Supplamentary material

A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen printed carbon electrode

Vesna Stanković^a, Slađana Đurđić^b, Miloš Ognjanović^c, Jelena Mutić^b, Kurt Kalcher^d, Dalibor Stanković^{b,c}

^aScientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia

^bFaculty of Chemistry, University of Belgrade, Belgrade, Serbia

°The "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

^dInstitute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria

Figure S1. XRPD analysis of GNR (blue line) and AgNp@GNR composite (green line).

Figure S2. Cyclic voltammograms for each electrode in 0.1M PBS solution (pH 7.4) containing $25 \text{ mM H}_2\text{O}_2$

Figure S3. Interferences study

Figure S1. XRPD analysis of GNR (blue line) and AgNp@GNR composite (green line).

Figure S2. Cyclic voltammograms for each electrode in 0.1M PBS solution (pH 7.4) containing 25 mM H_2O_2

Figure S3. Interferences study