
INTEGER PROGRAMMING FORMULATION FOR CONTENTION AWARE
CONNECTED DOMINATING SET IN WIRELESS MULTI-HOP NETWORK

CHOWDHURY NAWRIN FERDOUS
Bachelor of Science, Bangladesh University of Professionals, 2014

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Chowdhury Nawrin Ferdous, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/346635146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTEGER PROGRAMMING FORMULATION FOR CONTENTION AWARE
CONNECTED DOMINATING SET IN WIRELESS MULTI-HOP NETWORK

CHOWDHURY NAWRIN FERDOUS

Date of Defence: August 12, 2020

Dr. Daya Gaur Professor Ph.D.
Thesis Supervisor

Dr. Rossitsa Yalamova Professor Ph.D.
Thesis Examination Committee
Member

Dr. Robert Benkoczi Associate Professor Ph.D.
Thesis Examination Committee
Member

John Sheriff Assistant Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

To my parents, parents-in-law and my loving husband

iii

Abstract

Efficient data propagation across the mobile nodes is an essential concern in wireless net-

works. Broadcasting with Minimum Connected Dominating Set (MCDS) is used to reduce

redundant transmission. Contention occurs when a group of nodes want to transmit over

a shared channel at the same time. During contention, nodes defer transmissions for a

random time. Using Contention-aware Connected Dominating Set (CACDS) to minimize

contention is a new concept. We study computationally (using CPLEX) Integer Program-

ming for MCDS and CACDS and use Benders Decomposition to solve the problem. To

find a connected dominating set, we use one state-of-art approach based on the shortest

path algorithm, and ours one is based on the number of connected components.We propose

IP formulation of selection forwarding-nodes based on Dominant Pruning and Contention-

aware Dominant Pruning. The result shows that our approach performs better than the

state-of-art approach in large networks. CACDS results better in minimizing contention.

iv

Acknowledgments

First of all, I would like to declare that all the appraisals belong to the Almighty. I would like

to express my deep gratitude to my supervisor Dr. Daya Gaur for his continuous guidance,

suggestions and whole hearted supervision throughout the progress of this work. I thank

him for his patience in reviewing my drafts, for correcting my proofs, and encouraging me

to continue my research work. I also want to thank my committee members Dr. Robert

Benkoczi and Dr Rossitsa Yalamova for their constant support and motivation.

It is a great pleasure to thank my parents, parents-in-law and sister for encouraging me

throughout my life. I would like to thank specially Sowkat Alam Shakil, Farhana Aklam

Mitu, Asif Mahmud, Parinaz Bairami, Leila Karimi, Farzina Islam and Sakib Mahmud

Khan for being part of my journey these two years in Canada.

Finally, I would like to thank my husband, Chowdhury Hasan Ibne Obayed for all his

support and his trust on me. Without his constant motivation, I would not be in this position

today. Thank you for always being there for me.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Our Motivation . 3

1.2 Our Contribution . 4

1.3 Organization of the Thesis . 5

2 Preliminaries 6

2.1 Flooding and Broadcast Storm Problem in the Network 7

2.2 Controlling Contention & Medium Access Control (MAC) Layer 10

2.3 Important Definitions . 11

3 Related Work 16

3.1 Studies on Broadcasting in Centralized Network 16

3.2 Studies on Broadcasting in a Distributed Network 20

4 Centralized Model 24

4.1 The IP Model of Minimum Connected Dominating Set (MCDS) 25

4.1.1 Benders Decomposition with Iterative Probing Strategy 26

vi

CONTENTS

4.1.2 The Outline of the whole Algorithm 36

4.2 IP formulation of Contention Aware Connected Dominating Set (CACDS) . 36

5 Distributed System 40

5.1 Basic Idea of Dominant Pruning (DP) . 40

5.1.1 IP Formulation of Selecting Forwarding Nodes in Each Step 44

5.2 Basic idea of Contention aware Dominant Pruning (CADP) 45

5.2.1 IP Formulation of Selecting Contention Aware Forwarding Nodes
in Each Step . 46

5.3 The Final Algorithm . 48

6 Simulation and Performance Evaluation 50

6.1 Instances . 50

6.2 Simulation Environment and Performance Metrics 51

6.2.1 Simulation Environment . 51

6.2.2 Performance Metrics . 52

6.3 Analysis and Presentation of Experimental Result of Constructing MCDS . 54

6.4 Experimental Result for Constructing CACDS: Analysis 60

6.5 Analysis and Presentation of Experimental Result for Constructing DP &
CADP . 65

7 Conclusion & Future Work 69

7.1 Summary . 69

7.2 Future Work . 70

Bibliography 71

vii

List of Tables

6.1 Detailed computational results: Benders Decomposition for MCDS 55

6.2 Detailed computational results: Benders Decomposition for Contention-
aware CDS . 60

6.3 Detailed computational results: Dominant Pruning & Contention Aware
Dominant Pruning . 65

viii

List of Figures

2.1 A sample wireless network . 6

2.2 A graph representation of network shown in Figure 2.1 7

2.3 Scenario of Redundant Rebroadcast: The broadcast of node H is redundant 8

2.4 Scenario of Contention: node B & C are contending for medium 9

2.5 Scenario of Collision: Packet collision occurs at node F when node G & E
transmit at the same time. 9

2.6 Sample network with 7 nodes, Black nodes are the forwarding nodes 12

4.1 A Schematic representation of the Benders Decomposition 26

4.2 Iterative Probing Strategy . 29

4.3 Step by step construction of the shrunk graph 31

4.4 Connected component and node degree 32

5.1 Connectivity among node u, Bu, Uu . 41

5.2 Illustration of Dominant Pruning . 42

5.3 Cases for Lemma 1 . 43

5.4 Regular Dominant Pruning and Contention Aware Dominant Pruning 46

6.1 Construction of Instances . 51

6.2 Effect of algorithms in term of forwarding nodes 53

6.3 Execution time when n = 30 and n = 120 varying the density from 20% to
70% . 59

ix

Chapter 1

Introduction

A wireless multi-hop network uses one or more intermediate nodes to convey information

from source to destination. One type of wireless multi-hop network is mobile ad-hoc net-

work which does not rely on any pre-existing infrastructure. A mobile ad-hoc network is

temporarily constructed without any centralized control and it is used in emergencies like

disaster relief, conferences, military operations etc [38].

A multi-hop scenario occurs when a mobile node is not able to communicate directly

with other nodes due to radio power limitation, channel utilization, and power-saving con-

cerns [38]. The mobile nodes are resource-constrained devices with limited energy and

power. If the limited resources of the mobile nodes are not used efficiently, the outcome

can be devastating, and could lead to a network partition. A big challenge in a mobile ad-

hoc network is its constantly changing topology because of the high mobility of the nodes.

Hence, the selection of which nodes that forward data is made dynamically based on the

network connectivity and the routing algorithm in use.

The nodes in a multi-hop wireless network frequently broadcast control messages for

route discovery and other network services. The simplest way to broadcast a message

through the entire network is Blind Flooding [38]. It requires every node to forward the

broadcast message once. This leads to severe performance bottleneck due to redundant

traffics, contention, and collision, altogether known as Broadcast Storm Problem [38]. A

1

1. INTRODUCTION

general solution to minimize the redundant broadcasting is the use of Minimum Connected

Dominating Set (MCDS) [30] as the basis of routing. Only the nodes in MCDS are allowed

to forward a message. These nodes are known as the “forwarding nodes” of the network.

Contention in a network is a situation where more than one nodes aim to propagate

a message at the same time using the common medium shared by those nodes. Medium

Access Control (MAC) layer of Open System Interconnection (OSI) Model [9] is primarily

responsible for regulating access to the shared medium. Upon contention, the nodes defer

their transmissions for a random amount of time. Sometimes it causes longer wait time and

additional traffic, which slows down the data transmission in the network [9].

Contention aware Connected Dominating Set (CACDS) [16] is a special type of the

MCDS. Selecting the forwarding nodes to be in MCDS will reduce the redundant trans-

mission. However, it does not minimize the contention among the forwarding nodes. The

CACDS selects the forwarding nodes to ensure there is minimum contention among the

forwarding nodes. As a result, there will be no/fewer nodes that need to defer their trans-

missions, and speeds up the broadcasting process.

In a centralized network, the global topology information is already known. Here, an

admin node runs the algorithm and selects the forwarding nodes (a subset of MCDS) for

the network. Only the nodes selected by the admin node are eligible to forward data in the

network. However, for a mobile ad-hoc network, the construction of a distributed MCDS is

needed because of the lack of centralized administration. Also, it is not possible to gather

the complete topological information of an ad-hoc network. Instead of a central admin

node, here each node is eligible to participate in decision making and routing by forwarding

data to other nodes. Various methods have been proposed to effectively broadcast a message

in ad-hoc network based on the neighborhood information. Dominant Pruning (DP) [26]

is one of the promising approaches. It uses neighborhood (2-hop) information of each node

to ensure complete network coverage while reducing redundancy. Distributed CACDS or

2

1.2. OUR CONTRIBUTION

Contention aware Dominant Pruning (CADP) [16] is a special version of DP, which uses

the same principle of DP and minimizes contention among the forwarding nodes.

1.1 Our Motivation

The MCDS problem is an NP-hard problem [18]. Several heuristics [26] and approxi-

mation algorithms [21, 28] have been developed to solve the MCDS problem. The Integer

Programming (IP) formulation and a version of the Branch and Cut algorithm to solve this

problem is discussed in [35]. Two exact algorithms based on Benders Decomposition and

Branch and Cut method for the MCDS problem have been proposed in [19].

Dominant Pruning (DP) [26] is an effective approach to handle redundant transmis-

sion in a distributed system, but there is no prior work on the use of Integer Programming

formulation to select forwarding nodes. In this thesis, we propose an IP formulation for

selecting forwarding nodes in a distributed ad-hoc network following the basic principle of

Dominant Pruning.

Contention aware Connected Dominating Set (CACDS) is a new concept in the ad-

hoc wireless networks used to minimize the contention. Some heuristic algorithms [16]

have recently been proposed for finding CACDS. However, the mathematical formulation

of CACDS has not attracted any attention so far. In this thesis, we propose to fill this

notable gap by introducing and studying an Integer Programming formulation of Contention

aware Connected Dominating Sets (CACDS) for both centralized and distributed system.

To the best of our knowledge, this is the first study done on IP formulation for CACDS in

centralized and distributed system.

3

1.2. OUR CONTRIBUTION

1.2 Our Contribution

The contributions in this thesis are:

• We study computationally (using CPLEX) an Integer Programming formulation for

Minimum Connected Dominating Set (MCDS) and use the Iterative version of Ben-

ders Decomposition [19] to solve the problem. The framework used in this work is

from [19]. In an intermediate step of Benders Decomposition, we use two different

approaches to find the connected dominating set. One is based on the Shortest Path

(SP) algorithm (SP based) [19], and we provide a different approach based on the

number of connected components and maximum degree (∆ based).

• We also formulate an Integer Program for Contention aware Connected Dominating

Set (CACDS) and use the same approach to solve the problem as used for MCDS.

• As mentioned earlier, we need global topology information to calculate the MCDS/CACDS.

As, it is not possible to know the complete topological information for an ad-hoc

wireless network, we propose an Integer Program to select forwarding nodes of the

distributed network based on the Dominant Pruning (DP) [26] approach using only

two-hop neighborhood information of each node. We also focus on the selection of

contention aware forwarding nodes in the distributed network.

• We evaluate the IP models of centralized and distributed network. The evaluation

criteria used are the number of forwarding nodes, a measure of contention, the time

to solve the problem and the number of cuts generated. The computational result

shows that the Benders Decomposition (MCDS/CACDS) performs better in dense

graphs compared to sparse graphs. MCDS selects the same number of forwarding

nodes for both the approaches. Our approach (∆ based) performs better than the SP

based approach [19] in terms of time to find CDS.

4

1.3. ORGANIZATION OF THE THESIS

We reached a similar conclusion for CACDS. The objective values generated by both

the approaches are equal and ∆ based approach generates the solution faster than the

SP based approach [19]. CACDS minimizes contention.

For the distributed system, Contention aware Dominant Pruning selects less con-

tended forwarding nodes than Dominant Pruning [26]. However, the difference be-

tween the execution time of both the algorithm is not that high.

1.3 Organization of the Thesis

There are seven chapters, including this chapter. In chapter 2, we present the definitions

needed to explain our work more precisely. We review the state-of-the-art research works

in chapter 3. We describe the Integer Programming formulations for centralized MCDS

and CACDS in chapter 4 and discuss Benders Decomposition. We discuss the Integer Pro-

gramming formulation to select the forwarding nodes for a distributed system in chapter

5. Chapter 6 is on the simulation and performance evaluation. Chapter 7 concludes with a

discussion on the limitations of our work and possible future extensions.

5

Chapter 2

Preliminaries

A network can be represented by a graph where the vertices represent the communicating

nodes (hosts), and a direct edge from one vertex to another vertex means that the first-

mentioned vertex can send data directly to the later one. The data propagation conditions

can be modelled by considering “transmission range” within which communication is pos-

sible, and outside of which it is impossible. If all nodes have equal transmission ranges,

then the graph becomes undirected. We use a symmetric graph G = (V,E) to represent a

Figure 2.1: A sample wireless network

network, where V represents a set of wireless mobile nodes (hosts), and E = {(i, j) : i &

j share a communication link}. Two nodes i and j are called 1-hop neighbors or adjacent

if there is an edge between them i.e. (i, j) ∈ E. The edge between two nodes (i, j) also

6

2.1. FLOODING AND BROADCAST STORM PROBLEM IN THE NETWORK

indicates that the nodes i and j are within their transmission range. Figure 2.1 represents a

Figure 2.2: A graph representation of network shown in Figure 2.1

wireless network of three nodes- node A, B and C. The circle centered at the node repre-

sents the transmission range of the nodes. The nodes that are within the transmission range

of node A, and node C is node B, wheres node A and node C are in the transmission range

of node B. Nodes within the transmission range of each other are known to be neighboring

nodes. So, node B is the neighbor of both node A and node C; however, node A and node C

are not considered as neighbors as they are not within the transmission range of each other.

As node A exists in the transmission range of node B, they can directly communicate with

each other; hence in the network graph, there is an edge between them. The similar con-

dition holds for node B and node C as well. Figure 2.2 is graph representation of network

shown in Figure 2.1. When a node sends a broadcast packet, all of its 1-hop neighbors

receive the packet.

2.1 Flooding and Broadcast Storm Problem in the Network

A wireless multi-hop network uses multiple hops/nodes for data dissemination. There

is no centralized admin node, so each node can participate in forwarding messages to others

to reach out to the entire network. Wireless networks need to broadcast messages for vari-

ous services such as route discovery, periodic data dissemination, erasing an invalid route,

locating a node, duplicate IP address detection or even sending alarm signals in the entire

network.

7

2.1. FLOODING AND BROADCAST STORM PROBLEM IN THE NETWORK

Blind Flooding [38] is a natural process to conduct broadcasting in a wireless multi-hop

network. In blind flooding, upon receiving a broadcast message for the first time, the node

is obliged to rebroadcast the message. This is how the message is transmitted to the entire

network. Though blind flooding ensures full coverage at high mobility but unfortunately,

it results in redundant transmissions, contention and collision in the network, which is

collaboratively known as Broadcast Storm Problem [38]. In a network, drawbacks of

blind flooding include:

• Redundant Rebroadcast: A node doesn’t need to broadcast a message if all of

its neighbors have already received the message. This unnecessary broadcasting is

called redundant rebroadcast. The scenario is illustrated in Figure 2.3. Suppose node

A and node C have already broadcast the message. Node H’s broadcasting is redun-

dant as all of its neighbors- node A and node G have already received the message

beforehand.

Figure 2.3: Scenario of Redundant Rebroadcast: The broadcast of node H is redundant

• Medium Contention: Contention means competition for resources. When a node

broadcasts a message, many of its neighbors need to rebroadcast the message to

spread it in the whole network. When more than one nodes within the same trans-

mission area try to broadcast a message at the same time, their transmission may

severely contend with each other, leads to a contention problem. Upon receiving

8

2.2. CONTROLLING CONTENTION & MEDIUM ACCESS CONTROL (MAC)
LAYER

message from node A, when node B and node C will try to rebroadcast the message at

the same time, they will face contention as they are within each others transmission

range. The scenario is shown in Figure 2.4.

Figure 2.4: Scenario of Contention: node B & C are contending for medium

• Packet Collision: While contention occurs at the sender side, packet collision can

occur at the destination side because of blind flooding. If nodes G and E broadcast

at approximately the same time, there is a possibility of a packet collision at node F ,

shown in Figure 2.5.

Figure 2.5: Scenario of Collision: Packet collision occurs at node F when node G & E
transmit at the same time.

9

2.2. CONTROLLING CONTENTION & MEDIUM ACCESS CONTROL (MAC)
LAYER

2.2 Controlling Contention & Medium Access Control (MAC) Layer

The Medium Access Control (MAC) layer is one of two sub layers that constitutes the

Data Link Layer of the Open Systems Interconnection (OSI) model [9]. In most of the

networks, multiple nodes share a common communication medium for transmitting their

data packets. MAC layer is primarily responsible for regulating access of the nodes to

the shared medium. It specifies when a node can access the media and resolve potential

conflicts among the conflicting nodes. There are two types of protocols - one is contention-

free MAC protocol, and another is contention-based MAC protocol [9].

1. Contention-free Protocol: There are two types of contention-free protocol - Fixed

assignment strategy and Dynamic assignment strategy. In Fixed assignment strategy,

contentions are avoided by ensuring that each node can exclusively use its allocated

resources. Frequency Division Multiple Access (FDMA), Time Division Multiple

Access (TDMA), Code Division Multiple Access (CDMA) are examples of Fixed as-

signment strategy [9]. These strategies are not efficient, as it is difficult to reallocate

the idle resources in this protocol. Also, the schedules of resource allocation need

modification with the change of network topology or traffic characteristics. Gener-

ating schedules for the entire network is a time-consuming task as well. Dynamic

assignment strategy allows nodes to access the medium based on demand. Polling-

based, token passing and reservation-based protocols are examples of Dynamic as-

signment strategy [9]. The disadvantage of this protocol is that it requires more space,

and the calculations and analysis are increased.

2. Contention-Based Protocol: In contrast to contention-free techniques, contention-

based protocols allow nodes to contend for getting access to the medium simultane-

ously but also provide mechanisms to reduce the number of contentions and recover

from such contentions. ALOHA, CSMA (Carrier Sense Multiple Access) are exam-

ples of contention-based Protocol [9].

10

2.3. IMPORTANT DEFINITIONS

A popular contention-based MAC scheme is CSMA which includes its variations

like Collision Detection (CSMA/CD) and Collision Avoidance (CSMA/CA) [9]. In

CSMA/CD, the node is allowed to transmit the data when the medium is idle. If

the node finds that the medium is busy, it waits for a certain amount of time before

attempting to transmit it again, which is known as back-off operation.

CSMA/CA [9] is used mostly in the wireless system, which attempts to avoid con-

tention in the first place. In CSMA/CA, after finding the medium idle, a node waits

for at least a time period called the DCF interframe space (DIFS) before start trans-

mitting. If the node finds the medium busy, it defers its transmission by executing a

back-off algorithm. The algorithm randomly selects a number of time slots to wait

and store the value in the back-off counter. For every time the slot passes on the

network without any activity, the counter is decremented. When the counter reaches

zero, the node attempts to transmit. If any activity is detected before the counter

reaches zero, the node will wait until the medium is idle for a DIFS period before the

counter value continues to decrease. After a successful transmission, a receiver node

responds with an acknowledgment after waiting for a time period called the short in-

terframe space (SIFS). No other device accesses the channel before the receiver node

can transmit its acknowledgment.

Though this strategy helps to prevent contention and data loss, it causes longer wait-

ing times and creates additional traffic; slowing down the data transmission process.

2.3 Important Definitions

We are going to discuss some of the essential definitions that will need to explain our

work more precisely.

i Dominating Set (DS): The dominating set (DS) of a graph G = (V,E) is defined as a

11

2.3. IMPORTANT DEFINITIONS

(a): CDS Construction with Contention (b): CDS Construction without Contention

Figure 2.6: Sample network with 7 nodes, Black nodes are the forwarding nodes

subset of V (DS⊆V), where each node in the graph is either an element of DS or 1-hop

neighbor (adjacent) to at least one of the elements of DS. The set of possible DS for the

graph shown in Figure 2.6 is,

{DS}= {{3,6},{2,5},{1,2,3},{1,2,5},{1,5,6},{1,4,7},{1,2,3,4}.....}

ii Connected Dominating Set (CDS): If any node in DS can reach any other node in DS

by a path that stays entirely within DS, then the subset is called connected dominating

set (CDS). The possible CDS for the graph in Figure 2.6 are,

{1,2,3},{1,2,5},{1,5,6},{1,2,3,4},{2,3,4,7}.....

iii Minimum Connected Dominating Set (MCDS): CDS with the minimum cardinality

is known as minimum connected dominating set (MCDS). The possible MCDS for the

12

2.3. IMPORTANT DEFINITIONS

graph in Figure 2.6 are,

{1,2,3},{1,2,5},{1,5,6}.....

iv Contention Aware Connected Dominating Set (CACDS): Contention occurs when

two or more adjacent nodes try to transmit a packet simultaneously. At the result of

contention, the nodes have to wait for a random amount of time to use the medium and

sometimes it also causes packet loss in the network [9].

The concept of contention aware connected dominating set (CACDS) is new in the field

of wireless network to minimize broadcast storm problem. The idea of CACDS was first

introduced in [16]. CACDS is the problem of finding a CDS with a minimum contention

number. The definition of the contention number is in Section 6.2.2 (pp 54).

In Figure 2.6, if we form the CDS, there is a possibility that node 1, 2 and 3 can form

CDS. Upon receiving packet from node 1, if nodes 2 and 3 rebroadcast the message

at the same time, they face contention, as they share the same communication channel

(within the transmission range of each other). This contention can be avoided with a

different CDS.

If node 1 broadcasts the message, nodes 2, 3, 5 and 6 will receive the message. If we

select node 2 and node 5 to cover node 7 and node 4 respectively, instead of selecting

node 2 and node 3, the scenario will be contention-free. So, the contention aware

connected dominating set (CACDS) for Figure 2.6 are-

{1,2,5},{1,3,6}

Figure 2.6(a) and 2.6(b) are the examples of minimum connected dominating set with

and without contention respectively.

v Neighborhood of a Node: The nodes can gather the neighborhood knowledge by send-

13

2.3. IMPORTANT DEFINITIONS

ing the periodic “hello” messages in the network [6]. This information can also be found

on demand when the nodes attach their neighborhood information to the packet header.

In Proactive approaches [25] of broadcasting packet in wireless network, the transmit-

ting node takes the decision that which of the neighboring node will forward/broadcast

the message next. The list of the next forwarding/broadcasting nodes known as “for-

warding list” is attached to the packet header before rebroadcasting. Dominant Pruning

[25] is an well-known example of proactive approach which uses neighborhood infor-

mation for broadcasting the message. Details of this process is discussed in Section

5.1.

To define the terms related to neighborhood of a node, let us assume, upon receiving a

packet from node i, node j is the next node that has been selected to forward the packet.

Now, node j will create a forward list and append the list in the packet header before

rebroadcasting.

• N(j): N(j) is the set of all 1-hop neighbors (adjacent) of node j. These nodes are

within communication range of node j. Note that, node j itself also is a member of

this set, { j} ∈N(j). For the graph shown in Figure 2.6, the set of 1-hop neighbors

of node 2 is:

N(2) = {1,2,3,7}

• N(N(j)): N(N(j)) is the set of all nodes within 2-hop of node j, N(j)⊆N(N(j))⊆

V . For the graph shown in Figure 2.6,

N(N(2)) = {1,2,3,4,5,6,7}

• N(N(j))−N(j): The nodes that are exactly 2-hop away from j are in this set. For

the graph shown in Figure 2.6,

N(N(2))−N(2) = {4,5,6}

14

2.3. IMPORTANT DEFINITIONS

• F j: The list of 1-hop neighbors of node j that are chosen as next forwarding nodes.

Node j will attach this list in the packet header before broadcasting the message.

Upon receiving the message from node j, if a node p finds itself in this list; i.e.

p ∈ F j; then node p will participate in broadcasting the message, otherwise it will

not broadcast the message.

• Bj: The set of 1-hop neighbors of node j that can be selected as a member of the

forward list F j. When node j receives a packet from node i and j ∈ F i, j selects its

own forward list (F j). Node i and node j may have some common neighbors, so

while selecting forwarding nodes, node j does not need to consider those common

neighbors as they were already considered by node i. Bj = N(j)−N(i) and node

j selects forwarding nodes from Bj. That is, F j ⊆ Bj. Details have been discussed

in Section 5.1.

• U j: This is the set of those nodes that needs to receive the message when the nodes

in F j will broadcast. Details have been mentioned in Section 5.1.

vi Degree of a node: N(j) is the set of all the nodes which are adjacent to j and j ∈N(j).

The degree of j ∈V is defined as deg(j) = |N(j)|−1.

vii Maximum Node Degree: For a graph G = (V,E), the maximum degree of G denoted

by x, is the degree of the node with the greatest number of edges incident to it.

viii Density of a graph: The density (d) of an undirected graph is given by:

d =
2|E|

|V |(|V |−1)

15

Chapter 3

Related Work

In this chapter, we discuss the different approaches for constructing MCDS in both central-

ized and distributed networks that has been proposed by many researchers to mitigate the

Broadcast Storm Problem [38]. We also focus on the Integer Programming formulation

for MCDS and other approaches to solve the problem.

3.1 Studies on Broadcasting in Centralized Network

Various methods have been proposed for finding an optimal broadcasting tree [24]. An

optimal broadcast tree guarantees that all nodes in the network will hear the message if

only the nodes in the tree transmit it, and the number of the nodes of the tree is minimum

possible.

Finding an optimal broadcast tree in NP-complete [24] as this is similar to finding a

minimum connected dominating set in the network. Ephermides [14] first proposed us-

ing a connected dominating set (CDS) as a basis of broadcasting. Many algorithms have

been proposed to use CDS construction to reduce the redundant broadcast in the network

throughout time [4, 5, 8, 21, 33].

The usage of CDSs occurs in various protocols that perform a wide range of commu-

nication functions in wireless ad-hoc networks. Various protocols including media access

16

3.1. STUDIES ON BROADCASTING IN CENTRALIZED NETWORK

coordination [1, 36], location-based [11] and multicast/broadcast routing [39, 40]; conser-

vation of energy [7, 34]; and topology control [12, 13] all use the concept of CDS. Another

application of CDS is to assist resource discovery in mobile ad-hoc network [22]. This re-

source discovery is also known as Backbone based routing [3], dominating set based routing

or spine based routing [10].

Guha and Khuller [21] first proposed a greedy heuristic to construct MCDS. The algo-

rithm starts with coloring in which all the nodes are colored white. The node with maximum

degree is then selected and colored black. All the 1-hop neighbors of that node are colored

gray. A gray node having maximum number of white neighbors is then selected. The se-

lected gray node is then colored black and all its white neighbors are colored gray. The

selection process continues until all the nodes are either colored black or gray. The set

with all the black nodes is MCDS. Many more algorithms for CDS construction are known

[4, 5, 8, 33].

Many researchers have worked on mathematical formulation of the MCDS problem

throughout the time. Fan and Watson [15] presented an Integer Programming. Any feasi-

ble solution to the IP formulation forms a dominating set, DS of the given graph, G. The

formulation has an exponential number of constraints to ensure that the nodes in the dom-

inating set are connected. As a result, it is computationally expensive to solve for large

graphs. Later, the authors [15] presented IP approaches with polynomial number of con-

straints. Based on the fact that a spanning tree is connected, some of the models used to

solve the spanning tree problem have been applied to solve the MCDS problem. The authors

[15] studied four mixed integer programming approaches to ensure the connectivity in the

dominating set DS. The approaches included Miller-Tucker-Zemlin Constraints, Martin

Constraints, Single Commodity Flow Constraints and Multi Commodity Flow Con-

straints [15]. Exact algorithms were obtained by providing these formulations as an input

to the IP solver CPLEX. The authors observed that computing a dominating set without im-

17

3.1. STUDIES ON BROADCASTING IN CENTRALIZED NETWORK

posing connectivity constraints is much faster without the connectivity constraints. Among

the four different approaches for the connectivity constraints, Miller-Tucker-Zemlin Con-

straints performed the best in terms of CPU time. Other constraints took more than 24h

for large graphs consisting of 73 nodes and 108 edges [15].

Simonetti et al. [35] presented an IP formulation of MCDS problem and used Branch

and Cut (BC) [29] method to solve the problem. Based on a relation between the MCDS

and Maximum Leaf Spanning Tree (MLST) problem, the authors presented a formulation

for MCDS. The key idea to ensure the connectivity among the nodes in the dominating

set generated by their IP formulation is to select the edges that ensure the generation of

a spanning tree from the sub graph, induced by the dominating set. The constraints of

the model in [35] guarantees that, the number of selected edges is one unit less than the

number of selected nodes. The selected nodes make a dominating set and the selected

edges make a tree (Generalized Subtour Breaking Constraints (GSEC)) [35]. They also

presented a Cut Inequality (described in Section 4.2), which states that at least one of the

edges in the “Cut” must be chosen for the solution. The authors used two types of decision

variables: yi ∈ {0,1}, i ∈ V : to select which nodes are to be included (yi = 1) or not

(yi = 0) in the dominating set; xe ∈ {0,1}, e ∈ E: to choose edges so that the dominating

set is connected. They used Branch and Cut algorithm. Let, (x,y) be the solution obtained

using the linear programming. G = (V ,E) be the subgraph of G implied by (x,y), (where

V := {i ∈ V : yi > 0} and E := {e ∈ E : xe > 0}). In their method, they use a heuristic

method to separate GSECs, and they mention that the exact separation of GSECs can be

performed by Max-flow (Min Cut) [23]. The edges in E are sorted in decreasing order of

xe values. Using the Kruskal’s algorithm, the authors find a forest of maximum cardinality

in G, giving preference to include the edges with higher xe values. Each edge selected in

this method merges two connected components into a large one. For every new connected

component, the node in the component are checked for GSECs violation. The process

continues until a forest is found with maximum cardinality. If no violated GSECs are found

18

3.1. STUDIES ON BROADCASTING IN CENTRALIZED NETWORK

with the separation heuristic, they branched on y variables. An upper bound on MCDS

was determined using dynamic greedy heuristic stated in [27]. This heuristic is based on

generating a spanning tree of G with as many leaves as possible. The heuristic starts with

initialing DS = {v} and L = N(v)\ v for some v ∈V . The main idea is to add nodes in list

DS from L until a CDS has been found. Assume, node i has been selected to be moved

to DS in the next iteration, so DS = DS∪{i} and L = L \ {i}∪ (N(i) \DS). For inclusion

in DS, preference is given to those nodes which have maximum numbers of neighboring

nodes that are not included in L yet. The process continues until V = DS∪ L where DS

consists of the nodes of CDS, and L represents the leaf nodes in the tree.

To solve the MCDS problem, Gendron et al. [19] presented two exact algorithms. The

algorithms are based on Benders Decomposition and Branch and Cut. They also devel-

oped a hybrid algorithm combining both approaches. They demonstrated two variants for

each of the methods: ‘Stand Alone’ version and the ‘Iterative Probing’ version.

In Benders Decomposition, the problem has two parts: Master Problem, and Sub Prob-

lem. In the master problem, some constraints of the original problem are relaxed. In MCDS,

the connectivity constraint is relaxed in the master problem. A solution to the master prob-

lem is a dominating set, DS. The sub problem checks whether the resulting DS is connected

or not, and if it is not connected, then it generates additional cuts to add to the master prob-

lem (known as feasibility cuts). They obtain a lower bound of the feasibility cut based on

the idea that, if the nodes in the DS are not connected, then there must be at least one node

outside the nodes in DS needed for connectivity. They also strengthened the lower bound

by using the number of nodes in a shortest path needed to connect some components. The

iterative probing variation is based on the idea that, if there is no connected dominating set

of a given cardinality, there is no connected dominating set with lower cardinality. We will

discuss Benders Decomposition in Section 4.1.1.

The Branch and Cut [29] method is also used to solve the MCDS problem. The authors

19

3.2. STUDIES ON BROADCASTING IN A DISTRIBUTED NETWORK

[19] use the approach in [27]. The computational result showed that Benders Decompo-

sition performed better in dense graphs whereas Branch and Cut method worked better in

the sparse graphs. The authors [19] also presented a hybrid algorithm combining; both the

Benders Decomposition and Branch and Cut method for a better computational result. In

each iteration of the hybrid algorithm, the master problem is solved by the Branch and Cut

process. The master problem at the root node is initialized with the cuts generated in the

previous iterations [19]. The computational result shows that the hybrid approach performs

better than Benders Decomposition and Branch and Cut approach.

Contention aware CDS has not received as much attention as MCDS in the literature.

In [16], the authors presented one heuristic to find a contention aware CDS. The algorithm

starts all nodes colored white. The node with the maximum degree is colored black, and

all of its neighbors are colored grey. A gray node with minimum black neighbor and the

maximum number of white neighbor is selected next and colored black, and all its white

neighbors are colored grey. The selection process runs until no white node exists. The set

with all the black nodes is the contention aware connected dominating set (CACDS). This

is similar to the approximation algorithm of Guha and Khuller [21].

3.2 Studies on Broadcasting in a Distributed Network

Due to the lack of a centralized management in the wireless network, it is more effective

to construct CDS in a distributed way. The large size of a network also hinders the compu-

tation of a CDS. Das and Bharghavan [10] provided a distributed implementation of the two

centralized algorithms by Guha and Khuller [21]. Both implementations suffer from high

message complexities. Various heuristics based on the neighborhood information of nodes

have been proposed to minimize redundant broadcasting which we examine next. These

heuristics can be divided into two categories: Reactive and Proactive.

20

3.2. STUDIES ON BROADCASTING IN A DISTRIBUTED NETWORK

In Reactive approaches, after receiving a packet, the receiver node itself decides whether

to forward the packet or not. One of the most well-known algorithms based on the reac-

tive approach is Self Pruning, proposed by Lim and Kim [25]. In Self Pruning, while

forwarding a packet, node u attaches its neighborhood list, N(u) to the packet’s header.

When another node v in the transmission range of node u receives the packet, it compares

its neighborhood list, N(v) with the sender’s neighborhood list N(u). If the rebroadcasting

of node v covers at least one new node, then node v will transmit the packet. In other word,

if N(v)−N(u) 6= /0, node v transmits the packet. This can lead to redundant transmission

as there can be many receivers of node u, who cover the same node w, and the nodes take

the decision of broadcasting without coordinating among themselves. Another well-known

reactive approach is Improved Self Pruning [31], where each node makes the forwarding

decision based on 3-hop neighbor information. As a result, this approach performs much

better than the traditional Self Pruning approach.

In Proactive approaches, the transmitting node decides which of its neighboring nodes

should forward the message next and attaches the forward list with the packet’s header.

Upon receiving the packet, if the node finds itself in the forward list, it starts constructing

its forward list from its neighbors and rebroadcasts the packet attaching its forward list;

otherwise, the node does not participate in forwarding. The process of rebroadcasting ends

when no node forwards. There are various types of proactive approaches.

One of the well-known proactive approaches is Dominant Pruning (DP) proposed by

Lim and Kim [25]. The selection of forwarding nodes is based on 2-hop neighborhood

information. When a node, v receives a packet from a node u and v ∈ Fu (where Fu is

the forward list constructed by u), it selects the minimum number of nodes from its 1-hop

neighbors minus the neighbors of u, N(v)−N(u) to cover all the nodes of the set Uv =

N(N(v))−N(v)−N(u). N(v) is discarded as they will receive when v will forward. As

node u has already forwarded, so all the nodes in N(u) have already received the message.

21

3.2. STUDIES ON BROADCASTING IN A DISTRIBUTED NETWORK

This algorithm performs better than blind flooding and self pruning. Two variants of DP -

Partial Dominant Pruning and Total Dominant Pruning are described in [26].

• Partial Dominant Pruning (PDP): It uses 2-hop neighborhood information, and it

works more effectively. In addition to deduct N(v) and N(u) from N(N(v)), it also

deducts the neighbor of common neighbors of node u and v. This reduction of sets

reduces the number of nodes in the forward list.

• Total Dominant Pruning (T DP): This requires 2-hop neighbors of the immediate

sender node to be piggybacked with the broadcast packet. Thus, a node v receiving a

packet from node u also deducts N(N(u)) from N(N(v)). The detail of this approach

is described in Section 5.1.

Enhanced Partial Dominant Pruning (EPDP) [32] is an extended version of PDP.

EPDP introduces a delay before forwarding the packet. It takes advantage of the fact that

the same node may hear the same packet several times from its neighbors. This solution

offers better performance than DP and PDP. EPDP is a combination of the reactive and

proactive approach. As the nodes in the forward list from the immediate sender defers

its transmission, and after the defer time, the node itself decides whether to rebroadcast

the message. A new heuristic named Extended Neighbor Information based Dominant

Pruning (ExDP) [2] optimizes DP by exploiting neighbor information of nodes from 2-

hop to 3-hop while broadcasting the packet in the network at the cost of little additional

overhead.

A contention aware heuristic for the distributed network is presented in [16]. This

heuristic is based on Dominant Pruning approach and reduces contention at the cost of

additional forwarding nodes compared to DP. The integer programming formulation of

distributed CDS has not been studied in the literature till now, neither for regular one nor

for the contention aware one.

22

3.2. STUDIES ON BROADCASTING IN A DISTRIBUTED NETWORK

In summary, we can see that there are several approaches to reduce redundant broad-

casts using MCDS. Some of the algorithms use global topology information to minimize

redundancy. However, to achieve better performance in a mobile environment, distributed

algorithms are needed. Many researchers have also studied the IP formulation of MCDS

and different approaches to solve the IP. Until now, there is no work done on IP formula-

tion of distributed CDS. Contention aware CDS is a new topic, and very few studies exist.

The integer programming formulation of CACDS both for the centralized and distributed

network has not been studied to the best of our knowledge.

23

Chapter 4

Centralized Model

In this chapter, we discuss the Integer Programming (IP) formulation for the Minimum

Connected Dominating Set (MCDS) problem, as well as the Contention aware Connected

Dominating Set (CACDS) problem.

In order to present an IP formulation for MCDS/CACDS, let us use the following deci-

sion variables:

xi =

1, if node i is selected

0, otherwise

and

ei j =

1, if edge (i, j) is selected

0, otherwise

For each node i in the network, the corresponding decision variable xi is set 1 if the node

i is selected to be a member of MCDS/CACDS; otherwise it is 0. If edge (i, j) is chosen for

the solution, then ei j is set to 1 otherwise it is 0.

24

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

4.1 The IP Model of Minimum Connected Dominating Set (MCDS)

The IP model of MCDS can be stated as follows:

minimize ∑
i∈V

xi (4.1)

Subject to:

∑
j∈N(i)

x j ≥ 1 ∀i ∈V (4.2)

∑
(a,b)∈(S,V\S)

eab ≥ xi + x j−1 ∀S⊂V : N(S) 6=V,N(V \S) 6=V,∀i ∈V,∀ j ∈V (4.3)

xi ∈ {0,1} ∀i ∈V (4.4)

ei j ∈ {0,1} ∀(i, j) ∈ E (4.5)

The objective function defined by Eq. 4.1 is to find the minimum number of nodes

that will act as a connected dominating set of the given graph. Only the nodes in MCDS

are used as the broadcasting/forwarding nodes in the network. The constraint (4.2) is the

dominating set constraint. N(i) is the set of adjacent nodes of node i. Note that, node i

itself also is a member of this set, {i} ∈ N(i). We use the Cut formulation to ensure the

connectivity among the chosen dominating nodes in the network. Constraint (4.3) is the

cut-constraint. More precisely, suppose, S ⊂ V , S 6= /0, N(S) :=
⋃
i∈S

N(i). The edges in the

cut implied by S is denoted by (S,V \S) := {(a,b)∈ E : a∈ S,b /∈ S}. Whenever, N(S) 6=V

and N(V \S) 6=V , at least one edge in (N(S),V \N(S)) must be chosen. This is true as the

nodes in a CDS cannot be exclusively limited to S or to V \S.

This is an exponential-sized IP. Hence, it is not a great idea to write down all the con-

straints and solve it directly. One of the ways to solve this problem is by using Benders

Decomposition [20]. We discuss the implementation of Benders Decomposition algorithm

in the context of the MCDS problem in the next section.

25

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

4.1.1 Benders Decomposition with Iterative Probing Strategy

The Benders Decomposition [20] has been applied effectively to a wide variety of dif-

ficult problems. This algorithm divides the problem into a master problem and a sub prob-

lem. Given the initial master problem and sub problem, the algorithm iterates between

them (starting with the master problem) until it finds an optimal solution. Figure 4.1 is a

schematic representation of the Benders Decomposition method.

Figure 4.1: A Schematic representation of the Benders Decomposition

By relaxing some of the constraints of the original model, the master problem of the

Benders Decomposition is constructed. This induces a lower bound on the optimal objective

function value. Based on the result of the master problem, the sub problem tries to find a

solution that satisfies all the constraints in the original model.

In the case of MCDS, we relax the cut-constraint (4.3). So, the master problem in our

model consists of constraints (4.1), (4.2), (4.4), (4.5) and some additional constraints called

Benders Cut. By solving the master problem, we get a dominating set DS and a sub graph

26

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

G = (DS,E(DS)) induced by that dominating set. The next step is to verify whether the

sub graph G = (DS,E(DS)) is connected or not. We can determine the connectivity of

G = (DS,E(DS)) by applying a graph traversal algorithm like Depth First Search (DFS)

[37] which can be performed in O(|DS|+ |E(DS)|) time. The sub problem checks the con-

nectivity of G = (DS,E(DS)). If G = (DS,E(DS)) is connected, we add Benders Opti-

mality Cut [19] in the next iteration. Otherwise, the solution is not feasible, and additional

cuts are generated and added to the master problems which needs to be solved in the next

iteration. These cuts are called Benders Feasibility Cut [19]. The algorithm continues un-

til we find an optimal solution. Let us now discuss Benders Optimality Cuts and Benders

Feasibility Cuts next.

• Benders Optimality Cut: The traditional way of obtaining a feasible solution of

value z in Benders Decomposition is to impose a constraint that the objective value

must be less than z. The initial value of z can be obtained by any the heuristic algo-

rithm [27] of constructing MCDS.

∑
i∈V

xi ≤ z−1 ∀i ∈V (4.6)

This optimality cut constraint defined by Eq. 4.6 is added to the master problem

iteratively.

We use an iterative probing strategy with Benders Decomposition [19]. The iterative

probing strategy maintains a basic property of a connected dominating set. For a

given graph, if there exists a connected dominating set, CDS of size k < |V |, where

k = |CDS|, there also exists a connected dominating set of size k+1. We can easily

observe this. Assume there is a CDS of size k. If we add any other node from V\CDS,

it will be a connected dominating set of size k+1. As a consequence of this property,

we can say that in the absence of a connected dominating set of size k > 0, there is

no connected dominating set of size k−1.

27

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

Based on the above-stated property, the iterative probing strategy can be formulated

as follows: Assume, we have a connected dominating set, CDS of size k. If k = 1,

the algorithm stops and the resultant CDS is the minimum connected dominating

set (MCDS). This case can easily be verified. Suppose i is the node selected as a

connected dominating set. If |N(i)| = |V | for any i ∈ V , then we can say that, the

minimum connected dominating set is consisted of only one node, that is i, and the

problem is solved.

If k > 1, the algorithm will search for a new connected dominating set of size k−1. If

no such connected dominating set of k−1 exists, the algorithm stops and current CDS

is the minimum CDS of size k. However, if the algorithm returns a new connected

dominating set CDS of size k−1, update k with k−1 and iterate.

The whole process is shown in the following flowchart 4.2. Based on the method of

iterative probing, our new optimality cut equation is defined as Eq. 4.7.

∑
i∈V

xi ≤ k ∀i ∈V (4.7)

So, the master problem of our model consists of Eq. 4.1-4.2, 4.4-4.5 and the optimal-

ity cut defined by Equation 4.7.

• Benders Feasibility Cut: Benders feasibility cuts are added if we obtain a discon-

nected sub graph after solving the Benders master problem. Suppose DS is the dom-

inating set returned after solving the master problem, and the sub graph induced

by the nodes in DS is not connected. So, we need at least one node from the set-

DS = {V\DS} to make the sub graph connected.

∑
i∈DS

xi ≥ 1 ∀i ∈ DS (4.8)

There are finite number of these cuts and the graph will eventually be connected. This

28

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

Figure 4.2: Iterative Probing Strategy

29

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

gives an optimal MCDS. So, our the mathematical model of MCDS consists of Eq.

4.1-4.2,4.4-4.5, 4.7-4.8.

However, this cut inequality (Eq. 4.8) is not so strong as we may need several nodes

to make the graph G= (DS,E(DS)) connected. By using the depth-first search (DFS)

algorithm, we can find the list of connected components from G = (DS,E(DS)). A

component, sometimes called a connected component, of an undirected graph is a

maximal sub graph in which any two nodes are connected to each other by paths

within the component. So, the nodes that belong to a connected component are con-

nected to each other by a path within the component, but two connected components

are not connected by a path with each other in the sub graph G = (DS,E(DS)) in-

duced by DS. Now, our goal is to find a good lower bound on minimum number of

nodes (ms) from DS = {V\DS}, needed to connect all the components.

Lower Bound on Minimum Number of Nodes needed to Connect the Compo-

nents:

Let, ms be a lower bound on the minimum number of nodes needed in order to make

the components connected. We use two different approaches to compute the value of

ms. The first approach is based on using the shortest path algorithm (SP based) [19],

and our approach is based on the number of connected components and the maximum

node degree of the graph in each step (∆ based).

1. Based on the Shortest Path Algorithm (SP based): To find a lower bound on

the number of nodes needed to connect, we replace the original undirected graph

with a new directed shrunk graph. Each connected component is replaced by

a new node called shrunk node. Shrunk nodes is also called as terminal nodes.

All the other nodes i ∈ DS is called as non terminal nodes. We convert an

undirected graph to a directed one by replacing each edge with two edges, one

in each direction.

30

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

The edges have costs. The cost of the directed edges that point to the terminal

nodes (shrunk nodes) is set to 0; otherwise, it is set to 1.

A step by step process of constructing a shrunk graph is shown in Figure 4.3.

Suppose we have a network of 12 nodes. After solving the master problem, we

get, {DS} = {1,2,6,8,9,10}. There are three connected components {1,2},

{6,8}, {9,10} highlighted in Figure 4.3(a). Each connected component is re-

placed by a terminal node (shrunk node), shown in Figure 4.3(b). Finally, the

directed shrunk graph with associated edge cost is shown in Figure 4.3(c).

(a): Sample Graph with 12
nodes and connected

components.

(b): Undirected Shrunk
Graph (Connected

components are replaced with
new nodes)

(c): Directed Shrunk graph
with Edge Cost

Figure 4.3: Step by step construction of the shrunk graph

The next step is to find a minimum cost path between each pair of terminal

nodes. The shortest distance between each pair of nodes is the minimum num-

ber of non terminal nodes that are needed to connect that pair. To calculate

the shortest path, we use the well known shortest path algorithm (Dijkstra) in

the new shrunk graph with the associated edge costs. Finally, the maximum

of these minimum distances between the terminal nodes leads us to the lower

bound (LB) on the number of nodes needed to connect the components.

The maximum of all the minimum distances between each pair of terminal

31

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

nodes is a good lower bound for the feasibility cut equation. So, the feasibility

cut can be lifted with this new value of ms.

2. Based on Number of connected component and the maximum degree: (∆

based) Our approach to calculate the value of ms is by using the number of

connected components and the maximum degree of non terminal nodes in each

step. Let us define the following variables.

m : the number of terminal nodes which is the same as the number of connected

Figure 4.4: Connected component and node degree

components.

∆ : the maximum degree of the non terminal nodes in the undirected shrunk

graph.

T : set of all terminal nodes.

NT : set of all non-terminal nodes.

dT : the sum of degrees of all terminal nodes in the undirected shrunk graph.

dT = ∑
i∈T

deg(i) ∀i ∈ T

dNT : The sum of degrees of all non terminal nodes in the undirected shrunk

32

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

graph.

dNT = ∑
j∈NT

deg(j) ∀ j ∈ NT

We need at least m+1 nodes to make the terminal nodes connected; hence we

need at least m edges.

Each edge incident on T has other end point in NT shown in Figure 4.4. There-

fore,

dNT ≥ m (4.9)

By definition,

dNT ≤ |NT |×∆ (4.10)

We can proof the validity of inequality 4.10 by following argument:

As, ∆ is the maximum degree of the non terminal nodes - that is, the largest

degree of any node in the non terminal set. We have,

deg(j)≤ ∆ ∀ j ∈ NT

for all j ∈NT , and therefore we may take the sum of both sides of the inequality

above, for each j ∈ NT , to get the inequality

∑
j∈NT

deg(j) = dNT ≤ ∑
j∈NT

∆

The second sum here is a sum of constants: for every j ∈ NT , we are taking the

same value ∆, not depending on j. This is because ∆ is an upper bound on each

term of the first sum. We are not taking a sum over maximum degree nodes; the

sum still ranges over all nodes j, it is just ignoring the actual value of deg(j)

33

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

and instead using the upper bound ∆.

Because the second sum is a sum of constants, its value is just the number of

terms, multiplied by the value of a term. So we get

dNT ≤ ∑
j∈NT

∆ = |NT |×∆

Hence 4.10 is proved.

Each of the non terminal node has at most ∆ edges, as ∆ is the maximum node

degree among all the node degrees of non terminal nodes. So, the number of

non terminal nodes, we need to connect m terminal nodes is at least m
∆

.

To ensure the connectivity among the non terminal nodes, we need at least m
∆
−1

nodes. So, the new lower bound on the number of non-terminal node needed to

connect the terminal nodes with each other can be

|NT | ≥
⌈m

∆

⌉
+
⌈m

∆

⌉
−1 =

⌈
2m
∆

⌉
−1 (4.11)

This is called as ∆ based approach throughout this thesis.

Again, if h is the length of shortest path to make the non terminals connected,

we can write,

dNT ≥ m+(h−1)

From Eq. 4.10,

|NT | ≥
⌈

m+(h−1)
∆

⌉
(4.12)

As we are looking for a lower bound, the maximum of Eq. 4.11 and 4.12 acts

as a good lower bound on the number of non terminal nodes needed to connect

34

4.1. THE IP MODEL OF MINIMUM CONNECTED DOMINATING SET (MCDS)

the terminal nodes to each other denoted as ms for our problem.

ms≥ max{
⌈

m+(h−1)
∆

⌉
,

⌈
2m
∆

⌉
−1} (4.13)

Eq. 4.13 can easily be verified. Given, a ≥ x and a ≥ y. a, x and y are positive integers.

Two conditions are possible.

a≥ x≥ y, when x≥ y.

a≥ y≥ x, when y≥ x.

Comparing both the cases we can say that,

a≥ max(x,y)

Hence proved Eq. 4.13.

Above are the ways we have calculated the lower bound to have minimum number of

non-terminal nodes needed to connect the terminal nodes to each other.

So, given a disconnected dominating set, DS by the master problem and ms (com-

puted by SP based approach or ∆ based approach) be the lower bound on the number of

nodes needed from the set DS = {V \DS} to obtain a connected dominating set, the new

strengthened feasibility cut [19] is stated in Eq. 4.14.

∑
i∈DS

xi ≥ ms ∀i ∈ DS (4.14)

So, our final mathematical model of MCDS consists of Eq. 4.1-4.2, 4.4-4.5. The opti-

mality cut is stated in Eq: 4.7 and the feasibility cut is as Eq. 4.14.

35

4.2. IP FORMULATION OF CONTENTION AWARE CONNECTED DOMINATING
SET (CACDS)

4.1.2 The Outline of the whole Algorithm

The iterative probing version of Benders Decomposition is stated as follows:

1. Start with a connected dominating set including all nodes in the network, i.e.: k =

|CDS|= |V |.

2. Solve the master problem with the optimality cut.

3. Check whether there is a feasible solution or not. If NO, the algorithm ends, and

resultant DS is our MCDS.

4. If a feasible solution is found, then check whether the new sub graph G=(DS,E(DS))

induced by DS is connected or not by using the Depth First Search.

5. If the new sub graph G(DS,E(DS)) is connected, update the right-hand side of Eq.

4.7 with k = k−1 and go to step 2.

6. If the new G = (DS,E(DS)) is not connected, generate the feasibility cut referred in

Eq: 4.14 and go to step 2. For generating the feasibility cut, we need the minimum

number of nodes (ms) needed to connect the nodes selected by the master problem.

The value of ms can be generated by using any of the two ways discussed in Section

4.1.1.

4.2 IP formulation of Contention Aware Connected Dominating Set

(CACDS)

A Contention aware Connected Dominating Set (CACDS) is a special version of the

traditional MCDS problem. If we use the regular MCDS for this problem, it can select the

nodes in such a way that generates a cycle of odd length among the selected nodes. If there

is a cycle among the selected nodes, that will definitely create contention among the nodes

36

4.2. IP FORMULATION OF CONTENTION AWARE CONNECTED DOMINATING
SET (CACDS)

at the time they will forward any message. So, our goal is to select the nodes (members

of CDS) to avoid contention. A CDS which induces a tree does not have any contention as

there are no cycles. If there is a cycle of odd length among the nodes in CDS and if the

nodes receive a message in a specific order, then contention can arise. Our integer program

does not minimize the number of (induced) odd cycles directly. It tries to reduce the extra

edges (induced) in addition to the edges needed for connectivity.

A dominating set which induces a tree will definitely lead to no contention while trans-

mitting the message through the network. This motivates the following integer program-

ming.

minimize α∗ ∑
(i, j)∈E

ei j−∑
i∈V

xi +1 (4.15)

Subject to:

∑
j∈N(i)

x j ≥ 1 ∀i ∈V (4.16)

xi ≥ ei j ∀(i, j) ∈ E (4.17)

x j ≥ ei j ∀(i, j) ∈ E (4.18)

ei j ≥ xi + x j−1 ∀(i, j) ∈ E (4.19)

∑
(a,b)∈(S,V\S)

eab ≥ xi + x j−1 ∀S⊂V : N(S) 6=V,N(V \S) 6=V,∀i ∈V,∀ j ∈V (4.20)

xi ∈ {0,1} ∀i ∈V (4.21)

ei j ∈ {0,1} ∀(i, j) ∈ E (4.22)

The objective function of this model is to find out a tree of minimum size from the given

graph to minimize contention. Note that, the graph induced by the MCDS is not guaranteed

to be a tree, we hope that it is. As we know, any tree with n number of nodes has n− 1

37

4.2. IP FORMULATION OF CONTENTION AWARE CONNECTED DOMINATING
SET (CACDS)

number of edges. In our objective function defined by Eq. 4.15, α is chosen as sufficiently

large value to obtain desired subgraph.

The constraint (4.16) defines the dominating set and constraint (4.20) is the connectivity

constraints same as we used for the MCDS model discussed in Section 4.2.

In order to minimize the contention, a new constraint has been added to the model. If

any two nodes are selected, then the edges between them should be selected.

ei j ≥ xi.x j ∀(i, j) ∈ E (4.23)

Minimizing the number of edges minimize contention. Constraints (4.17)-(4.19) represent

the linear transformation of Eq: 4.23.

We solve the problem by using a combination of iterative probing strategy and Benders

Decomposition as discussed in Section 4.1.1.

The computational time of constructing CACDS using this model is quite high. So,

instead of using this model to construct CACDS , we use the result of MCDS as a starting

point for this algorithm. If there is a contention among the nodes of MCDS, We calculate

p = α∗EMCDS−NMCDS +1 (4.24)

where, EMCDS = no of edges selected by the MCDS algorithm, NMCDS = no of nodes se-

lected by the MCDS. We apply a new constraint to the CACDS model,

α∗ ∑
(i, j)∈E

ei j−∑
i∈V

xi +1≤ p−1 (4.25)

Therefore, instead of changing the objective function, we have added constraint (4.25) to

the model (discussed in Section). The following steps are added to the previous algorithm

38

4.2. IP FORMULATION OF CONTENTION AWARE CONNECTED DOMINATING
SET (CACDS)

(discussed in 4.1.2).

1. Solve the model with the additional constraint (4.25).

2. If there is no feasible solution, stop the algorithm. Previous CACDS is the resultant

set.

3. If there is a feasible solution with zero contention, stop the algorithm.

4. If there is a feasible solution with non-zero contention, update the value of p with the

newly selected no of edges and nodes and go to 1.

39

Chapter 5

Distributed System

Wireless networks and MANET lack of centralized administration, therefore a construction

of distributed CDS algorithm is needed. Furthermore, it is time consuming to compute

centralized CDS if the topology size is large.

5.1 Basic Idea of Dominant Pruning (DP)

Dominant Pruning (DP) [26] uses neighborhood information to construct a dominat-

ing set, which acts as a forwarding node set for the network. The neighborhood information

up to 2-hop apart is considered. The nodes gather the 2-hop neighborhood information by

exchanging the neighborhood list. Neighborhood information is the basis of most of the

routing algorithms. The nodes in the wireless network periodically send “whoami” mes-

sages to announce their presence in the network. The sender node also piggybacks its

neighborhood list in the header of the packet before forwarding it. Thus, it is easier for

node v to gather its 2-hop neighborhood information, N(N(v)) from its 1-hop neighbors,

N(v).

The sender nodes selects some of its adjacent nodes to relay the packet. The IDs of

the selected nodes are registered in the header of the packet. This list of selected nodes is

called the forwarding list. Upon receiving a packet, only the nodes whose IDs are there in

40

5.1. BASIC IDEA OF DOMINANT PRUNING (DP)

the forwarding list attached to the header of the receiving packet, rebroadcast the packets.

Nodes while forwarding a packet will update the forwarding list by selecting some of the

nodes from its neighborhood list. This process continues until the broadcast is complete.

Now we discuss the process of selection of forwarding nodes.

In Dominant Pruning [26], in addition to forwarding packet, each node u determines

the set of forwarding nodes, Fu from its 1-hop neighbor list, N(u) for covering all the 2-hop

neighbors, N(N(u)) of u. In order to minimize redundant transmission, node v selects the

next forwarding nodes from Bu ⊆ N(u) that will cover all the nodes in Uu ⊆ N(N(u)). (Bu

and Uu are defined later.) It is possible to model the selection of Fu as a set cover problem,

as depicted in Figure 5.1.

Figure 5.1: Connectivity among node u, Bu, Uu

Suppose a node u is the broadcast initiator. When node u sends a packet, it also sends

the forward list, Fu with the packet header. Upon receiving the packet from node u, if node

v finds itself in the forwarding list, Fu (i.e. v ∈ Fu) attached to the packet header, then node

v will forward. Node v will construct its own forwarding list, Fv that will cover all its 2-hop

neighbors, N(N(v)) and will insert it in the packet header. In other word, all the nodes in

N(N(v)) will receive the packet once the nodes in Fv will forward it. Before constructing

41

5.1. BASIC IDEA OF DOMINANT PRUNING (DP)

the forwarding list, node v will construct a list Uv, the uncovered 2-hop neighbors of node

v. Among the nodes in N(N(v)), node u is the source node, so node N(u) already received

the packet when node u had broadcast the packet. All the nodes consist of N(v) will receive

the packet when node v broadcasts. So, the only uncovered nodes in N(N(v)) are:

Uv = N(N(v))−N(v)−N(u)

Node u also considered nodes in N(u) before constructing its own forwarding list, so node

v does not need to consider the nodes in N(u) for its own forward list. Therefore, node v

constructs its own forward list Fv from the list Bv, where,

(a): Uv = N(N(v))−N(v)−N(u),
Bv = N(v)−N(u)

(b): Uv = N(N(v))−N(N(u)),
Bv = N(v)−N(u)

Figure 5.2: Illustration of Dominant Pruning

Bv = N(v)−N(u) (5.1)

to cover all its uncovered 2-hop neighbors, Uv.

If node v can receive a packet with a list of nodes in N(N(u)) (node v gets the packet

from node u), then the uncovered 2-hop neighbors of node v can be updated as,

42

5.1. BASIC IDEA OF DOMINANT PRUNING (DP)

Uv = N(N(v))−N(N(u)) (5.2)

The pictorial view of the scenario is shown in Figure 5.2.

The correctness of Eq. 5.2 can be shown by following lemma.

(a): Case 1 (p ∈ N(u))
(b):Case 2 (p ∈ N(v),
v ∈ N(u) & v ∈ Fu)

(c): Case 3 (p ∈ N(v′),
v′ ∈ N(u) & v′ ∈ Fu)

Figure 5.3: Cases for Lemma 1

Lemma 1: If we have a node p such that, p ∈ N(N(v)) as well as p ∈ N(N(u)), it is

possible to eliminate node p from Uv.

Proof : As previously stated, u is the broadcast initiator, v ∈ Fu, Uv is the set of nodes

that needed to be covered by the forwarding list of v. Let p is a node such that p ∈ N(N(v))

and if p also belongs to N(N(u)), the following three scenarios can happen:

• Case 1: p is a member of N(u) (p ∈ N(u))[including p is v itself]. When node u

broadcast the message, node p already received the message. The scenario is depicted

in Figure 5.3 (Case 1).

• Case 2: p is not a member of N(u) (p /∈N(u)). Node u selects node v (where v∈N(u)

& v ∈ Fu) to cover node p (where p ∈ N(v)). The scenario is illustrated in Figure 5.3

(Case 2).

43

5.1. BASIC IDEA OF DOMINANT PRUNING (DP)

• Case 3: Node p can not be covered by node v (p /∈N(v)), node u selects another node

of its neighbor v′ ∈ N(u) & v′ ∈ Fu to cover node p where p ∈ N(v′). The scenario is

illustrated in Figure 5.3 (Case 3).

So, node v can exclude node p while constructing its forwarding list as node u already

considered that node p receives the message as node p is in the 2-hop neighborhood list of

node u.

Lemma 2: Let the set Uv = N(N(v))−N(N(u)) and Bv = N(v)−N(u), then Uv ⊆N(Bv)

Proof : Let, X and Y are two sets. By using the fact that N(X)−N(Y) ⊆ N(X −Y),

we can prove this lemma. For any p ∈ N(N(v))−N(N(u)), we have p ∈ N(N(v)−N(u)).

Therefore, N(Bv) = N(N(v)−N(u)) can cover Uv = N(N(v))−N(N(u)).

However, this process will consume more bandwidth as 2-hop neighborhood informa-

tion of each sender node has to be piggybacked in the broadcasting packet.

5.1.1 IP Formulation of Selecting Forwarding Nodes in Each Step

In this section, we discuss the Integer Programming formulation for selecting the for-

warding nodes in each step based on the Dominant Pruning (DP) [26] algorithm. Assume,

node v has received a packet from node u, and node v is constructing its own forwarding

list. Let us use the following decision variable:

xi =

1, if node i is selected

0, otherwise

For each node, i ∈ Bv, the corresponding decision variable xi is set 1 if node i is selected to

be a member of forwarding list, otherwise 0. The IP model can be stated as follows.

44

5.2. BASIC IDEA OF CONTENTION AWARE DOMINANT PRUNING (CADP)

minimize ∑
i∈Bv

xi (5.3)

Subject to:

∑
i∈Bv∩N(w)

xi ≥ 1 ∀w ∈Uv (5.4)

xi ∈ {0,1} ∀i ∈ BV (5.5)

The objective function defined by Eq. 5.3 is to find the minimum number of forwarding

nodes among all the nodes in Bv. We have to select the nodes from Bv that will cover all the

nodes in Uv. N(w) is the neighborhood nodes of each node w ∈Uv. Eq. 5.4 is the covering

constraint.

5.2 Basic idea of Contention aware Dominant Pruning (CADP)

As we stated earlier, if two or more neighboring nodes try to forward the packet at the

same time, they will contend with each other for the shared medium. So, as in a centralized

system, the selection of forwarding nodes in DP can also lead to contention. Let us discuss

the situation, see Figure 5.4. The forwarding nodes are colored black. The nodes that

already received the message are colored grey. The nodes yet to receive the message is

colored white.

Suppose node v is constructing its own forwarding list, Fv. Node a, b, c and d are mem-

bers of Bv, which are the possible candidates of the forwarding list. Set Uv consists of node

x and node y. The following are the possible minimal set of forwarding nodes:

Fv = {a,b},{b,c},{c,d},{a,d} .

If node-set {a,b}, {b,c} or {c,d} is selected as forwarding list by node v, it will directly

leads to contention. If {a,d} is selected as the forwarding set, it will cover all the nodes in

Uv and there will be no contention among the forwarding nodes. The scenario is depicted

45

5.2. BASIC IDEA OF CONTENTION AWARE DOMINANT PRUNING (CADP)

(a): Selection of forwarding nodes to
minimize redundancy

(b): Selection of forwarding nodes to
minimize contention

Figure 5.4: Regular Dominant Pruning and Contention Aware Dominant Pruning

in Figure 5.4(b).

If there exists a minimal independent set in Bv, such that each node in the independent

set will act as a dominating set for the nodes in Uv, the problem of contention is solved.

However, in the real-life scenario, it is not possible to find such independent sets as the

nodes are quite close to each other. As a result of contention, a packet will not reach to the

entire network. So, we propose another new approach that will minimize the contention

and it will ensure that the packet is delivered to all the nodes in the network. We account

for the edges between the nodes in Bv and try to pick up the nodes that is a dominating

set for the nodes in Uv and the number of edges in the dominating set is minimized. The

contention will be minimized and the packet will reach to all the nodes in the network.

5.2.1 IP Formulation of Selecting Contention Aware Forwarding Nodes in Each Step

In this section, we discuss the Integer Programming formulation for selecting Con-

tention aware forwarding nodes in each step. Assume, node v has received a packet from

46

5.2. BASIC IDEA OF CONTENTION AWARE DOMINANT PRUNING (CADP)

node u, and node v is constructing its forwarding list. We have the following decision

variables:

xi =

1, if node i is selected

0, otherwise

and

ei j =

1, if edge (i, j) is selected

0, otherwise

For each node i ∈ Bv , the corresponding decision variable xi will be set 1 if the node i is

selected as forwarding node, otherwise 0. Another decision variable ei j is defined for every

edges (i, j) in the network. If edge (i, j) is chosen for the solution, then ei j is 1 otherwise it

is 0.

The model can be written as follows. This model is an extension of the IP model

discussed in Section 5.1.1.

minimize ∑
i∈Bv

xi +α∗ ∑
(i, j)∈E

ei j (5.6)

Subject to:

∑
i∈Bv∩N(w)

xi ≥ 1 ∀w ∈Uv (5.7)

xi ≥ ei j ∀(i, j) ∈ E & ∀i ∈ Bv (5.8)

x j ≥ ei j ∀(i, j) ∈ E & ∀ j ∈ Bv (5.9)

ei j ≥ xi + x j−1 ∀(i, j) ∈ E & ∀i ∈ Bv,∀ j ∈ Bv (5.10)

xi ∈ {0,1} ∀i ∈V (5.11)

ei j ∈ {0,1} ∀(i, j) ∈ E (5.12)

47

5.3. THE FINAL ALGORITHM

The objective function defined by Eq: 5.6 is to minimize the number of nodes as well as

the number of edges between them in order to minimize the contention. α is a sufficiently

large value to obtain desired hierarchic objective value. Constraint (5.7) is the dominating

set constraint. In order to minimize the contention, a new constraint is added to the model.

If any two nodes are selected, then the edges between them should be selected. Hence,

ei j ≥ xi.x j ∀(i, j) ∈ E (5.13)

Without selecting the edges, we can not find out whether there will be contention or not.

Constraints (5.8-5.10) represent the linear transformation of Eq. 5.13.

5.3 The Final Algorithm

The process of selecting the forwarding nodes is shown in Algorithm 1. Variable Nodes

represents all the nodes in the network. We use a boolean array named already f orward to

keep track of the forwarding nodes. queue is an array used to keep the nodes to be processed

in the future. Function add() is called to add an node in the array and function remove()

deletes the node from the array. Additionally function top() returns the first element of the

array. xi is the decision variable retrieved from the model. The initiator node represents

the initiator of the broadcasting.

At the start, we add the initiator node to the queue. Node v represents the first element

of the queue. If node v did not participate in the forwarding before, then v will calculate Bv

and Uv defined by Eq. 5.1 and Eq. 5.2 respectively. After having specified the necessary

inputs, the algorithm calls the model defined in Section 5.1.1 (for regular DP) or Section

5.2.1 (for Contention aware DP). The result of the model gives the forwarding list, Fv of

node v. The nodes in Fv are inserted in the queue for further processing. Node v is then

48

5.3. THE FINAL ALGORITHM

Algorithm 1 Selection of forwarding nodes
1: u← NULL
2: Nodes = all nodes p ∈V ;
3: queue = /0;
4: for all node p ∈ Nodes do
5: already f orward[p] = 0;
6: end for
7: queue.add(initiator node);
8: while queue 6= /0 do
9: Fv = /0;

10: v = queue.top();
11: if already f orward[v] == 0 then
12: Calculate Uv and Bv; {using Eq. 5.2 and 5.1}
13: Solve the model; {Section 5.1.1 for DP, Section 5.2.1 for CADP}
14: for all i ∈ Nodes do
15: if xi == 1 then
16: Fv.add(i);
17: queue.add(i);
18: end if
19: end for
20: already f orward[v] = 1;
21: queue.remove(v);
22: u = v;
23: end if
24: end while

removed from the queue, and now it will be a sender node for subsequent iterations. The

whole process iterates until the queue is empty.

49

Chapter 6

Simulation and Performance Evaluation

In this chapter, we discuss the computational results of the centralized and distributed sys-

tem. As we discussed in Section 4.1.1, for computing the centralized MCDS/CACDS, we

use two separate approaches to measure the lower bound on the number of nodes needed

to obtain a CDS. A prior approach is based on the shortest path algorithm (SP based) [19],

and ours is based on the number of connected components and maximum node degree (∆

based). We discuss the impact of these two different approaches on Benders Decomposi-

tion in calculation of MCDS and CACDS. We see how CACDS reduces contention. We

also analyze the outcome of Dominant Pruning and Contention aware Dominant Pruning

formulations.

6.1 Instances

The instances used for our experiments are generated randomly using a two-step pro-

cedure. At first, we create a Hamiltonian path, connecting all the nodes. The nodes are

ordered randomly on the path. To obtain a uniform random permutation of the nodes, we

create an array of n nodes and initialize the array elements as 1...n. Then we use Fisher-

Yates shuffle algorithm [17] to shuffle the elements of the array. The algorithm starts from

the last element of the array and swaps that element with a randomly selected element from

the entire array. We reduce the size of the array to n− 1 and repeat the whole procedure

50

6.2. SIMULATION ENVIRONMENT AND PERFORMANCE METRICS

until we reach the first element. The run time complexity of the Fisher-Yates Shuffle Al-

gorithm is O(n). This gives the first |V |−1 edges. It also ensures that the generated graph

is always a connected graph. Let n = 9, after application of the Fisher-Yates Shuffle Algo-

rithm, assume the order of the nodes is {2,9,5,3,1,6,7,4,8}. The Hamiltonian path is the

graph shown in Figure 6.1(a).

(a): Construction of Instances (Step 1) (b): Construction of Instances (Step 2)

Figure 6.1: Construction of Instances

In the second step, we generate additional edges by connecting pairs of randomly se-

lected nodes. This step continues until a previously defined density for the graph is reached.

Figure 6.1(b) shows the resulting graph, used as an input instance for our work.

6.2 Simulation Environment and Performance Metrics

6.2.1 Simulation Environment

We use the optimization programming language (OPL) V-4.0 and CPLEX Optimization

Studio V-12.10 to implement and solve the models. CPLEX optimizer can solve very larger

integer linear programs defined using the OPL. The simulation is carried on a 2.30 GHz

51

6.2. SIMULATION ENVIRONMENT AND PERFORMANCE METRICS

Intel(R) Core-i5 machine with 8 GHz of RAM (Random Access Memory). We evaluate

our algorithms on instances varying in density from 5% to 70% and the number of nodes

n ∈ {20,30,50,60,70,100,120}. Each instance name is a combination of the number of

nodes and the density of graph, identified in the Column 1 of Table 6.1, 6.2 and 6.3 as n d.

6.2.2 Performance Metrics

For centralized algorithms, we use four different parameters to evaluate our methods -

the number of nodes selected (size of the {MCDS} / {CACDS}), execution time (in sec-

onds), the number of constraints and the number of contentions among the selected nodes.

For the distributed system, we use the number of nodes selected, the number of con-

tentions and the execution time (in seconds) as evaluation criteria.

Let us discuss the performance metrics in details.

i Number of Selected Nodes: The number of selected nodes is the size of the CDS. It

is also the value of the objective function. MCDS is used as a virtual backbone of a

network to reduce the redundancy problem [38]. CACDS, with the goal to minimize

contention selects another set of nodes or sometimes it selects some extra nodes than

MCDS. CACDS finds a minimum number of broadcasting nodes with minimum con-

tention. The scenario is shown using Figure 6.2.

In Figure 6.2, the black nodes are the selected nodes. In Figure 6.2(a), the size of MCDS

is three. That means three nodes broadcast the message in the network. Suppose, node

A is the broadcast initiator. After A broadcasts, when nodes B and C try to rebroadcast,

contention arises. Figure 6.2(b) shows a CACDS in black nodes. The number of selected

node here is four. Instead of node C, it selects node D and E to minimize contention.

The same scenario occurs while constructing DP and CADP. The number of selected

52

6.2. SIMULATION ENVIRONMENT AND PERFORMANCE METRICS

(a): Selection of forwarding nodes to
minimize redundancy (Output of MCDS)

(b): Selection of forwarding nodes to
minimize contention (Output of CACDS)

Figure 6.2: Effect of algorithms in term of forwarding nodes

nodes can increase in CADP that minimizes contention.

ii Execution Time: Execution time is the CPU time to find an optimal solution. For each

instance, we run the algorithms for atmost 3600 CPU seconds. Whenever the time limit

exceeds and an optimal solution is not obtained for the instances, we put a character ‘-’

in the time entry.

iii Number of Constraints: The number of cut-constraints generated to solve the problem

is another criteria we use to evaluate our centralized algorithms.

iv Contention Number: The contention number [16] among the selected nodes is de-

termined using the Algorithm 2 (on the next page) while constructing MCDS/CACDS.

{MCDS} is the set of selected nodes.

We use the set {CACDS} to calculate the contention for CACDS formulation.

The contention number for DP and CADP [16] for a broadcast is determined as follows.

The number of nodes in the forwarding list of any node v that are neighbors of each

other is defined as “Per-hop Contention”. If a node in Fv is within the transmission

53

6.3. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT OF
CONSTRUCTING MCDS

Algorithm 2 Calculate contention for MCDS
1: Contention = 0;
2: for all i ∈ {MCDS} do
3: X = /0;
4: X = (N(i)−{i})∩{MCDS};
5: {MCDS}={MCDS}-{i};
6: Contention =Contention+∑w∈X

(∣∣(N(w)−{w})∩{MCDS}∩N(i)
∣∣)/2;

7: end for

range to another node, then those nodes face contention when they try to forward the

packet. Thus Per-hop Contention (P) is calculated as:

P(v) = ∑
w∈Fv

(∣∣(N(w)−{w})∩Fv
∣∣)/2

Suppose, to complete a broadcast the nodes in S = {v1,v2,v3, ...,vz} forward the packet,

i.e., S is the set of selected broadcasting nodes by DP/CADP and z is the number of

these nodes. Let F represents the set of all the forwarding lists that are created at each

hop.

F = {Fv1,Fv2,Fv3,,Fvz}

When we sum up Per-hop Contention of all the forwarding nodes in the network, we get

the total number of contention that would occur for a broadcast. The total contention is

defined:

Contention = ∑
vi∈S

P(vi) = ∑
vi∈S

∑
w∈Fvi

(∣∣(N(w)−{w})∩Fvi

∣∣)/2

6.3 Analysis and Presentation of Experimental Result of Constructing

MCDS

Table 6.1 shows the detailed computational results for MCDS. We use two different

lower bounds on the number of nodes needed to obtain a CDS (described in Section 4.1.1).

54

6.3. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT OF
CONSTRUCTING MCDS

Table 6.1 shows the detailed result for both the methods.

Table 6.1: Detailed computational results: Benders Decomposition for MCDS

Instan-

ces

SP based ∆ based

n d No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

20 d10 16 30.977 199 0 16 30.12 220 0

20 d20 6 1.02 29 0 6 0.99 39 0

20 d30 4 2.84 51 0 4 1.12 51 0

20 d40 3 0.105 21 0 3 0.059 21 0

20 d50 3 0.67 24 1 3 0.527 24 1

20 d60 3 0.605 23 1 3 0.488 23 1

20 d70 2 0.132 21 0 2 0.119 21 0

30 d10 15 51.84 71 3 15 50.87 78 3

30 d20 7 6.915 54 1 7 5.25 56 1

30 d30 5 1.57 34 1 5 1.46 34 1

30 d40 4 1.434 35 1 4 0.665 35 1

30 d50 3 0.226 31 1 3 0.15 31 1

30 d60 2 0.553 31 0 2 0.137 31 0

30 d70 2 0.382 31 0 2 0.159 31 0

50 d05 - - - - - - - -

50 d10 12 23.217 74 3 12 21.142 79 2

50 d20 6 2.665 54 1 6 0.934 59 1

50 d30 5 2.195 52 2 5 0.502 52 1

Continued on next page

55

6.3. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT OF
CONSTRUCTING MCDS

Table 6.1 – continued from previous page

Instan-

ces

SP based ∆ based

n d No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

50 d40 5 1.05 51 1 5 0.19 51 1

50 d50 3 0.891 51 0 3 0.191 51 0

50 d60 2 1.55 52 0 2 0.396 52 0

50 d70 2 1.17 51 0 2 0.232 51 0

60 d05 - - - - - - - -

60 d10 13 366.37 89 3 13 341.87 96 4

60 d20 7 12.799 63 2 7 1.119 65 2

60 d30 5 2.664 62 2 5 0.668 62 2

60 d40 4 2.385 62 1 4 0.613 62 1

60 d50 3 3.35 63 0 3 0.917 63 0

60 d60 3 1.314 61 1 3 0.322 61 1

60 d70 2 1.361 61 0 2 0.288 61 0

70 d05 - - - - - - - -

70 d10 - - - - - - - -

70 d20 7 7.7 71 3 7 1.344 75 3

70 d30 5 1.737 71 2 5 0.315 71 3

70 d40 4 3.588 72 2 4 0.53 72 2

70 d50 3 4.874 73 1 3 0.763 73 1

70 d60 3 1.904 71 0 3 0.309 71 1

Continued on next page

56

6.3. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT OF
CONSTRUCTING MCDS

Table 6.1 – continued from previous page

Instan-

ces

SP based ∆ based

n d No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

70 d70 2 1.908 71 0 2 0.331 71 0

100 d05 - - - - - - - -

100 d10 13 1034.4 121 5 13 513.68 134 5

100 d20 8 9.107 102 2 8 1.659 102 3

100 d30 6 14.796 103 2 6 2.535 103 2

100 d40 5 18.798 104 2 5 3.365 104 2

100 d50 4 4.509 101 1 4 0.519 101 0

100 d60 3 4.704 101 0 3 0.537 101 0

100 d70 2 4.795 101 0 2 0.526 101 0

120 d05 - - - - - - - -

120 d10 13 621.43 219 7 13 312.14 231 7

120 d20 9 79.13 121 4 9 31.063 121 4

120 d30 7 9.136 127 4 7 3.059 127 4

120 d40 6 8.128 121 3 6 1.672 121 3

120 d50 4 8.633 123 1 4 2.548 123 1

120 d60 3 7.757 121 2 3 1.894 121 2

120 d70 3 8.174 119 1 3 0.958 119 1

The results of the experiments on MCDS can be summarized as follows:

57

6.3. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT OF
CONSTRUCTING MCDS

• Effects on number of Selected Nodes: The number of selected nodes indicates

the size of MCDS (|MCDS|) as well as the model’s objective function (described in

Section 4.1). Only these nodes relay the message over the network. Table 6.1 shows

that the number of nodes chosen by both methods is the same. To put it another way,

we have the same objective value for both of the approaches. For a fixed no of nodes

and with increasing density, the size of MCDS decreases. As the density of the graph

increases, the graph becomes more connected, and we need fewer nodes to forward

the message to the entire network. Table 6.1 shows for n = 20, the number of selected

nodes decreases from 16 to 2 as the density of the graph increases to 10% to 70%.

• Effects on the Execution Time: We run the algorithms for atmost 3600 seconds

on each instance. Character ‘-’ in table means that the time limit exceeded and

no solution was obtained. In terms of time, Benders Decomposition is faster for a

dense graph rather than a sparse graph. Out of 54 instances, our algorithm solves

48 instances using both the approaches. Only sparse instances numbered - 50 d05,

60 d05, 70 d05, 70 d10, 100 d05 and 120 d05 could not be solved by the algorithm

within the allowed time.

The execution time for finding MCDS using ∆ based approach (for all instances) is

less than that of using SP based approach. The difference between the execution

time of both the methods is noteworthy for larger graphs with more nodes. When

the graph size is small, the execution time is almost the same. The gap between

the two methods increases with the number of nodes in the graph. For example,

for instance 60 d20, SP based approach takes about 13 seconds, ∆ based approach

provides a solution within 1 second. Figure 6.3 shows the effect on the execution time

for n = 30 and n = 120 for both the approaches. The X-axis represents the graph’s

density in percentage, and Y-axis represents the execution time in seconds. We can

see, ∆ based approach is faster in both the scenarios. Although the time difference is

not significant for n= 30 in both the approaches, but as the number of nodes increases

58

6.3. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT OF
CONSTRUCTING MCDS

to 120, the difference is quite noticeable.

Figure 6.3: Execution time when n = 30 and n = 120 varying the density from 20% to 70%

• Effects on number of Constraints: The number of cut constraints generated by SP

based approach for the sparse graph (graph density < 30%) is slightly less than that of

the number generated by ∆ based approach. From Table 6.1, we see that the number

of cut constraints for SP based approach is less than ∆ based approach when the graph

density is 10% -20%. However, both the approaches generated the same number of

cut constraints when the graph density is 30% or more.

• Effects on Contention: We find contention in 32 instances, among 48 solved in-

stances. In certain cases, for both approaches, the contention among the selected

nodes is different. These instances include 50 d10, 50 d30, 60 d10, 70 d30, 70 d60,

100 d20, 100 d50. As two approaches select different sets of nodes while solving

the problem, the contention varies with that. Overall there is little difference in the

contention number.

From the above analysis, we conclude that, we get the same objective value using both the

approaches. ∆ based approach is faster than SP based approach for all the cases. As if we

59

6.4. EXPERIMENTAL RESULT FOR CONSTRUCTING CACDS: ANALYSIS

know the number of connected components and the maximum degree in the graph, we do

not need to traverse the whole graph and generate the shortest path to obtain a good lower

bound on the minimum number of nodes need to construct a connected dominating set (as

in SP based approach). SP based approach is time-consuming for larger networks.

6.4 Experimental Result for Constructing CACDS: Analysis

Table 6.2 shows the detailed computational results for constructing CACDS. We use

similarly generated instances and evaluation parameters to evaluate CACDS (that we use

for MCDS and discussed in Section 6.2.2).

Table 6.2: Detailed computational results: Benders Decomposition for Contention-aware
CDS

Instan-

ces

SP based ∆ based

n d No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Se-

lected

Nodes

t(s) No of

Con-

straints

Con-

tention

20 d10 16 32.12 413 0 16 30.98 422 0

20 d20 6 1.034 456 0 6 1.03 461 0

20 d30 4 2.98 517 0 4 1.312 525 0

20 d40 3 0.213 636 0 3 0.091 636 0

20 d50 3 0.791 809 0 3 0.57 809 0

20 d60 3 0.845 926 0 3 0.607 926 0

20 d70 2 0.15 1070 0 2 0.134 1070 0

30 d10 16 55.76 659 0 16 52.13 670 0

Continued on next page

60

6.4. EXPERIMENTAL RESULT FOR CONSTRUCTING CACDS: ANALYSIS

Table 6.2 – continued from previous page

Instan-

ces

SP based ∆ based

n d No of

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Nodes

t(s) No of

Con-

straints

Con-

tention

30 d20 7 11.794 781 0 7 9.231 811 0

30 d30 5 10.42 1076 0 5 8.434 1087 0

30 d40 5 9.226 1475 0 5 7.333 1475 0

30 d50 3 7.308 1814 0 3 7.041 1814 0

30 d60 2 0.564 2120 0 2 0.143 2120 0

30 d70 2 0.382 2424 0 2 0.159 2424 0

50 d05 - - - - - - - -

50 d10 14 25.136 984 0 14 23.15 996 0

50 d20 6 3.638 1966 0 6 1.465 1967 0

50 d30 5 12.614 2990 0 5 5.859 2990 0

50 d40 5 10.929 4071 0 4 6.253 4071 0

50 d50 3 0.93 4902 0 3 0.19 4902 0

50 d60 2 1.939 6077 0 2 0.678 6077 0

50 d70 2 1.88 6168 0 2 0.315 6168 0

60 d05 - - - - - - - -

60 d10 15 370.12 3478 0 15 361.34 3512 0

60 d20 8 17.201 4019 0 8 15.148 4102 0

60 d30 6 3.038 4366 0 6 0.576 4366 0

60 d40 4 3.302 5758 0 4 0.679 5758 0

60 d50 3 3.82 7210 0 3 0.973 7210 0

Continued on next page

61

6.4. EXPERIMENTAL RESULT FOR CONSTRUCTING CACDS: ANALYSIS

Table 6.2 – continued from previous page

Instan-

ces

SP based ∆ based

n d No of

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Nodes

t(s) No of

Con-

straints

Con-

tention

60 d60 3 1.864 8508 0 3 1.114 8508 0

60 d70 2 1.496 9878 0 2 0.473 9878 0

70 d05 - - - - - - - -

70 d10 - - - - - - - -

70 d20 7 241.78 4157 0 7 172.80 4230 0

70 d30 5 3.885 5857 0 5 1.335 5857 0

70 d40 4 35.657 8071 0 4 11.959 8071 0

70 d50 3 5.844 9801 0 3 3.15 9801 0

70 d60 3 8.983 11651 0 3 2.8 11651 0

70 d70 2 2.408 13624 0 2 0.838 13624 0

100 d05 - - - - - - - -

100 d10 13 1056.13 5287 0 13 985.79 5287 0

100 d20 10 159.84 7863 0 10 73.783 7863 0

100 d30 6 120.12 10618 0 6 61.12 10618 0

100 d40 5 102.19 16035 0 5 59.823 16035 0

100 d50 4 7.641 19998 0 4 2.91 19998 0

100 d60 3 5.681 23727 0 3 0.637 23727 0

100 d70 2 4.766 28166 0 2 0.601 28166 0

120 d05 - - - - - - - -

120 d10 16 1034.12 49356 0 16 987.74 50167 0

Continued on next page

62

6.4. EXPERIMENTAL RESULT FOR CONSTRUCTING CACDS: ANALYSIS

Table 6.2 – continued from previous page

Instan-

ces

SP based ∆ based

n d No of

Nodes

t(s) No of

Con-

straints

Con-

tention

No of

Nodes

t(s) No of

Con-

straints

Con-

tention

120 d20 9 519.23 41529 0 9 412.23 41529 0

120 d30 8 429.13 38267 0 8 221.28 38267 0

120 d40 6 222.59 22787 0 6 159.89 22787 0

120 d50 4 393.40 29359 0 4 248.60 29359 0

120 d60 3 85.424 34687 0 3 37.71 34687 0

120 d70 3 12.518 38762 0 3 7.387 38762 0

The result of the experiments can be summarized as follows:

• Effects on the number of Selected Nodes: As we see in Table 6.2, the number of

selected nodes by both the approaches is the same. That is the value of the objective

function (described in Section 4.2) is the same for both the approaches. However,

if we compare the number of selected nodes in CACDS and MCDS, there is some

variation in number of selected nodes. This increase has been explained in Section

6.2.2.

30 d10, 30 d40, 50 d10, 60 d10, 60 d20, 60 d30, 100 d20, 120 d10, and 120 d30

are the instances where the number of nodes selected by CACDS exceeds that of

MCDS. Although some extra nodes are selected to minimize contention, the differ-

ence between the size of both the sets is not that high. For instances, MCDS se-

lects five nodes and there are two contentions among the selected nodes for 60 d30,

whereas CACDS generates contention-free forwarding nodes with addition of one

63

6.5. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT FOR
CONSTRUCTING DP & CADP

extra node.

• Effects on Execution Time: Out of the 54 instances, CACDS optimally solves 48

instances using both the approaches. Only 50 d05, 60 d05, 70 d05, 70 d10, 100 d05

and 120 d05 are not solved by the algorithm within the specified time allowed (3600

seconds).

Like MCDS, the construction of CACDS shows the same behaviour with respect to

the execution time. The method using ∆ based approach is more efficient than SP

based approach. The method performs better on dense graphs.

• Effects on the number of Constraints: The number of generated cut constraints

is nearly the same in both the approaches. ∆ based approach creates a few more

constraints than SP based approach on sparse graph when the density around 05%-

20%. However as the density increases, the number of cut constraints is the same for

both the approaches.

• Effects on Contention: We got contention in 32 instances out of 48 for MCDS. How-

ever, CACDS provides us CDS set free of contention for all the solvable instances.

From the above analysis, we conclude that ∆ based approach performs better than SP based

approach in terms of execution time. They both select the same number of nodes as for-

warding nodes. CACDS by choosing another set of nodes or in addition to some extra nodes

other than MCDS, CACDS generates contention-free forwarding nodes. The nodes do not

face contention with each other, as the differ time will be reduced, and the message will

transmit faster in the network.

64

6.5. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT FOR
CONSTRUCTING DP & CADP

6.5 Analysis and Presentation of Experimental Result for Construct-

ing DP & CADP

Table 6.3 shows the detailed computation result for the distributed system. We use the

same instances to evaluate DP (discussed in Section 5.1.1) and CADP (discussed in Section

5.2.1) that we use to evaluate the centralized system.

Table 6.3: Detailed computational results: Dominant Pruning & Contention Aware Domi-
nant Pruning

Instances DP CADP

n d No of

Selected

Nodes

t(s) Conten-

tion

No of

Selected

Nodes

t(s) Conten-

tion

20 d10 19 9.047 2 19 11.64 0

20 d20 14 8.201 0 14 8.233 0

20 d30 14 7.843 1 14 11.115 0

20 d40 4 1.789 1 4 1.946 1

20 d50 3 1.429 0 3 0.935 0

20 d60 3 .962 1 3 0.95 0

20 d70 2 0.99 0 2 1.001 0

30 d10 26 49.432 9 28 52.953 4

30 d20 19 47.236 4 19 49.93 4

30 d30 13 31.338 4 16 53.236 2

30 d40 5 6.165 2 6 4.929 1

30 d50 3 4.242 1 4 8.981 0

30 d60 3 4.34 1 3 4.39 0

30 d70 3 4.405 1 3 4.437 0

Continued on next page

65

6.5. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT FOR
CONSTRUCTING DP & CADP

Table 6.3 – continued from previous page

Instances DP CADP

n d No of

Nodes

t(s) Conten-

tion

No of

Nodes

t(s) Conten-

tion

50 d05 46 886.63 2 46 969.876 0

50 d10 37 671.236 8 37 676.08 8

50 d20 7 26.60 6 7 28.231 6

50 d30 6 28.63 6 6 28.94 3

50 d40 5 30.464 1 5 28.802 1

50 d50 4 30.17 1 4 31.87 0

50 d60 3 32.26 1 3 31.08 0

50 d70 3 34.84 1 3 32.46 0

60 d05 - - - - - -

60 d10 47 1656.80 5 47 1782.498 3

60 d20 8 54.12 3 9 54.68 2

60 d30 6 55.013 4 7 58.316 1

60 d40 4 60.91 3 6 60.95 0

60 d50 4 62.585 2 4 64.118 0

60 d60 3 63.722 1 4 66.791 0

60 d70 3 63.748 1 3 68.889 0

70 d05 - - - - - -

70 d10 33 1401 19 36 1418 8

70 d20 24 1001.7 10 27 1013.6 6

70 d30 15 592.82 5 18 577.10 2

70 d40 7 105.14 3 9 112.62 2

70 d50 5 103.14 2 6 111.65 0

Continued on next page

66

6.5. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT FOR
CONSTRUCTING DP & CADP

Table 6.3 – continued from previous page

Instances DP CADP

n d No of

Nodes

t(s) Conten-

tion

No of

Nodes

t(s) Conten-

tion

70 d60 4 118.7 1 4 108.84 0

70 d70 3 122.03 1 3 122.60 0

100 d05 - - - - - -

100 d10 43 599.69 20 50 603.7 12

100 d20 11 499.69 7 12 526.82 5

100 d30 7 467.41 4 8 552.64 1

100 d40 5 540.54 2 6 573.85 0

100 d50 4 576.64 1 4 622.14 0

100 d60 3 561.98 0 3 599.10 0

100 d70 3 573.19 0 3 593.03 0

120 d05 - - - - - -

120 d10 - - - - -

120 d20 8 1517.63 6 10 1528.9 4

120 d30 7 1437.8 4 8 1443.8 0

120 d40 5 1123.92 1 5 1131.6 0

120 d50 4 997.24 1 4 997.98 0

120 d60 3 1081.95 0 3 1098.6 0

120 d70 3 1106.211 0 3 1152.9 0

The result in Table 6.3 can be summarized as follows:

• Effect on number of Selected Nodes: For a fixed set of nodes, as the density in-

creases, the number of forwarding nodes decreases. In term of minimizing the con-

67

6.5. ANALYSIS AND PRESENTATION OF EXPERIMENTAL RESULT FOR
CONSTRUCTING DP & CADP

tention, CADP selects some extra nodes than DP for some instances. For n = 100,

DP selects 43, 11, 7 and 5 nodes, whereas CADP selects 50, 12, 8, and 6 nodes for

density 10%, 20%, 30% and 40% respectively. For density 50%, 60% and 70%, both

the algorithms select same number of forwarding nodes.

• Effect on the Execution Time: Just like in previous simulations, we run the dis-

tributed algorithms for 3600 seconds. If the algorithms cannot produce solution

within this particular time, we add a character ‘-” to the corresponding entry. Among

the 54 instances, both DP and CADP can not solve five instances. 60 d05, 70 d05,

100 d05, 120 d05 and 120 d10 are the instances for which our distributed algorithms

can not provide solution. The gap in time between the execution time of the two al-

gorithms is not as large.

• Effect on Contention: CADP is better than DP at reducing the contention. There

are 43 instances among 54 where DP can not generate contention-free forwarding

nodes, whereas for 29 instances CADP generates contention-free broadcast nodes.

Although CADP may not generate contention-free forwarding nodes in some cases, it

does select the forwarding nodes with minimal contention. 30 d10, 30 d30, 50 d30,

60 d10, 60 d20, 70 d10, 70 d20, 100 d10, 120 d20 etc are such instances where

CADP can not choose contention free forwarding nodes. For each of these cases,

CADP chooses nodes with contention that is less than that of DP.

In summary, Benders Decomposition performs better in dense graph than sparse graph.

The objective value obtained by SP based approach and ∆ based approach is the same while

constructing MCDS. The same scenario occurs in CACDS. CACDS reduces contention.

SP based approach is time-consuming for larger graphs. ∆ based approach is faster than

SP based approach for all the cases for MCDS and CACDS. CADP performs better in

minimizing contention that DP with a little increase in the execution time.

68

Chapter 7

Conclusion & Future Work

In this chapter, we discuss the main contribution of this thesis and outline directions for

further research.

7.1 Summary

In this thesis, we study Integer Programming formulations for minimum connected

dominating set (MCDS) and contention aware connected dominating set (CACDS). We use

Iterative version of Benders Decomposition to solve the two problems. To find a connected

dominating set, we study one state-of-art approach based on the shortest path algorithm

(SP based) [19] and ours one is based on number of connected components and maximum

degree (∆ based). We also develop an IP formulation for selecting the forwarding nodes

in a distributed network based on Dominant Pruning [26] algorithm (Discussed in Section

5.1, Page 40-44), where each node has only two-hop neighborhood information. We also

describe how to select contention aware forwarding nodes in the distributed network.

We use CPLEX optimization studio V-12.10 to implement and solve the models. The

computational results in Chapter 6 show that Benders Decomposition is faster for dense

graphs compared to sparse graphs to construct MCDS/CACDS. The objective value ob-

tained by both the approaches (SP and ∆ based) is the same as it should be. ∆ based ap-

69

7.2. FUTURE WORK

proach performs better than SP based approach to find CDS, specially when the network is

large with large number of nodes. SP based approach is time-consuming for larger graphs.

CACDS reduces contention. For a distributed system, the execution time for constructing

forwarding nodes in the both the algorithms- DP and CADP is not significant. CADP re-

duces contention at the cost of a small number of additional forwarding nodes.

7.2 Future Work

Our method of Benders Decomposition with iterative probing provided good results

on our instances, being extremely effective on dense instances. It would be interesting to

explore the behavior of a similar approach on other specific graph classes.

The computational time of constructing CACDS using the model defined in Section 4.2

is quite high. So, we used an MCDS as the starting point for the algorithm for constructing

CACDS. It would be an interesting to add constraints to the CACDS model so that a good

starting point is not needed.

70

Bibliography

[1] Beongku An and Symeon Papavassiliou. A mobility-based clustering approach to sup-
port mobility management and multicast routing in mobile ad-hoc wireless networks.
International Journal of Network Management, 11(6):387–395, 2001.

[2] Tasmiah Tamzid Anannya and Ashikur Rahman. Extended neighborhood knowledge
based dominant pruning (exdp). In 2018 5th International Conference on Networking,
Systems and Security (NSysS), pages 1–9. IEEE, 2018.

[3] Sivakumar R Bevan Das and V Bharghavan. Routing in ad-hoc networks using a
virtual backbone. In Proceedings of the 6th International Conference on Computer
Communications and Networks (IC3N’97), pages 1–20, 1997.

[4] Sergiy Butenko, Xiuzhen Cheng, Carlos A Oliveira, and Panos M Pardalos. A new
heuristic for the minimum connected dominating set problem on ad hoc wireless net-
works. Recent developments in cooperative control and optimization, 3:61–73, 2004.

[5] Sergiy Butenko, C Oliveira, and Panos M Pardalos. A new algorithm for the mini-
mum connected dominating set problem on ad hoc wireless networks. Proceedings of
CCCT’03, pages 39–44, 2003.

[6] Ian D Chakeres and Elizabeth M Belding-Royer. The utility of hello messages for de-
termining link connectivity. In The 5th International Symposium on Wireless Personal
Multimedia Communications, volume 2, pages 504–508. IEEE, 2002.

[7] Benjie Chen. An energy-efficient coordination algorithm for topology maintenance in
ad hoc wireless networks. Proceedings of ACM/IEEE MOBICOM’01, 2001.

[8] Xiuzhen Cheng, Min Ding, and Dechang Chen. An approximation algorithm for
connected dominating set in ad hoc networks. In Proc. of International Workshop on
Theoretical Aspects of Wireless Ad Hoc, Sensor, and Peer-to-Peer Networks (TAWN),
volume 2, 2004.

[9] Waltenegus Dargie and Christian Poellabauer. Fundamentals of wireless sensor net-
works: theory and practice. John Wiley & Sons, 2010.

[10] Bevan Das and Vaduvur Bharghavan. Routing in ad-hoc networks using minimum
connected dominating sets. In Communications, 1997. ICC’97 Montreal, Towards
the Knowledge Millennium. 1997 IEEE International Conference on, volume 1, pages
376–380. IEEE, 1997.

71

BIBLIOGRAPHY

[11] Susanta Datta, Ivan Stojmenovic, and Jie Wu. Internal node and shortcut based routing
with guaranteed delivery in wireless networks. Cluster computing, 5(2):169–178,
2002.

[12] Budhaditya Deb, Sudeept Bhatnagar, and Badri Nath. Multi-resolution state retrieval
in sensor networks. In Sensor Network Protocols and Applications, 2003. Proceedings
of the First IEEE. 2003 IEEE International Workshop on, pages 19–29. IEEE, 2003.

[13] Min Ding, Xiuzhen Cheng, and Guoliang Xue. Aggregation tree construction in sen-
sor networks. In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE
58th, volume 4, pages 2168–2172. IEEE, 2003.

[14] Anthony Ephremides, Jeffrey E Wieselthier, and Dennis J Baker. A design concept
for reliable mobile radio networks with frequency hopping signaling. Proceedings of
the IEEE, 75(1):56–73, 1987.

[15] Neng Fan and Jean-Paul Watson. Solving the connected dominating set problem and
power dominating set problem by integer programming. In International conference
on combinatorial optimization and applications, pages 371–383. Springer, 2012.

[16] Chowdhury Nawrin Ferdous and Ashikur Rahman. A contention aware connected
dominating set construction algorithm for wireless ad-hoc networks. In 2018 14th
International Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), pages 1–8. IEEE, 2018.

[17] Ronald A Fisher and Frank Yates. Statistical tables: For biological, agricultural and
medical research. Oliver and Boyd, 1938.

[18] Michael R Gary and David S Johnson. Computers and intractability: A guide to the
theory of np-completeness, 1979.

[19] Bernard Gendron, Abilio Lucena, Alexandre Salles da Cunha, and Luidi Simonetti.
Benders decomposition, branch-and-cut, and hybrid algorithms for the minimum con-
nected dominating set problem. INFORMS Journal on Computing, 26(4):645–657,
2014.

[20] Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237–260, 1972.

[21] Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominat-
ing sets. Algorithmica, 20(4):374–387, 1998.

[22] Ulaş C Kozat and Leandros Tassiulas. Service discovery in mobile ad hoc networks:
an overall perspective on architectural choices and network layer support issues. Ad
Hoc Networks, 2(1):23–44, 2004.

[23] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–
832, 1999.

72

BIBLIOGRAPHY

[24] H Lim and C Kim. Flooding in wireless ad hoc networks. Computer Communications,
24:353–363, 02 2001.

[25] Hyojun Lim and Chongkwon Kim. Flooding in wireless ad hoc networks. Computer
Communications, 24(3):353–363, 2001.

[26] Wei Lou and Jie Wu. On reducing broadcast redundancy in ad hoc wireless networks.
In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Con-
ference on, pages 10–pp. IEEE, 2003.

[27] Abilio Lucena, Nelson Maculan, and Luidi Simonetti. Reformulations and solution
algorithms for the maximum leaf spanning tree problem. Computational Management
Science, 7(3):289–311, 2010.

[28] Madhav V Marathe, Heinz Breu, Harry B Hunt III, Shankar S Ravi, and Daniel J
Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25(2):59–68, 1995.

[29] John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.
Handbook of applied optimization, 1:65–77, 2002.

[30] Jasaswi Prasad Mohanty, Chittaranjan Mandal, Chris Reade, and Ariyam Das. Con-
struction of minimum connected dominating set in wireless sensor networks using
pseudo dominating set. Ad Hoc Networks, 42(C):61–73, 2016.

[31] Raqeebir Rab, Shaheed Ahmed Dewan Sagar, Nazmus Sakib, Ahasanul Haque, Ma-
jedul Islam, and Ashikur Rahman. Improved self-pruning for broadcasting in ad hoc
wireless networks. Wireless Sensor Network, 9(02):73, 2017.

[32] Ashikur Rahman, Md Endadul Hoque, Farzana Rahman, Sabuj Kumar Kundu, and
Pawel Gburzynski. Enhanced partial dominant pruning (EPDP) based broadcasting in
ad hoc wireless networks. JNW, 4(9):895–904, 2009.

[33] Lu Ruan, Hongwei Du, Xiaohua Jia, Weili Wu, Yingshu Li, and Ker-I Ko. A greedy
approximation for minimum connected dominating sets. Theoretical Computer Sci-
ence, 329(1-3):325–330, 2004.

[34] Jamil A Shaikh, Julio Solano, Ivan Stojmenovic, and Jie Wu. New metrics for dom-
inating set based energy efficient activity scheduling in ad hoc networks. In Local
Computer Networks, 2003. LCN’03. Proceedings. 28th Annual IEEE International
Conference on, pages 726–735. IEEE, 2003.

[35] Luidi Simonetti, Alexandre Salles Da Cunha, and Abilio Lucena. The minimum con-
nected dominating set problem: Formulation, valid inequalities and a branch-and-cut
algorithm. In International Conference on Network Optimization, pages 162–169.
Springer, 2011.

[36] Raghupathy Sivakumar, Prasun Sinha, and Vaduvur Bharghavan. Cedar: a core-
extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in
communications, 17(8):1454–1465, 1999.

73

BIBLIOGRAPHY

[37] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on com-
puting, 1(2):146–160, 1972.

[38] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. Wireless networks, 8(2):153–167, 2002.

[39] Jie Wu and Bing Wu. A transmission range reduction scheme for power-aware broad-
casting in ad hoc networks using connected dominating sets. In Vehicular Technology
Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 5, pages 2906–2909.
IEEE, 2003.

[40] Jie Wu, Bing Wu, and Ivan Stojmenovic. Power-aware broadcasting and activity
scheduling in ad hoc wireless networks using connected dominating sets. Wireless
Communications and Mobile Computing, 3(4):425–438, 2003.

74

