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Abstract

A Simple Temporal Network (STN) consists of time points modeling tem-
poral events and constraints modeling the minimal and maximal temporal
distance between them. A Simple Temporal Network with Decisions (STND)
extends an STN by adding decision time points to model temporal plans
with decisions. A decision time point is a special kind of time point that
once executed allows for deciding a truth value for an associated Boolean
proposition. Furthermore, STNDs label time points and constraints by con-
junctions of literals saying for which scenarios (i.e., complete truth value
assignments to the propositions) they are relevant. In this paper, we deal
with the use of STNDs for modeling and synthesizing execution strategies
on real world planning problems, by considering some motivating scenarios
from the area of healthcare processes. More precisely, we focus on the issue
of checking the consistency of STNDs and propose an incremental hybrid
SAT-based consistency checking algorithm for STNDs that (i) is faster than
the one previously proposed and (ii) allows for the synthesis of all consistent
scenarios and related early execution schedules (offline temporal planning).
We employ STNDs to model and reason about both temporal and access-
control constraints. We carry out an experimental evaluation with Kappa,
a tool that we developed for STNDs. Finally, as a last contribution from the
theoretical side, since consistency of STNDs is equivalent to consistency of
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disjunctive temporal networks (DTNs), as for both formalisms consistency is
NP-complete, we show how any STND can be easily translated into a DTN
and vice versa.

Keywords: Simple temporal network with decisions, HSCC algorithms,
incremental SAT-solving, disjunctive temporal network, temporal
constraints, access control

1. Introduction

Temporal constraint networks are a set of formalisms that allow one to
model temporal plans and check the coherence of temporal constraints that
impose lower and upper bounds on the temporal distance of the modeled
events. Different kinds of temporal constraint networks have been proposed,
according to the nature of temporal constraints and temporal features. Sim-
ple Temporal Networks (STNs, [1]) are the common ground, i.e., the basic
formalism, used in many extensions [2, 3, 4]. STNs are able to model an
unconditional temporal plan in which all components (events and their time
distances) are under control. Temporal events are modeled as time points
and their occurrence is modeled by executing the corresponding time points
(i.e., by assigning them real values).

A temporal plan is consistent if we can schedule all the events, each at a
specific time instant, such that all constraints are satisfied. If this is possible,
a schedule can be synthesized for both offline planning (the plan is available
before starting) or online planning (the plan is generated while executing the
given time points). The difference between these two planning approaches
is that in the former the consistency checking algorithm returns a solution,
whereas in the latter the algorithm returns a minimal network to generate
any possible solution.

Recently, the interest of the business process research community for
temporal constraint networks increased. Such formalisms have been con-
sidered the most suitable solution for mapping and then formally verifying
temporal properties of business process models, where temporal constraints
are specified with respect to the execution of tasks composing such process
models [5, 6, 7, 8, 9]. In this case, plans are related to the execution of
process paths, possibly composed by different tasks, according to different
choices or conditions holding during the process execution. Such plans are
also usually completed by the task assignments to suitable agents, accord-
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ing to some given access-control requirements. Access-control requirements,
often expressed by Role-Based Access Control (RBAC) models [10], are re-
lated to the issue of assigning tasks to different authorized agents, satisfying
some given constraints. Such constraints are often intertwined with tem-
poral ones [11]. Thus, consistency could be related both to temporal and
access-control features.

Furthermore, temporal planning is also relevant in the field of project
planning [12, 13], which is quite close to that of business processes. Here, tem-
poral requirements are always specified and often intertwined with resource-
allocation (or access control) constraints and with different decisions about
the actions to execute [14, 15].

According to this wide perspective, STNs fail to model temporal plans
where the occurrence of some events or the satisfaction of some constraints
must happen only if some decision has been made. The decisions we are in-
terested in have Boolean domain. Thus, a temporal plan subject to decisions
would ask us (not) to execute some time points or to satisfy some constraints
depending on what decisions we have made.

A few proposals to handle decisions within the temporal network for-
malisms built on top of STNs have been put forth. For instance, Drake [16]
provides an executive for temporal plans with choices based on Labeled STNs
that do not specify decision points (in a node-sense), whereas Temporal Plan
Networks (TPNs, [17]) extend STNs with decision nodes and model deci-
sions as outgoing edges from such nodes. Simple Temporal Networks with
Decisions (STNDs, [18, 19]) extend STNs by adding decision points that can
influence both the execution of time points and the satisfaction of constraints.
Several (possibly different) STNs may arise when projecting an STND onto
a scenario that models the complete interpretation of the decisions. For any
scenario, we are only interested in executing the time points and satisfy the
constraints entailed by it.

So far, only one hybrid SAT-based consistency checking algorithm (HSCC )
has been devised to check the consistency of an STND [18]. If the algorithm
finds a consistent scenario, i.e., a scenario for which the STN projection is
consistent, then a solution (scenario plus schedule) exists. In this case, any
schedule in the solution set involves the STN-projection corresponding to the
related scenario.

This algorithm allows for an offline planning where all decisions are made
before starting and the corresponding schedule is already known. However,
this algorithm has never been implemented nor evaluated, and it does not
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allow for the synthesis of all consistent scenarios.
In this paper, we extend and complete the first, preliminary, proposal

dealing with consistency checking of STNDs that we gave in [20]. Here, we
provide a deeper discussion and motivation of our proposal, by describing
requirements from the area of healthcare business processes having tempo-
ral constraints. More specifically, we first focus on modeling and checking
through STNDs the consistency of business processes with respect to some
given temporal constraints. We then discuss how to use STNDs to model,
represent, and check requirements related to the access control for temporal
business processes. We also add further details about the implementation,
verification and synthesis of execution strategies of the provided motivating
scenario.

The main contributions of our proposal can be summarized as follows:

1. As a proof of concept, we introduce and discuss requirements from a
real world scenario related to healthcare processes. It motivates the
study and the improvements proposed for STNDs both for modeling,
validating and synthesizing execution plans, satisfying both temporal
and access-control constraints.

2. We introduce and discuss STND-HSCC2, an HSCC algorithm for STNDs
that (i) is faster than the existing algorithm as it rules out inconsistent
scenarios as early as possible and (ii) allows for the synthesis of all
consistent scenarios and related early execution schedules (offline tem-
poral planning). The algorithm is hybrid because a SAT-solver and a
shortest path algorithm mutually influence each other (the output of
the former becomes the input of the latter and vice versa continuously).

3. We propose and discuss an original approach to represent access-control
requirements through STNDs, and to manage such requirements, possi-
bly also temporal ones, together with other pure temporal constraints,
in a seamless way.

4. We discuss Kappa, a tool that we developed for the experimental eval-
uation of STNDs. As a minor contribution, we adapted the previous
algorithm to support the synthesis of all consistent scenarios.

5. As a final contribution from the theoretical point of view, we con-
sider disjunctive temporal networks (DTNs) and show how to directly
translate any STND into a corresponding DTN and vice versa. DTNs
have been introduced to represent disjunctive temporal constraints [21].
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Thus, similarly to STNs, they allow for the representation of differ-
ent scenarios, according to the constraint considered in any given dis-
junction. As these two representations and reasoning formalisms are
equivalent at complexity level, it is important to understand, from the
modeling point of view, how to move from one to the other and dis-
cuss whether such kind of mappings are easily understandable when
representing real world networks.

The paper is organized as following. Section 2 introduces the concrete
healthcare case study that we consider throughout the paper. Section 3 pro-
vides background on STNs and STNDs, and the current consistency checking
algorithm for STNDs. Section 4 discusses STND-HSCC2, a faster HSCC algo-
rithm for STNDs. Section 5 shows how STNDs can be used to represent and
verify access-control constraints. Section 6 discusses Kappa and the related
experimental evaluation. Section 7 provides polynomial-time reductions to
translate any STND into a DTN and vice versa. Section 8 discusses related
work. Section 9 sums up and discusses future work.

2. A Case Study from the Healthcare Domain

To motivate and illustrate our proposal, we focus on the domain of stress
test in the clinical domain of cardiology and applied physiology [22]. Figure 1
depicts a simple process in which a patient has to undergo a cardiological
visit (CardioVisit); then, two possible mutually exclusive electrocardiographic
(ECG) stress tests have to be executed according to different techniques, i.e.,
treadmill (Treadmill-StressECG) or cycle ergometer (CycleErgom-StressECG);
after the ECG stress test, the results are analyzed and a blood test is per-
formed according to two possibly different types of lab device; finally, the
overall final report is completed (FinalReport). The overall process has to be
completed within 90 to 156 minutes, while the time span admitted between
the beginning of the cardiological visit and the end of the analysis of stress
test results is between 35 and 45 minutes.

To represent graphically the process, we adopted the well-known BPMN
language [23]. Figure 1 shows the BPMN process model for cardiological
patients. The undergone activities correspond to tasks, displayed as rounded
boxes containing the name of the activities. The alternative possible paths
of execution are represented through diamonds corresponding to either XOR
split or join gateways. The choice of the path to follow during a specific
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CardioVisit
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[1,10]

[1,10]

[1,1]

[1,1]

[1,10] [1,1][1,1]

Figure 1: The BPMN process model for cardiological patients.

execution of the stress test process can be done by the software engine (i.e.,
business process engine) that manages the coordinated activations of tasks.
The start and end of the process are represented through circles with a single
outgoing and a single ingoing edge, respectively. Edges between tasks/gate-
ways represent a precedence relation with respect to their execution. For ex-
ample, the edge between task CardioVisit and the following XOR split means
that the cardiological visit has to be finished before continuing with the XOR
split. The BPMN representation has been enriched with some temporal an-
notations. Tasks and edges have been annotated by ranges [l, u] of time units
needed either to execute the task or to start another task/gateway after the
end of the previous task/gateway, respectively. For example, ResultAnalysis
can span from 1 to 5 time units (i.e., minutes). Finally, to represent graphi-
cally the temporal constraints between tasks, we enriched the BPMN model
with labeled dotted lines linking the considered BPMN constructs. For ex-
ample, the allowed time span between the start of task CardioVisit and the
end of ResultAnalysis is expressed through the notation S[35, 45]E.

According to the depicted example, the following questions arise.

• Are we able to understand whether the specified temporal constraints
are meaningful? In other words, is it possible to establish whether
there is some execution of the specified process that satisfies all the
given constraints?

• Is it possible to establish which execution paths are allowed with respect
to the possible alternative options the software engine has at disposal?

• Is there some meaningful execution of the process using the cycle er-
gometer ECG stress test?
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These three questions are obviously intertwined but have some differences
also from the application point of view. Indeed the first one refers to the
existence of a solution, the second one to the discovery of all the allowed
execution plans (i.e., satisfying all the given constraints), and the third one
refers to the feasibility of a set of specific plans, all containing a given task.

To answer these questions, the BPMN model is usually mapped into a
corresponding temporal constraint network. Different kinds of temporal con-
straint networks have been proposed, according to the nature of temporal
constraints and temporal features of tasks and gateways of process models
[6, 7, 9]. In this paper, we focus on a mapping to STNDs. Such a new map-
ping, which is specified similarly to the mappings proposed in literature with
respect to other kinds of temporal constraint networks, allows for a suitable
management of different execution paths that are under the control of the
software engine, whereas in the previous proposals the focus was on alter-
native paths (and task durations) that were uncontrollable, i.e., determined
according to some conditions depending on external entities.

Informally, the mapping of a process model into an STND is done by
considering each single construct. More precisely, each task is mapped to
two corresponding time points, one for the starting time and the other one
for the ending time of the task, respectively. The allowed timespan of the
task is expressed through two temporal constraints. XOR split gateways
are expressed as single decision time points. XOR join gateways, as well as
start and end of the process, are represented as single time points. Temporal
constraints between the components in the process are mapped to temporal
constraints between the corresponding time points. Both time points and
constraint edges are suitably labeled according to the scenarios they belong
to. The STND in Figure 3a encodes the process in Figure 1.

After the specification of temporal constraints, let us slightly extend our
case study. We would like to consider some further, non temporal constraints,
related to the agents allowed to execute the different tasks of the process.

The requirement is that tasks CardioVisit, ResultAnalysis, and FinalReport
have to be executed by a cardiologist, while BloodTestType1 and BloodTest-
Type2 have to be executed by a physician specialized in Laboratory Medicine.
Moreover, moving to more strict requirements, the cardiologist executing Car-
dioVisit must also execute ResultAnalysis and FinalReport, for a given process
instance. On the other side, the same physician cannot execute both Cardio-
Visit and BloodTestType1/BloodTestType2 in a single process instance.
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Kate and Mike are two physicians both specialized in Cardiology and
in Laboratory Medicine. Thus, they could potentially execute CardioVisit,
ResultAnalysis, FinalReport, and BloodTestType1/BloodTestType2.

According to these further details related to access control, other issues
arise.

• Is it possible to specify task assignments to Kate and Mike for the exe-
cution of a single process instance, satisfying all the given constraints?

• Is it possible that the same physician has assignments related to both
medical specialties Cardiology and Laboratory Medicine in a given pro-
cess execution?

Such issues are related to access-control requirements, faced in many con-
tributions according to different Access Control models, often considering
roles in specifying access constraints [10, 24]. The specified requirements/-
constraints are not temporal and, thus, they can be checked in an orthogonal
way with respect to the previously introduced temporal ones. However, it
is straightforward to consider possible temporal access-related constraints,
where access-control and temporal requirements are intertwined. As an ex-
ample, let us assume that we want to consider a further constraint: if Mike
executes BloodTest-Type2, the overall process must end within 100 minutes.

Thus, a new question arises.

• Is it possible that Mike executes BloodTest-Type2 and the given process
ends without violating any given temporal constraint?

Figure 2 depicts the BPMN process related to the management of cardi-
ological patients that we previously discussed for the temporal aspects, en-
riched with BPMN artifacts named annotations [23] to specify access-control
constraints as well as temporal access-control constraints. As we did for tem-
poral constraints, also access-control constraints will be mapped from BPMN
artifacts to suitable STND fragments, as we will discuss in Section 5.

3. Simple Temporal Network with Decisions

In this section, we will briefly introduce STNs, then will focus on STNDs,
discuss the basic related concepts and, at the end, discuss suitable algorithms
for checking the consistency of STNDs.
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The physician executing 
them must be the same

The physician executing 
them must be the same

The physicians executing 
them must be different

If Mike executes task 
BloodTest-Type2, the process 
has to end within 100 minutes 

Figure 2: The BPMN process model for cardiological patients extended with some access
constraints.

A Simple Temporal Network (STN, [1]) is a pair 〈T , C〉, where T =
{X, . . . } is a set of time points (continuous variables) and C = {(Y − X ≤
k), . . . } is a set of constraints, for X, Y ∈ T , k ∈ R∪±{∞}. An STN is con-
sistent if there exists a schedule t : T → R of real values to the time points
such that all constraints are satisfied. Given a consistent STN, a schedule
must enforce that if X is executed before Y , then t(X) ≤ t(Y ). An early
execution of an STN consists of finding a schedule executing the time points
as soon as possible (e.g., by using the Floyd-Warshall algorithm [1]).

Given a set P = {d, . . . } of Boolean propositions, a label ` = λ1 . . . λn is
any finite conjunction of literals λi, where a literal is either d (positive literal)
or ¬d (negative literal), and we might sometimes omit the ∧ connective to
ease reading when the label is clear from the context. The empty label is
denoted by �. The label universe of P , denoted by P∗, is the set of all
possible (consistent) labels drawn from P ; e.g., if P = {d, e}, then P∗ =
{�, d, e,¬d,¬e, de, d¬e,¬de,¬d¬e}. Two labels `1, `2 are consistent if their
conjunction `1`2 is satisfiable. A label `1 entails a label `2 (written `1 ⇒ `2)
if all literals in `2 appear in `1 too (i.e., if `1 is more specific than `2). For
instance, if `1 = d¬e and `2 = d, then `1 and `2 are consistent since d¬ed is
satisfiable, and `1 entails `2 since d¬e⇒ d.

A scenario is a mapping s : P → {>,⊥} assigning a truth value to each
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d ∈ P . A scenario satisfies a label ` (in symbols s |= `) if ` evaluates to true
under the interpretation given by s (e.g., if s(d) = > and s(e) = ⊥, then
s |= d¬e).

Definition 1. A Simple Temporal Network with Decisions (STND, [18, 19,
25]) is a tuple S = 〈T ,DT ,P , O, L, C〉, where:

• T = {X, . . . , Z} is a finite set of time points.

• DT ⊆ T = {D!, . . . , H!} is a finite set of decision time points.

• P = {d, . . . , g} is a finite set of Boolean propositions.

• O : P → DT is a bijection assigning a unique proposition to each
decision time point D! that controls the truth value assignment to d
(O−1 : DT → P models the inverse).

• L : T → P∗ is a function assigning labels to time points.

• C is a finite set of labeled constraints (Y −X ≤ k, `) where X, Y ∈ T ,
k ∈ R ∪ ±{∞} and ` ∈ P∗.

The STN-projection of an STND S with respect to a scenario s (written
πs(S)) is an STN 〈Ts, Cs〉 built as follows:

• Ts = {X | X ∈ T ∧ s |= L(X)}

• Cs = {(Y −X ≤ k) | (Y −X ≤ k, `) ∈ C, s |= `}

S is consistent if there exists a scenario s such that πs(S) is consistent. A
solution is a pair 〈s, t〉, where s is a scenario, t is a schedule with domain Ts,
and t(Y )− t(X) ≤ k holds for each (Y −X ≤ k) ∈ Cs. Checking consistency
of STNDs is NP-complete [18].

We represent an STND graphically by extending the distance graph of
an STN into a labeled distance (multi)graph. The set of nodes still coincides
with the set of time points, whereas each edge X → Y labeled by 〈k, `〉
represents (Y − X ≤ k, `) ∈ C (when ` = �, we just use k as a label).
Negative values on edges model delays, positive ones model deadlines (when
their labels are true). Time points’ labels, when different from �, are shown
near the nodes between [. . . ] brackets. Many 〈k, `〉 can be specified for the

10



S

VS

VE A!

TS

[a]
TE

[a]

CS

[¬a]
CE

[¬a]

JA RS RE B!

B1S

[b]
B1E

[b]

B2S

[¬b]
B2E

[¬b]

JB FS

FE

E

50

10−10

1

−1

〈10
, a
〉

〈−
2,
a〉

〈30, a〉

〈−30, a〉

〈20,¬a〉
〈−

2,¬a〉
〈20,¬a〉

〈−20,¬a〉

〈1, a〉〈−
1, a〉

〈1,
¬a
〉

〈−
1,
¬a
〉

1

−1

5

−1

20

−10

〈10
, b
〉

〈−
1,
b〉

〈30, b〉

〈−20, b〉

〈10,¬b〉
〈−

1,¬b〉
〈120,¬b〉

〈−50,¬b〉

〈1, b〉〈−1, b〉

〈1,
¬b
〉

〈−
1,
¬b
〉

10

−1

6 −4

1 −1

156

−90

45

−35

(a) STND modeling the business process of Figure 1.
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(b) Projection of Figure 3a onto s(a) = > and s(b) = >. The resulting (inconsistent) STN
models the process path of Figure 1 going through Treadmill-StressECG and BloodTest-Type1.
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(c) Projection of Figure 3a onto s(a) = ⊥ and s(b) = >. The resulting (consistent) STN models
the process path of Figure 1 going through CycleErgom-StressECG and BloodTest-Type1.

Figure 3: An example of an STND and two of its (four) possible STN-projections.

same X → Y provided their ` are different (if two labels are equal, we
keep the smallest k). Figure 3a shows an example of an STND, whereas
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Figures 3b–3c show two of its (four) possible STN-projections.
A label ` labeling a time point or a constraint is honest if for each literal

d or ¬d in ` we have that ` ⇒ L(D!), where D! = O(d) is the decision
time point associated to d; ` is dishonest otherwise. A label on a constraint
is coherent if it is at least as expressive as the labels of the time points
appearing in the constraint (i.e., ` contains all literals in the labels of the
two connected time points).

Definition 2 (Well-definedness). An STND is well-defined [19, 25, 26] if

• L(X) ⇒ L(O(d)) and (O(d) − X ≤ 0) ∈ C for each X ∈ T and
{d,¬d} ∈ L(X), and

• ` ⇒ L(Y ) ∧ L(X) for each (Y − X ≤ k, `) ∈ C, and ` ⇒ L(O(d)) for
each literal {d,¬d} ∈ `.

The STND in Figure 3a is well-defined.
To check the consistency of an STND, we can use the hybrid SAT-based

consistency checking (HSCC) algorithm proposed in [18]. STND-HSCC1, spec-
ified in Algorithm 1, (STND-CC in [18]) maintains a formula ϕ specifying CNF
clauses over propositions in P . Initially, ϕ allows for all truth value assign-
ments. In each round of the algorithm we ask the SAT solver for a truth
value assignment making ϕ true. Such an assignment (if any) corresponds
to a scenario s over which we can project the STND and check if the re-
sulting STN is consistent (“SAT-solver influences directed weighted graph
algorithm”). If so, we return this scenario and a valid schedule for the pro-
jected STN (i.e., a solution). Otherwise, we apply De Morgan’s rules to the
negation of the relevant part of the scenario containing the negative cycle
(CUT-SCENARIO in Algorithm 2) and add the resulting clause to ϕ and go
ahead with the next round (“directed weighted graph algorithm influences
the SAT-solver”). This makes the approach hybrid. If ϕ has become unsat-
isfiable, it means that all STN-projections are inconsistent and therefore the
STND is inconsistent. Similar approaches are described in [27, 28].

An example of round for the network in Figure 3a is as follows. Suppose
that SAT-SOLVE(ϕ) = ab (i.e., s(a) = > and s(b) = >). Since the STN
πab(S) is inconsistent (Figure 3b admits a negative cycle), we add to ϕ the
clause ¬(a ∧ b), which simplifies to (¬a ∨ ¬b), to ask the SAT solver for a
different truth value assignment excluding this projection (if any). Figure 3b
is consistent if and only if s(a) = ⊥ and s(b) ∈ {>,⊥}. Consider, for
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Algorithm 1: STND-HSCC1(S)

Input: An STND S = 〈T ,DT ,P, O, L, C〉.
Output: A solution 〈s, t〉 for S if S is consistent; “inconsistent” if S is

inconsistent. STN-CC is a consistency checking algorithm for
STNs.

1 ϕ←
∧

p∈P(p ∨ ¬p) . Make every assignment possible

2 while true do
3 s← SAT-SOLVE(ϕ) . Try to find a satisfying assignment s
4 if ϕ is unsatisfiable then
5 return inconsistent

6 〈Ts, Cs〉 ← πs(S) . Project S onto s
7 if STN-CC(〈Ts, Cs〉) then
8 return 〈s, t〉 . where S is an early schedule for 〈Ts, Cs〉
9 ϕ← ϕ ∧ CUT-SCENARIO(S, 〈Ts, Cs〉) . Exclude this scenario

Algorithm 2: CUT-SCENARIO(S, 〈Ts, Cs〉)
Input: An STND S = 〈T ,DT ,P, O, L, C〉 and one of its STN-projections

〈Ts, Cs〉
Output: A clause ψ expressing the cut of the relevant part of the

scenario.
1 ψ ← > . ψ will contain the relevant part of s
2 foreach constraint c ∈ Cs do
3 ψ ← ψ ∧ `c . where `c is the corresponding label of c in S
4 return DeMorgan(¬(ψ)) . the clause expressing the cut of ψ

instance, the scenario s(a) = ⊥ and s(b) = > shown in Figure 3c. A possible
schedule for Figure 3c is t(S) = 0, t(VS) = 0, t(VE) = 10, t(A) = 11,
CS = 13, CE = 33, JA = 34, RS = 35, RE = 36, B = 46, B1S = 47,
B1E = 72, JB = 73, FS = 83, FE = 89 and E = 90.

4. A Faster HSCC Algorithm for STNDs

STND-HSCC1 is correct [18], but it suffers from the limitation that pro-
jections are tested only when the SAT solver returns a complete truth value
assignment. Consider Figure 3a and assume that the SAT solver starts on
the formula ϕ = (a ∨ ¬a) ∧ (b ∨ ¬b), which makes every truth value assign-
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ment possible. Suppose that in the search tree the SAT solver decides ⊥
for a proposition d going down to the left and > going down to the right in
the search tree, and assume that the order of visit is right then left. The
first truth value assignment returned is a = > and b = > (corresponding to
the scenario s(a) = s(b) = >). Now STND-HSCC1 would project the STND
of Figure 3a onto s to obtain the STN shown in Figure 3b and eventually
detect the negative cycle. However, the negative cycle could have been de-
tected much earlier, say, when a was assigned >. Indeed, all projections of
any scenario containing s(a) = > generate an STN embedding a negative
cycle between VS, VE, A!, TS, TE, JA, RS and RE, no matter which Boolean
value is assigned to b (Figure 3b, red cycle). Therefore, a clever implementa-
tion of this algorithm calls for an early detection of negative cycles. Before
proceeding with it, we must refine the concept of scenario and projection so
that they support “unknown” propositions (i.e., propositions that have not
been assigned a value yet).

Definition 3. A scenario is (now) a mapping s : P → {>,⊥,−} assigning
either true, false or unknown to each proposition d ∈ P . A scenario s satisfies
a label ` if ` evaluates to true under the following interpretation given by s:

1. s |= λ iff (λ = d ∧ s(d) = >) or (λ = ¬d ∧ s(d) = ⊥),

2. s |= ` iff s |= λ1 and . . . and s |= λn for ` = λ1 . . . λn.

Note that s never satisfies a label containing a literal for which the corre-
sponding proposition is unknown in s.

The definition of STN projection remains the same as that given in Def-
inition 1 but extended to the new definition of scenario.

STND-HSCC2 (Algorithm 3) is a brand new algorithm to check the consis-
tency of STNDs. It allows for the synthesis of either a single or all scenar-
ios admitting a consistent schedule for the corresponding STN-projection.
STND-HSCC2 still initializes a CNF formula ϕ making all truth value assign-
ments possible. Then, it starts the SAT-solver and hooks a listener to the
corresponding run. Such a listener is able to operate on ϕ by adding CNF
clauses on the fly if needed and is triggered by two main events: assume and
solution found.

An assume (d = > or d = ⊥) event (Algorithm 3, lines 8-12) triggers
an action of the listener to “look ahead” if the STN-projection obtained by
projecting the STND onto the scenario built from the current truth value
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Algorithm 3: STND-HSCC2(S, all)

Input: An STND S = 〈T ,DT ,P, O, L, C〉 and a Boolean value all
meaning all consistent scenarios iff all = >.

Output: A single or all scenarios s along with schedule(s) t for the
projection πs(S) if S is consistent, “inconsistent” otherwise.

1 ϕ←
∧

p∈P(p ∨ ¬p) . Make every assignment possible

2 Sols = ∅ . The set of (all) consistent scenarios (global variable)
3 Hook a listener to the run of the SAT solver and make it detect negative

cycles as early as possible (on blocks (below) define the event-driven
behavior).

4 SAT-SOLVE(ϕ)
5 if Sols = ∅ then
6 return inconsistent

7 return Sols
8 on assume d = > or assume d = ⊥: . Partial model
9 Build a scenario s from the current truth value assignment extended

with s(d) = > or s(d) = ⊥ (depending on the case)
10 〈Ts, Cs〉 ← πs(S) . Get the STN projection
11 if BellmanFord(〈Ts, Cs〉) detects a negative cycle then
12 ϕ← ϕ ∧ CUT-SCENARIO(S, 〈Ts, Cs〉) . Add clause

13 on solution found: . Complete model
14 Build a scenario s from the current truth value assignment
15 〈Ts, Cs〉 ← πs(S) . Get the STN projection
16 if BellmanFord(〈Ts, Cs〉) does not detect any negative cycle then
17 Sols ← Sols ∪ {〈s, t〉} . t is an early schedule for 〈Ts, Cs〉
18 if BellmanFord(〈Ts, Cs〉) detects negative cycle or all is true then
19 ϕ← ϕ ∧ CUT-SCENARIO(S, 〈Ts, Cs〉) . Add clause

assignment and extended with this assumption contains a negative cycle. If
so, we extend ϕ by adding (on the fly) a CNF clause modeling the negation
of the part of s containing a negative cycle in order to avoid getting the same
scenario again. If the projection is consistent, STND-HSCC2 does nothing and
lets the run go.

A solution found event (Algorithm 3, lines 13-19) extends the behavior
of the listener described for assume as follows. When triggered, the listener
builds a scenario from the current truth value assignment (which does not
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need to be extended with anything else this time). Then, it checks if the
corresponding STN-projection contains a negative cycle. If it does not, then
it computes an (early) schedule t for the STN projected onto s and adds
the pair 〈s, t〉 to the set of solutions. If it detects a negative cycle (or all
consistent scenarios are sought), then it acts as for assume events.

Eventually, when the run of the SAT solver ends, either Sols = ∅ (and
thus the starting STND is inconsistent), or Sols contains at least 1 solution
(scenario-schedule).

Like STND-HSCC1, STND-HSCC2 is sound and complete because it is based
on a SAT-solver that allows us to iterate on all the models. Whenever we
add a clause, we exclude a relevant part of a scenario that we do not want
to get anymore. The sooner, the better.

Besides the SAT solver, all the other internal sub-procedures (mostly,
algorithms for directed weighted graphs) are well known to be sound and
complete, and run in polynomial time.

5. Modeling Access Control

Above, we showed how a business process, augmented with temporal con-
straints, can be encoded into an STND to check its consistency and synthesize
one or all possible schedules. This section proves that we can do more than
just modeling time and process paths. This section proves that we can ex-
ploit STNDs’ decisions to model, check consistency and synthesize schedules
of a process augmented with resources, constraints over their commitment
and also mixed constraints involving both resources and time. In this sec-
tion, we summarize the well-consolidated model of RBAC, consider an access
control layer for our process and then describe a polynomial-time encoding
into STNDs.

Definition 4 (RBAC). A role-based access control model is a tuple (U,R,
T,UA,TA), where U is a finite set of users, R is a finite set of roles, T
is a finite set of tasks, UA ⊆ U × R is a many-to-many user assignment
relation, and TA ⊆ T × R is a many-to-many task assignment relation.
Thus, (u, r) ∈ UA means that user u belongs to role r, whereas (t, r) means
that task t can be executed by any user (i.e., agent) belonging to role r.

The RBAC model of Figure 2 is U = {kate,mike}, R = {cardiologist,
pathologist}, T = {S,CardioVisit, ResultAnalysis, Treadmill-StressECG,
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CycleErgom-StressECG, BloodTest-Type1, BloodTest-Type2,FinalReport, E} (S
and E model the start and end of the process), UA = U × R, and TA =
{(CardioVisit, cardiologist), (ResultAnalysis, cardiologist), (FinalReport,
cardiologist), (BloodTest-Type1, pathologist), (BloodTest-Type2, pathologist)}.
To simplify, we neglected XOR splits and joins; we also neglected the role
patient, because it would not add anything.

Given an RBAC model (U,R, T,UA,TA), we write users(r) = {u |
(u, r) ∈ UA} for the set of users belonging to a role r and roles(t) = {r |
(t, r) ∈ TA} for the set of roles authorized for a task t. We also take the
liberty of writing users(t) = {u | (u, r) ∈ UA, r ∈ roles(t)} for the set
of users authorized for a generic task t. Therefore, users(CardioVisit) =
users(ResultAnalysis) = users(BloodTest-Type1) = users(BloodTest-Type2) =
users(FinalReport) = {kate,mike}.

Classical RBAC allows for great flexibility in layering access control hi-
erarchically in an organization. Indeed, by assigning or de-assigning users
to roles, a security officer can immediately grant or revoke authorization to
those users for the execution of some specific subset of tasks. Despite all
this, RBAC models fail to specify security policies at user level such as sep-
aration of duties (SoD) and binding of duties (BoD). A SoD is a security
policy saying that a subset of tasks must be carried out by different users,
whereas BoD says that a subset of tasks must be carried out by the same
user. Authorization constraints bridge such a gap.

Definition 5 (Authorization constraint). Consider an RBAC model (U,
R, T,UA, TA).

• An atemporal authorization constraint is a triple (ti, tj, A), where ti, tj ∈
T are two non-mutually exclusive tasks, A ⊆ U ×U , and ui ∈ users(ti)
and uj ∈ users(tj) for each (ui, uj) ∈ A. Specifically, A defines the
allowed combinations of user assignments to ti and tj.

• A temporal authorization constraint is a pair (F, ti− tj ∈ [x, y]), where
F is a conjunction of atoms t θ u with θ ∈ {=, 6=}, t, ti, tj ∈ T are
non-mutually exclusive tasks, x, y ∈ R∪{−∞,+∞}, and u ∈ users(t).

Our motivation scenario has the following authorization constraints:

• (CardioVisit,ResultAnalysis, {(kate, kate), (mike,mike)})

• (CardioVisit,FinalReport, {(kate, kate), (mike,mike)})
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• (CardioVisit,BloodTest-Type1, {(kate,mike), (mike, kate)})

• (CardioVisit,BloodTest-Type2, {(kate,mike), (mike, kate)})

• (BloodTest-Type2 = mike, E − S ∈ [−∞, 100])

In Figure 2, atemporal authorization constraints are graphically repre-
sented through BPMN natural-language annotations connecting non-mutually
exclusive tasks.

Let us now discuss how we can augment the STND of our motivating
example to also consider access control. Let (U,R, T,UA,TA) be the RBAC
model and AA and AT be the set of atemporal and temporal authorization
constraints discussed so far. Let S = 〈T ,DT ,P , O, L, C〉 be the STND in
Figure 3. The encoding is as follows.

Authorized users. For each t ∈ T and u ∈ users(t), we add to S a deci-
sion time point Tu! associated to a Boolean tu resembling the following
interpretation: t is executed by u if and only if tu = >.

In our example we add to T the decision time points Vm!, Vk!, Rm!,
Rk!, B1m!, B1k!, B2m!, B2k!, Fm!, Fk!, and we add to P the Booleans
vm, vk, rm, rk, b1m, b1k, b2m, b2k, fm, fk, where subscripts k and m
correspond to users kate and mike, respectively.

Each task is executed by one authorized user. For each t ∈ T and
u ∈ users(t), let ` be the label of the time points encoding the start
and end of t in the STND. Consider any time point in the STND
(e.g., S). We add a constraint (S − S ≤ −1, `

∧
u∈users(t) ¬tu). This

constraint imposes that some user will execute t. However, it is not
enough. Indeed, it might be the case that more than one user ex-
ecute the task. For each 2-subset {ui, uj} ⊆ users(t), we add the
constraint (S − S ≤ −1, ` ∧ tui

∧ tuj
). Note that, despite the number

of k subsets of an n-element set is
(
n
k

)
= n!

k!(n−k)! , in our case, since k
is fixed, we have a number of subsets which is polynomial in the size
of users(t). Indeed, we generate exactly

(|users(t)|
2

)
= |users(t)|!

2!(|users(t)|−2)! =
|users(t)|(|users(t)|−1)(|users(t)|−2)!

2(|users(t)|−2)! = |users(t)|2−|users(t)|
2

constraints.

In our example we add to C the constraints (S − S ≤ −1,¬vk ∧ ¬vm),
(S − S ≤ −1,¬rk ∧ ¬rm), (S − S ≤ −1, b ∧ ¬b1k ∧ ¬b1m), (S − S ≤
−1,¬b ∧ ¬b2k ∧ ¬b2m) and (S − S ≤ −1,¬fk ∧ ¬fm).
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S E

Vm! Vk! Rm! Rk! B1m!

B1k! B2m! B2k! Fm! Fk!

〈−1,¬vk ∧ ¬vm〉 〈−1,¬rk ∧ ¬rm〉 〈−1, b ∧ ¬b1k ∧ ¬b1m〉
〈−1,¬b ∧ ¬b2k ∧ ¬b2m〉 〈−1,¬fk ∧ ¬fm〉 〈−1, vk ∧ vm〉 〈−1, rkrm〉
〈−1, b ∧ b1k ∧ b1m〉 〈−1,¬b ∧ b2k ∧ b2m〉 〈−1, fk ∧ fm〉 〈−1, vk ∧ rm〉
〈−1, vm ∧ rk〉 〈−1, vk ∧ fm〉 〈−1, vm ∧ fk〉 〈−1, b ∧ rk ∧ b1k〉
〈−1, b ∧ rm ∧ b1m〉 〈−1,¬b ∧ rk ∧ b2k〉 〈−1,¬b ∧ rm ∧ b2m〉

〈100,¬b ∧ b2m〉

Figure 4: Portion of STND modeling Figure 2 considering access control as well. Note
that all decision time points are unconstrained.

Atemporal authorization constraints. For each (ti, tj, A) ∈ AA, let A =
(U ×U) \A be the complement of A. Let `i and `j be the labels of the
time points encoding the start and the end of ti and tj in the STND.
Consider any time point in the STND (e.g., S). For each (ui, uj) ∈ A,
we add the constraint (S−S ≤ −1, `i∧`j∧ tui

∧ tuj
). These constraints

prevent all user assignment combinations which are not allowed.

In our example we add to C the constraints (S − S ≤ −1, vk ∧ vm),
(S − S ≤ −1, rk ∧ rm), (S − S ≤ −1, b∧ b1k ∧ b1m), (S − S ≤ −1,¬b∧
b2k ∧ b2m), (S−S ≤ −1, fk), (S−S ≤ −1, vk ∧ rm), (S−S ≤ −1, vm),
(S − S ≤ −1, vk ∧ fm), (S − S ≤ −1, vm), (S − S ≤ −1, b ∧ rk ∧ b1k)
(S − S ≤ −1, b ∧ rm ∧ b, (S − S ≤ −1,¬b ∧ rk ∧ b2k), (S − S ≤
−1,¬b ∧ rm ∧ b2m).

Temporal authorization constraints. For each (F, ti− tj ∈ [x, y]) ∈ AT ,
let `F :=

∧
t=u∈F tu

∧
t6=u∈F ¬tu be the corresponding STND label en-

coding F and let `i and `j be the labels of the time points encoding the
start and the end of ti and tj in the STND, respectively. We add the
pair of constraints (ti−tj ≤ y, `F ∧`i∧`j) and (tj−ti ≤ −x, `F ∧`i∧`j).
In our example we add to C the (only relevant) constraint (E − S ≤
100,¬b ∧ b2m).

Overall, the encoding runs in polynomial time. A graphical representation
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of the part of the STND needed to model the discussed access control is given
in Figure 4.

6. Experimental Evaluation

We developed Kappa, a tool for STNDs that takes in input a specification
of an STND and acts both as a solver and as a solution verifier. Kappa
relies on SAT4J [29], a Java library compliant with the IPASIR interface
that specifies how to interact with a SAT solver [30].

Kappa implements both STND-HSCC1 and STND-HSCC2. We used an ex-
tended implementation of STND-HSCC1, which allows for the synthesis of all
consistent scenarios as well. In this way, we could carry out a more accurate
experimental evaluation comparing the two algorithms when seeking either
single or all consistent scenarios.

We first use Kappa on our case study. Listing 1 shows the specification
of the STND in Figure 3a in Kappa’s input language. Each input specifi-
cation starts by specifying the set of Boolean variables, then it specifies the
set of time points by distinguishing normal time points X ∈ T \ DT , which
are specified as (X:label), from decision time points D! ∈ DT , which are
specified as (D!:boolean:label). Finally, each constraint (Y −X ≤ k, `) is
specified as (Y-X<=k:label). We synthesized all possible consistent scenar-
ios and computed all possible early execution schedules of the arising STN-
projections. The checking time for this example is negligible. Finally, we
verified that all synthesized projections are consistent for the corresponding
scenario. Listing 2 shows these results.

After that, we randomly generated 2200 STNDs partitioned in 11 bench-
mark sets, each one containing 100 consistent STNDs and 100 inconsistent
STNDs. Regardless of the set, each STND has exactly 100 time points. The
first set (100TimePoints/10Decisions) specifies 10 decision time points, the
second set (100TimePoints/11Decisions) specifies 11 decision time points
and so on, up to the eleventh one (100TimePoints/20Decisions) that spec-
ifies 20 decision time points. Each STND has a maximum number of con-
straints of |T | × |DT |. Time points and constraints are randomly labeled
so that the resulting STND is well defined. The weights on labeled edges
range from -100 to 100. This data and Kappa are available online at
https://github.com/matteozavatteri/kappa.

We ran Kappa on these benchmark sets without imposing any limit to
collect data (time and space) for both STND-HSCC1 and STND-HSCC2 when
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Listing 1: Specification of Figure 3a in Kappa.

1 Propositions { a b }

2
3 TimePoints {

4 (S : ) (VS : ) (VE : ) (A! : a : ) (TS : a) (TE : a) (CS : !a)

5 (CE : !a) (JA : ) (RS : ) (RE : ) (B! : b : ) (B1S : b) (B1E : b)

6 (B2S : !b) (B2E : !b) (JB : ) (FS : ) (FE : ) (E : )

7 }

8
9 Constraints {

10 (S - VS <= 0 : )

11 (VS - S <= 5 : )

12 (VS - VE <= -10 : )

13 (VE - VS <= 10 : )

14 (VE - A <= -1 : )

15 (A - VE <= 1 : )

16 (A - TS <= -2 : a)

17 (TS - A <= 10 : a)

18 (TS - TE <= -30 : a)

19 (TE - TS <= 30 : a)

20 (TE - JA <= -1 : a)

21 (JA - TE <= 1 : a)

22 (A - CS <= -2 : !a)

23 (CS - A <= 20 : !a)

24 (CS - CE <= -20 : !a)

25 (CE - CS <= 20 : !a)

26 (CE - JA <= -1 : !a)

27 (JA - CE <= 1 : !a)

28 (JA - RS <= -1 : )

29 (RS - JA <= 1 : )

30 (RS - RE <= -1 : )

31 (RE - RS <= 5 : )

32 (RE - B <= -10 : )

33 (B - RE <= 20 : )

34 (B - B1S <= -1 : b)

35 (B1S - B <= 10 : b)

36 (B1S - B1E <= -20 : b)

37 (B1E - B1S <= 30 : b)

38 (B1E - JB <= -1 : b)

39 (JB - B1E <= 1 : b)

40 (B - B2S <= -1 : !b)

41 (B2S - B <= 10 : !b)

42 (B2S - B2E <= -50 : !b)

43 (B2E - B2S <= 120 : !b)

44 (B2E - JB <= -1 : !b)

45 (JB - B2E <= 1 : !b)

46 (JB - FS <= -1 : )

47 (FS - JB <= 10 : )

48 (FS - FE <= -4 : )

49 (FE - FS <= 6 : )

50 (FE - E <= -1 : )

51 (E - FE <= 1 : )

52 (VS - RE <= -35 : )

53 (RE - VS <= 45 : )

54 (S - E <= -90 : )

55 (E - S <= 156 : )

56 }
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Listing 2: Validation and verification of the STND in Figure 3a with Kappa.

1 $ java -jar kappa.jar Fig1a.stnd --hscc2-all Fig1a.s

2 hscc2

3 all = true

4 Consistent

5 Saving schedules for 2 scenario(s) to Fig1a.s

6
7 $ java -jar kappa.jar Fig1a.stnd --verify Fig1a.s

8 Scenario: !a b

9 Schedule: {Z = 0, S = 0, VS = 0, VE = 10, A = 11, CS = 13, CE = 33, JA = 34, RS = 35, RE =

36, B = 46, B1S = 47, B1E = 72, JB = 73, FS = 83, FE = 89, E = 90}

10 Scenario: !a !b

11 Schedule: {Z = 0, S = 0, VS = 0, VE = 10, A = 11, CS = 13, CE = 33, JA = 34, RS = 35, RE =

36, B = 46, B2S = 47, B2E = 97, JB = 98, FS = 99, FE = 103, E = 104}

12 SAT!

seeking either a single or all consistent scenarios.
We graphically show the results in Figure 5, where x-axes always represent

the number (#) of decision time points (i.e., the set under analysis) and
y-axes represent either the average time elapsed or space consumed when
analyzing the instances in that set.

Figure 5a shows the results of the analysis run on the sets containing con-
sistent STNDs when seeking a single consistent scenario. The graph shows
that STND-HSCC2 is significantly faster than STND-HSCC1 for STNDs spec-
ifying more than 16 decision time points. Figure 5b shows the results of
the same analysis when seeking all consistent scenarios. Despite a normal
general worsening of performances (all consistent scenarios are sought and
not just one) STND-HSCC2 is faster than STND-HSCC1 for STNDs specifying
20 decisions. Figure 5c shows the results of the analysis on the sets con-
taining inconsistent STNDs. STND-HSCC2 has no competitors here and its
consistency checking times are significantly lower then those of STND-HS-

CC1, whereas STND-HSCC1 starts also having a serious exponential blow up
for STNDs specifying more than 14 decisions. Figure 5d shows the average
space consumed when synthesizing all consistent scenarios. The curve grows
exponentially according to the number of decision time points (recall that
STND-HSCC1 and STND-HSCC2 return the same set of consistent scenarios in
such an analysis, therefore we only show the data for STND-HSCC2).

We verified all synthesized solutions. No constraint was violated.
Finally, Listing 3 shows how to extend Listing 1, to consider access con-

trol, whereas Listing 4 shows the validation and execution with Kappa. The
synthesis of all scenarios also corresponds to synthesizing all possible valid
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Figure 5: Experimental evaluation with Kappa.

combinations of user assignments. We still can go through two process paths
(¬a∧¬b and ¬a∧ b). In the former the unique user assignment is to employ
kate as a cardiologist and mike as a pathologist (since this process path under-
goes BloodTest-Type1), whereas in the latter these two users can interchange
(since this process path undergoes BloodTest-Type2).

7. Translating STNDs to DTNs and Back

In this section we will consider the mapping from STNDs to DTNs and
vice versa. DTNs are expressed through another constraint-based formalism
allowing for the representation of disjoint temporal constraints [21]. STNDs
and DTNs have some similarities in allowing one to specify multiple possible
plans, where a specific subset of the given temporal constraints will hold.

Consistency of STNDs and consistency of DTNs are both NP-complete [1,
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Listing 3: Extension to the specification of Listing 1 to consider access control in Kappa.

1 Propositions {

2 ...

3 vk vm

4 rk rm

5 b1k b1m

6 b2k b2m

7 fk fm

8 }

9
10 TimePoints {

11 ...

12 (Vk! : vk : )

13 (Vm! : vm : )

14 (Rk! : rk : )

15 (Rm! : rm : )

16 (B1k! : b1k : b)

17 (B1m! : b1m : b)

18 (B2k! : b2k : !b)

19 (B2m! : b2m : !b)

20 (Fk! : fk : )

21 (Fm! : fm : )

22 }

23
24 Constraints {

25 ...

26 (S - S <= -1 : !vk !vm)

27 (S - S <= -1 : !rk !rm)

28 (S - S <= -1 : b !b1k !b1m)

29 (S - S <= -1 : !b !b2k !b2m)

30 (S - S <= -1 : !fk !fm)

31 (S - S <= -1 : vk vm)

32 (S - S <= -1 : rk rm)

33 (S - S <= -1 : b b1k b1m)

34 (S - S <= -1 : !b b2k b2m)

35 (S - S <= -1 : fk fm)

36 (S - S <= -1 : vk rm)

37 (S - S <= -1 : vm rk)

38 (S - S <= -1 : vk fm)

39 (S - S <= -1 : vm fk)

40 (S - S <= -1 : b rk b1k)

41 (S - S <= -1 : b rm b1m)

42 (S - S <= -1 : !b rk b2k)

43 (S - S <= -1 : !b rm b2m)

44 (E - S <= 100 : !b b2m)

45 }
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Listing 4: Validation and verification with Kappa of the STND encoded in Listing 1 and
extended as in Listing 3.

1 $ java -jar kappa.jar Fig1a.ac.stnd --hscc2-all Fig1a.ac.s

2 hscc2

3 all = true

4 Consistent

5 Saving schedules for 3 scenario(s) to Fig1a.ac.s

6
7 $ java -jar kappa.jar Fig1a.ac.stnd --verify Fig1a.ac.s

8 Scenario: !a !b !vk vm !rk rm b2k !b2m !fk fm

9 Schedule: {Z = 0, S = 0, VS = 0, VE = 10, A = 11, CS = 13, CE = 33, JA = 34, RS = 35, RE =

36, B = 46, B2S = 47, B2E = 97, JB = 98, FS = 99, FE = 103, E = 104, Vk = 0, Vm = 0, Rk

= 0, Rm = 0, B2k = 46, B2m = 46, Fk = 0, Fm = 0}

10
11 Scenario: !a b vk !vm rk !rm !b1k b1m fk !fm

12 Schedule: {Z = 0, S = 0, VS = 0, VE = 10, A = 11, CS = 13, CE = 33, JA = 34, RS = 35, RE =

36, B = 46, B1S = 47, B1E = 72, JB = 73, FS = 83, FE = 89, E = 90, Vk = 0, Vm = 0, Rk =

0, Rm = 0, B1k = 46, B1m = 46, Fk = 0, Fm = 0}

13
14 Scenario: !a b !vk vm !rk rm b1k !b1m !fk fm

15 Schedule: {Z = 0, S = 0, VS = 0, VE = 10, A = 11, CS = 13, CE = 33, JA = 34, RS = 35, RE =

36, B = 46, B1S = 47, B1E = 72, JB = 73, FS = 83, FE = 89, E = 90, Vk = 0, Vm = 0, Rk =

0, Rm = 0, B1k = 46, B1m = 46, Fk = 0, Fm = 0}

16 SAT!

18, 21]. As a result, there exist polynomial-time reductions to translate any
STND into a DTN and vice versa. It is thus interesting, from the modeling
point of view, to study how (and how difficult it is) to move from one formal-
ism to the other one, and vice versa, when representing real-world temporal
constraints.

DTNs are temporal networks that allow for disjunctions of temporal con-
straints (i.e., alternatives) in a temporal problem and are a possible formalism
to model the disjunctive temporal problem (DTP). For example, we might
want that once an event modeled by a time point X happened, another event
modeled by a time point Y happens either after 10 (seconds, minutes, hours,
. . . ) or within 5. Such a constraint would look like

(X − Y ≤ −10) ∨ (Y −X ≤ 5)

Any assignment of real values to X and Y satisfies the constraint if it satisfies
(at least) one disjunct.

Differently from the initial proposal in [1], where disjunctions of intervals
were allowed on the same pairs of time points only, the work we consider
here is the one in [21], not having such a restriction.
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Definition 6. A Disjunctive Temporal Network (DTN ) is a pair 〈T , C〉,
where

• T is the usual finite set of time points, and

• C is a finite set of temporal constraints each one having the form

(Y1 −X1 ≤ k1) ∨ · · · ∨ (Yn −Xn ≤ kn)︸ ︷︷ ︸
n disjuncts (atoms)

where Xi, Yi ∈ T and ki ∈ R. A temporal constraint is non-disjunctive
if and only if it contains one disjunct, disjunctive otherwise.

A DTN is consistent if there exists an assignment of real values to all
time points (i) always satisfying all non-disjunctive constraints and (ii)
satisfying at least one disjunct for each disjunctive constraint.

We write D(i) to shorten the ith disjunctive constraint and more specifi-
cally D(i, j) to refer to the jth disjunct of the ith disjunctive constraint [21].

We represent a DTN graphically through a colored multi graph, where
red edges model non-disjunctive constraints (i.e., those constraints that must
always hold), whereas colored edges (different from red) model disjunctive
constraints (i.e., those D(i)s for which at least one disjunct must hold). Each
disjunctive constraint is assigned to a different color (we also use a unique
line pattern for each color).

To give an example, consider the following DTN, whose corresponding
colored multi graph is shown in Figure 6a.

• T = {X, Y,W}

• C = {
must always hold︷ ︸︸ ︷

(Y −X ≤ 5), (X −W ≤ −2),

D(1)︷ ︸︸ ︷
D(1,1)︷ ︸︸ ︷

(Y −X ≤ 4)∨
D(1,2)︷ ︸︸ ︷

(W − Y ≤ −7),
(X − Y ≤ −2)︸ ︷︷ ︸

D(2,1)

∨ (Y −W ≤ 10)︸ ︷︷ ︸
D(2,2)︸ ︷︷ ︸

D(2)

}

The DTN in Figure 6a is consistent, and, for example, the assignment
X = 0, Y = 3 and W = 5 satisfies:

• all non-disjunctive constraints (solid black edges),

26



X

Y

W

5

−2

4

−2 −710

(a) Example of DTN.

X

Y

W

D11!

D12!

D21!

D22!

5

−2

〈4, d
11
〉
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(b) Corresponding STND.

Figure 6: Representing and encoding DTNs into STNDs.

• D(1, 1) but not D(1, 2) for the disjunctive constraints D(1) (dashed
blue edges),

• D(2, 1) and also D(2, 2) for the disjunctive constraint D(2) (dashdotted
purple edges).

We now proceed by specifying and describing the reductions. We first give
a strongly polynomial-time reduction from DTNs to STNDs and then the vice
versa reduction (and we provide examples throughout this discussion).

7.1. Reducing DTNs to STNDs

We reduce the DTN in Figure 6a to the corresponding STND in Figure 6b
as follows.

We generate a “core” STND containing all time points and all non-
disjunctive constraints of the starting DTN without labeling them since all
time points must always be assigned a value and all non-disjunctive con-
straints must always be satisfied.

For each disjunctive constraint D(i) in the DTN, we add to the STND
as many decision time points Dij! as the number of disjuncts D(i, j). These
decision time points are not constrained to any other time point in the STND
(i.e., free to take any value). Any disjunct D(i, j) in the DTN appears as a
constraint in the STND labeled by dij (the proposition associated to Dij!) so
that when dij = >, the disjunct of the DTN (labeled constraint in the STND)
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must hold and when dij = ⊥ we are not obliged to satisfy it. Moreover, we
impose that at least one disjunct D(i, j) for any disjunctive constraint D(i)
must hold (otherwise, it would be possible to disable them all by setting all
dij to ⊥). We enforce this condition by adding a negative self loop labeled
by ¬dij1 . . .¬dijn on any time point of the STND.

In Figure 6b, we added four decision time points D11!, D12!, D21! and D22!
and the constraints X → Y labeled by 〈4, d11〉, Y → W labeled by 〈−7, d12〉,
Y → X labeled by 〈−2, d21〉 and W → Y labeled by 〈10, d22〉 to switch on
and off the disjuncts D(1, 1), D(1, 2), D(2, 1) and D(2, 2) through the truth
value assignments to d11, d12, d21 and d22. Finally, we added two negative
self loops Y → Y labeled by 〈−1,¬d11¬d12〉 and 〈−1,¬d21¬d22〉 to prevent
a disjunctive constraint D(i) from being excluded (red self loop at Y ). Note
that the “−1” is meaningless: any negative number (e.g., −3, −159 or −ε)
is fine for this purpose. Likewise, the choice of time point Y is meaningless
too. Any time point would be fine for this purpose (e.g., X → X labeled
by the same constraints). Negative self loops are the more intuitive way to
enforce these conditions. However, nothing would have prevented us from
creating cycles of negative sum with respect to these labels involving many
time points.

To ease reading and understand “what goes where”, we colored the STND
in Figure 6b with the same colors of the DTN in Figure 6a and showed the
added negative cycles in red.

This encoding is strongly polynomial. The number of time points in the
STND is equal to the number of time points in the DTN plus as many decision
time points as the number of disjuncts D(i, j) contained in all disjunctive
constraints D(i) in the DTN. The number of constraints in the STND is equal
to the the number of non-disjunctive constraints plus as many constraints as
the number of disjuncts D(i, j) contained in all disjunctive constraints D(i)
in the DTN plus as many constraints as the number of disjunctive constraints
D(i) to model negative loops.

Any consistent scenario in the STND says which disjuncts (at least one
for each disjunctive constraint) are satisfied for the solution. If the STND is
inconsistent, so is the DTN.

7.2. Reducing STNDs to DTNs

We reduce the STND in Figure 7a to the corresponding STND in Fig-
ure 7b as follows. First of all, if the STND has labels on nodes we convert it
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(b) Corresponding DTN.

Figure 7: Encoding STNDs into DTNs.

to its streamlined version having only label on edges. The process of stream-
lining a temporal network was first discussed in [31] for CSTNs. However,
that process works for STNDs as well (as consistency is a special case of con-
trollability in which no uncontrollable part is considered). Then, we generate
a “core” DTN having the same set of time points of the STND (we drop all
“!” from the names). Also, all unlabeled constraints in the STND become
non-disjunctive constraints in the DTN.

For each proposition d associated to a decision time pointD! in the STND,
we add to the DTN a time point d and the disjunctive constraint

(d−D ≤ 0)︸ ︷︷ ︸
means d = ⊥

∨ (D − d ≤ −1)︸ ︷︷ ︸
means d = >

where the former says that d “occurs within” D, whereas the latter says that
d occurs at least 1 after D (a way to to simulate a Boolean condition).

Now, every constraint X → Y labeled by 〈k, d¬ef . . . 〉 (in the STND)
implies the following “meta constraint” in the DTN:

(D − d ≤ −1︸ ︷︷ ︸
d

∧ e− E ≤ 0︸ ︷︷ ︸
¬e

∧F − f ≤ −1︸ ︷︷ ︸
f

. . . )⇒ Y −X ≤ k

which can be rewritten as

¬(D − d ≤ −1 ∧ e− E ≤ 0 ∧ F − f ≤ −1 . . . ) ∨ Y −X ≤ k
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and finally simplified to

(d−D ≤ 0)︸ ︷︷ ︸
¬d

∨ (E − e ≤ −1)︸ ︷︷ ︸
e

∨ (f − F ≤ 0)︸ ︷︷ ︸
¬f

· · · ∨ (Y −X ≤ k)

Note that for any D and d (in the DTN) we define ¬(D − d ≤ −1) as
d − D ≤ 0 and ¬(d − D ≤ 0) as D − d ≤ −1 since they are abstracting
Boolean conditions only and we are not therefore interested in a specific
numeric value. Therefore, for any labeled constraint in the STND we add
such a disjunctive constraint to the DTN.

In Figure 7b we add two time points a and b and the following constraints:

• B − A ≤ 10 (solid black edges),

• D(1) : (a− A ≤ 0) ∨ (A− a ≤ −1) (dashed blue edges),

• D(2) : (b−B ≤ 0) ∨ (B − b ≤ −1) (dashdotted purple edges),

• D(3) : (A− a ≤ −1)∨ (b−B ≤ 0)∨ (B−A ≤ 7) (loosely dashed green
edges),

• D(4) : (B − b ≤ −1) ∨ (C −B ≤ −5) (zigzag orange edges),

• D(5) : (b−B ≤ 0) ∨ (A− C ≤ −3) (snake magenta edges).

We show the “colored” DTN graph in Figure 7b. Now, the DTN is
consistent if and only if the STND is so. A solution of the DTN corresponds
to a consistent scenario in the STND. The truth value assignment to the
propositions in the STND depends on the real value assignments to the time
points modeling those propositions in the DTN. For any proposition d in the
STND, d is false iff in the DTN the time point d has a value not greater than
D! and d is true in the STND iff in the DTN the value of time point d is
greater than D! (the assignment to the other time points defines a schedule
consistent for the scenario).

This encoding is strongly polynomial. The number of time points in the
DTN is the same of that in the STND plus as many time points as the
number of propositions in the STND. The number of constraints in the DTN
is given by the number of unlabeled constraints in the STND (non-disjunctive
constraints in the DTN), plus as many disjunctive constraints as the number
of labeled constraints in the STND (i.e., whose labels are different from �).
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Also, for any disjunctive constraint D(i) in the DTN, the number of disjuncts
of D(i) is n+1 where n is the number of literals contained in the label of the
corresponding constraint in the STND and the “+1” refers to the inequality.

8. Related Work

Let us now consider the main contributions that faced the issue of spec-
ifying/checking temporal constraints, while taking into consideration also
conditions and decisions.

Drake [16] is an executive for temporal plans with choices. Such plans
are represented as Labeled STNs. In such extended STNs, constraints are
labeled with environments (set of instantiated discrete variables). Decision
points are not explicitly represented and time points are unlabeled. During
the execution, choices are discriminated by generating conflicts with respect
to the moment Drake decides to schedule some event. With respect to Drake,
STNDs rely on a more structured approach by using labels instead of environ-
ments. Indeed, labeled time points are used to prevent their execution when
some literal in the label is still unknown. And it enforces well-defined prop-
erties, as making decisions only upon the execution of the related decision
time points.

A Disjunctive Temporal Network (DTN) [21] extends an STN with dis-
junctive constraints. Any solution to a DTN must satisfy all non-disjunctive
constraints (i.e., STN-constraints) and at least one disjunct for each dis-
junctive constraint. Labeled STNs and DTNs are equivalent [16]. DTNs and
STNDs are equivalent too, therefore, Labeled STNs are equivalent to STNDs
as well.

Temporal Plan Networks (TPNs) [17] extend STNs by adding decision
nodes and symbolic constraints to model temporal plans with controllable
choices modeled as outgoing edges from a decision node. Each outgoing edge
corresponds to a specific decision. Time points are not labeled and activities
are modeled as pair of non-decision nodes (start,end). A symbolic constraint
is either Ask(c) (is c true?) or Tell(c) (c is true!), where c a literal. Symbolic
constraints allow for the exclusion of some activities from a given execution
of a plan. A plan is consistent if it satisfies both temporal and symbolic
constraints. TPNs do not specify more than one temporal constraint on the
same edge. Consistency is checked by visiting the nodes of the graph from
start to end taking one edge (modeling a decision) at a time. If the resulting
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CSTNDSTNUD CSTNU

CSTNUD

Figure 8: A hierarchy of simple temporal networks. Acronyms containing D (resp., C)
mean that formalisms deal with controllable (resp., uncontrollable) conditionals, whereas
those containing U, mean that formalisms deal with uncontrollable durations. We high-
light uncontrollable parts in red.

STN-projection is inconsistent, the algorithm backtracks to the last decision
node that still has unexplored outgoing edges.

Both controllable and uncontrollable choices (i.e., decisions and condi-
tions) are modeled in Pike [32], which is an executive for Temporal Plan
Networks with Uncertainty (TPNUs), which extend TPNs with uncontrol-
lable choices. Pike adapts its controllable choices to the uncontrollable ones
made by a human. STNDs do not have uncontrollable choices. A Control-
lable Conditional Temporal Problem (CCTP) [28] is an optimization problem
for temporal plans with conditions and thus it cannot be directly compared
with STNDs. CCTPs with Uncertainty (CCTPUs) [33] address temporal
plans with controllable choices and uncontrollable durations, whereas in [34],
TPNUs are extended to support uncontrollable durations (strong controlla-
bility only). In both works, relaxation techniques are used to restore control-
lability of an uncontrollable plan. To this regard, in this paper we focused
on STNDs that do not have uncontrollable parts.

Several extensions of STNs address uncertainties for both temporal con-
straints and different/alternative execution paths. For example, Simple Tem-
poral Networks with Uncertainty (STNUs, [3]) add uncontrollable (but boun-
ded) durations represented through contingent links, whereas Conditional
Simple Temporal Networks (CSTNs, [26]) and the former Conditional Tempo-
ral Problem (CTP, [35]) extend STNs by considering conditional constraints
depending on uncontrollable truth value assignments associated to the oc-
currence of some special kind of time points called observations. Finally,
Conditional Simple Temporal Networks with Uncertainty (CSTNUs, [36, 4])
merge STNUs and CSTNs, whereas Conditional Simple Temporal Networks
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with Uncertainty and Decisions (CSTNUDs, [19, 25, 37]) add conditional
constraints with controllable truth value assignments made when executing
some special time points called decisions. CSTNUDs encompass all pre-
vious formalisms. All these networks extend STNs by adding at least an
uncontrollable part. As we already underlined, here we do not address any
uncontrollable part. STNDs derive from [18] by removing uncontrollable
conditionals and from [19, 25] by removing uncontrollable conditionals and
uncontrollable durations. This work extends [18] by providing STND-HSCC2

both to speed up the consistency checking phase and to allow for the synthe-
sis of all consistent scenarios. This work is, however, incomparable with the
proposals in [19, 25], as that contributions employ timed game automata.
Figure 8 provides a hierarchy of simple temporal networks.

As for access-control networks, there also have been some attempts to con-
sider time and resources together, e.g., Access Controlled Temporal Networks
(ACTNs, [38]) and Conditional Simple Temporal Networks with Uncertainty
and Resources (CSTNURs, [39]), which were preceded by an initial proposal
in [40]. However, neither ACTNs nor CSTNURs employ decision time points.
Research on temporal networks has inspired a recent line of work in which
controllability analysis focused on resource allocation under uncertainty em-
ploying a qualitative temporal approach instead of a quantitative one. This is
the case of access controlled workflows (i.e., business processes) investigated
in [11, 41] and of extensions of constraint networks proposed in [42, 43],
where Constraint Networks Under Conditional Uncertainty (CNCUs) are in-
troduced (see also [44, 45]). In these proposals, temporal relations are only
qualitative (specifically, “before/after”) and decision time points are not con-
sidered. A short summary of temporal and resource controllability based on
constraint networks and considered either in isolation or simultaneously can
be found in [46].

Planning as satisfiability was formally introduced in [47, 48] and relies on
a set of axioms where any model corresponds to a valid plan. Before that,
planning was based on deduction. Recently, more performant SAT encodings
have been provided (e.g., in [49]). However, none of these approaches is
incremental and thus they are incomparable with ours.

Gocht and Balyo [50] provide an incremental SAT solving approach for
SAT-based planning and prove that incremental SAT solving outperforms
the non-incremental one, but they do not address temporal constraints. Our
work does not model “transitions” but applies shortest path algorithms, in-
crementally, on STN-projections.
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Temporal induction is an incremental technique to check safety properties
on finite state machines and it is strongly related to bounded model checking
[51]. It is similar to SAT-based planning and allows for the detection of the
unreachability of a goal. Our analysis is not bounded with respect to the
“depth”.

Satisfiability modulo theory (SMT, [52]) can describe STNDs by using a
fragment of Linear Real Arithmetic called Difference Logic. However, SMT-
solvers do not guarantee to find early schedules. A run of an HSCC algorithm
and a run of an SMT-solver are not guaranteed to return the same consistent
scenarios (Boolean part). A fairer comparison is when both HSCC-algorithms
and SMT-solvers look for all consistent scenarios, but then we should make
sure that the SMT-solver does not return more than one schedule for each
consistent scenario.

Incremental task planning adopts incremental features of SMT-solvers to
extend a constraint-based task planning to motion domains [53]. As it adopts
a probability-based approach and focus on the motion domain, it cannot be
directly compared to the work we propose in this paper.

9. Conclusions and Future Work

In this paper we extended STNDs to model and verify business processes
having temporal and access-control constraints (often intertwined) and dis-
cussed a real-world case study from the domain of healthcare processes. In
particular, we proposed STND-HSCC2, a novel hybrid SAT-based consistency
checking algorithm for STNDs. This new version of the algorithm still relies
on a SAT solver but differently from the previous one, it exploits partial truth
value assignments to hunt down negative cycles in STN-projections as early
as possible. The previous algorithm tested STN-projections for negative cy-
cles by iterating on complete models returned by the SAT solver. When
the SAT solver makes an assumption, we project the STND over the cur-
rent truth value assignment of the propositions (i.e., partial model) extended
with this new assumption. If the projected STN is inconsistent, we add a
clause to the SAT solver to exclude that scenario, else we let the solver go.
We then discussed how to represent access-control constraints in a STDN.
We implemented our approach and provided Kappa, a tool for STNDs that
implements STND-HSCC1 and STND-HSCC2 both supporting the synthesis of
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single or all consistent scenarios1 and we compared the results. The more
inconsistent STN-projections an STND admits, the better STND-HSCC2 per-
forms. The saved solutions allow for an offline planning in which all decisions
are made before starting and all time points have already been scheduled to
execute as soon as possible. Finally, we showed how to translate any STND
to an equivalent DTN and vice versa. Considering this equivalence result, one
could wonder whether to use STNDs or DTNs for real world temporal busi-
ness processes. Many different perspectives have to be considered for that.
Indeed, on one hand, STNDs allow for an easier modeling of temporal busi-
ness processes with controllable conditional paths, by exploiting labels one
edges and nodes. Thus, the resulting mapping would be more “readable” and
simpler to be analyzed for debugging and fine tuning. On the other hand, an
experimental analysis on different kinds of such processes would be required
to discover whether there are differences in the performances of algorithms
checking such networks, according to their specific features (e.g., number of
decisions, number of labeled constraints, and so on).

As future work, we plan to investigate optimizations to reduce the size of
the CNF clauses added on the fly. We also plan to give a metric suggesting
the best algorithm to use depending on the form of the STND in input.
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