Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

**Electronic supplementary information** 

## Efficient biodegradation of petroleum *n*-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic *Pseudomonas aeruginosa* san ai with multidegradative capacity

Ana Medić<sup>a</sup>, Marija Lješević<sup>b</sup>, Hideyuku Inui<sup>c</sup>, Vladimir Beškoski<sup>d</sup>, Ivan Kojić<sup>e</sup>, Ksenija Stojanović<sup>d</sup>, Ivanka Karadžić<sup>\*a</sup>

<sup>a</sup> University of Belgrade, Faculty of Medicine, Department of Chemistry, Višegradska 26, 11000 Belgrade, Serbia. E-mail: <u>ivanka.karadzic@med.bg.ac.rs</u>, Phone: +381113607067

<sup>b</sup> University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia

<sup>c</sup> Kobe University, Biosignal Research Center, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan

<sup>d</sup> University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

<sup>e</sup> University of Belgrade, Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

\*Corresponding author

Ivanka Karadžić, E-mail: ivanka.karadzic@med.bg.ac.rs, Phone: +381113607067



Fig. S1 GC-MS ion fragmentograms of *n*-alkanes (m/z 71) of control (a) and inoculated (b) aliphatic fraction from crude oil. \* – Co-elution of C-ring monoaromatic sterane; \*\* – Co-elution of C<sub>34</sub>17 $\alpha$ (H)21 $\beta$ (H)(22R)-tetrakishomohopane; For other peak assignments, see the legend of Fig. 2.



**Fig. S2** GC-MS ion fragmentograms of methylated naphthalenes (m/z 142 + 156 + 170), phenanthrene and its methylated derivatives (m/z 178 + 192 + 206), and fluorene and its methylated derivatives (m/z 166 + 180 + 194) of control (a, c, e) and inoculated (b, d, f) aromatic fraction from crude oil.

MN – Methylnaphthalene; DMN – Dimethylnaphthalene; TMN – Trimethylnaphthalene; EN – Ethylnaphthalene; EP – Ethylphenanthrene; \* – Impurity; For other peak assignments, see the legend of Fig. 2.



Fig. S3 GCxGC-MS Total Ion Chromatogram of fluorene and its metabolites after 48 h of degradation. For assignments of compounds, see the legend of Fig. 3 and Table 1.

## Supplementary Table 1 Homology search analysis of the proteins involved in FLU biodegradation to phthalate

| Protein of FLU biodegradation<br>from <i>Terrabacter sp.</i> DBF63/<br>Accession       | Homologous protein in<br>Pseudomonas<br>aeruginosa/ Accession | Length   | Identity, % |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|-------------|
| DbfA, Angular dioxygenase,<br>large subunit/ Q93UV3                                    | Dioxygenase, large<br>subunit/ AGG56547.1                     | 443/267  | 41          |
| FlnB, 9-Fluorenol<br>dehydrogenase/<br>Q93UV4                                          | SDR family<br>oxidoreductase/<br>WP_134300711                 | 357/266  | 36          |
| FlnE, 2-hydroxy-6-oxo-6-(2'-<br>carboxyphenyl)-hexa-2,4-<br>dienoate hydrolase/ Q83ZF0 | Alpha/beta hydrolase/<br>WP_148113522                         | 328/ 182 | 35          |
| FlnD, 2'-carboxy-2,3-<br>dihydroxybiphenyl 1,2-<br>dioxygenase/ Q83ZE9                 | Extradiol ring-cleavage<br>dioxygenase/<br>WP_049955909       | 298/282  | 34          |
| FlnC, Short-chain<br>dehydrogenase/reductase/<br>Q83ZE7                                | SDR family<br>oxidoreductase/WP_0096<br>85945                 | 252/ 253 | 48          |