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Collinear Motion Strengthens
Local Context in Visual
Detection

Massimo Girelli
Department of Neuroscience, University of Verona, Verona, Italy

Abstract

Detection of elongated objects in the visual scene can be improved by additional elements flanking

the object on the collinear axis. This is the collinear context effect (CE) and is represented in the

long-range horizontal connection plexus in V1. The aim of this study was to test whether the visual

collinear motion can improve the CE. In the three experiments of this study, the flank was presented

with different types of motion. In particular, the collinear motion aligned with the longitudinal axis of

the to-be-detected object: toward or away from it, and the orthogonal motion with a direction

perpendicular to the collinear axis. Only collinear motion toward the target showed a robust and

replicable empowerment of the CE. This dynamic modulation of the CE likely is implemented in the

long-range horizontal connection plexus in V1, but, given that in addition it conveys the time

information of motion, there must be a direct feedback in V1 from higher visual areas where

motion perception is implemented, such as Middle Temporal (MT). Elongated visual objects

moving along their longitudinal axis favor a propagation of activation in front of them via a network

of interconnected units that allows the visual system to predict future positions of relevant items in

the visual scene.
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Object detection is greatly influenced by the static or dynamic context of the visual scene.
Gestalt psychologists suggested that similarity, proximity, and common fate can integrate a
contour of an object to increase its saliency and to stand out against a background
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(Wertheimer, 1912). The well-known context effect (CE) allows better detection of simple
bars presented against a homogeneous background when they are flanked by a high-contrast
similar bar. The flank, though, must be aligned along the collinear axis of the to-be-detected
bar and close enough to be integrated in an elongated border (Polat & Sagi, 1993, 1994).
Neurophysiological evidence supports the idea that the CE is represented in primary visual
cortex of primates where the response elicited by a simple bar, falling into the V1 neuron’s
receptive field, was potentiated by the presence of a collinear flank outside the receptive field
(Kapadia et al., 1995). When this flank presented small deviations from the collinear axis of
the target or it was not close enough to the target or, finally, it was replaced by a T-shaped
flank that interrupted the good continuation of the border, the CE disappeared. The CE was
observed in orientation-selective neurons in superficial layers of V1, connected via a plexus of
long-range horizontal connections (LRHC; Gilbert et al., 1996; Kapadia et al., 1995), with
the same orientation selectivity and lying along a collinear path. Recently, recordings in
primate V1 suggested that the CE might result, at least in part, from the collinear elongation
of the receptive field of the V1 population responses in the retinotopic orientation represen-
tation (Michel et al., 2013).

With a long border, the CE is repeated indefinitely resembling the trajectory of an elon-
gated stimulus moving in a direction collinear to its longitudinal axis. Moreover, the CE
might propagate in front of the moving stimulus as a preactivation of the most likely path
assuming that, in the real world, moving objects usually keep moving in the same direction
(Anstis & Ramachandran, 1987; Ramachandran & Anstis, 1983). Collinear motion, there-
fore, predicts the presence of an object in a future position in space when it is in a close
spatiotemporal proximity (Jachim et al., 2017; Morgan & Chubb, 1999; Verghese & McKee,
2002). Delay lines in Grzywacz’s theory of temporal coherence for motion detection
(Grzywacz et al. 1995; Verghese et al., 1999) and visual momentum both make and imple-
ment the assumption that moving objects usually follow a straight or quasistraight path.
According to Ramachandran and Anstis, the perceptual visual system, once a direction of
motion is recognized, is inclined to see the same direction of motion (Ramachandran &
Anstis, 1983). This sort of motion CE must rely on higher order cerebral areas such as
Middle Temporal (MT), sensitive to motion, which can modulate the V1 motion units via
feedback (see ahead in the Introduction section) and can get quickly the motion signals by
thalamocortical pathway directly from lateral geniculate nucleus (LGN; Sincich, 2004; Zeki,
2015). Therefore, an elongated moving stimulus might serve as a flank for itself in that it will
preactivate the motion path ahead of its present position as a bow wave in front of a boat. A
possible hint of this motion CE was provided years ago by Verghese and coworkers in an
experiment with moving dots in which the observers had to report which of two intervals
presented a coherent moving stimulus. The moving stimuli were triplets of dots in coherent
motion (resembling elongated objects) that could move either along a trajectory parallel to
their orientation (collinear motion) or along a trajectory vertical to their orientation (orthog-
onal motion). Results showed that a triplet in the collinear motion condition was much more
detectable than a triplet in the orthogonal motion condition (Verghese et al., 2000). These
authors proposed that “ . . . trajectory is the motion-equivalent of the static contour system
and that it is likely coded by a combination of signals from the primary motion units stim-
ulated along the direction of motion (Verghese et al., 2000; p. 1533).” On the contrary,
according to a model put forward by Geisler (1999), the collinear motion provided only
the orientation signal through static detectors, while the motion signal was still guaranteed
by motion detectors orthogonally oriented with respect to the trajectory of motion, resem-
bling the speed lines (Burr, 2000; Burr & Ross, 2002). Very recently, I also provided evidence
of collinear motion advantage in an experiment using the Poggendorff illusion: A collinearly
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moving bar yielded the most accurate alignment judgment and almost cancelled the well-
known misalignment produced by the illusion (Girelli, 2014), while an orthogonally moving
bar or a simple dot did not and showed large illusory misalignments. In a previous study by
Watamaniuk (2005), the same visual illusion and moving stimuli were used. In particular, he
replaced the oblique segments that appear to form a line behind an occluder of the typical
Poggendorff illusion with dots moving along a rectilinear path. He also used a mixed con-
dition in which only one segment was replaced by a moving dot. The results showed that the
advantage in the alignment judgment of a moving stimulus, with respect to the static seg-
ment, was obtained only when the first segment was replaced by a dot moving toward the
occluder. Although there might be undoubtedly some similarities with my 2014 study, there
is one crucial difference: I used a moving bar instead of a simple dot. Therefore, in my study,
the stimulus could move along a collinear direction of motion, either toward or away from a
target stimulus, while Watamaniuk’s dot stimulus could not because a dot does not have a
collinear axis and therefore cannot address the collinear motion advantage.

The CE of static stimuli, therefore, could be further potentiated by collinear motion, and
the LRHC plexus in V1, representing both the temporal and the orientation signals, might be
the best candidate to provide the neural basis of the temporal coherence theory or of the
correspondence problem in visual motion (Anstis, 1980; Grzywacz et al., 1995; Marr, 1982;
Ullman, 1979). Both motion and orientation signals develop in time as a unique signal of
motion trajectory in V1. Roughly after 200 ms, the orientation signal represents the motion
trajectory collinear to the orientation (Jancke, 2000). Collinearly moving bars, therefore,
might activate, along the motion path, V1 orientation-selective neurons as well as V1
motion-selective neurons which modulates each other. This mixed orientation-motion
signal, given its latency of 200 ms, is likely to be accomplished via feedback connections
from MT to Layer 6 of V1, via local LRHC connections in V1 (Gilbert et al., 1996) and
downstream from V1 to the LGN (Cudeiro & Sillito, 2006; Sillito et al., 2006). Orientation,
position, and time information are provided, therefore, in an interconnected network of
orientation-selective columns with the same orientation preference aligned along the collin-
ear motion path, connected by the LHRC, and carrying over the time information. The
overall motion signal and in particular the direction of motion is likely to be extracted in MT
where more information from different parts of the visual scene converges in single units to
represent one direction. Once this information is processed in MT, it can modulate down-
stream, via feedback pathways, V1 activity, and in particular the processing of the columns
showing the same orientation preference, aligned along the collinear path and connected via
the LHRC plexus.

The aim of this study was to provide experimental evidence of an advantage in object
detection, through the CE, of collinearly moving stimuli with respect to orthogonally moving
or static stimuli. In the first experiment, the CE produced by collinear motion was compared
with that produced by orthogonal motion and to absence of motion. In the second exper-
iment, a well-known ability of a horizontal Border, placed between the target and the flank,
in nullifying the CE was tested with the collinear motion. Finally, in the third experiment, the
direction of collinear motion, toward or away from the target, was tested. In the three
experiments, the predictions based on the experimental hypotheses tested were threefold:
First, collinear motion should generate a more robust CE with respect to orthogonal motion
and absence of motion; second, collinear motion should overcome the action of nullifying the
CE by the horizontal Border; and third, a direction of collinear motion toward the target
should generate an additional advantage in the CE with respect to a collinear motion head-
ing away from the target. This final prediction resembled an advantage of toward versus
away direction of motion in propagating the motion signal onto a crucial element reported in
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2005 by Watamaniuk (2005), although he did not use an elongated object but a simple dot;

therefore, in that study, motion cannot be defined as collinear.

Methods

Participants

For each of the three experiments of the study, two naı̈ve participants and the author

performed in the tasks (mean age¼ 37). They were all right-handed, neurologically intact,

and had normal or corrected-to-normal vision. They signed a consent form to participate in

the experiment carried out according to the World Medical Association Declaration of

Helsinki published on the website of the Journal of American Medical Association in 2013

and approved by the local ethical Committee of the University of Verona.

Stimuli and Task

The stimuli were displayed onto a CRT-60 Hz 1700 Philips monitor (dot pitch 0.25 mm—dot

pitch [horizontal] 0.21 mm) placed at a distance of 114 cm from the participants. A chin rest

was used to limit head movements. The participants fixated a bright small white cross (lumi-

nance 90 cd/m2) in the center of the display on a gray background (luminance 0.4 cd/m2).
The basic stimulus used in all experiments was made of four squares (side 0.23�) perfectly

aligned and spaced, edge-to-edge, at 0.25� to cover a total length of 1.67�. This basic stimulus

was aligned to the vertical meridian and placed, with the upper side of the first square

element at 1.43� from the fixation cross in the lower visual field. In this spatial position,

this stimulus was denominated the Target, and its luminance was varied according to the

constant stimuli method (see Figure 1A). The Target was stationary at all times in all the

experimental conditions of the three experiments of the study. A little white rectangle (0.06�),
denominated Dot (luminance 90 cd/m2), was placed halfway the length of this basic stimulus,

0.3� to the right and served as an attentional cue for the observer to keep attention on that

area, in particular, when the target was presented at low contrasts. This stationary atten-

tional cue was always present in all trials of all conditions (see Figure 1A and E). Along the

vertical meridian, at 0.6� below the lower side of the lowest squared element of the Target,

another basic stimulus, denominated Flank, was presented in white (luminance 90 cd/m2)

extending in the lower visual field for 1.67� (see Figure 1F). The Flank was the only element

moving in the visual displays in all experiments (see the following for the methodological

details for each experiment). The choice of this particular stimulus, made of four identical

elements in a particular configuration, was mandatory to have the same amount of local

motion signal in the collinear and orthogonal motion directions. That is, in both directions,

there were always four straight edges of the same length and moving for the very same

amount of space: In case of a solid bar, on the contrary, the orthogonal motion direction

would have shown a larger moving edge, with respect to the collinear motion direction. All

the stimuli were presented for 50 ms.
In the three experiments, the observers were required to signal the presence or absence of

the target in a two-alternative forced choice by pressing two different buttons with the index

finger of the two hands on a response pad: The response-to-key mapping and the hand-to-

key mapping with respect to the presence of the target was counterbalanced across the

experimental blocks for each observer. Therefore, there were two main categories of trials:

target-present and target-absent; within the first category, there were Target and
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TargetþFlank stimuli (see Figure 1A and B, respectively), while in the target-absent trial

category, there were Dot and Flank stimuli (see Figure 1E and F, respectively).
The stimuli described earlier were presented in different experimental conditions in the

three experiments as follows.

Experiment 1

In target-present trials, in one condition, the flank was presented motionless: Static (ST)

condition (Figure 1A and B); in a different condition, the Flank moved collinearly along the

vertical meridian toward the fixation point for 0.25� at the speed of 5 �/s: collinear motion

(CM) condition (Figure 1C and G), and in a different and final condition, for the same extent

and at the same speed, the Flank moved orthogonally to the right of the vertical meridian:

Orthogonal Motion (OM) condition (Figure 1D and H). In all conditions: ST, CM, and OM,

the target in the target-present trials was presented, randomly, with six Michelson contrasts

with respect to the background: 0.100, 0.107, 0.123, 0.140, 0.158, and 0.175 for 30 times per

contrast in 8 blocks for a total of 240 trials per condition. In addition, target-absent trials

were presented 18 times in the 8 blocks of ST (Figure 1E and F), CM (Figure 1E and G), and

OM (Figure 1E and H) conditions. The three observers started the experimental session with

Figure 1. Stimuli in Experiment 1. Target-present (A) and target-absent (E) trials used as baseline to
evaluate the context effect. Target-present trials (at one of six contrasts) (B, C, and D) and target-absent
trials (F, G, and H) in the three experimental conditions. In detail: Static (ST) condition: target-present (B),
target-absent (F); Collinear Motion (CM) condition: target-present (C), target-absent (G); Orthogonal
Motion (OM) condition: target-present (D), target-absent (H). The small white cross above each panel
represents the fixation point, and the small rectangle to the right of the Target, the attentional cue
denominated Dot, was present in the display at all times.
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a different condition and had the three conditions in a different order throughout the exper-

imental session.

Experiment 2

The trials were presented only in the ST (target-present: Figure 2A to C; target-absent:

Figure 2F to H) and CM conditions (target-present: Figure 2A, D, and E; target-absent:

Figure 2F, I, and J) as in Experiment 1, but in one third of the target-present trials per

condition, the Flank was presented with a 2.5� � 0.03� white motionless horizontal bar

(Border), at 0.2� below the last squared element of the target, laying on its major side and

centered with respect to the vertical meridian (target-present: Figure 2C and E, target-absent:

Figure 2H and J).
In the CM condition, the collinearly moving flank moved for 0.25� toward the Border

without overlapping it (see Figure 2E and J). As in Experiment 1, the target, with and

without the Border (see Figure 2A to E), was presented, randomly, with six Michelson

contrasts with respect to the background. Pilot measurements indicated that the presence

of a bright Border required a reduction of the contrasts to enhance the CE effect in all

conditions. The contrasts were slightly lower than those in Experiment 1 as follows: 0.096,

0.115, 0.133, 0.149, 0.167, and 0.188 and were presented 20 times in 8 blocks per condition

for a total of 160 trials. In addition, target-absent trials, as the Targets with and without the

Border (see Figure 2F to J), were presented 16 times in the 8 blocks of ST and CM con-

ditions. One observer started the experimental session with the ST condition and the other

two with the CM condition.

Figure 2. Stimuli in Experiment 2. Target-present (A) and target-absent (F) trials used as baseline to
evaluate the context effect. Target-present trials (B, C, D, and E) and target-absent trials (G, H, I, and J) in
the two experimental conditions. In detail: Static (ST) condition: target-present (B and C), target-absent
(G and H); Collinear Motion (CM) condition: target-present (D and E), target-absent (I and J). The small
white cross above each panel represents the fixation point, and the small rectangle to the right of the Target,
the attentional cue denominated Dot, was present in the display at all times.

6 i-Perception 11(5)



Experiment 3

Two experimental conditions were tested in this experiment: CM with the Flank collinearly
moving toward the target as in the previous two experiments, called CM-Toward (see Figure
3B), and CM with the Flank collinearly moving away from the target (downward), called
CM-Away (see Figure 3C); Toward and Away refer to the direction of motion of the Flank
with respect to the position of the Target in the TargetþFlank trials. The speed and motion
extent of the Flank were the same as in the previous two experiments.

In the two conditions—CM-Toward and CM-Away, the target, in the Target and
TargetþFlank trials (Figure 3A to C), was presented with six Michelson contrasts with
respect to the background as those used in Experiment 1: 0.100, 0.107, 0.123, 0.140, 0.158,
and 0.175 for 30 times per contrast in 8 blocks per condition for a total of 240 trials. In
addition, target-absent trials (Figure 3D to F) were presented 18 times in the 8 blocks of CM-
Toward and CM-Away conditions. One observer started the experimental session with the
CM-Toward condition and the other two with the CM-Away condition.

Figure 3. Stimuli in Experiment 3. Target-present (A) and target-absent (D) trials used as baseline to
evaluate the context effect. Target-present trials (B and C) and target-absent trials (E and F) in the two
experimental conditions. In detail: Collinear Motion-Toward (CM-Toward) condition: target-present (B),
target-absent (E); Collinear Motion-Away (CM-Away) condition: target-present (C), target-absent (F). The
small white cross above each panel represents the fixation point, and the small rectangle to the right of the
Target, the attentional cue denominated Dot, was present in the display at all times.

Girelli 7



The percentage of yes responses as to the presence of the target in each target-present and
target-absent trial of all experimental conditions in the three experiments was recorded to
compute the detection threshold at each contrast. Guessing was compensated by

calculating a false-positive rate (fp) from the number of false alarms. This fp was then
used to adjust the percentage of correct responses (p) for each contrast according to
the formula: p’¼ (p–fp)/(1–fp), where p’ was the true percentage of correct responses

(Kapadia et al., 1995). A psychometric function was fitted to the p’ of the six contrasts for
each condition using Probit (Finney, 2009) to estimate the contrast required to produce 75%
correct detection of the Target. The CE yielded by the Flank for the different experimental
conditions was computed as the difference in contrast threshold with and without the flank

divided by the contrast threshold without the flank (i.e., the change in detection threshold
due to the presence of the flank). The data from the eight blocks were grouped so as to
provide three data points for each observer. Paired sample t tests were then performed onto

the nine data points in each experimental condition in the comparisons indicated in the
Results section for each experiment.

Results

Experiment 1

The presence of the flank collinearly aligned to the target lowered the detection threshold in
all conditions for the three observers (Figure 4A) as it was expected from previous studies
(Kapadia et al., 1995; Polat & Sagi, 1993, 1994). Mean threshold reductions in percentages

(standard error of the mean (SEM)) were as follows: ST¼ 11.7 (2.5), CM¼ 16.4 (2.9),
OM¼ 9.9 (1.7).

The novel result of the present study was that the CM condition showed, in all observers,
the largest change in detection due to the presence of the collinearly moving flank with
respect to the OM and ST conditions. Paired t tests confirmed this novel result in that the

CM threshold reduction was significantly larger than those in ST and OM conditions—CM
versus ST, t(8)¼3.28, p¼ .011; CM versus OM, t(8)¼4.63, p¼ .002—while the latter two
conditions did not differ from each other—ST versus OM, t(8)¼1.24, p¼ .249. To better
evaluate the difference of the two motion conditions, namely CM and OM, the CE in the ST

condition was considered the baseline, and the changes in the other two conditions were
calculated with respect to it (Figure 4B). The collinear motion greatly affected the CE in the
CM condition with threshold reductions ranging from 26% to more than 70% with respect

to the ST condition. With respect to the ST condition, all observers showed the largest
threshold reduction in the CM condition. While observer PF had an intermediate threshold
reduction in the OM condition, the two other observers showed an opposite-direction CE
leading to negative percent improvement values. Therefore, for these two observers, target

detection thresholds in the OM condition were larger than in the ST condition. Thus,
enhanced detection of the target was not due to motion per se but to the collinear motion
of the flank with respect to the target.

Experiment 2

The CE showed in Experiment 1 was replicated in Experiment 2 in that the collinear flank
lowered the detection threshold of the target in the CM and ST conditions up to 17% (white

bars with respect to black bars in Figure 5A). Although the simultaneous presence of the
Border greatly reduced the CE in the ST condition—mean (SEM)¼ 8.3 (1.8) compare black
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bars with dark gray bars in Figure 5A—in the CM, the reduction was, if anything, negligi-

ble—mean (SEM)¼ 1.3(1.4)—as if the collinear moving flank could overcome the interrup-

tion of the collinear path (compare white bars with light gray bars in Figure 5A). Paired t

tests confirmed this novel result in that the CE reduction in ST condition due to the Border

was significantly larger than that in CM condition—ST versus STþBorder, t(8)¼4.56,

p¼ .002; CM versus CMþBorder, t(8)¼0.91, p¼ .389. The graph in Figure 5B represents,

in percentages with respect to the condition without the Border, the reduction of the CE

caused by the Border in the CM and ST conditions (higher values represent large reduction

of the CE, which means that the Border stops the CE). This reduction is clearly larger in the

ST with respect to the CM condition for the three observers. For the observer PM (rightmost

two bars, Figure 5B), the presence of the Border in the CM condition even constituted an

advantage showed by the negative values of the white bar in the graph. As a possible inter-

pretation of this result, CM might assign an additional segregation in depth of the targetþ-

flank ensemble with respect to the Border, preventing the latter from interrupting the

collinear path of targetþflank ensemble and the propagation of the CE from the Flank to

the Target. By the same token, the rightmost black bar in Figure 5B exceeding the 100%

(a)

(b)

Figure 4. Results of Experiment 1. Panel A shows, in percentage, the threshold reduction for the
TargetþFlank with respect to the Target only (context effect) in the three experimental conditions: Collinear
Motion (CM; white), Orthogonal Motion (OM; black-and-white upward diagonal), and Static (ST; black), for
the three observers: MG, AC, and PF. Panel B shows the context effect improvements, in percentage, of the
two dynamic conditions CM (white) and OM (black-and-white upward diagonal) with respect to the ST
condition for the three observers MG, AC, and PF. Error bars represent the standard error of the
mean (SEM).
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value, representing the reduction in the ST condition for the observer PM, is due to the
negative value in the ST-Border condition indicated in Figure 5A (rightmost dark gray bar).

Experiment 3

The CE showed in the previous two experiments was replicated in Experiment 3 where the
collinearly moving flanks lowered the detection thresholds of the target but the direction of
CM had a different effect (Figure 6A). In detail, when the flank moved toward the target
along the collinear axis, the CE was as large as 22% (mean (SEM)¼ 17.4 (1.5), white bars in
the figure), while when the flank moved away from the target, the CE was only 6% to 7%
(mean (SEM)¼ 7.6 (1), light gray bars in the figure). Paired t tests confirmed this novel result
showing that in the CM-Toward condition, the threshold reduction was significantly larger
than that in CM-Away condition: CM-Toward versus CM-Away, t(8)¼4.96, p< .001. Figure
6B shows, in percentages with respect the CM-Toward condition, the reduction of the CE
when the flank moved, in the CM-Away condition, away from the target. These robust
reductions showed that the Away direction not only increased the flank-to-target distance

(a)

(b)

Figure 5. Results of Experiment 2. Panel A shows, in percentage, the threshold reduction of the context
effect in the four experimental conditions: Collinear Motion (CM; white), Collinear MotionþBorder (light
gray), Static (ST; black), and StaticþBorder (dark gray) for the three observers: MG, MC, and PM. Panel B
shows, in percentage, the relative reduction of the context effect due to the presence of the Border in the
CM (white) and in the ST (black) conditions for the three observers: MG, MC, and PM. Error bars represent
the standard error of the mean (SEM).
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reducing the spreads of activity onto the target, but likely it automatically captured visual
spatial attention onto the opposite spatial location with respect to the target.

To better evaluate the different effect of CM direction onto the CE in Figure 6B, clearly in
the graph, the CM direction away from the target (CM-Away) yielded a CE smaller, up to
70%, than that produced by the direction toward the target (CM-Toward).

Discussion

Because it was observed, to my knowledge, the CE has never been produced by a flank
collinearly moving toward the target. The parameters manipulated in the attempt to globally
describe the effect were, among others, the collinear offset between the target and the flank,
the interruption of the collinear axis by a horizontal element, and, finally, the collinear
distance between the two elements (Kapadia et al., 1995; Polat & Sagi, 1993, 1994). The
experiments of the present study showed a novel dynamic manipulation of these parameters
by moving the flank: collinearly or orthogonally with respect to the collinear axis, or colli-
nearly toward a horizontal Border, or, finally, collinearly toward or away from the target.

(a)

(b)

Figure 6. Results of Experiment 3. Panel A shows, in percentage, the threshold reduction of the context
effect depending on the direction of collinear motion of the flank with respect to the target in the Collinear
Motion-Toward and Collinear Motion-Away conditions for the three observers: MG, MC, and PM. Panel B
shows, in percentage, the relative reduction of the context effect in the Collinear Motion-Away condition
with respect to the Collinear Motion-Toward condition for the observers: MG, MC, and PM. Error bars
represent the standard error of the mean (SEM).
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The visual apparent motion, as it was used in this series of experiments, was produced more
by the local motion signals than by the global motion of the whole flank (Marr, 1982). By
using four squared elements collinearly aligned along the longitudinal axis as flank, there
were four moving borders that provided the local motion signals to detect correspondence
providing also the direction of motion (Anstis, 1980; Westheimer & Wehrhahn, 1994). As
soon as the motion signal was extracted in the visual scene, the spatial arrangement in time of
the single elements coherently moving as a whole suggested to higher order visual areas that
a particular visual path has become dynamically relevant for the perception of the visual
elements in the next future (Verghese & McKee, 2002; Watamaniuk, 2005). Verghese’s study
suggested that consistent direction, that is, straight trajectory, of motion is used by the
human visual system to enhance detectability of objects in noisy environments. This type
of motion is a perceptual cue so effective that it can increase sensitivity to the relevant
elements, moving in straight trajectories, even implicitly, that is, when the first part of a
two-segment trajectory, acted as a powerful cue although it was barely visible. Thus, the
straight trajectory of motion spreads ahead of the moving element consistently with the cued
direction of motion. Moreover, Watamaniuk’s study showed that the influence of a motion
trajectory propagates in space and time after the end of motion. This induced signal is very
specific in that the propagation of the signal takes place only in the inducing direction.
Therefore, during visible motion, the visual system must build an expected and more
likely trajectory of motion of the relevant moving element that propagates in front of the
element on the induced direction of motion. An example of this dynamic effect is a train with
several cars moving on a railroad: The front sides of the locomotive and of the cars provide
the local motion signals. Once extracted, the motion signal is applied to the train as a
coherent whole. Given the direction of the moving train, it is possible for the visual
system to predict the future position of the train along the path in front of it but not for
the path behind the train. Collinear motion thus becomes a powerful attentional cue that in
turn helps in perceiving motion as in the line motion illusion (Hikosaka et al., 1993). Such
prediction in time allows us to expect a train coming out of a tunnel or getting to a station
which is in our view in the visual scene. As a further example, some car producers provided
their vehicles with indicators not only with a simple blinking light but with a series of diodes
turning on in sequence outward with respect to the center of the car which give the percept of
a line growing in a collinear direction. This apparent moving signal is more efficient in
conveying the direction that the car will shortly take to following drivers. It does so not
because it simply indicates a side of the road, but it elicits the representation of a real
movement in the physical world which is best represented by a collinear direction of
motion. Therefore, collinear motion appears to be very useful for the detection of moving
elongated objects in particular when they are part of an ensemble (targetþflank) that might
suggest the presence of a border in the scene (Verghese et al., 1999). On the other hand,
orthogonal motion of elongated objects is effective as a global motion signal, but it lacks the
enhancement of a motion path that would be powerfully activated only by the collinear
motion.

Motion correspondence problem was considered by some authors equivalent, for some
aspects, to the stereo correspondence problem (Marr, 1982), at least for rigid bodies as were
the stimuli in this study. The crucial difference between the two being that the former is in
time while the latter is in space. Motion and stereo are represented in the same higher
cerebral visual area, namely area MT, where there are units showing preferred direction of
motion and units showing preferred depth (Born & Bradley, 2005). This link between the two
computational problems might explain why the collinear motion was able, in Experiment 2,
to overcome the interruption of the collinear path by the horizontal Border. The collinear
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motion of the flank toward the Border, as reported by the naı̈ve observers, gave the impres-

sion of the flank moving in a different, in particular, a deeper, plane with respect to that

including the Border; therefore, the interference of the latter was abolished. Therefore, the

collinear motion yielded a segmentation in depth of the targetþflank ensemble with respect

to the plane containing the Border. The target was pulled to a deeper plane, even though it

was motionless, by the propagating CE from the collinearly moving Flank to the target.
As a further evidence of the motion path activated by an elongated object moving colli-

nearly, Experiment 3 indicated that not only the collinear motion enhances the perception of

an object lying onto the motion path but the direction of collinear motion counts. Collinear

motion toward a relevant object (target) or position along the motion path propagates

resources to accomplish cognitive operations of detection and/or discrimination. As the

units in primary visual cortex are lined up according to orientation preference to trigger a

growing border, they are activated and integrated (Welch et al., 1997) by collinear motion.

This activation propagates ahead, preceding the stimulation of a given unit along the motion

path, as a wave (Krekelberg & Lappe, 2001). The opposite direction of motion, that is, away

from the Target, if anything, although it comprises spatial positions on the collinear motion

path, will propagate the activation in the opposite direction with respect to the target, and

therefore, it will go undetected. However, one should bear in mind that only the flank moved

in all experiments of this study, and the observer’s task was to detect the motionless target.

Therefore, the activation of the motion path propagates ahead onto the target yielding the

CE by the spatial proximity of the target and the flank.
This CE effect, sensitive to motion direction, likely is implemented in the visual system

from the LGN to area MT, and it requires both feedforward and feedback activity. In V1,

the activity of connected units with the same orientation sensitivity, implemented in the

LRHC plexus (Cass & Spehar, 2005; Gilbert et al., 1996; Kapadia et al., 1995), might get

potentiated by a direction of motion collinear with the orientation of the developing border.

This sort of elongated receptive field that encompasses a motion path (Michel et al., 2013)

reduces the delay of these units by an anticipatory facilitation fed forward along the path

(Watamaniuk, 2005). To do that, the direction of motion of the flank must be detected and

discriminated in higher visual areas, such as MT, where the direction of motion and the

segmentation in depth are quickly detected by analyzing the direct information coming from

LGN (Sincich, 2004) and getting back to V1 to modulate the activity of the LRHC plexus via

a feedback pathway (Cudeiro & Sillito, 2006; Sillito et al., 2006): Although this explanation is

speculative, the results of the present study are compatible with this implementation in the

visual system.

Conclusions

This study showed that a static contextual effect where particular spatial arrangements of

visual elements improve the capability of the human visual system to detect objects can be

enhanced by the motion of the visual elements surrounding the object to be detected.

Crucially, the motion required must be collinear to the longitudinal axis of the object and

in the direction toward it. Thus, collinear motion plays an important role in particular visual

scenes where motion is the distinctive feature of objects.
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