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Abstract. By examining the linkage between conservation laws and symmetry,
we explain why it appears there should not be an analogue of a complete integral
for the Hamilton-Jacobi equation for integrable nonholonomic systems.
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1. Introduction

The Hamilton-Jacobi theory is at the heart of the symplecticand variational
structure of Hamiltonian mechanics. There have been a largenumber of extensions
of this theory to systems with nonholonomic constraints. A partial list includes
[4, 5, 12, 15, 22, 23, 27, 28, 30]. In Hamiltonian mechanics there are two versions
of the (time independent) Hamilton-Jacobi theory. The weaker version is related
to the existence of anintegral of the equation, and corresponds to the existence
of an invariant Lagrangian submanifold. The stronger version is related to the
existence of acomplete integralof the equation, and corresponds to the complete
integrability, in the sense of Liouville-Arnold, of the system. All the mentioned
extensions to systems with nonholonomic constraints referto the weaker of the
two versions of the Hamilton-Jacobi theory, but several of these references point
out, or at least mention, the interest of understanding the possible relations, in the
nonholonomic context, between integrability and Hamilton-Jacobi theory. To our
knowledge, however, there are no discussions of this relationship, nor clarifications
of its very existence.

The aim of this work is to provide such an analysis. In terms that need to be
made precise, our conclusion is that this relation fails. Atthe most primitive level,
this is due to the failure of the equality of conservation laws and symmetries in non-
holonomic mechanics. This equality is encoded in the interplay between dynamics
and geometry so special to the Hamiltonian case. As a rule, outside the variational
world, Noether theorem does not hold and symmetries need notprovide integrals
of motion, and outside the symplectic world, integrals of motion do not generate
symmetries. The remnants of symplecticity that persist to the nonholonomic world
are not enough to save this situation and this makes the link between symmetry
and integrability, if any, different from that of the Hamiltonian case. The stronger
version of the Hamilton-Jacobi theory embodies this very remarkable – and very
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special – link and implies that there may be no ‘nonholonomicHamilton-Jacobi
theory’ describing integrability of nonholonomic systems.

2. Nonholonomic systems

For a Lagrangian system withn-dimensional configuration manifoldQ, a non-
holonomic constraint is a nonintegrable distributionD on Q of rankn− k for some
1 ≤ k ≤ n − 2. For our purposes it is however preferable to pass to the Hamil-
tonian formulation, where the nonholonomic system is givenby ak-codimensional
constraint manifoldM ⊂ P = T∗Q on which there is a symplectic distribution
H ⊂ T M of rank 2n−2k [9]. In the points ofM, the restrictionωH of the canonical
2-formω to the distributionH has rank 2n−2k. Thenonholonomic vector field Xnh

f
of a function f : M → R is the unique vector field onM that lies in the distribution
H and whose contraction withω, in the points ofM, agrees with the restriction
dhH of dh to H, in symbols

Xnh
f ωH = d fH (on M) .

If h : P→ R is the Hamiltonian of the uncostrained system, then the nonholonomic
system is given by the vector fieldXnh

h on M.
The equations of motion may be given in bracket form as well, as

ḟ = { f , h}nh ∀ f : M → R ,

where{, }nh is the almost-Poisson bracket onM defined by

{ f , g}nh = ωH(Xnh
f ,X

nh
g )

for all functions f , g : M → R [29, 6].
A function f : M → R is an integral of motion of the nonholonomic system if

and only if its almost-Poisson bracket withh vanishes,

{ f , h}nh = 0 .

When{ f , g}nh = 0 we will say thatf andg are inH-involution.
More details on the distributional symplectic formulationand on the almost-

Poisson formulation of nonholonomic mechanics may be foundin the quoted ref-
erences. The important thing to note is that, in all cases, the almost-Poisson bracket
fails to satisfy the Jacobi identity, which is satisfied if and only if the constraints are
semi-holonomic. It is useful to have a measure of this failure, and it is quantified
by a natural quadratic differential operator closely related to the Schouten bracket,
which is totally antisymmetric and defined by

Σ( f , g, h) = { f , {g, h}nh}nh+ {g, {h, f }nh}nh+ {h, { f , g}nh}nh .

The failure of the Jacobi identity has the consequence that,at variance from the
Hamiltonian case, in noholonomic mechanics there is no Lie algebra anti-homo-
morphism between functions and nonholonomic vector fields:Xnh

{ f ,g} need not equal

[Xnh
g ,X

nh
f ]. Hence, the nonholonomic vector fields of Poisson commuting functions

need not commute. This fact is at the basis of the failure of the Hamilton-Jacobi
method in nonholonomic mechanics.
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3. The Hamilton-Jacobi equation

3.1. A single invariant Lagrangian submanifold. Consider a Hamiltonian sys-
tem given by a Hamiltonianh on a 2n-dimensional symplectic manifold (P, ω).
Denote byXf the Hamiltonian vector field of a functionf on P. A submanifold
L ⊂ P is Lagrangian ifω vanishes onL. Tangency ofXh to a submanifoldN ⊂ P
is a prerequisite for the invariance ofN under the flow ofXh. The geometric-
dynamical fact beyond the weaker version of the Hamilton-Jacobi equation is the
following fact (see e.g. [31]):

Proposition 3.1. Let L be a connected Lagrangian submanifold of P. Xh is tangent
to L if and only if h is constant on L.

Proof. The condition thatXh is tangent toL is Xh ⊂ TL, and the symplectic per-
pendicular of this isX⊥h = dh ⊃ TL⊥ = TL sinceL is Lagrangian. q.e.d.

The Hamilton-Jacobi equation provides a local descriptionof this situation.
Each point of a Lagrangian submanifoldL has a neighbourhoodU equipped with
Darboux coordinates (q, p) (i.e., coordinates such thatω|U = dq ∧ dp) such that
L ∩ U is the graphp = ∂S

∂q (q), with q 7→ S(q) ∈ R a smooth function [3]. Con-

versely, a graphp = ∂S
∂q (q) is Lagrangian. Hence, at a local level, Proposition 3.1

can be restated as follows:

Corollary 3.2. Let (q, p) be Darboux coordinates and q7→ S(q) a smooth real
functions.

1. Xh is tangent to the (Lagrangian) submanifold L given by p= ∂S
∂q (q) if and

only if

h

(

q,
∂S
∂q

(q)

)

= e (1)

for some e∈ R.
2. If condition 1 holds then, using the q as coordinates on L, therestriction of

Xh to L is

q̇ =
∂h
∂p

(

q,
∂S
∂q

(q)

)

. (2)

In the classical literature, the functionS is called anintegral of the Hamilton-
Jacobi equation (1). The first statement follows at once fromProposition 3.1, but
it may as well be proven by an elementary computation: in the points ofL, the Lie
derivative

£Xh

(

p−
∂S
∂q

)

= −
∂h
∂q
−
∂2S
∂q∂q

∂h
∂p
= −
∂

∂q
h

(

q,
∂S
∂q

)

is itself a derivative. This fact, which reflects the interplay of geometry and dy-
namics peculiar to Hamiltonian systems, we refer to as thelesser Hamilton-Jacobi
miracle.The second statement of the Corollary follows from Hamilton’s equations,
and the parameterization ofL asp = ∂S

∂q (q).
Corollary 3.2 is local, but gets a geometric flavour in the case of a cotangent

bundle (P = T∗Q equipped with the canonical symplectic structure) and under the
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hypothesis of Lagrangian submanifolds transversal to the fibers of the cotangent
bundle projectionπ : T∗Q → Q. Such Lagrangian submanifolds are the images
of closed, hence locally exact, 1-forms onQ. Thus, following [1], under these hy-
potheses, Corollary 3.2 may be equivalently restated in thefollowing form, which
also appears in many of the quoted references on nonholonomic extensions of the
Hamilton-Jacobi equation:

Corollary 3.3. [1]Given a smooth function S: Q→ R, the following two condi-
tions are equivalent:

1. S satisfies the Hamilton-Jacobi equation h◦ dS = const.
2. For every curve c(t) in Q satisfying

c′(t) = π∗Xh (dS (c(t)))

the curve t→ dS(c(t)) is an integral curve of Xh.

The restriction to the case of an exact 1-form is clearly not necessary in this
statement. It retains its validity for a closed 1-formσ – that is, for any Lagrangian
submanifold of a cotangent bundle that is transversal to thefibers ofπ. This point
of view is taken e.g. in [11], where the system d(h ◦ σ) = 0, dσ = 0 is called the
geometric Hamilton-Jacobi equation. The transversality hypothesis is a source of
well known analytic difficulties and gives these statements, compared to Proposi-
tion 3.1, a local character.

Results like Corollary 3.3 are sometimes considered as an integration tool: if
one knows an integralS(q) of the Hamilton-Jacobi equation, and if one is able
to determine a solution of the restricted system ofn equations (2), then lifting
the latter gives a solution of the Hamiltonian system. In reality, this use of the
Hamilton-Jacobi equation in Hamiltonian mechanics is seldom of any utility (with
perhaps the exception of the so called weak KAM theory, wherehowever viscosity
solutions of the Hamilton-Jacobi equation are considered,see e.g. [20, 16]). On
this point, see the comments on page 60 of [31].

There have been several generalizations of this type of result to systems with
nonholonomic constraints, see the already mentioned [4, 5,12, 15, 22, 23, 27, 28,
30]. Most of these generalizations are based on Corollary 3.3, with the search for a
functionS : Q→ R replaced by the search for anM-valued 1-formγ defined onQ
whose differential vanishes when evaluated onD×D . In some cases, this technique
has been illustrated through the integration of simple nonholonomic systems, the
solutions of which are known by direct integration of the equation of motion.

3.2. A foliation by invariant Lagrangian submanifolds. A complete integralof
the Hamilton-Jacobi equation is a pair of real functionsS(q, a) ande(a), defined
for q anda in open subsets ofRn, that satisfy (1) and are such that∂

2S
∂q∂a is every-

where nonsingular. The previous analysis shows that the function S(q, a) defines a
foliation by Lagrangian submanifoldsp = ∂S

∂q (q, a), each one contained in the level
seth = e(a) and havingXh tangent to it. However, there is more: the flow ofXh

is conjugate to a linear flow on these submanifolds; this is the greater Hamilton-
Jacobi miracle.Precisely,S is the generating function of a symplectic change of
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coordinates (q, p) 7→ (b, a) that conjugates the system to the system with Hamilton-
ian e(a). This has various consequences, which all pertain to the Hamilton-Jacobi
theory: the functionsa1, . . . , an are integrals of motion in involution, their joint
level sets are the Lagrangian submanifoldsp = ∂S

∂q , and the coordinatesb have the
meaning of times along the flows of the Hamiltonian vector fields of theas; the
significance, and the importance, of this last fact will be clear later.

Thus, the existence of a complete integral of the Hamilton-Jacobi equation is
a local characterization of the ‘complete’ (or ‘Liouville’, or ‘Liouville-Arnold’)
integrability of the Hamiltonian system: the existence of the maximal number of
independent integrals of motion which are pairwise in involution, and are defined in
some open and invariant subset of the phase space [2].1 As is well known, complete
integrability amounts to the flow being conjugate to a linearflow on either cylinders
or tori. For the sake of definitness, we will consider here only the compact case,
that is, quasi-periodicity of the dynamics.

As already mentioned, several treatments of nonholonomic Hamilton-Jacobi
equation point out, or at least mention, the interest of understanding the possible
relations, in the nonholonomic context, between integrability and Hamilton-Jacobi
theory. Reference [12] goes so far as to define the notion of ‘complete integral’
of a nonholonomic Hamilton-Jacobi equation, without however relating it to inte-
grability. As far as we can tell, there are no discussions of this relationship, nor
clarifications of its possibility or limitations. We provide one such analysis in the
next section.

4. Nonholonomic Hamilton-Jacobi and integrability

4.1. Integrability as quasi-periodicity. In order to do this analysis, we identify
‘integrability’ with quasi-periodicity (that is, the flow is conjugate to a linear flow
on tori) and base our analysis on the following characterization of quasi-periodicity,
that clarifies how many integrals and how much symmetry is needed for it. This
would seem rather natural, but we know of no earlier clear formulation than the
one due to Bogoyavlenskij [10] (see also [21])

Theorem 4.1. Assume that on a d-dimensional manifold M there exist, for some
1 ≤ k ≤ d,

1. A submersion f= ( f1, . . . , fd−k) : M → Rd−k with compact and connected
fibers.

2. k everywhere linearly independent vector fields Y1, . . . ,Yk which pairwise
commute and are such that£Yj fi = 0 for all i , j.

Then

1. The fibers of f are k-tori.

1The requirement of invariance is necessary to give a meaningto all this: locally, in a neighbour-
hood of every regular point, by the Hamiltonian flow box theorem (see e.g. [24]), every Hamiltonian
system hasn integrals of motion in involution.
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2. If a vector field X on M has f1, . . . , fd−k as integrals of motion and Y1, . . . ,Yk

as dynamical symmetries, then its flow is conjugate to a linear flow on the
fibers of f .

First integrals and symmetries with these properties always exist (at least at
a semi-global level) when the dynamics is conjugate to a linear flow on tori, so
in a sense this is more a characterization of quasi-periodicity than a criterion for
quasi-periodicity. In this regard, Bogoyavlenskij’s theorem is different from the
Liouville-Arnol’d theorem [2] and its noncommutative generalizations for systems
with invariant isotropic tori of any dimension (see [26, 25]and for a review [17]),
that in the Hamiltonian case derive integrability from onlyone set of data – the
integrals of motion. This is made possible by the Lie algebraanti-homomorphism
between functions and Hamiltonian vector fields (X{ f ,g} = [Xg,Xf ]) specific to the
Hamiltonian case, that provides a mechanism to produce (commuting) dynamical
symmetries out of (commuting) integrals of motion. For instance, in the Liouville-
Arnold case one hasd = 2n and then commuting dynamical symmetries are the
Hamiltonian vector fields of then commuting integrals of motion.

It should be noted that the special link between integrals ofmotion and dy-
namical symmetries, peculiar to Hamiltonian mechanics, ispresent, at least at a
local level, in the Hamilton-Jacobi method as well. In fact,as noticed above,
a complete integral of the Hamilton-Jacobi equation provides two sets of data:
the integrals of motionand the times along the flows of their Hamiltonian vector
fields, namely the integrals of motionand their Hamiltonian vector fields. Thus,
the greater Hamilton-Jacobi miracle is that a complete integral provides both the
integrals of motion and the dynamical symmetries leading tointegrability in the
Liouville-Arnold sense. (This link is present in noncommutative integrability as
well, but there is no Hamilton-Jacobi description for it: the Hamilton-Jacobi equa-
tion can describe only Lagrangian foliations, not other isotropic foliations).

4.2. Commuting integrals of motion. In order to illustrate this situation we in-
vestigate the implications of the existence of a number of almost–Poisson com-
muting integrals of motion of a nonholonomic system. Once again, assume that
configuration spaceQ is n-dimensional, and that the constraint manifoldM has
codimensionk.

lemma 4.2. Consider p≥ 1 functionally independent functions f1, . . . , fp : M → R
and their nonholonomic vector fields Xnh

f1
, . . . ,Xnh

fp
.

1. The Xnh
fi

s are tangent to the joint level sets of f1, . . . , fp if and only if

{ fi , f j}
nh = 0 for all i , j.

2. ωH vanishes on the distributionspan(Xnh
f1
, . . . ,Xnh

fp
) ⊂ H if and only if

{ fi , f j}
nh = 0 for all i , j.

3. Assume{ fi , f j}
nh = 0 for all i , j. Then the vector fields Xnh

fi
pairwise

commute if and only if the matrix of vector fields whose i j component is
Σ( fi , f j , ·) vanishes identically.
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Proof. The first statement follows from £Xnh
fi

f j = { fi , f j}
nh. The second from

the fact that the vector fieldsXnh
fi

s are sections ofH and the definition of the
almost-Poisson bracket. Given any three functionsfi , f j , g, the identity £[Xnh

i ,X
nh
j ]g =

{ fi , { f j , g}nh}nh−{ f j , { fi , g}nh}nh = Σ( fi , f j , g)−{g, { fi , f j}
nh}nh holds. The third state-

ment follows from this immediately. q.e.d.

Note that the first two staments owe their validity to the factthat the Jacobi
identity does not enter their proof; the failure of the Jacobi identity manifests itself
in the third.

4.3. Integrability a là Hamilton-Jacobi. By this, we mean a mechanism that
derives the dynamical symmetries needed for integrabilityfrom a set of integrals
of motion in involution. Mimicking the Hamiltonian case, the obvious candidate
would be the nonholonomic vector fields of the commuting integrals. In fact, this
is more than just mimicking: no other way of deriving a vectorfield from a func-
tion, without any further information (e.g., symmetry groups, see below), has been
devised so far in nonholonomic mechanics. So, this is likelythe only general
mechanism one might have. However, it obviously faces the difficulty that, due
to the failure of the Jacobi identity, the nonholonomic vector fields of functions
that almost-Poisson commute need not commute.

Let us anyway look into this possibility. SinceωH has rank 2(n − k), there
cannot be more thann−k functionally independent functions onM which are pair-
wise in involution and whose nonholonomic vector fields are everywhere linearly
independent. Let us thus assume that we have this maximum number of function-
ally independent integrals of motionf1, . . . , fn−k : M → R which are pairwise in
H-involution, { fi , f j}

nh = 0 for all i, j, and whose joint level sets

Nc = f −1
1 (c1) ∩ · · · ∩ f −1

n−k(cn−k) , c = (c1, . . . , cn−k) ,

are compact and connected. We assume that the Hamiltonianh of the system,
which is an integral of motion, is one of thefis, sayf1 = h.

SinceM has dimension 2n−k, the invariant setsNc have dimensionn. We would
like them to be tori and the dynamics to be quasi-periodic on them. According to
Theorem 4.1 we need dimM − (n − k) = n commuting dynamical symmetries
which are tangent to theNcs. By Lemma 4.2, theXnh

fi
s have some of the properties

to be considered as candidates. However, even if these vector fields are tangent
to theNcs, there are some obstructions: not only are there too few vector fields,
but neither is it granted that they are dynamical symmetries({h, fi} = 0 does not
automatically implies [Xnh

h ,X
nh
fi

] = 0) nor that they commute. And even if theXnh
fi

s
commute, more dynamical symmetries or more integrals of motion are needed, that
were not obviously present initially and seem to definitely lie outside the Hamilton-
Jacobi realm.
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4.4. Integrability without Hamilton-Jacobi. We do not know any example of
integrable nonholonomic systems that fits the previous, Hamilton-Jacobi-like set-
ting. In known examples of integrable nonholonomic systems, the dynamical sym-
metries identifiable through Bogoyavlenskij’s characterization do not arise in this
way.

In certain cases, both the integrals of motion and the dynamical symmetries may
be interpreted as generated by an underlying symmetry group, but in a ‘gauge-like’
way (see [8] or [18]). In this mechanism, integrals of motionare constructed as
momenta of suitable varying linear combinations of the infinitesimal generators of
the group action. It is enlighting to compare the two mechanisms in the simplest
example.

Example 4.3. (The nonholonomic oscillator [7]) Consider the nonholonomic sys-
tem withQ = R3 ∋ (x, y, z), h = 1

2(p2
x+p2

y+p2
z)+ 1

2 y2 andM = {(x, y, z, px, py, pz) ∈

T∗R3| pz = y px}. In this caseH = span
R

{

y∂z+ ∂x, ∂y, ∂px, ∂py

}

and the nonholo-
nomic vector field of the Hamiltonianh is

Xnh
h = px∂x + py∂y + y px∂z−

y

1+ y2
px py∂px − y∂py.

By inspection,Xnh
h is invariant by translations inx andz. ThisR2 symmetry leads

to the gauge momentum conservation lawk = px

√

1+ y2. Together,h andk are
two integrals of motion inH-involution. Their joint level sets are compact, butXnh

h
and

Xnh
k =

1
√

1+ y2
(∂x + y∂z)

do not commute. However, the infinitesimal generators∂x and∂z of theR2-action
are dynamical symmetries ofXnh

h , commute, and tangent to the joint level sets of
h andk. Therefore, the system has the two independent integrals ofmotionh and
k and the three dynamical symmetriesXnh

h , ∂x and∂z and is integrable, with quasi-
periodic dynamics on tori of dimension three.

A similar situation is met in other simple nonholonomic systems, such as a heavy
ball rolling inside a vertical cylinder or inside a convex surface of revolution, and
the rolling disk; for this aspect of these well known systemssee [8, 18, 19]. It is not
clear if the gauge method is a mechanism capable of explaining the integrability
of some natural class of symmetric nonholonomic systems, but certainly it is not
amenable to a Hamilton-Jacobi treatment.

4.5. More general integrability scenarios. It is not clear that quasi-periodicity
is the characteristic property of integrable nonholonomic systems. Besides the
obvious possibility of non-compact invariant sets, for which we could repeat the
analysis done so far, with the same conclusions, a well knownreason is that quasi-
periodicity is often met only after a time reparameterization. At a deeper level,
another possibility is that one need not insist that the dynamical symmetries com-
mute. Instead, they may generate a finite dimensional solvable Lie algebra. Then
it is still possible to integrate the differential equations. Perhaps structurally not as
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nice, but we are able to solve the differential equations when the vector fields still
have a “solvable structure” but what they generate is not finite dimensional. The
kind of thing we have in mind is illustrated by the following

Example 4.4. Consider the problem of integrating the flow of the vector field Z =
aX+ bY if a andb are constants,X = ∂x andY = f (x, y)∂y. It is straightforward
to find integral curves ofZ, even though the algebra of vector fields generated by
X andY under the Lie bracket is not finite dimensional. In essence, this means
that one still has to compute an integral, and can not do things by purely algebraic
steps.

But these possibilities are even more remote from the Hamilton-Jacobi descrip-
tion.
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