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Abstract
Weconsider a systemof generalized coupledDiscreteNonlinear Schrödinger (DNLS) equations,
derived as a tight-bindingmodel from theGross-Pitaevskii-type equations describing a zigzag chain of
weakly coupled condensates of exciton-polaritons with spin-orbit (TE-TM) coupling.We focus on
the simplest case when the angles for the links in the zigzag chain are±π/4with respect to the chain
axis, and the basis (Wannier) functions are cylindrically symmetric (zero orbital angularmomenta).
We analyze the properties of the fundamental nonlinear localized solutions, with particular interest in
the discrete gap solitons appearing due to the simultaneous presence of spin–orbit coupling and zigzag
geometry, opening a gap in the linear dispersion relation. In particular, their linear stability is analyzed.
We alsofind that the linear dispersion relation becomes exactly flat at particular parameter values, and
obtain corresponding compact solutions localized on two neighboring sites, with spin-up and spin-
down partsπ/2 out of phase at each site. The continuation of these compactmodes into exponentially
decaying gapmodes for generic parameter values is studied numerically, and regions of stability are
found to exist in the lower or upper half of the gap, depending on the type of gapmodes.

1. Introduction

Planar semiconductormicrocavities operating in the exciton-polariton regime have become a paradigmmodel
for experimental and theoretical studies of nonlinear and quantumproperties of light–matter interaction [1]. A
major advantage of these systems is that they are solid state devices, that operate in awide diapason of
temperatures between fewKelvins and up to the room conditions. Interaction between the polaritons ismuch
stronger than for pure photons, that lowers power requirements for creating conditions when polariton
dynamics can be effectively controlledwith the external light sources [2].Microcavities can also be readily
structured to create a variety of potential energy landscapes reproducing lattice structures known in studies of
electrons in condensedmatter onmore practical scales of tens ofmicrons. Thus polaritons can be controlled
using band gap and zone engineering [3]. Through their peculiar spin properties and sensitivity to the applied
magnetic field, polaritons in structuredmicrocavities have been shown to have a number of topological
properties [4]. Thus polariton based devices have a competitive edge over their photon-only counterparts
through their relatively lownonlinear thresholds and possibility to createmicron-scale topological devices. A
combination of these two aspects has been recently used to demonstrate a variety of nonlinear topological effects
in polariton systems, see, e.g., [5] and references therein.

As a specific example, a polaritonBEC in a zigzag chainof polaritonmicropillarswith photonic spin–orbit
coupling, originating in the splitting of optical cavitymodeswithTE andTMpolarization,was proposed in [6]. The
simultaneous presence of zigzag geometry andpolarizationdependent tunnelingwas shown to yield topologically
protected edge states, and in the presence of homogeneous pumping andnonlinear interactions the creation of
polarization domainwalls through theKibble-Zurekmechanism, analogous to the Su-Schrieffer-Heeger solitons
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inpolymers, was numerically observed [6]. Of crucial importance is the spin-orbit induced opening of a central gap
in the linear dispersion relation. Aswewill show in thiswork, the existence of a gap, togetherwith the optionof
tuning the linear dispersion towardsflatness at specific parameter values, also leads to nonlinear strongly localized
modes in thebulk (intrinsically localizedmodes)with properties depending crucially on the relative strength of
interaction betweenpolaritons of opposite and equal spin.

The starting point is the following set of two coupled continuousGross-Pitaevskii equations [7]:
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These equations describe exciton-polaritons with circularly polarized light-component, where Y+ corresponds
to left (positive spin) and Y- to right (negative spin) polarization. Polaritons interactmainly through their
excitonic part, and interactions between polaritonswith identical polarization are generally repulsive (here
normalized to+1), while interactions between those of opposite spins often areweaker and attractive. A typical
value is 0.05-a [8], butmay range between roughly 1 0 - a , andmay possibly be also repulsive, or
attractive with amagnitude stronger than the self-interaction [9]. Since the exciton-components of the polariton
wave functions typically are localizedwithin small spatial regions, the interactions are assumed to be local (point
interactions) in thismean-field description.Ω describes the Zeeman-splitting between spin-up and spin-down
polaritons in presence of an externalmagnetic field; in this workwe putΩ=0.

Ofmain interest here is the termproportional toβ: it arises due to different properties associatedwith
polaritonswhose photonic components, as expressed in a suitable basis of linear polarization, have TE resp TM
polarizations (or, alternatively, longitudinal/transversal w.r.t. the propagation direction (k-vector)). It is
commonly described in terms of different effectivemasses of the lower polariton branches for TE andTM
components, m mTE TM

1 1b µ -- - , whose ratio typicallymay be of the ordermTE/mTM≈0.85−0.95 (see e.g.
supplementalmaterial of [10]), although in principle β could have arbitrary sign. Expressed in a basis of circular
polarization (spinor basis) as in (1) ( ix yY = Y Y  ), this TE/TMenergy splitting can be interpreted as a spin-
orbit splitting, since the dynamics of the two spin (polarization) components couple in a different way to the
orbital part of the other component (via derivatives in x and y of themean-fieldwave function in (1)).

In this work, we choose the potentialV(x, y) as a zigzag potential along the x-direction, considering this
geometry as the simplest generalization of a straight 1D chainwhich yields non-trivial geometrical effects of the
spin–orbit coupling between polaritons localized at neighboring potentialminima. As an example potential, we
may choose e.g.:
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as illustrated infigure 1.Here d is the distance between potentialmininma, and N2 is the total number of
potential wells in the chain. The geometry is essentially the same as for the coupledmicropillars in [6], with all
angles for the links between neighboringminima being±45°with respect to the x-axis. Evidently onemay easily
generalize to arbitrary angles, ormore complicated expressions for zigzag potentials whichmay be realized in
various experimental settings e.g. with optical lattices [11]. In order tomotivate a tight-binding approximation,
we assumeV0?1.

In order to understand themost important effects of the spin-coupling coupling in (1) in a tight-binding
framework, we here consider situations where the effects of spin-orbit splitting inside each potential well can be
neglected, and only are relevant in the regions of wavefunction overlap betweenneighboring wells. For the
experimental set-up of [10], this should be a good approximation if the spatialmodes inside thewellsmay be
approximatedwith Laguerre-Gaussmodeswith zero orbital angularmomentum (LG00

 in the notation of [10],
where the two subscripts stand for radial and orbital quantumnumbers of the 2Dharmonic-oscillator wave
function, and the superscript indicates polarization as in (1).)At least for a single cavity of non-interacting
polaritons, thesemodes should be good approximations to the ground state, so let us assume that interactions

Figure 1.The zigzag potentialV(x, y) (2)withV0=d=1 andN=5. In the tight-binding expansion (3), theWannier functions are
assumed to be centered around the latticeminima.
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(nonlinearity) and spin–orbit couplings are sufficiently weak to be treated perturbatively, alongwith the inter-
well overlaps. The approachmay be extended to consider also lattices of spin vortices (excitedmodes) built up
frommodes with nonzeroOAM (e.g. LG0 1

 as considered in [10]); however this will introduce some additional
complications andwill be left for future work.

Moreover, ifV0?1wemay also neglect the effect of next-nearest-neighbor interactions (distances between
twowells in the horizontal x-direction is 2 times larger than between nearest neighbors). Itmay then be a good
approximation to use, as the basis set for the tight-binding approximation, theWannier functions for a full 2D
square lattice (these issues are discussed and numerically checked for some realization of a zigzag optical lattice
in a recentMaster thesis [12]). Thesemay resemble (but certainly differ from) [12] the LG individualmodes (e.g.
Wannier functions typically have radial oscillatory tails, decaying exponentially rather thanGaussian). In any
case, wewill assume that the basis functionsw(x, y) (expressed in Cartesian coordinates) are qualitatively close to
the LG00modes. Particularly, theywill be assumed to be close to cylindrically symmetric (w x y e, x y2 2~ w- +( ) ( )

in the harmonic approximation). (Note that this assumptionwould not be valid for spin vortices arising fromLG
modeswith nonzeroOAM.)

The outline of this paper is as follows. In section 2we derive the tight-bindingmodel, discuss its general
properties, and illustrate the linear dispersion relation for the casewith±45° angles whichwill be the system
studied for the rest of this paper.We also in section 2.5 identify a limit where the linear dispersion relation
becomes exactly flat, and identify the corresponding fundamental compact solutions. In section 3we construct
the fundamental nonlinear localizedmodes in the semi-infinite gaps above or below the linear spectrum, as well
as in themini-gap between the linear dispersion branches, opened up due to the simultaneous presence of spin–
orbit coupling and nontrivial geometry. Analytical calculations using perturbation theory from theweak-
coupling andflat-band limits for the semi-infinite andmini-gap, respectively, are comparedwith numerical
calculations using a standardNewton scheme. In section 4 the linear stability of the different families of
nonlinear localizedmodes is investigated, and some instability scenarios are illustratedwith direct dynamical
simulations. Finally, some concluding remarks are given in section 5.

2.Model

2.1.Derivation of the tight-bindingmodel
Under the above assumptions, wemay expand:
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where, relative to the coordinate systemof (2) andfigure 1, d d x x d y y d2 , 2,¢ = ¢ = - ¢ ¢ = - ¢. Note
that the (Wannier) basis functions are the same for both components, sincewe have assumed no spin-orbit
splitting inside thewells,Ω=0, andw are basis functions of the linear problem.Note also that an analogous
approachwas used in [13] to derive lattice equations for the simpler problemof a pure 1D lattice with a standard
spin–orbit coupling term ( i x- ¶ , linear in the spatial derivative) for atomic BEC’s in optical lattices; similar
models were also studied in [14–16]. For simplicity wewill assume below thatw(x, y) can be chosen real (which is
typically the case in absence ofOAM; the generalization tomodes with nonzeroOAMrequires complexw(x, y)
andwill be treated in a separate work).

Inserting the expansion (3) into (1), we obtain for thefirst component:
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Here, inwriting the nonlinear term as a simple sumand not a triple, we have neglected overlap between basis
functions on different sites in cubic terms inw (assuming strong localization ofw).

Multiplyingwith w w x nd y d, 1 2n nº ¢ - ¢ ¢ - - ¢( ( ) )( ) , integrating over x and y, using the orthogonality of
Wannier functions and neglecting all overlaps beyond nearest neighbors, we obtain from (4) a 1D lattice
equation of the following form for the site amplitudes of the spin-up component:
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where the second equality is obviously true ifw( n) is cylindrically symmetric; nonlinearity coefficient,
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nearest-neighbor spin-orbit interactions (the relevant ’new’ terms here),
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Since tails ofw are exponentially small,wemay assumeall integrals takenover the infinite plane. Explicitly,with a
changeof originwemaywrite e.g. thefirst term in the integral in (6) as w x d y d w x y dxdy, 1 ,xx

nò ò ¢ - - ¢( ( ) ) ( ) ,
etc. But for the casewithw cylindrically symmetric,wemay easier evaluate the integral (6) in polar coordinates,
centered at siten±1.After some elementary trigonometrywe thenobtain:
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a º - p( ) are the angles for the links in the zigzag chainwith respect to the x-axis, and the integral

definingσ is independent of all signs since cosf¢ is even. Explicitly, for theπ/4 zigzag chainwe get
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Proceeding analogously with the second component, we obtain the corresponding lattice equation for the
site-amplitudes of the spin-down component:

iv v v v v u v u u u . 10n n n n n n n n n n n n n n1 1
2 2

, 1 1 , 1 1 g w s s= - G + + + + ¢ + ¢ + ¢+ - + + - -˙ ( ) (∣ ∣ ∣ ∣ ) ( )a

Here, ò,Γ, γ are identical as for the first component (i.e., wemay put ò=0 by redefining zero-energy, and γ=1
(or alternativelyΓ=1) by redefining energy scale). For the on-site spin-orbit interaction,
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(note opposite sign of third term compared toω), which is again zero ifw is cylindrically symmetric. Andfinally,
for the nearest-neighbor spin–orbit couplings,
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where the last equality holds since the integral is equivalent to that of (8). Explicitly, for theπ/4 zigzag chain

i
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, 13n n, 1s

s
s

¢ =
+
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⎧⎨⎩ ( )

i.e., with opposite signs compared to (9). Note that, under the above assumptions (w real and cylindrically
symmetric), the integral definingσ is always real.

We note that the resulting lattice equations (5), (10), with spin-orbit coefficients given by (9), (13), are not
equivalent to the equations studied in [13–16]. In particular, we comment on the relation between the present
model and that of [16], who considered a diamond chainwith anglesπ/4 and aRashba-type spin–orbit
coupling. The zigzag chain could be considered as e.g.the upper part of the diamond chain, if all amplitudes of
the lower strandwould vanish. However, because the spin–orbit coupling used in [16] is linear in the spatial
derivatives while in this work it is quadratic, the spin–orbit coupling coefficients in [16] have a phase shift ofπ/2
between diagonal and antidiagonal links, compared toπ in (9), (13).

2.2. General properties of the TB-equations
Let us put ò=0 and γ=1. As above, assuming cylindrically symmetric basis functions, we have 0w w= ¢ = .
We also remind the reader that we consider the case with no externalmagnetic field,Ω=0 in (1). Equations (5)
and (10), with spin-orbit coefficients given by (9) and (13), respectively, then become:
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Onemay easily show the existence of the ‘standard’ two conserved quantities forDNLS-typemodels; Norm
(Power):
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Here, {un, vn} and iu iv,n n* *{ }play the role of conjugated coordinates andmomenta, respectively (i.e.,
u H iu v H iv,n n n n* *= ¶ ¶ = ¶ ¶˙ ( ) ˙ ( ), etc.).Wemay note that theHamiltonian is similar to theHamiltonian for
the ‘inter-SOC’ chain of Beličev et al (equation (11) in [15]), but differs by the ‘zigzag’ spin-orbit factor (−1)n in
the last term.Note that this factor can be removed by performing a ‘staggering transformation’ on the site-
amplitudes of the spin-down component: v v1n

n
n¢ = -( ) , transforming the equations ofmotion (14) into:
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Thus, this transformation effectively changes the sign of the linear coupling of the spin-down component into
G  G¢ = -G (whichmay be interpreted as a reversal of the ‘effectivemass’ of the spin-down polariton in this
tight-binding approximation), while the nonlinear and spin-orbit terms for both components become
equivalent. Equations (17)differ from the equations derived in [13] for the straight chainwith standard spin–
orbit coupling only through this sign-change ofΓ for the spin-down component. Note also that equations (17)
are invariant under a transformation v v n n, 1 1n n¢  - ¢ +  - , i.e., an overall change of the relative sign of
the spin-up and spin-down components is equivalent to a spatial inversion.

2.3. Generalization to arbitrary angles
Asmentioned, it is straightforward to generalize the derivation of the tight-binding equations to arbitrary
bonding angles 4a p¹ in the zigzag chain.We just outline themain steps: in (3) and the following, we replace
y d1 2n¢ - - ¢( ) with y d1 tan 2n a¢ - - ¢( ) ( ) (having redefined d d cosa¢ = ). In (7), (12),π/4 then get
replaced byα, as already indicated. In (9)we get e i2 sa- for diagonal links and ei2 sa for antidiagonal, and in (13)
we get ei2 sa for diagonal links and e i2 sa- for antidiagonal. Then in the tight-binding equations ofmotion (14),
the last term for the spin-up component gets replaced by e v e vi

n
i

n
1 2

1
1 2

1
n n+ -a a-

+
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-
( ) ( ) , and for the spin-down

component by e u e ui
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( ) ( ) .For the rest of this paper wewill assumeα=π/4 and leave the
study of effects of variation of the binding angle to future work.
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2.4. Linear dispersion relation
Let u ue v ve,n

i kn t
n

i k n t= =m p m- + -( ) [( ) ] (i.e., v ven
i kn t¢ = m-( ) removing factors (−1)n), with u v, 1∣ ∣ ∣ ∣ .

Inserting it into (14) (or (17)) and neglecting the nonlinear terms then yields:

k k k2 cos sin . 181,2
2 2 2 2m s=  G +( ) ( )

Thus, as illustrated infigure 2 (assumingσ<Γ), the spin–orbit coupling opens up gaps in the linear dispersion
relation at k=±π/2, of width 4σ. Note that in contrast to themodels for straight chains studied in [13, 15], no
externalmagnetic field is needed to open the gap for the zigzag chain. The gap opening is a consequence of the
simultaneous presence of spin–orbit coupling and nontrivial geometry, whichwas also noted for themore
complicated diamond chain in [16].

The amplitude ratios between the componentsmay be obtained as v u k k k

k

cos cos sin

sin

2 2 2 2

= s
s

-G G + . For

weak spin–orbit coupling (σ=Γ), the polariton ismainly spin-up (u?v) on the lower dispersion branch and
spin-down on the upper branch (v?u)when kcos 0G > , and the opposite when kcos 0G < .

2.5. Flat band and compactmodes
Wemay also note that in the particular case of sG =∣ ∣ ∣ ∣, the dispersion relation becomes exactly flat. In this case,
there are eigenmodes completely localized on either upper or lower part of the chain, with alternating vn=±i
un on this part (i.e., v u 0n nº º either for odd or even n). Thesemodes persist also in the presence of
nonlinearity (interactions).With the flat band, it is also possible to construct exact compact solutions localized
on two neighboring sites. Explicitly, we get forσ=+Γ:

u

v
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and forσ=−Γ:
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In both cases, the nonlinear dispersion relation for these compactons yields A1 22m = + G( )∣ ∣a .Wewill
discuss further properties of these nonlinear compactons (e.g. stability) below.

Before proceeding, we briefly discuss some connections between our results above and earlier studies of
compactflat-bandmodes in different contexts. (See, e.g., [17] for an extensive review of earlier results onflat-
bandmodes in spin systems and strongly correlated electronmodels, and [18, 19] for reviews ofmore recent
experimental and theoretical progress.)As regards the properties in the linearflat-band limit, ourmodel belongs
to the same class ofmodels as those describing hopping between s- and p-orbital states, e.g., the ‘topological
orbital ladders’ proposed in [20] for ultracold atoms in higher orbital bands. In the general classification scheme
of compact localized flat-bandmodes occupying two unit cells in a one-dimensional nearest-neighbour coupled
lattice, the relevant case is that described in appendix B3 of [21]with two coexisting, nondegenerate, flat bands.
As far as we are aware, the corresponding nonlinear compactmodes have not been investigated in any earlier
work. By contrast, there are several works studying nonlinear compactons in a ‘sawtooth’ lattice [22, 23]which
would result if an additional next-nearest neighbour (horizontal) couplingwas added to either the upper or the
lower sub-chain (but not both) infigure 1. In this case, compactonsmay appear without presence of spin–orbit

Figure 2.The dispersion relation (18)with 1G = andσ=0.1.
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coupling, instead due to balance between nearerst and next-nearest neighbor couplings. For the sawtooth chain,
one of the two bandswill always remains dispersive.

3.Nonlinear localizedmodes

3.1. Single-sitemodes above the spectrum in theweak-coupling limit
For the case of no spin–orbit coupling (σ=0 and smallΓ= 1), analysis of fundamental nonlinear localized
solutions (including their linear stability) of (14)was done in [24]. It would be straightforward to redo a similar
extensive analysis including also a smallσ, but it is not themain aimof this work.We focus here first on
discussing the effect of small coupling on polaritonswithmain localization on a single site n0.

In the limit ofΓ=σ=0 (‘anticontinuous limit’), stationary solutions of (17) arewell known. There are two

spin-polarized solutions:
u
v e 1

0
n

n

i t0

0

m= m-⎜ ⎟
⎛
⎝

⎞
⎠ ( ) (spin-up); u

v e 0
1

n

n

i t0

0

m= m-⎜ ⎟
⎛
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⎞
⎠ ( ) (spin-down); and one spin-

mixed solution:
u
v e

e
1n
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i t
i1

0

0

= m m
q+

- ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠a
, with an arbitrary relative phase θ between the spin components.

Comparing theHamiltonian (16) for these solutions at given norm P, we haveH=P2/2 for the spin-polarized
modes and H P1 42= +( )a for themixedmode, so themixedmode has lowest energy as long as 1<a .

When 0m > does not belong to the linear spectrum (18), we search for continuation of thesemodes for
small but nonzeroΓ,σ into nonlinear localizedmodeswith exponentially decaying tails and frequency above the
spectrum. (Wehere assume 1;> -a if 1< -a the localizedmodes arising from the spin-mixed solutionwill
haveμ<0 and thus lie below the spectrum.)Wemay calculate them explicitly perturbatively to arbitrary order
in the two small parametersΓ,σ; here we give only thefirst- and second-order corrections to the five central sites
(amplitudes of other sites will be of higher order):
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It can be seen from such expressions (extending to higher orders) that amplitudes do decay exponentially above
the spectrum,μ>2Γ. However, for spin-mixedmodeswith u vn n= ¢∣ ∣ ∣ ∣, it is important to remark that even
though the second-order corrections in (23) can be obtained for arbitrary relative phases θ, the fourth-order
correction to site n0 can bemade consistent with the condition u vn n= ¢∣ ∣ ∣ ∣only if sin 2 02 2s qG =( ) . Thus, since a
solutionwith θ=π is equivalent to θ=0 through spatial reflection in the central site, the only non-equivalent
single-site centered spin-mixedmodes existing for nonzeroΓ andσ have θ=0,π/2.We also remark that, for a
stationary and localized solution, current conservation imposes the general condition:

u u v v v u u v . 24n n n n n n n n1 1 1 1* * * *sG - ¢ ¢ = ¢ + ¢+ + + +( ) ( ) ( )I R

Numerically calculated examples for the spin-up and spin-mixedmodes are illustrated infigure 3.Note
from (23) that, for the spin-mixedmodewith θ=π/2, u v u vn n n n1

2
1

2
1

2
1

2
0 0 0 0

+ ¢ ¹ + ¢+ + - -∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ , i.e., the
reflection symmetry around the central site gets broken on the opposite sublattice (upper or lower part of the
chain) if there is a nontrivial phase-shift between the spin-up and spin-down components at the central site. As

2s mG∣ ∣ increases the spatial asymmetry increases (figure 3(d)), until the solution typically bifurcates with an
inter-site centered (two-site)modewith equal amplitudes at sites n0 and n0+1 before reaching the upper band
edge atμ=2Γ.
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3.2. Fundamental gapmodes from theflat-band limit
Since the gap in the linear spectrumopened by the spin–orbit coupling at k=±π/2 appears only whenΓ andσ
are both nonzero, the standard anticontinuous limitΓ=σ=0 is not suitable for constructing nonlinear
localizedmodeswith frequency inside this gap (‘discrete gap solitons’). Instead, wemay use theflat-band limit

0sG = ¹∣ ∣ ∣ ∣ , where the exact nonlinear compactonmodes (19)–(20) can be used as ‘building blocks’ for the
continuation procedure. Analogously to above, wemay then calculate gap solitons perturbatively in the small
parameter sG -∣ ∣ ∣ ∣. To be specific, we assume 1> -a ,Γ�σ>0, and consider the continuation of a single
two-site compacton from the lowerflat bandμ=−2Γ into the gap. From the limiting solution (19)with the
upper sign, we then obtain the lowest-order corrections to six central sites (amplitudes at other sites are of higher
order) as:
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This family of fundamental gapmodes (called type I gapmodes) can be continued throughout the gap, with a
numerical example illustrated infigure 4(a). Profiles of another two types of gapmodes numerically found to
exist as nonlinear continuation of fundamental compactons, are depicted infigures 4(b), (c). Family of gap
modes of type II (figure 4(b)) originates from compact solutionwhich is superposition of two neighboring
overlapping in-phase compactons. On the other hand, type III gapmodes evolve in the presence of nonlinearity
from superposition of two neighboring overlapping compactons with aπ/2 phase difference (figure 4 (c)).

4. Linear stability of nonlinear localizedmodes

Linear stability of the abovemodes can be checked from the standard eigenvalue problem. If we denote the
amplitudes of the exact stationarymodes of (17) as u v,n n

0 0¢{ }( ) ( ) , wemay express the perturbedmodes as

u u c e d e en n n
i t

n
i t i t0 * *= + +l l m- -[ ( )]( ) , v v f e g e en n n

i t
n

i t i t0 * *¢ = ¢ + +l l m- -[ ( )]( ) . Inserting into (17) and
linearizing, we obtain the following linear systemof equations for the perturbation amplitudes c d f g, , ,n n n n{ }:

Figure 3.Numerical examples of fundamental nonlinear localizedmodes in the semi-infinite gap above the linear spectrumwhen
Γ=0.01,σ=0.005, andμ=0.1: spin-upmode (21) (a); spin-mixedmode (23)when 0.5= -a and θ=0 (b); and spin-mixed
mode (23)when 0=a and θ=π/2 (c). Amplitude ratios between central and two neighboring sites obtained fromnumerics and
equation (23)with θ=π/2 for the continuation of the solution in (c) towards smallerμ are shown in (d).
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Linear stability is then equivalent to (26) having no complex eigenvalues.Wemay easily solve it for the
uncoupledmodes. Due to the overall gauge invariance of (17) (u e u v e v,n

i
n n

i
n ¢  ¢f f ), there are always two

eigenvalues atλ=0. For the spin-polarizedmodes, the remaining two eigenvalues are at 1l m=  -( )a ,
while for the spin-mixedmode there is a fourfold degeneracy atλ=0. The latter is explained by the arbitrary
phase difference θ between the u and v components for thismode.

To seewhether linear stability of the fundamentalmodes survives switching on the couplingsΓ,σ, wefirst
note that the linear spectrumof (26) corresponding to sites with u v 0n n

0 0º ¢ º( ) ( ) has four branches, at
2 , 2l m m sÎ  - G -[ ]and 2 , 2l m s mÎ  + + G[ ]. Thus, unless 0, 1, or 2=a , we see immediately that

the fundamental spin-polarizedmodesmust remain linearly stable at least for small couplings. The general
stability properties for largerΓ and/orσwill be discussed below for the different fundamentalmodes separately.

4.1. Spin-polarizedmodes above the spectrum
Typical results fromnumerical diagonalization of (26) for the family of fundamental spin-polarizedmodes
above the spectrum are shown in figure 5. As is seen, thesemodes are linearly stable in their full regime of existence

Figure 4.Numerical examples of un and vn
, components of fundamental (type I) (a), type II (b) and type III (c) gapmodes found in the

mini-gap opened by the spin–orbit couplingwhen 0.01, 0.007, 0.5sG = = =a , andμ=0.
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when 1<a . Themagnitude of the frequency of the internal eigenmode arising from local oscillations at the
central site lies above the linear spectrumwhen 0<a (figure 5(a)) and below the linear spectrumwhen
0 1< <a (figure 5(b)). In both cases, it smoothly joins the band edge as 2m  G (linear limit), without causing
any resonances. On the other hand, for 1>a , the Krein signature of this eigenmodewill change, as a
consequence of the spin-polarizedmode nowhaving a lower energy than a spin-mixedmode, and thus it is no
longer an energymaximizer for the system. This results in small regimes of weak oscillatory instabilities when
the internalmode collides with the linear spectrum for frequencies close to the band edge, as shown in
figure 5(c).

4.2. Spin-mixedmodes above or below the spectrum
For the fundamental spin-mixedmodes continued from (23), the four-fold degeneracy of zero eigenvalues
resulting from the relative phase θ is generally broken for non-zero coupling as onlymodeswith integer 2θ/π
can be continued, andmoreover the structures ofmodeswith θ=0 and θ=π/2 becomenon-equivalent.We
discuss herefirst the case θ=0, and show infigure 6 typical results fromnumerical diagonalization for different
values of a. First, for 1< -a , as remarked above the spin-mixedmodes lie below the linear spectrum (μ<−2Γ
), and the pair of eigenvalues originating fromλ=0 in the anticontinuous limit (m  -¥) generally goes out
along the imaginary axis (figure 6(b)), where it remains. Thus, spin-mixedmodeswith θ=0 and 1< -a are

Figure 5. Stability eigenvalues for the continuation of fundamental spin-up states (21)whenΓ=0.01,σ=0.005, and 0.5= -a (a),
0.5=a (b), and 1.5=a (c), respectively. For 1a the imaginary parts of eigenvalues are zero to numerical accuracy.Only the

unstable eigenvalues are shown for 1.5=a .
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generically unstable. On the other hand, when 1> -a the spin-mixedmodes lie above the linear spectrum
(μ>2Γ ), and for 1 1- < <a this eigenvalue pair goes out along the real axis (figure 6(a)). Thus, thesemodes
remain linearly stable for sufficiently largeμ (or, equivalently, weak coupling), but become unstable through

Figure 6. Stability eigenvalues for the continuation of fundamental spin-mixed states (23)with θ=0whenΓ=0.01 andσ=0.005.
(a)Real parts of eigenvalues when 1.5= -a (red (middle gray) circles), 0.5= -a (black squares), and 0.5=a (green (light gray)
triangles), respectively. Unstable eigenvalues when 1.5= -a (b), 0.5= -a (c), and 0.5=a (d), respectively. Here, purely imaginary
eigenvalues are represented by green (light gray) triangles, and complex eigenvalues are represented by blue (dark gray) squares and
red (middle gray) circles for their real and imaginary parts, respectively.

Figure 7.Direct numerical simulation of a slightly randomly perturbed spin-mixedmodewith θ=0 andμ=2.5, whenΓ=1,
σ=0.5, and 0.5=a . Evolution of un and vn

, components (a) and dynamics of corresponding components given specifically for the
five central sites (b).

11

J. Phys. Commun. 3 (2019) 015001 M Johansson et al



oscillatory instabilities (complex eigenvalues, seefigures 6(c), (d)) as they approach the linear band edgewith
widening tails, causing resonances between the local oscillationmode at the central site andmodes arising from
oscillations at small-amplitude sites.

An example of the dynamics thatmay result from the oscillatory instabilities of the spin-mixedmodes in this
regime is shown infigure 7.Note that, after the initial oscillatory dynamics, the solution settles down at the stable
fundamental spin-upmode (in this particular case themode center is also shifted one site to the right).

As illustrated infigures 6(c), (d), the stability regime increases for a increasing towards 1, and exactly at
1=a the spin-mixed states are always stable. However, for 1>a the eigenvalue pair originating from zero

again goes out along the imaginary axis (not shown in figure 6) as for 1< -a , and thus spin-mixedmodeswith
θ=0 are generally unstable also for 1>a . In fact, this latter instability can be considered as a stability exchange
with the θ=π/2 spin-mixedmode, which, as illustrated infigure 8, is generally unstable with purely imaginary
eigenvalues for 1<a (figures 8(a), (b)) but stable for 1>a (figure 8(c)).

4.3. Compactmodes in theflat-band limit
In theflat-band limit, wemay obtain exact analytical expressions for the stability eigenvalues of the single two-
site compactonmodes.We focus as above on the specific case withΓ=σ>0 and 1> -a , when the nonlinear
compacton originating fromμ=−2Γ (equation (19)with upper sign) enters themini-gap for increasingμ.
For all zero-amplitude sites, the eigenvalues are just those corresponding to the flat-band linear spectrum,
λ=±μ±2Γ. For the compacton sites, four eigenvalues correspond to local oscillations obtained by

Figure 8. Stability eigenvalues for the continuation of fundamental spin-mixed states (23)with θ=π/2whenΓ=0.01 and
σ=0.005. Real (a) (Imaginary (b)) parts of eigenvalues when 0.5=a . Eigenvalueswhen 1.5=a (c) (imaginary parts are zero to
numerical accuracy).
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eliminating the surrounding lattice:λ=0 (doubly degenerate as always) and 2 2 4l m=  G + G( ) . Since the
eigenvalues of these internalmodes are always real forΓ>0 and they do not couple to the rest of the lattice, they
do not generate any instability. The remaining eigenvalues describe themodes coupling the perturbed
compacton to the surrounding lattice, and are obtained from the subspacewith c if d ig, ,n n n n0 0 0 0

= = -
c if d ig,n n n n1 1 1 10 0 0 0

= - =+ + + + . The rather cumbersome result can be expressed as:
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Oscillatory instabilities are generated if the expression inside the square-root in (27) becomes negative.
Since obtaining explicit general expressions for instability intervals in μwould require solving a nontrivial
fourth-order equation, we show in figure 9 numerical results for the specific parameter values 0.5= a and
1.5. As can be seen, the compacton remains stable throughout themini-gap as long as 1a but develops an
interval of oscillatory instability in the semi-infinite gap above the spectrum. The instability interval
vanishes exactly at 1=a , but thenmoves into the upper part of themini-gap for 1>a . Purely imaginary
eigenvalues, resulting from the terms outside the square-root in (27) becoming negative, also appear in the
semi-infinite gap for 1>a .

Figure 9. Stability eigenvalues for the compacton (19)with upper signwhenΓ=σ=0.01, and 0.5= -a (a), 0.5=a (b), and
1.5=a (c), respectively. Purely real eigenvalues are represented in black, while green (light gray) colored symbols stand for purely

imaginary ones. Complex eigenvalues are represented in blue (dark gray) and red (middle gray) for their real and imaginary parts,
respectively. The blue dashed vertical line represents the upper gap edge.
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4.4. Gapmodes in themini-gap
For the fundamental (type I) gapmode continued from the single two-site compacton (25) (assuming again

1> -a andΓ>σ>0), we illustrate in figure 10(a) typical results for the numerical stability analysis. As can be
seen, asσ decreases from the compacton limitσ=Γ, weak instabilities start to developmainly close to the two
gap edges. A further decrease inσ yields instabilites inmost of the upper half of the gap, while themode remains
stable in large parts of the lower half. Comparisonwith the stability eigenvalues for the exact compacton
(figure 9(b)) shows that the instabilities in the upper part of the gap result from resonances betweenmodes
corresponding to compacton internalmodes (27) and the continuous linear spectrummodes, which get coupled
as the tail of the solution getsmore extended. (These are seen infigure 9(b) as eigenvalue collisions atμ≈0.005
andμ≈0.015, but do not generate any instability in this figure since the corresponding eigenmodes are
uncoupled in the exact compacton limit. However, they generate oscillatory instabilities when the exact
compacton condition is not fulfilled, as seen infigure 10(a).)On the other hand, the instabilities appearing close
to the lower gap edge, where the shape of the gapmode is far from compacton-like and closer to a continuum
gap soliton (seefigure 11(a)) arise frompurely imaginary eigenvalues. Direct numerical simulations of the
dynamics in this regime (figure 11(b)) shows that themain outcome of these instabilities is a spatial separation of
the spin-up and spin-down components.

As for the type II gapmodes that arise in themini-gap from the superposition of two in-phase neighboring
single compactons in the presence of nonlinearity, we obtained pure imaginary eigenvalues in thewhole

Figure 10. Imaginary parts of stability eigenvalues for the continuation of: fundamental (I type) (a), type II (b) and type III (c) gap
mode inside themini-gap, whenΓ=0.01 and 0.5=a . Pure imaginary eigenvalues are depictedwith green (light gray) triangles,
while red (dark gray) circles correspond to imaginary parts of complex eigenvalues.Whenσ=0.01, the eigenvalues for fundamental
gapmode are those of the compacton illustrated infigure 9(b). Frombottom to top,σ is decreased to 0.007. Blue vertical dotted lines
represent the locations of the lower and upper gap edges. Profiles of the corresponding solutions atσ=0.007 in themid-gap (μ=0)
are depicted infigure 4.
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mini-gap, even for the case when value ofσ slightly differs fromΓ (see figure 10(b)). Here, with further decrease
ofσ, eigenvalues related to oscillatory instabilities start to occur but only in the upper half of themini-gap.

On the other hand, instability eigenvalue spectra for type III gap solutions contain only imaginary parts of
complex eigenvalues (see figure 10(c)). These instabilities are always present in the lower half of themini-gap and
expand to the upper part as wemove further from the compacton limit.

5. Conclusions

Wederived the relevant tight-bindingmodel for a zigzag-shaped chain of spin-orbit coupled exciton-polariton
condensates, focusing on the case with basis functions of zero angularmomentum and chain angles±π/4. The
simultaneous presence of spin–orbit coupling and nontrivial geometry opens up a gap in the linear dispersion
relation, even in absence of externalmagnetic fields. At particular parameter values, where the strength of the
dispersive and spin-orbit nearest-neighbor couplings are equal, the linear dispersion vanishes, leading to twoflat
bandswith associated compactmodes localized at two neigboring sites.

We analyzed, numerically and analytically, the existence and stability properties of nonlinear localized
modes, as well in the semi-infinite gaps as in themini-gap of the linear spectrum. The stability of fundamental
single-peakedmodes in the semi-infinite gaps was found to depend critically on the parameter a describing the
relative strength of the nonlinear interaction between polaritons of opposite and identical spin (the latter
assumed to be always repulsive). Generally, a spin-mixedmodewith phase differenceπ/2 between spin-up and
spin-down components is favouredwhen 1>a (cross-interactions repulsive and stronger than self-
interactions), while a spin-polarizedmode is favoured for 1<a , which is the typical case inmost physical
setups. However, significant regimes of linear stability were found also for spin-mixedmodes with zero phase
difference between components when 1<∣ ∣a , and for spin-polarizedmodeswhen 1>a .

For parameter values yielding aflat linear band, nonlinear compactons appear in continuation of the linear
compactmodes, in themini-gap as well as in the semi-infinite gaps. The linear stability eigenvalues for a single
two-site compactonwere obtained analytically, and shown to result in purely stable compactons inside themini-
gapwhen 1<a , while regimes of instability were identified in the semi-infinite gaps, andwhen 1>a also
inside themini-gap. Continuing compact two-sitemodes away from the exactflat-band limit yields the
exponentially localized fundamental nonlinear gapmodes inside themini-gap. Several new regimes of
instability develop, but the fundamental gapmodes typically remain stable in large parts of the lower half of the
gapwhen 1<a .We also found numerically nonlinear continuations of superpositions of two overlapping

Figure 11.Profile of an unstable fundamental gapmodewith 0.01, 0.5, 0.007, 0.012 5s mG = = = = -a (a). Direct simulation of
the dynamics when thismode is slightly perturbed; only five central sites are shown (b). Note the tendency for the spin-up and spin-
down components to localizemainly on odd and even sites, respectively, after t∼104.
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neighboring compactons (i.e., localized on three sites)with phase difference zero orπ/2, where the latter also
were found to exhibit significant regimes of linear stability in themini-gap.

Themodel studied heremay have an experimental implementationwith exciton-polaritons in
microcavities. Recently,microcavities have been actively investigated as quantum simulators of condensed
matter systems. Polaritons have been proposed to simulate XYHamiltonian [25], topological insulators [26, 27],
various types of lattices [28–31] among other interesting proposals [32]many ofwhichwere realized
experimentally. In fact, the quasi one-dimensional zigzag chain considered heremay be amore practical system
to study the effects of interactions in presence of spin–orbit coupling as compared to the full two-dimensional
systemsmentioned above. A possible realization of the studied system could be usingmicrocavity pillars or
tunable open-accessmicrocavities [33]. In the latter ones, large values of TE-TM splitting can be achieved
exceeding that ofmonolithic cavities by a factor of three [10]. Apart fromdirectly controlling the strength of TE-
TM splitting by changing parameters of the experimental system such as the offset of the frequency from the
center of the stop band of the distributed Bragg reflector [34], onemore possibility to control parameters of the
system is provided by using the excited states of the zigzag nodes such as spin vortices whichwere shown to
influence the sign of the coupling strength between the sites in a polaritonic lattice [35]. Towhat extent it is also
possible to realize the exact tight-binding flat-band condition derived here, i.e., to tune experimental parameter
values so that the nearest-neighbor spin–orbit coupling coefficientσ becomes equal to the standard dispersive
nearest-neighbor overlap integralΓwhile hoppings beyond nearest neighbors remain negligible, is to the best of
our knowledge an open question.

Finally, we note also the recent realizations of zigzag chains with large tunability for atomic Bose–Einstein
condensates [36], opening up the possibility for studying related phenomena involving spin–orbit coupling in a
different context. Having inmind experimental progress on coherent transfer of atomic Bose–Einstein
condensates into theflat bands originating fromdifferent optical lattice configurations (e.g., [37, 38]), as well as
in engineering spin–orbit couplingwithin ultracold atomic systems [39, 40], experimental realization of
phenomena analogous to those described in the present work should be expected to bewithin reach. Very
recently, a theoretical proposal for observing flat bands and compactmodes for spin-orbit coupled atomic Bose–
Einstein condensates in one-dimensional shaking optical lattices also appeared, where an exact tuning of the
spin-orbit term could be achieved by an additional time-periodicmodulation of the Zeeman field [41].
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