 ” 1

pmod pq. Multiplying by τ 4, we have τm ” τ 4 pmod pq. We also know that τ 2q ” 1

pmod pq. So τ d ” 1 pmod pq, where d “ gcdpm ´ 4, 2qq. Since m is odd and m ă q,

then d “ 1. This contradicts the fact that gcdpτ ´ 1, 3pq “ 1.

Subcase 1.2. Assume m ď 3. Therefore, either m “ 1 or m “ 3. If m “ 1, then

a “ b and b “ aγ. So we have C1 “ pa
2q´1, bq as a Hamiltonian cycle in CaypG;Sq.

Now we calculate its voltage.

VpC1q “ a2q´1b “ a2q´1aγ “ γ

which generates G1. Therefore, Factor Group Lemma 1.2.6 applies. Now if m “ 3,

then b “ a3γ and we have

C2 “ pb
2
, a´1, b

´1
, a´1, b

3
, a´2, b, a2q´11q
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3.2. ASSUME |S| “ 2 AND G1 “ C3 ˆ Cp

as a Hamiltonian cycle in CaypG;Sq. We calculate its voltage.

VpC2q “ b2a´1b´1a´1b3a´2ba2q´11

“ a3γa3γa´1γ´1a´3a´1a3γa3γa3γa´2a3γa´11

“ a3γa3γa´1γ´1a´1γa3γa3γaγa´11

“ γτ
3`τ6´τ5`τ4`τ7`τ10`τ11

“ γτ
11`τ10`τ7`τ6´τ5`τ4`τ3

We may assume VpC2q does not generate G1 “ C3 ˆ Cp. Therefore, the subgroup

generated by VpCq does not contain either C3, or Cp. We already know τ ” ´1

pmod 3q, then

τ 11 ` τ 10 ` τ 7 ` τ 6 ´ τ 5 ` τ 4 ` τ 3 ” ´1` 1´ 1` 1` 1` 1´ 1 “ 1 pmod 3q.

This implies that the subgroup generated by VpC2q contains C3. So we may assume

the subgroup generated by VpC2q does not contain Cp, for otherwise Factor Group

Lemma 1.2.6 applies. Then we have

0 ” τ 11 ` τ 10 ` τ 7 ` τ 6 ´ τ 5 ` τ 4 ` τ 3 pmod pq

“ τ 3pτ 8 ` τ 7 ` τ 4 ` τ 3 ´ τ 2 ` τ ` 1q.

This implies that

0 ” τ 8 ` τ 7 ` τ 4 ` τ 3 ´ τ 2 ` τ ` 1 pmod pq. (1.2A)

We can replace τ with τ´1 in the above equation, by replacing ta, bu with ta´1, b
´1
u
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3.2. ASSUME |S| “ 2 AND G1 “ C3 ˆ Cp

if necessary. Then we have

0 ” τ´8 ` τ´7 ` τ´4 ` τ´3 ´ τ´2 ` τ´1 ` 1 pmod pq.

Multiplying τ 8, then we have

0 ” 1` τ ` τ 4 ` τ 5 ´ τ 6 ` τ 7 ` τ 8 pmod pq

“ τ 8 ` τ 7 ´ τ 6 ` τ 5 ` τ 4 ` τ ` 1.

Now by subtracting the above equation from 1.2A we have

0 ” τ 6 ´ τ 5 ` τ 3 ´ τ 2 pmod pq

“ τ 2pτ ´ 1qpτ 3 ` 1q.

This implies that τ ” 1 pmod pq or τ 3 ” ´1 pmod pq. If τ ” 1 pmod pq, then

it contradicts the fact that gcdpτ ´ 1, 3pq “ 1. Now if τ 3 ” ´1 pmod pq, then

τ 6 ” 1 pmod pq. We already know τ 2q ” 1 pmod pq. Then τ d ” 1 pmod pq, where

d “ gcdp2q, 6q. Since gcdp2, 6q “ 2 and gcdpq, 6q “ 1, then d “ 2. This implies that

τ 2 ” 1 pmod pq, which means Cq centralizes Cp. Then we have

G “ Cq ˆ pC2 ˙ C3pq – Cq ˆD6p.

So Lemma 2.3.7 applies.

Case 2. Assume |a| “ q. Then |b| P t2, 2qu. Thus |b| P t2, 2q, 2p, 2pqu. If |b| “ 2pq,

then Cq centralizes Cp. This implies that

G “ Cq ˆ pC2 ˙ C3pq – Cq ˆD6p
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so, Lemma 2.3.7 applies. Therefore, we may assume Cq does not centralize Cp, so |a|

is not divisible by p. If |b| “ 2p, then Corollary 1.2.7 applies with s “ b and t “ b´1,

because we have a Hamiltonian cycle in Cayp pG; pSq by Theorem 1.1.2(3). (Since b is

the only generator whose order is even, then any Hamiltonian cycle in Cayp pG; pSq must

use some edge labeled pb.)

We may now assume |b| P t2, 2qu. We have C “ paq´1, b, a´pq´1q, b
´1
q as a Hamilto-

nian cycle in CaypG;Sq. Now if |a| “ q, then by Lemma 2.2.2 we have G1 “ xraq´1, bsy.

Therefore, Factor Group Lemma 1.2.6 applies. So, we may assume |a| “ 3q. Since Cq

does not centralize Cp, then after conjugation we can assume a “ a3aq and b “ a2a
j
qγp,

where 0 ď j ď q ´ 1. We already know that C is a Hamiltonian cycle in CaypG;Sq.

So we can assume gcdp3q, q ´ 1q ‰ 1 (otherwise Lemma 2.2.2 applies, which implies

that Factor Group Lemma 1.2.6 applies). This implies that gcdp3, q ´ 1q ‰ 1 which

means q ” 1 pmod 3q.

Consider pG “ G{Cp. Then pa “ a3aq and pb “ a2a
j
q. Therefore, there exists

0 ď k ď 3q ´ 1 such that pb´1papb “ pak. Since pb inverts a3 and centralizes aq, then we

must have pa “ pbpakpb´1 “ a´k3 akq , so k ” ´1 pmod 3q and k ” 1 pmod qq. Since q ” 1

pmod 3q, then k “ q ` 1. Additionally, we have aγpa
´1 “ γpτ

p , where pτ q ” 1 pmod pq.

We also have pτ ı 1 pmod pq, because Cq does not centralize Cp. Now we have

b´1ab “ γ´1p a´jq a2aa2a
j
qγp “ γ´1p aq`1γp.

This implies that

b´1aib “ pb´1abqi “ pγ´1p aq`1γpq
i
“ γ´1p aipq`1qγp.

Therefore,

b´1aib “ γ´1p aipq`1qγp ” γ´1p aiγp pmod C3q.
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paq´3
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pa2q´3
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pa3q´3

paq

pb´1
pa2q´2
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paq´2

pb´1

Figure 3.5: The Hamiltonian cycle C1: pa edges are solid and pb edges are dashed.

pe
paq´1

pb´1
paq´1

pa2q`2

pb´1
pa2q`1

pa2q´1

pb´1
paq

paq`2

pb´1
pa2q´2

pa2q`3

pb´1
pa2q´1

paq

pb´1
papb´1

Figure 3.6: The Hamiltonian cycle C2: pa edges are solid and pb edges are dashed.

We have

C1 “ ppa
q´3,pb´1,pa´pq´2q,pb,pa´1,pb´1,pa,pb,paq´2,pb´1,

pa´pq´3q,pb,paq´2,pb´1,pa,pb,pa´1,pb´1,pa´pq´2q,pbq

as our first Hamiltonian cycle in Cayp pG; pSq. The picture in Figure 3.5 on page 61

shows the Hamiltonian cycle. In addition,

C2 “ ppa
q´1,pb´1,pa´pq´3q,pb,pa´1,pb´1,paq´2,pb,pa,pb´1,pa2,pb,

paq´4,pb´1,pa´pq´5q,pb,paq´4,pb´1,pa,pb,pa,pb´1,pa´1,pbq

is the second Hamiltonian cycle in Cayp pG; pSq. The picture in Figure 3.6 on page 61

shows the Hamiltonian cycle. We calculate the voltage of C1 in uG “ G{C3. Since

aq ” e pmod C3q, we have

VpC1q ” a´3pb´1a2bqa´1pb´1abqa´2pb´1a3bqa´2pb´1abqa´1pb´1a2bq pmod C3q
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“ a´3pγ´1p a2γpqa
´1
pγ´1p aγpqa

´2
pγ´1p a3γpqa

´2
pγ´1p aγpqa

´1
pγ´1p a2γpq

“ a´3pγpτ2´1
p a2qa´1pγpτ´1

p aqa´2pγpτ3´1
p a3qa´2pγpτ´1

p aqa´1pγpτ2´1
p a2q

“ a´3γpτ2´1
p aγpτ´1

p a´1γpτ3´1
p aγpτ2`pτ´2

p a2

“ γpτ´3ppτ2´1q`pτ´2ppτ´1q`pτ´3ppτ3´1q`pτ´2ppτ2`pτ´2q
p

“ γ´2pτ´3´3pτ´2`3pτ´1`2
p .

We may assume this does not generate Cp, so

0 ” ´2pτ´3 ´ 3pτ´2 ` 3pτ´1 ` 2 pmod pq.

Multiplying by pτ 3, we have

0 ” 2pτ 3 ` 3pτ 2 ´ 3pτ ´ 2 “ ppτ ´ 1qppτ ` 2qp2pτ ` 1q pmod pq.

Since pτ ı 1 pmod pq, then we may assume pτ ” ´2 pmod pq, by replacing pa with pa´1

if needed.

Now we calculate the voltage of C2 in uG “ G{C3.

VpC2q ” a´1pb´1a3bqa´1pb´1a´2bqapb´1a2bqa´4pb´1a5bqa´4pb´1abqapb´1a´1bq pmod C3q

“ a´1pγ´1p a3γpqa
´1
pγ´1p a´2γpqapγ

´1
p a2γpq

¨ a´4pγ´1p a5γpqa
´4
pγ´1p aγpqapγ

´1
p a´1γpq

“ a´1pγpτ3´1
p a3qa´1pγpτ´2´1

p a´2qapγpτ2´1
p a2q

¨ a´4pγpτ5´1
p a5qa´4pγpτ´1

p aqapγpτ´1´1
p a´1q

“ a´1γpτ3´1
p a2γpτ´2´1

p a´1γpτ2´1
p a´2γpτ5´1

p aγpτ´1
p a2γpτ´1´1

p a´1

“ γpτ´1ppτ3´1q`pτppτ´2´1q`pτ2´1`pτ´2ppτ5´1q`pτ´1ppτ´1q`pτppτ´1´1q
p

“ γpτ3`2pτ2´2pτ`1´pτ´1´pτ´2

p .
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We may assume this does not generate Cp, so

0 ” pτ 3 ` 2pτ 2 ´ 2pτ ` 1´ pτ´1 ´ pτ´2 pmod pq.

Multiplying by pτ 2, we have

0 ” pτ 5 ` 2pτ 4 ´ 2pτ 3 ` pτ 2 ´ pτ ´ 1 pmod pq.

We already know pτ ” ´2 pmod pq. By substituting this in the equation above, we

have

0 ” p´2q5 ` 2p´2q4 ´ 2p´2q3 ` p´2q2 ´ p´2q ´ 1 “ 21 “ 3 ¨ 7 pmod pq.

Since p ą 7, then 21 ı 0 pmod pq. This is a contradiction.

Case 3. Assume |a| “ 2q and |b| “ 2. Since |a| “ 2q, then by Lemma 2.2.3 |a| “ 2q.

We have b “ aqγ where G1 “ xγy.

By Proposition 1.3.12(4) we have aγa´1 “ γτ , where τ 2q ” 1 pmod 3pq and gcdpτ´

1, 3pq “ 1. This implies that τ ı 0, 1 pmod pq and τ ” ´1 pmod 3q.

Suppose, for the moment, that τ ” ´1 pmod pq. Then G – D6pˆCq, so CaypG;Sq

has a Hamiltonian cycle by Lemma 2.3.7.

We may now assume that τ ı ´1 pmod pq. Recall that pG “ G{Cp “ C2q˙ C3. We

may assume pa “ a2aq and pb “ a2a3. We have

C1 “ pppa,pb,pa,pb,pa
´1,pb,pa,pb,pa´1,pb,pa,pbqpq´5q{2,pa,pb,pa4,

pb,pa´3,pb,pa´1,pb,pa2,pb,pa2,pb,pa´1,pb,pa´3,pb,pa4,pbq

as the first Hamiltonian cycle in Cayp pG; pSq. The picture in Figure 3.7 on page 65
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shows the Hamiltonian cycle. We also have

C2 “ pppa,pb,pa
´1,pb,pa,pbqq´5,pa3,pb,pa2,pb,pa´1,pb,pa´3,pb,pa3,pb,pa´3,pb,pa´1,pb,pa2,pb,pa3,pbq

as the second Hamiltonian cycle in Cayp pG; pSq. The picture in Figure 3.8 on page 67

shows the Hamiltonian cycle. Now we calculate the voltage of C1.

VpC1q “ ppababa
´1bqpaba´1babqqpq´5q{2paba4ba´3ba´1ba2ba2ba´1ba´3ba4bq

“ ppaaqγaaqγa´1aqγqpaaqγa´1aqγaaqγqqpq´5q{2

¨ paaqγa4aqγa´3aqγa´1aqγa2aqγa2aqγa´1aqγa´3aqγa4aqγq

“ ppaq`1γaq`1γaq´1γqpaq`1γaq´1γaq`1γqqpq´5q{2

¨ paq`1γaq`4γaq´3γaq´1γaq`2γaq`2γaq´1γaq´3γaq`4γq

“ ppγτ
q`1`τ2`τq`1

aq`1qpγτ
q`1`1`τq`1

aq`1qqpq´5q{2

¨ pγτ
q`1`τ5`τq`2`τ`τq`3`τ5`τq`4`τ`τq`5

aq`5q

“ ppγ2τ
q`1`τ2aq`1qpγ2τ

q`1`1aq`1qqpq´5q{2

¨ pγτ
q`5`τq`4`τq`3`τq`2`τq`1`2τ5`2τaq`5q

“ ppγ2τ
q`1`τ2`τq`1p2τq`1`1qa2qqpq´5q{2

¨ pγτ
q`5`τq`4`τq`3`τq`2`τq`1`2τ5`2τaq`5q

“ pγ3τ
q`1`3τ2a2qpq´5q{2pγτ

q`5`τq`4`τq`3`τq`2`τq`1`2τ5`2τaq`5q

“ pγp3τ
q`1`3τ2qpτq´5´1q{pτ2´1qaq´5qpγτ

q`5`τq`4`τq`3`τq`2`τq`1`2τ5`2τaq`5q

“ γp3τ
q`1`3τ2qpτq´5´1q{pτ2´1q`τq´5pτq`5`τq`4`τq`3`τq`2`τq`1`2τ5`2τq.

Since τ 2q ” 1 pmod pq, we have τ q ” ˘1 pmod pq.

Let us now consider the case where τ q ” 1 pmod pq, then by substituting this in
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Figure 3.7: The Hamiltonian cycle C1: pb edges are solid and pa edges are dashed.

the formula for the voltage of C1 we have

VpC1q “ γp3τ`3τ
2qpτ´5´1q{pτ2´1q`τ´5pτ5`τ4`τ3`τ2`τ`2τ5`2τq

“ γ3τp1`τqpτ
´5´1q{pτ`1qpτ´1q`p1`τ´1`τ´2`τ´3`τ´4`2`2τ´4q

“ γ3τpτ
´5´1q{pτ´1q`p3`τ´1`τ´2`τ´3`3τ´4q

“ γp´2`2τ
´3q{pτ´1q.

We may assume this does not generate Cp, then

0 ” ´2` 2τ´3 pmod pq.

Multiplying by τ 3, we have

0 ” ´2τ 3 ` 2 pmod pq.

This implies that τ 3 ” 1 pmod pq, which contradicts the fact that τ q ” 1 pmod pq

but τ ı 1 pmod pq.

Now we may assume τ q ” ´1 pmod pq, then substituting this in the formula for
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the voltage of C1 we have

VpC1q “ γp´3τ`3τ
2qp´τ´5´1q{pτ2´1q´τ´5p´τ5´τ4´τ3´τ2´τ`2τ5`2τq

“ γ3τpτ´1qp´τ
´5´1q{pτ`1qpτ´1q`p1`τ´1`τ´2`τ´3`τ´4´2´2τ´4q

“ γ3τp´τ
´5´1q{pτ`1q`p´1`τ´1`τ´2`τ´3´τ´4q

“ γp´4τ`2τ
´1`2τ´2´4τ´4q{pτ`1q.

We may assume this does not generate Cp, then

0 ” ´4τ ` 2τ´1 ` 2τ´2 ´ 4τ´4 pmod pq.

Multiplying by p´τ 4q{2, we have

0 ” 2τ 5 ´ τ 3 ´ τ 2 ` 2

“ pτ ` 1qp2τ 4 ´ 2τ 3 ` τ 2 ´ 2τ ` 2q pmod pq.

Since we assumed τ ı ´1 pmod pq, then the above equation implies that

0 ” 2τ 4 ´ 2τ 3 ` τ 2 ´ 2τ ` 2 pmod pq. (3A)

Now we calculate the voltage of C2.

VpC2q “ paba
´1babqpq´5qpa3ba2ba´1ba´3ba3ba´3ba´1ba2ba3bq

“ paaqγa´1aqγaaqγqpq´5qpa3aqγa2aqγa´1aqγa´3aqγa3aqγa´3aqγa´1aqγa2aqγa3aqγq

“ paq`1γaq´1γaq`1γqpq´5qpaq`3γaq`2γaq´1γaq´3γaq`3γaq´3γaq´1γaq`2γaq`3γq

“ pγτ
q`1`1`τq`1

aq`1qpq´5qpγτ
q`3`τ5`τq`4`τ`τq`4`τ`τq`τ2`τq`5

aq`5q

“ pγ2τ
q`1`1aq`1qpq´5qpγτ

q`5`2τq`4`τq`3`τq`τ5`τ2`2τaq`5q

“ pγp2τ
q`1`1qppτq`1qpq´5q´1q{pτq`1´1qapq`1qpq´5qqpγτ

q`5`2τq`4`τq`3`τq`τ5`τ2`2τaq`5q
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Figure 3.8: The Hamiltonian cycle C2: pb edges are solid and pa edges are dashed.

“ γp2τ
q`1`1qppτq`1qpq´5q´1q{pτq`1´1q`τ pq`1qpq´5qpτq`5`2τq`4`τq`3`τq`τ5`τ2`2τq.

Since we are assuming τ q ” ´1 pmod pq, then by substituting this in the above

formula we have

VpC2q “ γp´2τ`1qpp´τq
´5´1q{p´τ´1q´τ´5p´τ5´2τ4´τ3´1`τ5`τ2`2τq

“ γp2τ
´4`2τ´τ´5´1q{p´τ´1q`1`2τ´1`τ´2`τ´5´1´τ´3´2τ´4

“ γp2τ´3´3τ
´1`3τ´3`3τ´4´2τ´5q{p´τ´1q.

We may assume this does not generate Cp, then

2τ ´ 3´ 3τ´1 ` 3τ´3 ` 3τ´4 ´ 2τ´5 ” 0 pmod pq.

Multiplying by τ 5, we have

0 ” 2τ 6 ´ 3τ 5 ´ 3τ 4 ` 3τ 2 ` 3τ ´ 2 “ pτ 2 ´ 1qp2τ 4 ´ 3τ 3 ´ τ 2 ´ 3τ ` 2q pmod pq.
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3.3. ASSUME |S| “ 3, G1 “ Cp ˆ Cq AND CG1pC3q ‰ teu

Since τ 2 ı 1 pmod pq, then the above equation implies that

0 ” 2τ 4 ´ 3τ 3 ´ τ 2 ´ 3τ ` 2 pmod pq.

Therefore, by subtracting the above equation from 3A, we have

0 ” pτ 3 ` 2τ 2 ` τq “ τpτ ` 1q2 pmod pq.

This is a contradiction.

Case 4. Assume none of the previous cases apply. Since xa, by “ G, we may assume

|a| is divisible by q, which means |a| is either q or 2q. Since Case 2 applies when

|a| “ q, we must have |a| “ 2q. Then |b| “ q, since Cases 1 and 3 do not apply. So

Case 2 applies after interchanging a and b.

3.3 Assume |S| “ 3, G1 “ Cp ˆ Cq and CG1pC3q ‰ teu

In this section we prove the part of Theorem 1.1.3 where, |S| “ 3, G1 “ Cp ˆ Cq

and CG1pC3q ‰ teu. Recall G “ G{G1, qG “ G{Cq and pG “ G{Cp.

Proposition 3.3. Assume

• G “ pC2 ˆ C3q ˙ pCp ˆ Cqq,

• |S| “ 3,

• CG1pC3q ‰ teu.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pC3q “ Cp ˆ Cq, then since G1 X ZpGq “ teu (see

Proposition 1.3.12(2)), we conclude that CG1pC2q “ teu. So we have

G “ C3 ˆ pC2 ˙ Cpqq – C3 ˆD2pq.
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Therefore, Lemma 2.3.7 applies.

Since CG1pC3q ‰ teu, then we may assume CG1pC3q “ Cq by interchanging q and p

if necessary. Since G1 X ZpGq “ teu, then C2 inverts Cq. Since C3 centralizes Cq and

ZpGq XG1 “ teu (by Proposition 1.3.12(2)), then C2 inverts Cq. Thus,

pG “ pC2 ˆ C3q ˙ Cq – pC2 ˙ Cqq ˆ C3 “ D2q ˆ C3.

Now if pS is minimal, then Lemma 2.3.5 applies. Therefore, we may assume pS is

not minimal. Choose a 2-element subset ta, bu of S that generates pG. From the

minimality of S, we see that xa, by “ D2q ˆ C3 after replacing a and b by conjugates.

The projection of pa, bq to D2q must be of the form pa2, aqq or pa2, a2aqq, where a2

is reflection and aq is a rotation. (Also note that pb ‰ aq because S X G1 “ H by

Assumption 3.0.1(6).) Therefore, pa, bq must have one of the following forms:

1. pa2, a3aqq,

2. pa2, a2a3aqq,

3. pa2a3, a2aqq,

4. pa2a3, a3aqq,

5. pa2a3, a2a3aqq.

Let c be the third element of S. We may write c “ ai2a
j
3a
k
qγp with 0 ď i ď 1,

0 ď j ď 2 and 0 ď k ď q ´ 1. Note since S X G1 “ H, we know that i and j cannot

both be equal to 0. Additionally, we have a3γpa
´1
3 “ γpτ

p where pτ 3 ” 1 pmod Cpq.

Also, pτ ı 1 pmod pq since CG1pC3q “ Cq. Therefore, we conclude that pτ 2 ` pτ ` 1 ” 0

pmod pq. Note that this implies pτ ı ´1 pmod pq.

Case 1. Assume a “ a2 and b “ a3aq.

Subcase 1.1. Assume i ‰ 0. Then, c “ a2a
j
3a
k
qγp. Thus, by Lemma 2.4.1(1) xb, cy “

G which contradicts the minimality of S.
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Subcase 1.2. Assume i “ 0. Then j ‰ 0. We may assume j “ 1, by replacing c with

c´1 if necessary. Thus c “ a3a
k
qγp. Consider G “ C2 ˆ C3. We have a “ a2, b “ a3

and c “ a3. Therefore, b “ c “ a3. We have pa, b
2
, a, b

´2
q as a Hamiltonian cycle in

CaypG;Sq. Since we can replace each b by c, then we consider C1 “ pa, b
2
, a, b

´1
, c´1q

and C2 “ pa, b
2
, a, c´2q as Hamiltonian cycles in CaypG;Sq. Now since there is one

occurrence of c in C1, then by Lemma 2.5.2 the subgroup generated by VpC1q contains

Cp. Also,

VpC1q “ ab2ab´1c´1

” a2 ¨ a
2
3a

2
q ¨ a2 ¨ a

´1
q a´13 ¨ a´kq a´13 pmod Cpq

“ a´2q a3a
´1´k
q a´13

“ a´3´kq .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 1.2.6

applies. Therefore,

´3´ k ” 0 pmod qq.

Thus, k ” ´3 pmod qq.

Now we calculate the voltage of C2.

VpC2q “ ab2ac´2

” a2 ¨ a
2
3 ¨ a2 ¨ γ

´1
p a´13 γ´1p a´13 pmod Cqq

“ a23γ
´1
p a´13 γ´1p a´13

“ γ´pτ2´pτ
p .

Since pτ 2 ` pτ ` 1 ” 0 pmod pq, then ´pτ 2 ´ pτ ” 1 pmod pq. Thus, γ´pτ2´pτ
p “ γp
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generates Cp.

VpC2q “ ab2ac´2

” a2 ¨ a
2
3a

2
q ¨ a2 ¨ a

´k
q a´13 a´kq a´13 pmod Cpq

“ a´2q a23a
´k
q a´13 a´kq a´13

“ a´2pk`1qq .

We know k ” ´3 pmod qq, therefore, ´2pk ` 1q ” 4 pmod qq, so Factor Group

Lemma 1.2.6 applies.

Case 2. Assume a “ a2 and b “ a2a3aq.

Subcase 2.1. Assume i “ 0, then j ‰ 0. If k ‰ 0, then c “ aj3a
k
qγp. Thus, by

Lemma 2.4.1(3) xb, cy “ G which contradicts the minimality of S. Therefore, we may

assume k “ 0. We may also assume j “ 1, by replacing c with c´1 if necessary. Then

c “ a3γp.

Consider G “ C2ˆC3, thus a “ a2, b “ a2a3 and c “ a3. Therefore, |a| “ 2, |b| “ 6

and |c| “ 3. Consider C “ pb
2
, c, b, c´1, aq as a Hamiltonian cycle in CaypG;Sq. Now

we calculate its voltage.

VpCq “ b2cbc´1a

” a2a3aqa2a3aq ¨ a3 ¨ a2a3aq ¨ a
´1
3 ¨ a2 pmod Cpq

“ a´1q

which generates Cq. By considering the fact that C2 might centralize Cp or not, we

have

VpCq “ b2cbc´1a

” a2a3a2a3 ¨ a3γp ¨ a2a3 ¨ γ
´1
p a´13 ¨ a2 pmod Cqq
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“ γpa3γ
¯1
p a´13

“ γ1¯pτ
p .

which generates Cp. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Subcase 2.2. Assume j “ 0. Then i ‰ 0. If k ‰ 1, then c “ a2a
k
qγp. Thus, by

Lemma 2.4.1(4) xb, cy “ G which contradicts the minimality of S. We may therefore

assume k “ 1. Then c “ a2aqγp.

Consider G “ C2 ˆ C3, then a = c “ a2 and b “ a2a3. Thus, |a| “ |c| “ 2 and

|b| “ 6. We have C “ pb
2
, c, b

´2
, aq as a Hamiltonian cycle in CaypG;Sq. Since there

is one occurrence of c in C, and it is the only generator of G that contains γp, then by

Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains Cp. Also,

VpCq “ b2cb´2a

” a2a3aqa2a3aq ¨ a2aq ¨ a
´1
q a´13 a2a

´1
q a´13 a2 ¨ a2 pmod Cpq

“ a´1q a3aqa3a
´1
q a´13 aqa

´1
3 a´1q

“ a´1q .

which generates Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Subcase 2.3. Assume i ‰ 0 and j ‰ 0. We may assume j “ 1, by replacing c with

c´1 if necessary. So c “ a2a3a
k
qγp. If k ‰ 1, then by Lemma 2.4.1(4) xb, cy “ G which

contradicts the minimality of S. We may now assume k “ 1. Then c “ a2a3aqγp.

Consider G “ C2ˆC3. Then a “ a2 and b “ c “ a2a3. Therefore, |b| “ |c| “ 6 and

|a| “ 2. We have C “ pc, a, pb, aq2q as a Hamiltonian cycle in CaypG;Sq. Since there

is one occurrence of c in C, and it is the only generator of G that contains γp, then
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by Lemma 2.5.2 we conclude that the subgroup generated by VpCq is Cp. Also,

VpCq “ capbaq2

” a2a3aq ¨ a2 ¨ a2a3aq ¨ a2 ¨ a2a3aq ¨ a2 pmod Cpq

“ a3a
´2
q a3a

´1
q a3

“ a´3q

which generates Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Case 3. Assume a “ a2a3 and b “ a2aq. Since b “ a2aq is conjugate to a2 via an

element of Cq (which centralizes C3), then ta, bu is conjugate to ta2a3a
m
q , a2u for some

nonzero m. So Case 2 applies (after replacing aq with amq ).

Case 4. Assume a “ a2a3 and b “ a3aq.

Subcase 4.1. Assume i ‰ 0. Then c “ a2a
j
3a
k
qγp. Thus, by Lemma 2.4.1(1) xb, cy “ G

which contradicts the minimality of S.

Subcase 4.2. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.1(2) xa, cy “ G which contradicts the minimality of S. So we may assume

k “ 0. We may also assume j “ 1, by replacing c with c´1 if necessary. Then c “ a3γp.

Consider G “ C2 ˆ C3. Therefore, a “ a2a3 and b “ c “ a3. In addition, |a| “ 6

and |b| “ |c| “ 3. We have C “ pc, b, a, b
´2
, a´1q as a Hamiltonian cycle in CaypG;Sq.

Since there is one occurrence of c in C, and it is the only generator of G that contains

γp, then by Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains

Cp. Also,

VpCq “ cbab´2a´1

” a3 ¨ a3aq ¨ a2a3 ¨ a
´2
q a´23 ¨ a´13 a2 pmod Cpq
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“ a3aqa
2
3a

2
q

“ a3q

which generates Cq. Therefore, the subgroup generated by VpCq is G1. Thus, Factor

Group Lemma 1.2.6 applies.

Case 5. Assume a “ a2a3, b “ a2a3aq.

Subcase 5.1. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.1(3) xb, cy “ G which contradicts the minimality of S. So we may assume

k “ 0. We may also assume j “ 1, by replacing c with c´1 if necessary. Then c “ a3γp.

Consider G “ C2 ˆ C3. Therefore, a “ b “ a2a3 and c “ a3. Thus, |a| “ |b| “ 6

and |c| “ 3. We have C “ pa, c2, b
´1
, c´2q as a Hamiltonian cycle in CaypG;Sq. Now

we calculate its voltage.

VpCq “ ac2b´1c´2

” a2a3 ¨ a
2
3 ¨ a

´1
q a´13 a2 ¨ a

´2
3 pmod Cpq

“ a´13 aqa
´2
3

“ aq

which generates Cq. Also

VpCq “ ac2b´1c´2

” ac2a´1c´2 pmod Cqq pbecause a ” b pmod Cqqq

“ ac´1a´1c pbecause |c| “ 3q

“ ra, c´1s.

This generates Cp, because ta, cu generates G{Cq. Therefore, the subgroup generated
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by VpCq is G1. So, Factor Group Lemma 1.2.6 applies.

Subcase 5.2. Assume i ‰ 0. Then c “ a2a
j
3a
k
qγp. If k ‰ 1, then by Lemma 2.4.1(4)

xb, cy “ G which contradicts the minimality of S. So we may assume k “ 1. Then

c “ a2a
j
3aqγp. We show that xa, cy “ G. Now, we have

xa, cy “ xa2, a3, cy pbecause xay “ xa2a3y “ xa2, a3yq

“ xa2, a3, a2a
j
3aqγpy

“ xa2, a3, aqγpy

“ xa2, a3, aq, γpy

“ G,

which contradicts the minimality of S.

3.4 Assume |S| “ 3, G1 “ Cp ˆ Cq and pS is minimal

In this section we prove the part of Theorem 1.1.3 where, |S| “ 3, G1 “ Cp ˆ Cq

and CG1pC3q “ teu. Recall G “ G{G1 and pG “ G{Cp.

Proposition 3.4. Assume

• G “ pC2 ˆ C3q ˙ pCp ˆ Cqq,

• |S| “ 3,

• pS is minimal.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pC3q ‰ teu, then Proposition 3.3 applies. Hence we

may assume CG1pC3q “ teu. Then we have four different cases.

Case 1. Assume CG1pC2q “ Cp ˆ Cq, thus G “ C2 ˆ pC3 ˙ Cpqq. Since pS is minimal,

then all three elements belonging to pS must have prime order. There is an element
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pa P pS, such that |pa| “ 2, otherwise all elements of S belong to a subgroup of index 2

of G, so xa, b, cy ‰ G which is a contradiction. If |a| “ 2p, then Corollary 1.2.7 applies

with s “ a and t “ a´1, because there is a Hamiltonian cycle in Cayp pG; pSq (see

Theorem 1.1.2(3)) which uses at least one labeled edge pa because pS is minimal.

Now we may assume |a| “ 2. Replacing a by a conjugate we may assume xay “ C2.

Thus, xb, cy “ C3 ˙ Cpq. By Theorem 1.1.2(3), there is a Hamiltonian path L in

CaypC3 ˙ Cpq, tb, cuq. Therefore, LaL´1a´1 is a Hamiltonian cycle in CaypG;Sq.

Case 2. Assume CG1pC2q “ Cq. Therefore,

pG “ G{Cp “ C6 ˙ Cq – C2 ˆ pC3 ˙ Cqq.

There is some a P S such that |pa| “ 2. Thus, we can assume |a| “ 2, for otherwise

Corollary 1.2.7 applies with s “ a and t “ a´1. (Note since pS is minimal, then pa must

be used in any Hamiltonian cycle in Cayp pG; pSq.) We may assume a “ a2. Since pS is

minimal, SXG1 “ H (see Assumption 3.0.1(6)) and each element belonging to pS has

prime order, then |pb| “ |pc| “ 3. We may assume pa “ a2, pb “ a3 and pc “ a3aq. We

have the following two Hamiltonian paths in CaypC3 ˙ Cq; tpb,pcuq:

L1 “ pppc,pb
2
q
q´1,pc,pbq

and

L2 “ pp
pb,pc,pbqq´1,pb,pcq.

These lead to the following two Hamiltonian cycles in Cayp pG; pSq:

C1 “ pL1,pa, L
´1
1 ,paq
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and

C2 “ pL2,pa, L
´1
2 ,paq.

Then if we let

ź

L1 “ pcb
2
q
q´1cb “ pcb2qqb´1 P a´13 Cp

and

ź

L2 “ pbcbq
q´1bc “ pbcbqqb´1 “ bpcb2qqb´2 “ bp

ź

L1qb
´1

then it is clear that V pCiq “ r
ś

Li, as for i “ 1, 2. Therefore, we may assume a

centralizes
ś

L1 and
ś

L2, for otherwise Factor Group Lemma 1.2.6 applies. Now,

since a centralizes
ś

L1, and
ś

L1 P a
´1
3 Cp, we must have

ś

L1 “ a´13 . So
ś

L2 “

ba´13 b´1. If b does not centralize a3, then VpC1q ‰ VpC2q, so the voltage of C1 or C2

cannot both be equal to identity. Therefore, Factor Group Lemma 1.2.6 applies. Now

if b centralizes a3, then we can assume b “ a3. Therefore, c “ a3aqγp. We calculate

the voltage of C1. We have

VpC1q “ pcb
2
q
qb´1appcb2qqb´1q´1a

“ pa3aqγp ¨ a
2
3q
q
¨ a´13 ¨ a2 ¨ ppa3aqγp ¨ a

2
3q
q
¨ a´13 q

´1
¨ a2

“ pa3aqγpa
´1
3 q

qa´13 a2ppa3aqγpa
´1
3 qa

´1
3 q

´1a2

“ a3a
q
qγ

q
pa
´1
3 a´13 a2pa3a

q
qγ

q
pa
´1
3 a´13 q

´1a2

“ a3γ
q
pa
´2
3 a2pa3γ

q
pa
´2
3 q

´1a2

“ a3γ
q
pa
´2
3 a2a

2
3γ
´q
p a´13 a2

“ a3γ
2q
p a

´1
3
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which generates Cp. Thus, Factor Group Lemma 1.2.6 applies.

Case 3. Assume CG1pC2q “ Cp. Therefore,

qG “ G{Cq “ C6 ˙ Cp – C2 ˆ pC3 ˙ Cpq.

Now since S XG1 “ H (see Assumption 3.0.1(6)) and C3 does not centralize Cp, then

for all a P S, we have |qa| P t2, 3, 6, 2pu. If |qa| “ 6, then |pa| is divisible by 6 which

contradicts the minimality of pS. (Note that every element belong to pS has prime

order.) If |qa| “ 2p, then |pa| “ 2 (because pS is minimal). Therefore, Corollary 1.2.7

applies with s “ a and t “ a´1 (Note that since pS is minimal, then there is a

Hamiltonian cycle in Cayp pG; pSq uses at least one labeled edge pa.) Thus, |qa| P t2, 3u

for all a P S. This implies that qS is minimal, because we need an a2 and an a3 to

generate C2 ˆ C3 and two elements whose order divisible by 2 or 3 to generate Cp. So

by interchanging p and q the proof in Case 2 applies.

Case 4. Assume CG1pC2q “ teu. Consider

pG “ G{Cp “ pC2 ˆ C3q ˙ Cq.

Now since pS is minimal, every element of pS has prime order. Since S XG1 “ H (see

Assumption 3.0.1(6)), then for every ps P pS, we have |ps| P t2, 3u. Since CG1pC2q “ teu

and CG1pC3q “ teu, this implies that for every s P S, we have |s| P t2, 3u. From our

assumption we know that S “ ta, b, cu. Now we may assume |a| “ 2 and |b| “ 3.

Also, we know that |c| P t2, 3u.

If |c| “ 2, then c “ aγ, where γ P G1. Suppose, for the moment, xγy ‰ G1. Since

xγy ŸG, then we have

G “ xa, b, cy “ xa, b, γy “ xa, byxγy.
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Now since pS is minimal, xa, by does not contain Cq. So this implies that xγy contains Cq.

Since xγy does not contain G1, then xγy “ Cq. Thus, we may assume that a “ a2 (by

conjugation if necessary), b “ a3γp and c “ a2aq. So xb, cy “ xa3γp, a2aqy “ G (since

a3γp and a2aq clearly generate G and do not commute modulo p or modulo q, they

must generate G). This contradicts the minimality of S. Therefore, xγy “ G1.

Consider G “ C2 ˆ C3. Then a “ c. We have |a| “ |c| “ 2 and |b| “ 3. We

also have C1 “ pc
´1, b

´2
, a, b

2
q as a Hamiltonian cycle in CaypG;Sq. Now we calcu-

late its voltage.

VpC1q “ c´1b´2ab2 “ γ´1a´1b´2ab2.

Now, a´1b´2ab2 P G1. Since xa, by ‰ G, we have a´1b´2ab2 P te, γpu. If a´1b´2ab2 “ e,

then a and b2 commute, so a and b commute. Hence b “ a3, so xb, cy “ G, a

contradiction. So a´1b´2ab2 “ γp, and VpC1q “ γ´1γp which generates G1. Therefore,

Factor Group Lemma 1.2.6 applies.

Now we can assume |c| “ 3. Then c “ bγ, where γ P G1 (after replacing c with its

inverse if necessary). Suppose, for the moment, xγy ‰ G1. Since xγyŸG, then we have

G “ xa, b, cy “ xa, b, γy “ xa, byxγy.

Now since pS is minimal, then xa, by does not contain Cq. So this implies that xγy

contains Cq. Since xγy does not contain G1, then xγy “ Cq. Therefore, we may assume

that a “ a2γp (by conjugation if necessary), b “ a3 and c “ a3aq. So xa, cy “

xa2γp, a3aqy “ G (since a2γp and a3aq clearly generate G and do not commute modulo

p or modulo q, they must generate G). This contradicts the minimality of S. So

xγy “ G1.

Consider G “ C2 ˆ C3. Then b “ c. We have |a| “ 2 and |b| “ |c| “ 3. We also

have C2 “ pc
´1, b

´1
, a´1, b

2
, aq as a Hamiltonian cycle in CaypG;Sq. Now we calculate
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its voltage.

VpC2q “ c´1b´1a´1b2a “ γ´1b´1b´1a´1b2a.

Now, b´2a´1b2a P G1. Since xa, by ‰ G, we have b´2a´1b2a P te, γpu. If b´2a´1b2a “ e,

then a and b2 commute, so a and b commute. Hence a “ a2, so xa, cy “ G, a

contradiction. So b´2a´1b2a “ γp, and VpC2q “ γ´1γp which generates G1. Therefore,

Factor Group Lemma 1.2.6 applies.

3.5 Assume |S| “ 3, G1 “ Cp ˆ Cq and CG1pC2q “ Cp ˆ Cq
In this section we prove the part of Theorem 1.1.3 where, |S| “ 3, G1 “ Cp ˆ Cq,

CG1pC2q “ CpˆCq, and neither CG1pC3q ‰ teu nor pS is minimal holds. Recall G “ G{G1,

qG “ G{Cq and pG “ G{Cp.

Proposition 3.5. Assume

• G “ pC2 ˆ C3q ˙ pCp ˆ Cqq,

• |S| “ 3,

• CG1pC2q “ Cp ˆ Cq.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pC3q ‰ teu, then Proposition 3.3 applies. So we may

assume CG1pC3q “ teu. Now if pS is minimal, then Proposition 3.4 applies. So we may

assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ C3q ˙ Cq – pC3 ˙ Cqq ˆ C2.

Choose a 2-element ta, bu subset of S that generates pG. From the minimality of S,
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we see that

xa, by “ pC3 ˙ Cqq ˆ C2,

after replacing a and b by conjugates. The projection of pa, bq to C3 ˙ Cq must be

of the form pa3, aqq or pa3, a3aqq (perhaps after replacing a and/or b with its inverse;

also note that pb ‰ aq because S X G1 “ H). Therefore, pa, bq must have one of the

following forms:

1. pa3, a2aqq,

2. pa3, a2a3aqq,

3. pa2a3, a3aqq,

4. pa2a3, a2aqq,

5. pa2a3, a2a3aqq.

Let c be the third element of S. We may write c “ ai2a
j
3a
k
qγp with 0 ď i ď 1, 0 ď j ď 2

and 0 ď k ď q´1. Note since SXG1 “ H, we know that i and j cannot both be equal

to 0. Additionally, we have a3γpa
´1
3 “ γpτ

p where pτ 3 ” 1 pmod pq and pτ ı 1 pmod pq.

Thus pτ 2 ` pτ ` 1 ” 0 pmod pq. Note that this implies pτ ı ´1 pmod pq. Also we have

a3aqa
´1
3 “ aqτ

q . By using the same argument we can conclude that qτ ı 1 pmod qq and

qτ 2 ` qτ ` 1 ” 0 pmod qq. Note that this implies qτ ı ´1 pmod qq. Combining these

facts with pτ 3 ” 1 pmod pq and qτ 3 ” 1 pmod qq, we conclude that pτ 2 ı ˘1 pmod pq,

and qτ 2 ı ˘1 pmod qq.

Case 1. Assume a “ a3 and b “ a2aq.

Subcase 1.1. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. For future reference in

Subcase 4.1 of Proposition 3.6, we note that the argument here does not require our

current assumption that C2 centralizes Cp. We may assume j “ 1, by replacing c with

c´1 if necessary. Then c “ a3a
k
qγp. Consider G “ C2 ˆ C3. Then we have a “ c “ a3,

b “ a2. We have C1 “ pc, a, b, a
´2, bq and C2 “ pc

2, b, a´2, bq as Hamiltonian cycles in
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CaypG;Sq. Since there is one occurrence of c in C1, then by Lemma 2.5.2 we conclude

that the subgroup generated by VpC1q contains Cp. Also,

VpC1q “ caba´2b

” a3a
k
q ¨ a3 ¨ a2aq ¨ a

´2
3 ¨ a2aq pmod Cpq

“ akqτ`qτ2`1
q

“ aqτ2`kqτ`1
q .

We may assume this does not generate Cq, for otherwise Factor Group Lemma 1.2.6

applies. Therefore,

0 ” qτ 2 ` kqτ ` 1 pmod qq. (1.1A)

We also have

0 ” qτ 2 ` qτ ` 1 pmod qq. (1.1B)

By subtracting the above equation from 1.1A, we have 0 ” pk ´ 1qqτ pmod qq. This

implies that k “ 1.

Now we calculate the voltage of C2.

VpC2q “ c2ba´2b

” a3γpa3γp ¨ a2 ¨ a
´2
3 ¨ a2 pmod Cqq

“ γpτ`pτ2

p

which generates Cp. Also

VpC2q “ c2ba´2b
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” a3aq ¨ a3aq ¨ a2aq ¨ a
´2
3 ¨ a2aq pmod Cpq

“ aqτ`qτ2`qτ2`1
q

“ a2qτ2`qτ`1
q .

We may assume this does not generate Cq, for otherwise Factor Group Lemma 1.2.6

applies. Then

0 ” 2qτ 2 ` qτ ` 1 pmod qq.

By subtracting 1.1B from the above equation we have

0 ” qτ 2 pmod qq

which is a contradiction.

Subcase 1.2. Assume j “ 0. Then i ‰ 0 and c “ a2a
k
qγp. For future reference

in Subcase 4.2 of Proposition 3.6, we note that the argument here does not require

our current assumption that C2 centralizes Cp. If k ‰ 0, then by Lemma 2.4.2(3)

xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2γp. Consider G “ C2 ˆ C3. Then we

have a “ a3 and b “ c “ a2. This implies that |a| “ 3 and |b| “ |c| “ 2. We

have C “ pc´1, a2, b, a´2q as a Hamiltonian cycle in CaypG;Sq. Since there is one

occurrence of c in C, and it is the only generator of G that contains γp, then by

Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains Cp. Similarly,

since there is one occurrence of b in C, and it is the only generator of G that contains

aq, then by Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains

Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor Group Lemma 1.2.6

applies.
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Subcase 1.3. Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(3) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1 if

necessary. Then c “ a2a3γp. Consider G “ C2 ˆ C3. Then we have a “ a3, b “ a2 and

c “ a2a3. This implies that |a| “ 3, |b| “ 2 and |c| “ 6. We have C “ pc, b, a, c, a´1, cq

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ cbaca´1c

” a2a3 ¨ a2aq ¨ a3 ¨ a2a3 ¨ a
´1
3 ¨ a2a3 pmod Cpq

“ a3aqa
2
3

“ aqτ
q

which generates Cq. Also

VpCq “ cbaca´1c

” a2a3γp ¨ a2 ¨ a3 ¨ a2a3γp ¨ a
´1
3 ¨ a2a3γp pmod Cqq

“ a3γpa
2
3γ

2
p

“ γpτ`2
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Then pτ ” ´2 pmod pq. By substituting this in

0 ” pτ 2 ` pτ ` 1 pmod pq,

we have

0 ” 4´ 2` 1 pmod pq
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“ 3.

This contradicts the fact that p ą 3.

Case 2. Assume a “ a3 and b “ a2a3aq.

Subcase 2.1. Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(3) xa, cy “ G which contradicts the minimality of S. So we can assume

k “ 0. Then c “ a2a
j
3γp. Thus, by Lemma 2.4.2(4) xb, cy “ G which contradicts the

minimality of S.

Subcase 2.2. Assume i “ 0. Then j ‰ 0. We may assume j “ 1, by replacing c with

c´1 if necessary. Then c “ a3a
k
qγp.

Suppose, for the moment, that k ‰ 1. Then c “ a3a
k
qγp. We have xb, cy “

xa2a3, a3y “ G. Consider tpb,pcu “ ta2a3aq, a3a
k
qu. Since C2 centralizes Cq, then

ra2a3aq, a3a
k
q s “ ra3aq, a3a

k
q s “ a3aqa3a

k
qa
´1
q a´13 a´kq a´13 “ aqτ`kqτ2´qτ2´kqτ

q “ aqτpk´1qpqτ´1q
q

which generates Cq. Now consider tqb,qcu “ ta2a3, a3γpu. Since C2 centralizes Cp, then

ra2a3, a3γps “ ra3, a3γps “ a3a3γpa
´1
3 γ´1p a´13 “ γpτ2´pτ

p “ γpτppτ´1q
p

which generates Cp. Therefore, xb, cy “ G which contradicts the minimality of S.

Now we can assume k “ 1. Then c “ a3aqγp. Consider G “ C2 ˆ C3. We have

a “ c “ a3 and b “ a2a3. This implies that |a| “ |c| “ 3 and |b| “ 6. We have

C “ pc, b, a2, b, aq as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence

of c in C, and it is the only generator of G that contains γp, then by Lemma 2.5.2 we

conclude that the subgroup generated by VpCq is Cp. Also,

VpCq “ cba2ba
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” a3aq ¨ a2a3aq ¨ a
2
3 ¨ a2a3aq ¨ a3 pmod Cpq

“ a3aqa3a
2
qa3

“ aqτ`2qτ2

q

“ aqτp1`2qτq
q .

We may assume this does not generate Cq, for otherwise Factor Group Lemma 1.2.6

applies. Therefore, 1 ` 2qτ ” 0 pmod qq. This implies that qτ ” ´1{2 pmod qq. By

substituting qτ ” ´1{2 pmod qq in

qτ 2 ` qτ ` 1 ” 0 pmod qq,

then we have 3{4 ” 0 pmod qq, which contradicts Assumption 3.0.1(1).

Subcase 2.3. Assume j “ 0. Then i ‰ 0 and c “ a2a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(3) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2γp. Consider G “ C2 ˆ C3. Then we have

a “ a3, b “ a2a3 and c “ a2. This implies that |a| “ 3, |b| “ 6 and |c| “ 2. We

have C “ pc, a, b, a´1, b
2
q as a Hamiltonian cycle in CaypG;Sq. Since there is one

occurrence of c in C, and it is the only generator of G that contains γp, then by

Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains Cp. Also,

VpCq “ caba´1b2

” a2 ¨ a3 ¨ a2a3aq ¨ a
´1
3 ¨ a2a3aqa2a3aq pmod Cpq

“ a23a
2
qa3aq

“ a2qτ2`1
q .

We may assume this does not generate Cq, for otherwise Factor Group Lemma 1.2.6

86



3.5. ASSUME |S| “ 3, G1 “ Cp ˆ Cq AND CG1pC2q “ Cp ˆ Cq

applies. Thus, qτ 2 ” ´1{2 pmod qq. By substituting this in

qτ 2 ` qτ ` 1 ” 0 pmod qq,

we have qτ ” ´1{2 pmod qq which contradicts qτ 2 ” ´1{2 pmod qq.

Case 3. Assume a “ a2a3 and b “ a3aq. Since b “ a3aq is conjugate to a3 via an

element of Cq, then ta, bu is conjugate to ta2a3a
m
q , a3u for some nonzero m. So Case 2

applies (after replacing aq with amq ).

Case 4. Assume a “ a2a3 and b “ a2aq.

Subcase 4.1. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1

if necessary. Then c “ a3γp. Consider G “ C2 ˆ C3. Thus, a “ a2a3, b “ a2 and

c “ a3. This implies that |a| “ 6, |b| “ 2 and |c| “ 3. We have C “ pa2, b, c, a, c´1q as

a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and it is

the only generator of G that contains aq, then by Lemma 2.5.2 we conclude that the

subgroup generated by VpCq contains Cq. Also,

VpCq “ a2bcac´1

” a23 ¨ a2 ¨ a3γp ¨ a2a3 ¨ γ
´1
p a´13 pmod Cqq

“ γpa3γ
´1
p a´13

“ γ1´pτ
p

which generates Cp. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Subcase 4.2. Assume j “ 0. Then i ‰ 0 and c “ a2a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1) xa, cy “ G which contradicts the minimality of S.
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So we can assume k “ 0. Then c “ a2γp. Consider G “ C2 ˆ C3, then a “ a2a3

and b “ c “ a2. This implies that |a| “ 6 and |b| “ |c| “ 2. We have C “ ppa, bq2, a, cq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, and it

is the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpCq contains Cp. Also,

VpCq “ pabq2ac

” pa2a3 ¨ a2aqq
2
¨ a2a3 ¨ a2 pmod Cpq

“ a3aqa3aqa3

“ aqτ`qτ2

q .

which generates Cq. Therefore, the subgroup generated by VpCq is G1. Thus, Factor

Group Lemma 1.2.6 applies.

Subcase 4.3. Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1

if necessary. Then c “ a2a3γp. Consider G “ C2 ˆ C3. Thus, a “ c “ a2a3 and

b “ a2. This implies that |a| “ |c| “ 6 and |b| “ 2. We have C “ pa, c, b, a´2, bq as

a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, and it is

the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that the

subgroup generated by VpCq contains Cp. Also,

VpCq “ acba´2b

” a2a3 ¨ a2a3 ¨ a2aq ¨ a
´2
3 ¨ a2aq pmod Cpq

“ a23aqa
´2
3 aq

“ aqτ2`1
q

88



3.6. ASSUME |S| “ 3, G1 “ Cp ˆ Cq AND CG1pC2q ‰ teu

which generates Cq, because qτ 2 ı ´1 pmod qq. Therefore, the subgroup generated by

VpCq is G1. So, Factor Group Lemma 1.2.6 applies.

Case 5. Assume a “ a2a3 and b “ a2a3aq. If k ‰ 0, then by Lemma 2.4.2(1)

xa, cy “ G which contradicts the minimality of S. So we can assume k “ 0. Also, if

j ‰ 0, then by Lemma 2.4.2(4) xb, cy “ G which contradicts the minimality of S. So

we may also assume j “ 0. Then i ‰ 0. Therefore, c “ a2γp. So Case 4 applies, after

interchanging b and c, and interchanging p and q.

3.6 Assume |S| “ 3, G1 “ Cp ˆ Cq and CG1pC2q ‰ teu

In this section we prove the part of Theorem 1.1.3 where, |S| “ 3, G1 “ Cp ˆ Cq,

CG1pC2q ‰ teu, and neither CG1pC2q “ Cp ˆ Cq nor CG1pC3q ‰ teu nor pS is minimal

holds. Recall G “ G{G1, qG “ G{Cq and pG “ G{Cp.

Proposition 3.6. Assume

• G “ pC2 ˆ C3q ˙ pCp ˆ Cqq,

• |S| “ 3,

• CG1pC2q ‰ teu.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pC3q ‰ teu, then Proposition 3.3 applies. Therefore, we

may assume CG1pC3q “ teu. Now if CG1pC2q “ Cp ˆ Cq, then Proposition 3.5 applies.

Since CG1pC2q ‰ teu, then we may assume CG1pC2q “ Cq, by interchanging q and p if

necessary. This implies that C2 inverts Cp. Now if pS is minimal, then Proposition 3.4

applies. So we may assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ C3q ˙ Cq.

Choose a 2-element subset ta, bu in S that generates pG. From the minimality of S,
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we see that

xa, by “ pC2 ˆ C3q ˙ Cq

after replacing a and b by conjugates. We may assume |a| ě |b| and (by conjugating

if necessary) a is an element of C2 ˆ C3. Then the projection of pa, bq to C2 ˆ C3 has

one of the following forms after replacing a and b with their inverses if necessary.

• pa2a3, a2a3q,

• pa2a3, a2q,

• pa2a3, a3q,

• pa3, a2q.

So there are four possibilities for pa, bq:

1. pa2a3, a2a3aqq,

2. pa2a3, a2aqq,

3. pa2a3, a3aqq,

4. pa3, a2aqq.

Let c be the third element of S. We may write c “ ai2a
j
3a
k
qγp with 0 ď i ď 1, 0 ď j ď 2

and 0 ď k ď q´1. Note since SXG1 “ H, we know that i and j cannot both be equal

to 0. Additionally, we have a3γpa
´1
3 “ γpτ

p where pτ 3 ” 1 pmod pq and pτ ı 1 pmod pq.

Thus pτ 2 ` pτ ` 1 ” 0 pmod pq. Note that this implies pτ ı ´1 pmod pq. Also we have

a3aqa
´1
3 “ aqτ

q . By using the same argument we can conclude that qτ ı 1 pmod qq

and qτ 2 ` qτ ` 1 ” 0 pmod qq. Note that this implies qτ ı ´1 pmod qq. Therefore, we

conclude that pτ 2 ı ˘1 pmod pq, and qτ 2 ı ˘1 pmod qq.

Case 1. Assume a “ a2a3 and b “ a2a3aq. If k ‰ 0, then by Lemma 2.4.2(1),

xa, cy “ G which contradicts the minimality of S. So we can assume k “ 0. Now

if j ‰ 0, then by Lemma 2.4.2(4), xb, cy “ G which contradicts the minimality of S.
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Therefore, we may assume j “ 0. Then i ‰ 0 and c “ a2γp. Consider G “ C2 ˆ C3.

Thus a “ b “ a2a3 and c “ a2. Therefore, |a| “ |b| “ 6 and |c| “ 2. We have

C “ pa, b, c, a´2, cq as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence

of b in C, and it is the only generator of G that contains aq, then by Lemma 2.5.2 we

conclude that the subgroup generated by VpCq contains Cq. Also,

VpCq “ abca´2c

” a2a3 ¨ a2a3 ¨ a2γp ¨ a
´2
3 ¨ a2γp pmod Cqq

“ a23γ
´1
p a´23 γp

“ γ´pτ2`1
p

which generates Cp. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Case 2. Assume a “ a2a3 and b “ a2aq.

Subcase 2.1. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1), xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1

if necessary. Then c “ a3γp. Consider G “ C2 ˆ C3. Thus, a “ a2a3, b “ a2 and

c “ a3. Therefore, |a| “ 6, |b| “ 2 and |c| “ 3. We have C “ pa2, b, c, a, c´1q as a

Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and it is

the only generator of G that contains aq, then by Lemma 2.5.2 we conclude that the

subgroup generated by VpCq contains Cq. Also,

VpCq “ a2bc´1ac

” a23 ¨ a2 ¨ a3γp ¨ a2a3 ¨ γ
´1
p a´13 pmod Cqq

“ γ´1p a3γ
´1
p a´13
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“ γ´1´pτ
p

which generates Cp. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Subcase 2.2. Assume j “ 0. Then i ‰ 0 and c “ a2a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1), xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2γp. Consider G “ C2ˆC3, then a “ a2a3 and

b “ c “ a2. We have C “ ppa, bq2, a, cq as a Hamiltonian cycle in CaypG;Sq. Since

there is one occurrence of c in C, and it is the only generator of G that contains γp,

then by Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains Cp.

Now we calculate its voltage. Also,

VpCq “ pabq2ac

” pa2a3 ¨ a2aqq
2
¨ a2a3 ¨ a2 pmod Cpq

“ a3aqa3aqa3

“ aqτ`qτ2

q .

which generates Cq. Therefore, the subgroup generated by VpCq generates G1. So,

Factor Group Lemma 1.2.6 applies.

Subcase 2.3. Assume i ‰ 0 and j ‰ 0. If k ‰ 0, then c “ a2a
j
3a
k
qγp. Thus, by

Lemma 2.4.2(1), xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1 if

necessary. Then c “ a2a3γp. Consider G “ C2 ˆ C3. Thus, a “ c “ a2a3 and b “ a2.

Therefore, |a| “ |c| “ 6 and |b| “ 2. We have C “ pa, c, b, a´2, bq as a Hamiltonian

cycle in CaypG;Sq. Since there is one occurrence of c in C, and it is the only generator

of G that contains γp, then by Lemma 2.5.2 we conclude that the subgroup generated
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by VpCq contains Cp. Also,

VpCq “ acba´2b

” a2a3 ¨ a2a3 ¨ a2aq ¨ a
´2
3 ¨ a2aq pmod Cpq

“ a23aqa
´2
3 aq

“ aqτ2`1
q .

Since qτ 2 ı ´1 pmod qq, Factor Group Lemma 1.2.6 applies.

Case 3. Assume a “ a2a3 and b “ a3aq.

Subcase 3.1. Assume i ‰ 0 and j ‰ 0. If k “ 0, then c “ a2a
j
3γp. Thus, by

Lemma 2.4.2(2), xb, cy “ G which contradicts the minimality of S. So we can assume

k ‰ 0. Then c “ a2a
j
3a
k
qγp. Thus, by Lemma 2.4.2(1), xa, cy “ G which contradicts

the minimality of S.

Subcase 3.2. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1), xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1

if necessary. Then c “ a3γp. Consider G “ C2 ˆ C3, then a “ a2a3, b “ c “ a3.

Therefore, |a| “ 6 and |b| “ |c| “ 3. We have C “ pc, b, a, b
´2
, a´1q as a Hamiltonian

cycle in CaypG;Sq. Since there is one occurrence of c in C, and it is the only generator

of G that contains γp, then by Lemma 2.5.2 we conclude that the subgroup generated

by VpCq contains Cp. Also,

VpCq “ cbab´2a´1

” a3 ¨ a3aq ¨ a2a3 ¨ a
´1
q a´13 a´1q a´13 ¨ a´13 a2 pmod Cpq

“ a23aqa3a
´1
q a´13 a´1q a´23

“ aqτ2´1´qτ´1

q
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“ aqτ2´1´qτ2

q

“ a´1q

which generates Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Subcase 3.3. Assume j “ 0. Then i ‰ 0 and c “ a2a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(1), xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2γp. Consider G “ C2ˆC3, then a “ a2a3, b “

a3 and c “ a2. Therefore, |a| “ 6, |b| “ 3 and |c| “ 2. We have C “ pa, c, b, a, b
´1
, aq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, and it

is the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpCq contains Cp. Also,

VpCq “ acbab´1a

” a2a3 ¨ a2 ¨ a3aq ¨ a2a3 ¨ a
´1
q a´13 ¨ a2a3 pmod Cpq

“ a23aqa3a
´1
q

“ aqτ2´1
q .

Since qτ 2 ı 1 pmod qq, Factor Group Lemma 1.2.6 applies.

Case 4. Assume a “ a3 and b “ a2aq.

Subcase 4.1. Assume i “ 0. Then j ‰ 0 and c “ aj3a
k
qγp. Thus, the argument in

Subcase 1.1 of Proposition 3.5 applies.

Subcase 4.2. Assume j “ 0. Then i ‰ 0 and c “ a2a
k
qγp. Thus, the argument in

Subcase 1.2 of Proposition 3.5 applies.

Subcase 4.3. Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
3a
k
qγp. If k ‰ 0, then by

Lemma 2.4.2(3) xa, cy “ G which contradicts the minimality of S.
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So we can assume k “ 0. We may also assume j “ 1, by replacing c with c´1 if

necessary. Then c “ a2a3γp. Consider G “ C2 ˆ C3. Then we have a “ a3, b “ a2 and

c “ a2a3. This implies that |a| “ 3, |b| “ 2 and |c| “ 6. We have C “ pc, b, a, c, a´1, cq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and it

is the only generator of G that contains aq, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpCq contains Cq. Also, since a2 inverts Cp

VpCq “ cbaca´1c

” a2a3γp ¨ a2 ¨ a3 ¨ a2a3γp ¨ a
´1
3 ¨ a2a3γp pmod Cqq

“ a3γ
´1
p a23

“ γ´pτ
p

which generates Cp. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

3.7 Assume |S| “ 3, G1 “ Cp ˆ Cq and CG1pC2q “ teu

In this section we prove the part of Theorem 1.1.3 where, |S| “ 3, G1 “ Cp ˆ Cq,

CG1pC2q “ teu, and neither CG1pC3q ‰ teu nor pS is minimal holds. Recall G “ G{G1,

qG “ G{Cq and pG “ G{Cp.

Proposition 3.7. Assume

• G “ pC2 ˆ C3q ˙ pCp ˆ Cqq,

• |S| “ 3,

• CG1pC2q “ teu.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pC3q ‰ teu, then Proposition 3.3 applies. So we may

assume CG1pC3q “ teu. Now if pS is minimal, then Proposition 3.4 applies. So we may
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assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ C3q ˙ Cq.

Choose a 2-element subset ta, bu in S that generates pG. From the minimality of S,

we see

xa, by “ pC2 ˆ C3q ˙ Cq.

after replacing a and b by conjugates. We may assume |a| ě |b| and (by conjugating

if necessary) a is in C2 ˆ C3. Then the projection of pa, bq to C2 ˆ C3 is one of the

following forms after replacing a and b with their inverses if necessary.

• pa2a3, a2a3q,

• pa2a3, a2q,

• pa2a3, a3q,

• pa3, a2q.

There are four possibilities for pa, bq:

1. pa2a3, a2a3aqq,

2. pa2a3, a2aqq,

3. pa2a3, a3aqq,

4. pa3, a2aqq.

Let c be the third element of S. We may write c “ ai2a
j
3a
k
qγp with 0 ď i ď 1, 0 ď j ď 2

and 0 ď k ď q ´ 1. Note since S X G1 “ H, we know that i and j cannot both be

equal to 0. Additionally, we have a3γpa
´1
3 “ γpτ

p where pτ 3 ” 1 pmod pq and pτ ı 1

pmod pq. Thus pτ 2 ` pτ ` 1 ” 0 pmod pq. Note that this implies pτ ı ´1 pmod pq. We

have a3aqa
´1
3 “ aqτ

q . By using the same argument we can conclude that qτ ı 1 pmod qq

and qτ 2 ` qτ ` 1 ” 0 pmod qq. Note that this implies qτ ı ´1 pmod qq. Therefore, we
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conclude that pτ 2 ı ˘1 pmod pq, and qτ 2 ı ˘1 pmod qq.

Case 1. Assume a “ a2a3 and b “ a2a3aq. If k ‰ 0, then by Lemma 2.4.2(1) xa, cy “ G

which contradicts the minimality of S. So we can assume k “ 0. Now if j ‰ 0, then

by Lemma 2.4.2(4), xb, cy “ G which contradicts the minimality of S. Therefore, we

may assume j “ 0. Then i ‰ 0 and c “ a2γp. We have xb, cy “ xa2a3, a2y “ G.

Consider tqb,qcu “ ta2a3, a2γpu. Therefore,

ra2a3, a2γps “ a2a3a2γpa
´1
3 a2γ

´1
p a2 “ a3γpa

´1
3 γp “ γpτ`1

p .

which generates Cp. Now consider tpb,pcu “ ta2a3aq, a2u, then

ra2a3aq, a2s “ a2a3aqa2a
´1
q a´13 a2a2 “ a3a

´2
q a´13 “ a´2qτ

q

which generates Cq. Therefore, xb, cy “ G which contradicts the minimality of S.

Case 2. Assume a “ a2a3 and b “ a2aq. If k ‰ 0, then by Lemma 2.4.2(1), xa, cy “ G

which contradicts the minimality of S. So we can assume k “ 0.

Subcase 2.1. Assume j ‰ 0. We may also assume j “ 1, by replacing c with

c´1 if necessary. Then c “ ai2a3γp. We have xb, cy “ xa2, a
i
2a3y “ G. Consider

tpb,pcu “ ta2aq, a
i
2a3u. We have

ra2aq, a
i
2a3s “ a2aqa

i
2a3a

´1
q a2a

´1
3 ai2 “ a´1q ai`12 a3a

´1
q a´13 ai`12

“ a´1q a3a
¯1
q a´13 “ a´1¯qτ

q

which generates Cq. Now consider tqb,qcu “ ta2, a
i
2a3γpu. We have

ra2, a
i
2a3γps “ a2a

i
2a3γpa2γ

´1
p a´13 ai2 “ ai`12 a3γ

2
pa
´1
3 ai`12 “ γ˘2pτ

p

which generates Cp. Therefore, xb, cy “ G which contradicts the minimality of S.
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Subcase 2.2. Assume j “ 0. Then i ‰ 0 and c “ a2γp. Consider G “ C2 ˆ C3, then

a “ a2a3 and b “ c “ a2. Thus, |a| “ 6 and |b| “ |c| “ 2. We have C “ ppa, bq2, a, cq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, and it

is the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpCq contains Cp. Also,

VpCq “ pabq2pacq

” a2a3 ¨ a2aq ¨ a2a3 ¨ a2aq ¨ a2a3 ¨ a2 pmod Cpq

“ a3aqa3aqa3

“ aqτ`qτ2

q

which generates Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Case 3. Assume a “ a2a3 and b “ a3aq. If k ‰ 0, then by Lemma 2.4.2(1), xa, cy “ G

which contradicts the minimality of S. So we can assume k “ 0.

Subcase 3.1. Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
3γp. Thus, by Lemma 2.4.2(2),

xb, cy “ G which contradicts the minimality of S.

Subcase 3.2. Assume j “ 0. Then i ‰ 0 and c “ a2γp. We have xb, cy “ xa3, a2y “ G.

Consider tqb,qcu “ ta3, a2γpu. Then we have

ra3, a2γps “ a3a2γpa
´1
3 γ´1p a2 “ a3γ

´1
p a´13 γp “ γ´pτ`1

p

which generates Cp. Now consider tpb,pcu “ ta3aq, a2u. Thus,

ra3aq, a2s “ a3aqa2a
´1
q a´13 a2 “ a3a

2
qa
´1
3 “ a2qτ

q

which generates Cq. Therefore, xb, cy “ G which contradicts the minimality of S.
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Subcase 3.3. Assume i “ 0. Then j ‰ 0. We may also assume j “ 1, by replacing c

with c´1 if necessary. Then c “ a3γp. Consider G “ C2 ˆ C3, then we have a “ a2a3,

b “ c “ a3. Thus, |a| “ 6 and |b| “ |c| “ 3. We have C “ pc, b, a, b
´2
, a´1q as a

Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, and it is

the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that the

subgroup generated by VpCq contains Cp. Also,

VpCq “ cbab´2a´1

” a3 ¨ a3aq ¨ a2a3 ¨ a
´1
q a´13 a´1q a´13 ¨ a´13 a2 pmod Cpq

“ a23aqa3aqa
´1
3 aqa

´2
3

“ aqτ2`1`qτ´1

q

“ aqτ2`1´qτ2

q

“ aq

which generates Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor

Group Lemma 1.2.6 applies.

Case 4. Assume a “ a3 and b “ a2aq.

Subcase 4.1. Assume i “ 0. Then j ‰ 0. We may also assume j “ 1, by replacing

c with c´1 if necessary. Then c “ a3a
k
qγp. Consider G “ C2 ˆ C3. Then we have

a “ c “ a3 and b “ a2. This implies that |a| “ |c| “ 3 and |b| “ 2. We have

C “ pc´2, b, a2, bq as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ c´2ba2b

” γ´1p a´13 γ´1p a´13 ¨ a2 ¨ a
2
3 ¨ a2 pmod Cqq

“ γ´1p a´13 γ´1p a3

“ γ´1´pτ´1

p
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which generates Cp. Also

VpCq “ c´2ba2b

” a´kq a´13 a´kq a´13 ¨ a2aq ¨ a
2
3 ¨ a2aq pmod Cpq

“ a´kq a´13 a´kq a´13 a´1q a23aq

“ a´k´kqτ´1´qτ´2`1
q .

If k “ 2, then

a´k´kqτ´1´qτ´2`1
q “ a´2´2qτ´1´qτ´2`1

q “ a´pqτ
´1`1q2

q

which generates Cq. So we may assume k ‰ 2 and the subgroup generated by VpCq

does not contain Cq, for otherwise Factor Group Lemma 1.2.6 applies. Therefore,

0 ” ´k ´ kqτ´1 ´ qτ´2 ` 1 pmod qq

“ p1´ kq ´ kqτ´1 ´ qτ´2.

Multiplying by qτ 2, we have

0 ” p1´ kqqτ 2 ´ kqτ ´ 1 pmod qq. (4.1A)

We can replace qτ with qτ´1 in the above equation, by replacing a3,a and c with

their inverses.

0 ” p1´ kqqτ´2 ´ kqτ´1 ´ 1 pmod qq.

Multiplying by qτ 2, then

0 ” p1´ kq ´ kqτ ´ qτ 2 pmod qq.
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By subtracting 4.1A from the above equation, we have

0 ” pk ´ 2qqτ 2 ` p2´ kq pmod qq.

This implies that qτ 2 ” 1 pmod qq, a contradiction.

Subcase 4.2. Assume j “ 0. Then i ‰ 0. If k ‰ 0, then c “ a2a
k
qγp. Thus,

by Lemma 2.4.2(3), xa, cy “ G which contradicts the minimality of S. So we can

assume k “ 0. Then c “ a2γp. Consider G “ C2 ˆ C3, then a “ a3 and b “ c “ a2.

We have C “ pa2, b, a´2, cq as a Hamiltonian cycle in CaypG;Sq. Since there is

one occurrence of c in C, and it is the only generator of G that contains γp, then by

Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains Cp. Similarly,

since there is one occurrence of b in C, and it is the only generator of G that contains

aq, then by Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains

Cq. Therefore, the subgroup generated by VpCq is G1. So, Factor Group Lemma 1.2.6

applies.

Subcase 4.3. Assume i ‰ 0 and j ‰ 0. If k ‰ 0, then c “ a2a
j
3a
k
qγp. Thus, by

Lemma 2.4.2(3), xa, cy “ G which contradicts the minimality of S. So we can assume

k “ 0. We may also assume j “ 1, by replacing c with c´1 if necessary. Then c “

a2a3γp. We have xb, cy “ xa2, a2a3y “ G. Consider tpb,pcu “ ta2aq, a2a3u. Then we have

ra2aq, a2a3s “ a2aqa2a3a
´1
q a2a

´1
3 a2 “ a´1q a3a

´1
q a´13 “ a´1´qτ

q

which generates Cq. Now consider tqb,qcu “ ta2, a2a3γpu. Then

ra2, a2a3γps “ a2a2a3γpa2γ
´1
p a´13 a2 “ a3γ

2
pa
´1
3 “ γ2pτ

p

which generates Cp. Therefore, xb, cy “ G which contradicts the minimality of S.
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3.8 Assume |S| “ 3 and G1 “ C3 ˆ Cp
In this section we prove the part of Theorem 1.1.3 where, |S| “ 3 and G1 “ C3ˆCp.

Recall G “ G{G1, pG “ G{Cp and uG “ G{C3.

Proposition 3.8. Assume

• G “ pC2 ˆ Cqq ˙ pC3 ˆ Cpq,

• |S| “ 3.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. Since Cq centralizes C3 and ZpGq X G1 “ teu (by Proposi-

tion 1.3.12(2)), then C2 inverts C3. Now if pS is minimal, then Lemma 2.3.5 applies.

So we may assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ Cqq ˙ C3.

Choose a 2-element subset ta, bu in S that generates pG. From the minimality of S we see

xa, by “ pC2 ˆ Cqq ˙ C3.

after replacing a and b with conjugates. Then the projection of pa, bq to C2 ˆ Cq has

one of the following forms:

• pa2aq, a2amq q, where 1 ď m ď q ´ 1,

• pa2aq, a2q,

• pa2aq, amq q, where 1 ď m ď q ´ 1,

• pa2, aqq.

Thus, there are four different possibilities for pa, bq after assuming, without loss of

generality, that a P C2 ˆ Cq:

1. pa2aq, a2a
m
q a3q,
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2. pa2aq, a2a3q,

3. pa2aq, a
m
q a3q,

4. pa2, aqa3q.

Let c be the third element of S. We may write c “ ai2a
j
qa
k
3γp with 0 ď i ď 1,

0 ď j ď q ´ 1 and 0 ď k ď 2. Since Cq centralizes C3, we may assume Cq does not

centralize Cp, for otherwise Lemma 2.3.7 applies. Now we have aqγpa
´1
q “ γpτ

p , where

pτ q ” 1 pmod pq. We also have pτ ı 1 pmod pq. Since pτ q ” 1 pmod pq, this implies

pτ q´1 ` pτ q´2 ` ¨ ¨ ¨ ` 1 ” 0 pmod pq.

Note that this implies pτ ı ´1 pmod pq.

Case 1. Assume a “ a2aq and b “ a2a
m
q a3. If k ‰ 0, then by Lemma 2.4.3(1)

xa, cy “ G which contradicts the minimality of S. So we can assume k “ 0. Now

if i ‰ 0, then by Lemma 2.4.3(3) xb, cy “ G which contradicts the minimality of S.

Therefore, we may assume i “ 0. Then j ‰ 0 and c “ ajqγp.

Consider G “ C2 ˆ Cq. Then we have a “ a2aq, b “ a2a
m
q and c “ ajq. We may

assume m is odd by replacing b with b´1 (and m with q ´m) if necessary. Note that

this implies b “ am. Also, we have |a| “ |b| “ 2q and |c| “ q.

Subcase 1.1. Assume m “ 1. Then a “ b. We have

C “ pcq´1, b, c´pq´1q, a´1q

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and it is

the only generator of G that contains a3, then by Lemma 2.5.2 we conclude that the

subgroup generated by VpCq contains C3. Now by considering the fact that C2 might
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centralize Cp or not we have

VpCq “ cq´1bc´pq´1qa´1

” pajqγpq
q´1
¨ a2aq ¨ pa

j
qγpq

´pq´1q
¨ a´1q a2 pmod C3q

“ γpτ j`pτ2j`¨¨¨`pτ pq´1qj

p apq´1qjq a2aqa
´pq´1qj
q γ´ppτ

j`pτ2j`¨¨¨`pτ pq´1qjq
p a´1q a2

“ γpτ jp1`pτ j`¨¨¨`pτ pq´2qjq
p aqγ

¯pτ jp1`pτ j`¨¨¨`pτ pq´2qjq
p a´1q .

Now if pτ j ı 1 pmod pq, then

VpCq “ γpτ jp1`pτ j`¨¨¨`pτ pq´2qjq
p aqγ

¯pτ jp1`pτ j`¨¨¨`pτ pq´2qjq
p a´1q

“ γpτ jpppτ jqq´1´1q{ppτ j´1q¯pτ j`1pppτ jqq´1´1q{ppτ j´1q
p

“ γpτ jpppτ´jq´1q{ppτ j´1q¯pτ j`1pppτ´jq´1q{ppτ j´1q
p

“ γp1´pτ jqp1¯pτq{ppτ j´1q
p

“ γ´p1¯pτq
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Therefore, pτ j ” 1 pmod pq or pτ ” ˘1 pmod pq. The second case is impossi-

ble. So we must have pτ j ” 1 pmod pq. We also know that pτ q ” 1 pmod pq. So pτ d ” 1

pmod pq, where d “ gcdpj, qq. Since 1 ď j ď q ´ 1, then d “ 1, which contradicts the

fact that pτ ı 1 pmod pq.

Subcase 1.2. Assume m ‰ 1 and j “ 2. Then c “ a2qγp. We have

C “ pb, c´pm´1q{2, a, cpm´1q{2, a2q´m´1q

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and it

is the only generator of G that contains a3, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpCq contains C3. Considering the fact that C2 might
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centralize Cp or not we have

VpCq “ bc´pm´1q{2acpm´1q{2a2q´m´1

” a2a
m
q ¨ pa

2
qγpq

´pm´1q{2
¨ a2aq ¨ pa

2
qγpq

pm´1q{2
¨ a2q´m´1q pmod C3q

“ a2a
m
q pγ

pτ2`ppτ2q2`¨¨¨`ppτ2qpm´1q{2

p apm´1qq q
´1a2aqpγ

pτ2`ppτ2q2`¨¨¨`ppτ2qpm´1q{2

p apm´1qq qa´m´1q

“ a2a
m
q a

´m`1
q γ´pτ2p1`pτ2`¨¨¨`ppτ2qpm´3q{2q

p a2aqγ
pτ2p1`pτ2`¨¨¨`ppτ2qpm´3q{2q
p a´2q

“ aqγ
˘pτ2p1`pτ2`¨¨¨`pτ2qpm´3q{2

p aqγ
pτ2p1`pτ2`¨¨¨`pτ2qpm´3q{2

p a´2q

“ γ˘pτ3ppτm´1´1q{ppτ2´1q`pτ4ppτm´1´1q{ppτ2´1q
p

“ γpτ3ppτm´1´1qp˘1`pτq{ppτ2´1q
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Therefore, pτm´1 ” 1 pmod pq. We also know that pτ q ” 1 pmod pq. So pτ d ” 1

pmod pq, where d “ gcdpm´1, qq. Since 2 ď m ď q´1, then d “ 1, which contradicts

the fact that pτ ı 1 pmod pq.

Subcase 1.3. Assume m ‰ 1 and j ‰ 2. We may also assume j is an even number,

by replacing c with its inverse and j with q´ j if necessary. This implies that c “ aj.

We have

C “ pb, c, a, c´1, b
´1
, am´2, c, a´pj´3q, c, a2q´m´j´2q

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ bcac´1b´1am´2ca´pj´3qca2q´m´j´2

” a2a3 ¨ a2 ¨ a
´1
3 a2 ¨ a

m´2
2 ¨ a

´pj´3q
2 ¨ a2q´m´j´22 pmod Cq ˙ Cpq

“ a2a3a2a
´1
3

“ a´23
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which generates C3. Also considering the fact that C2 might centralize Cp or not we have

VpCq “ bcac´1b´1am´2ca´pj´3qca2q´m´j´2

” a2a
m
q ¨ a

j
qγp ¨ a2aq ¨ γ

´1
p a´jq ¨ a´mq a2

¨ a2a
m´2
q ¨ ajqγp ¨ a

´j`3
q a2 ¨ a

j
qγp ¨ a2a

2q´m´j´2
q pmod C3q

“ am`jq γ˘1p aqγ
´1
p a´2q γpa

3
qγ
˘1
p a´m´j´2q

“ γ˘pτm`j´pτm`j`1`pτm`j´1˘pτm`j`2

p

“ γpτm`j´1p˘pτ3´pτ2˘pτ`1q
p .

So we may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Then we have

0 ” ˘pτ 3 ´ pτ 2 ˘ pτ ` 1 pmod pq.

Let t “ pτ if C2 centralizes Cp and t “ ´pτ if C2 inverts Cp. Then

0 ” t3 ´ t2 ` t` 1 pmod pq. (1.3A)

We can replace t with t´1 in the above equation after replacing ta, b, cu with their

inverses, then

0 ” t´3 ´ t´2 ` t´1 ` 1 pmod pq.

Multiplying by t3, we have

0 ” 1´ t` t2 ` t3 pmod pq

“ t3 ` t2 ´ t` 1.
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By subtracting 1.3A from the above equation, we have

0 ” 2t2 ´ 2t pmod pq

“ 2tpt´ 1q

This implies that t ” 1 pmod pq which contradicts the fact that pτ ı ˘1 pmod pq.

Case 2. Assume a “ a2aq and b “ a2a3. If k ‰ 0, then by Lemma 2.4.3(1) xa, cy “ G

which contradicts the minimality of S. So we can assume k “ 0.

Subcase 2.1. Assume i “ 0. Then j ‰ 0 and c “ ajqγp. We may assume j is an

odd number, by replacing c with its inverse and j with q ´ j if necessary. Consider

G “ C2 ˆ Cq. Then we have a “ a2aq, b “ a2 and c “ ajq. Also, we have |a| “ 2q,

|b| “ 2 and |c| “ q. Now if j ‰ 1, then we have

C “ pc, a´1, b, a2, b, c´1, aj´3, b, a´pq´4q, b, aq´j´2q

as a Hamiltonian cycle in CaypG;Sq. Now we calculate the voltage of C.

VpCq “ ca´1ba2bc´1aj´3ba´pq´4qbaq´j´2

” a2 ¨ a2a3 ¨ a
2
2 ¨ a2a3 ¨ a

j´3
2 ¨ a2a3 ¨ a

´pq´4q
2 ¨ a2a3 ¨ a

q´j´2
2 pmod Cq ˙ Cpq

“ a3a2a3a2a3a2a2a3

“ a23

which generates C3. By considering the fact that C2 might centralize Cp or not, we

have

VpCq “ ca´1ba2bc´1aj´3ba´pq´4qbaq´j´2

” ajqγp ¨ a
´1
q a2 ¨ a2 ¨ a

2
q ¨ a2 ¨ γ

´1
p a´jq ¨ aj´3q ¨ a2 ¨ a2a

´q`4
q ¨ a2 ¨ a

q´j´2
q pmod C3q
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“ ajqγpaqγ
¯1
p a´j´1q

“ γpτ j¯pτ j`1

p

“ γpτ jp1¯pτq
p

which generates Cp. Therefore, the subgroup generated by VpCq is G1. Thus, Factor

Group Lemma 1.2.6 applies.

So we may assume j “ 1, then c “ aqγp and c “ aq. We have

C1 “ ppb, cq
q´1, b, aq

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC1q “ pbcq
q´1ba

” pa2a3q
q´1
¨ a2a3 ¨ a2 pmod Cq ˙ Cpq

“ a´13

which generates C3. If C2 centralizes Cp, then

VpC1q “ pbcq
q´1ba

” pa2 ¨ aqγpq
q´1
¨ a2 ¨ a2aq pmod C3q

“ paqγpq
q´1aq

“ γpτ`pτ2`¨¨¨`pτq´1

p

“ γ´1p

which generates Cp. So in this case, the subgroup generated by VpC1q is G1. Thus,

Factor Group Lemma 1.2.6 applies.
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Now if C2 inverts Cp, then

VpC1q “ pbcq
q´1ba

” pa2 ¨ aqγpq
q´1
¨ a2 ¨ a2aq pmod C3q

“ γ´pτ`pτ2´¨¨¨´pτq´2`pτq´1

p .

Since pτ ı ´1 pmod pq, then

VpC1q “ γ´pτ`pτ2´¨¨¨´pτq´2`pτq´1

p

“ γppτ
q`1q{ppτ`1q´1

p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Therefore, since pτ q ” 1 pmod pq, then

0 ” ppτ q ` 1q{ppτ ` 1q ´ 1 pmod pq

“ 2{ppτ ` 1q ´ 1.

This implies that pτ ” 1 pmod pq, which is impossible.

Subcase 2.2. Assume j “ 0. Then i ‰ 0 and c “ a2γp. Consider G “ C2 ˆ Cq. Then

we have a “ a2aq and b “ c “ a2. This implies that |a| “ 2q and |b| “ |c| “ 2. We have

C “ pc, aq´1, b, a´pq´1qq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and it

is the only generator of G that contains a3, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpCq contains C3. Similarly, since there is one occurrence

of c in C, and it is the only generator of G that contains γp, then by Lemma 2.5.2 we

conclude that the subgroup generated by VpCq contains Cp. Therefore, the subgroup
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generated by VpCq is G1. So, Factor Group Lemma 1.2.6 applies.

Subcase 2.3. Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
qγp. Consider G “ C2 ˆ Cq.

Then we have a “ a2aq, b “ a2 and c “ a2a
j
q. This implies that |a| “ |c| “ 2q and

|b| “ 2. We may assume j is even by replacing c with its inverse and j with q ´ j if

necessary.

Suppose, for the moment, that j “ q´ 1, then c “ a2a
´1
q γp and c “ a´1. We have

C1 “ pc, b, pa
´1, bqq´1q

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, and it

is the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpC1q contains Cp. Also,

VpC1q “ cbpa´1bqq´1

” a2 ¨ a2a3 ¨ pa2 ¨ a2a3q
q´1

pmod Cq ˙ Cpq

“ aq3

which generates C3. Therefore, the subgroup generated by VpC1q contains G1. Thus,

Factor Group Lemma 1.2.6 applies.

So we may assume j ‰ q ´ 1. Then we have

C2 “ pc, a
q´j´1, b, a´q`j`1, pa´1, bqjq

and

C3 “ pc, a
q´j´2, b, a´q`j`2, pa´1, bqj´1, a´2, b, aq

as Hamiltonian cycles in CaypG;Sq. Since there is one occurrence of c in C2, and it
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is the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpC2q contains Cp. Also,

VpC2q “ caq´j´1ba´q`j`1pa´1bqj

” a2 ¨ a
q´j´1
2 ¨ a2a3 ¨ a

´q`j`1
2 ¨ aj3 pmod Cq ˙ Cpq

“ aj`13 .

We may assume this does not generate C3, for otherwise Factor Group Lemma 1.2.6

applies. Then j ” ´1 pmod 3q.

Since there is one occurrence of c in C3, and it is the only generator of G that

contains γp, then by Lemma 2.5.2 we conclude that the subgroup generated by VpC3q

contains Cp. Also,

VpC3q “ caq´j´2ba´q`j`2pa´1bqj´1a´2ba

” a2 ¨ a
q´j´2
2 ¨ a2a3 ¨ a

´q`j`2
2 ¨ aj´13 ¨ a´22 ¨ a2a3 ¨ a2 pmod Cq ˙ Cpq

“ a2a3a2a
j´1
3 a2a3a2

“ aj´33

“ aj3

Since j ” ´1 pmod 3q, this generates C3. So, Factor Group Lemma 1.2.6 applies.

Case 3. Assume a “ a2aq and b “ amq a3. If k ‰ 0, then by Lemma 2.4.3(1) xa, cy “ G

which contradicts the minimality of S. So we can assume k “ 0. Now if i ‰ 0, then

by Lemma 2.4.3(3) xb, cy “ G which contradicts the minimality of S. Therefore, we

may assume i “ 0. Then j ‰ 0 and c “ ajqγp. Consider G “ C2 ˆ Cq. Then we have

a “ a2aq, b “ amq and c “ ajq.
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Suppose, for the moment, that m “ j. Then b “ c. We have

C1 “ pc
´1, b

´pq´2q
, a´1, b

q´1
, aq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C1, and it

is the only generator of G that contains γp, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpC1q contains Cp. Also,

VpC1q “ c´1b´pq´2qa´1bq´1a

” a
´pq´2q
3 ¨ a2 ¨ a

q´1
3 ¨ a2 pmod Cq ˙ Cpq

“ a´2q`33

“ a´2q3

which generates C3, because gcdp2q, 3q “ 1. So, the subgroup generated by VpC1q is

G1. Therefore, Factor Group Lemma 1.2.6 applies.

So we may assume m ‰ j. We may also assume m and j are even, by replacing

tb, cu with their inverses, m with q ´m, and j with q ´ j if necessary. Now suppose,

for the moment, j “ 2. Then we have c “ a2qγp. We also have

C2 “ pb, c
´pm´2q{2, a´1, cm{2, a2q´m´1q

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C2, and it

is the only generator of G that contains a3, then by Lemma 2.5.2 we conclude that

the subgroup generated by VpC2q contains C3. Now by considering the fact that C2

might centralize Cp or not, we have

VpC2q “ bc´pm´2q{2a´1cm{2a2q´m´1

” amq ¨ pa
2
qγpq

´pm´2q{2
¨ a´1q a2 ¨ pa

2
qγpq

m{2
¨ a2q´m´12 a2q´m´1q pmod C3q
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“ amq pγ
pτ2`ppτ2q2`¨¨¨`ppτ2qpm´2q{2

p apm´2qq q
´1a´1q a2pγ

pτ2`ppτ2q2`¨¨¨`ppτ2qm{2

p amq qa2a
´m´1
q

“ amq a
´pm´2q
q γ´pτ2p1`pτ2`¨¨¨`ppτ2qpm´4q{2q

p a´1q γ˘pτ2p1`pτ2`¨¨¨`ppτ2qpm´2q{2q
p amq a

´m´1
q .

Since pτ 2 ´ 1 ı 0 pmod pq, then

VpC2q “ a2qγ
´pτ2ppτm´2´1q{ppτ2´1q
p a´1q γ˘pτ2ppτm´1q{ppτ2´1q

p a´1q

“ γ´pτ4ppτm´2´1q{ppτ2´1q˘pτ3ppτm´1q{ppτ2´1q
p

“ γpτ3p1¯pτqp´pτm´1¯1q{ppτ2´1q
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Therefore, pτ ” ˘1 pmod pq or pτm´1 ” ˘1 pmod pq. The first case is impos-

sible. So we may assume pτm´1 ” ˘1 pmod pq. Thus, pτ 2pm´1q ” 1 pmod pq. We also

know that pτ q ” 1 pmod pq. So we have pτ d ” 1 pmod pq, where d “ gcdp2pm´ 1q, qq.

Since gcdp2, qq “ 1 and 2 ď m ď q ´ 1, then d “ 1, which contradicts the fact that

pτ ı 1 pmod pq.

So we may assume j ‰ 2. We have

C3 “ pb, c, a, c
´1, b

´1
, am´2, c, a´pj´3q, c, a2q´m´j´2q

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC3q “ bcac´1b´1am´2ca´pj´3qca2q´m´j´2

” a3 ¨ a2 ¨ a
´1
3 ¨ am´22 ¨ a´j`32 ¨ a2q´m´j´22 pmod Cq ˙ Cpq

“ a23

which generates C3. Also, by considering the fact that C2 might centralize Cp or not,
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we have

VpC3q “ bcac´1b´1am´2ca´pj´3qca2q´m´j´2

” amq ¨ a
j
qγp ¨ a2aq ¨ γ

´1
p a´jq ¨ a´mq ¨ am´22 am´2q

¨ ajqγp ¨ a
´j`3
q a´j`32 ¨ ajqγp ¨ a

2q´m´j´2
2 a2q´m´j´2q pmod C3q

“ am`jq γpa2aqγ
´1
p a´2q γpa

3
qa2γpa

´m´j´2
q

“ am`jq γpaqγ
¯1
p a´2q γ˘1p a3qγpa

´m´j´2
q

“ γpτm`j¯pτm`j`1˘pτm`j´1`pτm`j`2

p

“ γpτm`j´1ppτ3¯pτ2`pτ˘1q
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 1.2.6

applies. Therefore,

0 ” pτ 3 ¯ pτ 2 ` pτ ˘ 1 pmod pq.

If C2 centralizes Cp, then

0 ” pτ 3 ´ pτ 2 ` pτ ` 1 pmod pq. (3A)

We can replace pτ with pτ´1 in the above equation after replacing ta, b, cu with their

inverses in the Hamiltonian cycle, then

0 ” pτ´3 ´ pτ´2 ` pτ´1 ` 1 pmod pq.

Multiplying by pτ 3, we have

0 ” 1´ pτ ` pτ 2 ` pτ 3 pmod pq

“ pτ 3 ` pτ 2 ´ pτ ` 1.
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Subtracting 3A from the above equation we have

0 ” 2pτ 2 ´ 2pτ pmod pq

“ 2pτppτ ´ 1q

which is impossible, because pτ ı 1 pmod pq.

Now if C2 inverts Cp, then

0 ” pτ 3 ` pτ 2 ` pτ ´ 1 pmod pq. (3B)

We can replace pτ with pτ´1 in the above equation after replacing ta, b, cu with their

inverses. Then

0 ” pτ´3 ` pτ´2 ` pτ´1 ´ 1 pmod pq.

Multiplying by pτ 3, then

0 ” 1` pτ ` pτ 2 ´ pτ 3 pmod pq

“ ´pτ 3 ` pτ 2 ` pτ ` 1.

By adding 3B and the above equation, we have

0 ” 2ppτ 2 ` pτq pmod pq

“ 2pτppτ ` 1q

which is also impossible, because pτ ı ´1 pmod pq.

Case 4. Assume a “ a2 and b “ aqa3.

Subcase 4.1. Assume i ‰ 0. Then c “ a2a
j
qa
k
3γp. By Lemma 2.4.3(2) xb, cy “ G
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which contradicts the minimality of S.

Subcase 4.2. Assume i “ 0. Then j ‰ 0 and c “ ajqa
k
3γp. We may assume j is even

by replacing c with its inverse and j with q ´ j if necessary. Consider G “ C2 ˆ Cq.

Then we have a “ a2, b “ aq and c “ ajq. This implies that |a| “ 2 and |b| “ |c| “ q.

We have

C1 “ pc, b
q´j´1

, c, b
´pj´2q

, a, b
q´1

, aq

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC1q “ cbq´j´1cb´pj´2qabq´1a

” ajqγp ¨ a
q´j´1
q ¨ ajqγp ¨ a

´j`2
q ¨ a2 ¨ a

q´1
q ¨ a2 pmod C3q

“ ajqγpa
´1
q γpa

´j`1
q

“ γpτ j´1ppτ`1q
p

which generates Cp. Also

VpC1q “ cbq´j´1cb´pj´2qabq´1a

” ak3 ¨ a
q´j´1
3 ¨ ak3 ¨ a

´j`2
3 ¨ a2 ¨ a

q´1
3 ¨ a2 pmod Cq ˙ Cpq

“ ak`q´j´1`k´j`2´q`13

“ a
2pk´j`1q
3 .

We may assume this does not generate C3, for otherwise Factor Group Lemma 1.2.6

applies. Then

0 ” k ´ j ` 1 pmod 3q. (4.2A)
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We also have

C2 “ pc, a, pb, aq
q´j´1, b

j
, a, b

´pj´1q
q

as a Hamiltonian cycle in CaypG;Sq. We calculate its voltage. Since there is one

occurrence of c in C2, and it is the only generator of G that contains γp, then by

Lemma 2.5.2 we conclude that the subgroup generated by VpC2q contains Cp. Also,

VpC2q “ capbaqq´j´1bjab´pj´1q

” ak3 ¨ a2 ¨ pa3a2q
q´j´1

¨ aj3 ¨ a2 ¨ a
´j`1
3 pmod Cq ˙ Cpq

“ ak´2j`13 .

We may assume this does not generate C3, for otherwise Factor Group Lemma 1.2.6

applies. Therefore,

0 ” k ´ 2j ` 1 pmod 3q.

By subtracting the above equation from 4.2A we have j ” 0 pmod 3q.

Now we have

C3 “ pc, a, b
q´j´1

, a, b
´pq´j´2q

, c´1, b
j´2
, a, b

´pj´1q
, aq

as a Hamiltonian cycle in CaypG;Sq. We calculate its voltage.

VpC3q “ cabq´j´1ab´pq´j´2qc´1bj´2ab´pj´1qa

” ajqγp ¨ a2 ¨ a
q´j´1
q ¨ a2 ¨ a

´q`j`2
q ¨ γ´1p a´jq ¨ aj´2q ¨ a2 ¨ a

´j`1
q ¨ a2 pmod C3q

“ ajqγpaqγ
´1
p a´j´1q

“ γpτ jp1´pτq
p .
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which generates Cp. Also

VpC3q “ cabq´j´1ab´pq´j´2qc´1bj´2ab´pj´1qa

” ak3 ¨ a2 ¨ a
q´j´1
3 ¨ a2 ¨ a

´q`j`2
3 ¨ a´k3 ¨ aj´23 ¨ a2 ¨ a

´j`1
3 ¨ a2 pmod Cq ˙ Cpq

“ ak´q`j`1´q`j`2´k`j´2`j´13

“ a´2q`4j3 .

We may assume this does not generate C3, for otherwise Factor Group Lemma 1.2.6

applies. Then

0 ” ´2q ` 4j pmod 3q

“ q ` j

We already know j ” 0 pmod 3q. By substituting this in the above equation, we have

q ” 0 pmod 3q which contradicts the fact that gcdpq, 3q “ 1.

3.9 Assume |S| ě 4

In this section we prove the following general result that includes the part of

Theorem 1.1.3, where |S| ě 4 (see Assumption 3.0.1). Unlike in the other sections of

this chapter, we do not assume |G| “ 6pq.

Proposition 3.9. Assume |G| is a product of four distinct primes and S is a minimal

generating set of G, where |S| ě 4. Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Suppose S “ ts1, s2, ..., sku and let Gi “ xs1, s2, ..., siy for i “ 1, 2, ..., k. Since

S is minimal, we know teu Ă G1 Ă G2 Ă ...Gk “ G. Therefore, the number of prime

factors of |Gi| is at least i. Since |G| “ p1p2p3q is the product of only 4 primes, and

k “ |S| ě 4, we can conclude that |Gi| has exactly i prime factors, for all i. This

implies that |S| “ 4. This also implies every element of S has prime order.
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3.9. ASSUME |S| ě 4

Since |G| is square-free, we know that G1 is cyclic (see Proposition 1.3.12(1)), so

G1 ‰ G. We may assume |G1| ‰ 1, for otherwise G is abelian, so Lemma 1.2.2 applies.

Also, if |G1| is equal to a prime number, then Theorem 1.2.3 applies. So we may

assume |G1| has at least two prime factors. Therefore, the number of prime factors of

|G1| is either 2 or 3.

Case 1. Assume |G1| has only two prime factors. This implies |G| “ p1p2, where p1

and p2 are two distinct primes. Suppose s P S, then s P S. We know that |s| ‰ 1 (see

Assumption 3.0.1(6)). Now since every element of S has prime order, then |s| is either

p1 or p2. Also, every element of order p1 must commute with every element of order

p2, because the subgroup H generated by any element of S that has order p1, together

with any element of S that has order p2 has exactly two prime factors, so |H| “ p1p2,

H 1 Ď G1, and |G1| “ p3p4. Thus, |H 1| “ 1. Let Sp1 be the elements of order p1 in S, and

let Sp2 be the elements of order p2. Also let Hp1 and Hp2 be the subgroups generated by

Sp1 and Sp2 , respectively. This implies that CaypG;Sq – CaypGp1 ;Sp1q˝CaypGp2 ;Sp2q.

Therefore, CaypG;Sq contains a Hamiltonian cycle (see Corollary 1.2.10).

Case 2. Assume |G1| has three prime factors. We may write (see Proposition 1.3.12(3))

G “ Cq ˙G1 “ Cq ˙ pCp1 ˆ Cp2 ˆ Cp3q,

where p1, p2, p3 and q are distinct primes. Note that G1 X ZpGq “ teu (see Propo-

sition 1.3.12(2)). Now we may assume xs4y “ Cq. Since |xsi, s4y| has only two prime

factors (for 1 ď i ď 3), we must have si “ ski4 api (after permuting p1, p2, p3), where

api is a generator of Cpi . We may also assume S X G1 “ H (see Lemma 1.2.11), so

ki ı 0 pmod qq. Now consider

G2 “ xs1, s2y “ xs
k1
4 ap1 , s

k2
4 ap2y.
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3.9. ASSUME |S| ě 4

Since Cp1 is a normal subgroup in G, we can consider G2 “ G2{Cp1 , then ts1, s2u “

tsk14 , s
k2
4 ap2u. We have

s
k´1
2

4 “ psk14 q
k´1
1 k´1

2 “ s
k´1
1 k´1

2
1 .

Multiplying by s2, then

ap2 “ s
k´1
2

4 ¨ sk24 ap2 “ s
k´1
1 k´1

2
1 s2 P G2.

Since ap2 generates Cp2 , this implies |G2| is divisible by p2. Similarly, we can show

that |G2| is divisible by p1. Also, |s1| “ q, so |G2| is divisible by q. Therefore, |G2|

has three prime factors, which is a contradiction.
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Chapter 4

Conclusion

Despite lots of papers published related to the topic of Hamiltonian cycles in Cayley

graphs, there has been little progress in this area. In this chapter, we observe that

we do not even know when |G| “ 144 whether for every Cayley graph on G, there is

a Hamiltonian cycle or not. We will also discuss a possible future direction for our

research and some of the Hamiltonian cycles that will generalize.

When |G| “ 144 “ 48ˆ 3, it means that |G| is of the type 48p, where p is prime.

By looking at Theorem 1.1.2(1) we see that the case where the order of G is 48p is

still open for arbitrary primes p. In fact, it has not been proven when p “ 3, so 144

is the smallest number for which we do not know whether or not every connected

Cayley graph of that order has a Hamiltonian cycle.

The most logical next step in this work would be to consider the following open

problem.

Problem 4.0.1. Assume |G| “ 2pqr, where p,q and r are distinct primes. Show that

every connected Cayley graph on G has a Hamiltonian cycle.

Possible method of attack. We can assume |G| is square-free. Otherwise, without loss

of generality we may assume r “ 2, so |G| “ 4pq, and Theorem 1.1.2(2) applies.

Let S be a minimal generating set of G. By using the same strategy used to prove

Theorem 1.1.3, we can divide this proof into three different parts depending on the

cardinality of |S|. So |S| “ 2 or |S| “ 3 or |S| ě 4. When |S| ě 4, then Proposition 3.9

applies. (Note that if |S| “ 1, then G is abelian, so Lemma 1.2.2 applies.) Hence,

121



4. CONCLUSION

there will be two main parts needed to prove that Hamiltonian cycles exist in all such

graphs (the cases |S| “ 2 or |S| “ 3).

Some of the Hamiltonian cycles used in the proof of our main result (Theo-

rem 1.1.3) will generalize to some cases of Problem 4.0.1. For instance, the Hamilto-

nian cycle in Subcase 2.2 on page 109 generalizes to the following case.

Proposition 4.0.2. Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,

• |S| “ 3 and S “ ta2ar, a2aq, a2γpu,

• CG1pC2q “ teu and CG1pCrq “ teu.

Then CaypG;Sq has a Hamiltonian cycle.

Proof. Let a “ a2ar, b “ a2aq and c “ a2γp. We have arγpa
´1
r “ γpτ

p and araqa
´1
r “ aqτ

q ,

where pτ r ” 1 pmod pq and qτ r ” 1 pmod qq. Since CG1pCrq “ teu, then pτ ı 1 pmod pq

and qτ ı 1 pmod qq.

Consider G – C2 ˆ Cr. Then a “ a2ar and b “ c “ a2. We have C “

pc, ar´1, b, a´pr´1qq as a Hamiltonian cycle in CaypG;Sq. Since there is one occur-

rence of c in C, and it is the only generator that contains γp, then by Lemma 2.5.2

we conclude that the subgroup generated by VpCq contains Cp. Similarly, since there

is one occurrence of b in C and it is the only generator which contains aq, then by

Lemma 2.5.2 we conclude that the subgroup generated by VpCq contains Cq. There-

fore, the subgroup generated by VpCq is G1, so Factor Group Lemma 1.2.6 applies.
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