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for the Hamilton-Jacobi equation for integrable nonholoimsystems.
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1. INTRODUCTION

The Hamilton-Jacobi theory is at the heart of the sympleatid variational
structure of Hamiltonian mechanics. There have been a tarmgder of extensions
of this theory to systems with nonholonomic constraints. aitipl list includes
[4,5, 12,15, 22, 23, 27, 28, 30]. In Hamiltonian mechaniesetare two versions
of the (time independent) Hamilton-Jacobi theory. The veealersion is related
to the existence of amtegral of the equation, and corresponds to the existence
of an invariant Lagrangian submanifold. The stronger werss related to the
existence of &omplete integrabf the equation, and corresponds to the complete
integrability, in the sense of Liouville-Arnold, of the dgm. All the mentioned
extensions to systems with nonholonomic constraints refehe weaker of the
two versions of the Hamilton-Jacobi theory, but severaheke references point
out, or at least mention, the interest of understanding ttesiple relations, in the
nonholonomic context, between integrability and Hamilfacobi theory. To our
knowledge, however, there are no discussions of this oglstip, nor clarifications
of its very existence.

The aim of this work is to provide such an analysis. In terna tieed to be
made precise, our conclusion is that this relation failsth&tmost primitive level,
this is due to the failure of the equality of conservationdamd symmetries in non-
holonomic mechanics. This equality is encoded in the itagrpetween dynamics
and geometry so special to the Hamiltonian case. As a rutsideuthe variational
world, Noether theorem does not hold and symmetries needrovide integrals
of motion, and outside the symplectic world, integrals oftioo do not generate
symmetries. The remnants of symplecticity that persidtéakonholonomic world
are not enough to save this situation and this makes the kbkden symmetry
and integrability, if any, dterent from that of the Hamiltonian case. The stronger
version of the Hamilton-Jacobi theory embodies this verparkable — and very
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special — link and implies that there may be no ‘nonholonohténilton-Jacobi
theory’ describing integrability of nonholonomic systems

2. NONHOLONOMIC SYSTEMS

For a Lagrangian system witikdimensional configuration manifol@, a non-
holonomic constraint is a nonintegrable distributigron Q of rankn -k for some
1 < k < n-2. For our purposes it is however preferable to pass to theilHam
tonian formulation, where the nonholonomic system is glgak-codimensional
constraint manifoldM c P = T*Q on which there is a symplectic distribution
H c T M of rank 2n—2k [9]. In the points ofM, the restrictionuy of the canonical
2-form w to the distributionH has rank 8—2k. Thenonholonomic vector fielqu
of afunctionf : M — R is the unique vector field oll that lies in the distribution
H and whose contraction witty, in the points ofM, agrees with the restriction
dhy of dhto H, in symbols

XM jwpy=dfy  (onM).

If h: P — Risthe Hamiltonian of the uncostrained system, then the olonlomic
system is given by the vector fie)tﬂh onM.
The equations of motion may be given in bracket form as well, a

f={f,h"  Vf:M SR,
where{, }""is the almost-Poisson bracket dhdefined by
({f, g}nh — a)H(th, XSh)

for all functionsf,g: M — R [29, 6].
A function f : M — R is an integral of motion of the nonholonomic system if
and only if its almost-Poisson bracket whivanishes,

{(f,n"=0.

When{f, g}"" = 0 we will say thatf andg are inH-involution.

More details on the distributional symplectic formulatiand on the almost-
Poisson formulation of nonholonomic mechanics may be faartde quoted ref-
erences. The important thing to note is that, in all casesaltimost-Poisson bracket
fails to satisfy the Jacobi identity, which is satisfied iflaonly if the constraints are
semi-holonomic. It is useful to have a measure of this failand it is quantified
by a natural quadratic fierential operator closely related to the Schouten bracket,
which is totally antisymmetric and defined by

2(f,9,h) = (f,{g, "™+ (g, {h, TN+ (h, {f, g}y,

The failure of the Jacobi identity has the consequence #tatariance from the
Hamiltonian case, in noholonomic mechanics there is no Igebma anti-homo-
morphism between functions and nonholonomic vector fi@hﬁﬁgi} need not equal

[X5", X7". Hence, the nonholonomic vector fields of Poisson commgiftinctions

need not commute. This fact is at the basis of the failure @fHhamilton-Jacobi
method in nonholonomic mechanics.
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3. The Hamilton-Jacobi equation

3.1. A single invariant Lagrangian submanifold. Consider a Hamiltonian sys-
tem given by a Hamiltoniath on a 2»-dimensional symplectic manifoldP(w).
Denote byX; the Hamiltonian vector field of a functioh on P. A submanifold
L c P is Lagrangian ifw vanishes ori. Tangency ofX, to a submanifoldN c P
is a prerequisite for the invariance bdf under the flow ofX;. The geometric-
dynamical fact beyond the weaker version of the HamiltaeBaequation is the
following fact (see e.g. [31]):

ProrosiTion 3.1. Let L be a connected Lagrangian submanifold of Ristangent
to L if and only if h is constant on L.

Proof. The condition thalX, is tangent td_ is X;, ¢ TL, and the symplectic per-
pendicular of this i< = dh > TL* = TL sinceL is Lagrangian. g.e.d.

The Hamilton-Jacobi equation provides a local descriptibrihis situation.
Each point of a Lagrangian submanifdlchas a neighbourhood equipped with
Darboux coordinatesg(p) (i.e., coordinates such thafy = dq A dp) such that
L N U is the graphp = %(q), with g » S(g) € R a smooth function [3]. Con-

versely, a grapip = %(q) is Lagrangian. Hence, at a local level, Proposition 3.1

can be restated as follows:

CoroLLarY 3.2. Let (g, p) be Darboux coordinates and g S(g) a smooth real
functions.

1. X, is tangent to the (Lagrangian) submanifold L given by é%(q) if and
only if

h(q, %(q)) _e 1)

for some e R.
2. If condition 1 holds then, using the g as coordinates on Lyéls&iction of

XntoLis
. oh{ &S
q= ap (q, a_q(Q)) : (2)

In the classical literature, the functi@is called anintegral of the Hamilton-
Jacobi equation (1). The first statement follows at once fRyoposition 3.1, but
it may as well be proven by an elementary computation: in thietp ofL, the Lie
derivative

S\ oh 4°Soh o ( S
Xh(p‘a—q) “5q d9999p  0q (“%)
is itself a derivative. This fact, which reflects the intenplof geometry and dy-
namics peculiar to Hamiltonian systems, we refer to asdsser Hamilton-Jacobi
miracle. The second statement of the Corollary follows from Hamii@guations,
and the parameterization bfasp = %(q).

Corollary 3.2 is local, but gets a geometric flavour in theecafa cotangent

bundle P = T*Q equipped with the canonical symplectic structure) and uttoe
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hypothesis of Lagrangian submanifolds transversal to ther<iof the cotangent
bundle projectionr : T*Q — Q. Such Lagrangian submanifolds are the images
of closed, hence locally exact, 1-forms @na Thus, following [1], under these hy-
potheses, Corollary 3.2 may be equivalently restated iridit@ving form, which
also appears in many of the quoted references on nonholormxténsions of the
Hamilton-Jacobi equation:

CororLarY 3.3. [1] Given a smooth function SQ — R, the following two condi-
tions are equivalent:

1. S satisfies the Hamilton-Jacobi equation 84S = const
2. For every curve () in Q satisfying

c/(t) = m. X (dS (c(1)))
the curve t— dS(c(t)) is an integral curve of X

The restriction to the case of an exact 1-form is clearly restessary in this
statement. It retains its validity for a closed 1-foom- that is, for any Lagrangian
submanifold of a cotangent bundle that is transversal tdillees ofx. This point
of view is taken e.g. in [11], where the systenind(c) = 0, dr = 0 is called the
geometric Hamilton-Jacobi equation. The transversalyothesis is a source of
well known analytic dificulties and gives these statements, compared to Proposi-
tion 3.1, a local character.

Results like Corollary 3.3 are sometimes considered as tegretion tool: if
one knows an integrab(q) of the Hamilton-Jacobi equation, and if one is able
to determine a solution of the restricted systernadquations (2), then lifting
the latter gives a solution of the Hamiltonian system. Iditgathis use of the
Hamilton-Jacobi equation in Hamiltonian mechanics is@@laf any utility (with
perhaps the exception of the so called weak KAM theory, whewveever viscosity
solutions of the Hamilton-Jacobi equation are considesed,e.g. [20, 16]). On
this point, see the comments on page 60 of [31].

There have been several generalizations of this type oftressystems with
nonholonomic constraints, see the already mentioned [#2 515, 22, 23, 27, 28,
30]. Most of these generalizations are based on Coroll&wath the search for a
functionS : Q — R replaced by the search for &frvalued 1-formy defined orQ
whose diferential vanishes when evaluated@r . In some cases, this technique
has been illustrated through the integration of simple otaromic systems, the
solutions of which are known by direct integration of the &tipn of motion.

3.2. A foliation by invariant Lagrangian submanifolds. A complete integrabf

the Hamilton-Jacobi equation is a pair of real functi®@ts, a) ande(a), defined
for g anda in open subsets @&", that satisfy (1) and are such th%f% is every-
where nonsingular. The previous analysis shows that theiumS(q, a) defines a
foliation by Lagrangian submanifolds = %(q, a), each one contained in the level
seth = g(@) and havingXy tangent to it. However, there is more: the flowXf

is conjugate to a linear flow on these submanifolds; this éggleater Hamilton-
Jacobi miracle.Precisely,S is the generating function of a symplectic change of
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coordinatesd, p) — (b, a) that conjugates the system to the system with Hamilton-
ian e(@). This has various consequences, which all pertain to thmilttan-Jacobi
theory: the functionsy, ..., a, are integrals of motion in involution, their joint
level sets are the Lagrangian submanifoids %, and the coordinatdshave the
meaning of times along the flows of the Hamiltonian vectordBebf theas; the
significance, and the importance, of this last fact will beacllater.

Thus, the existence of a complete integral of the HamiltaceBi equation is
a local characterization of the ‘complete’ (or ‘Liouvilledr ‘Liouville-Arnold)
integrability of the Hamiltonian system: the existence e maximal number of
independent integrals of motion which are pairwise in intioh, and are defined in
some open and invariant subset of the phase spa¢e@]s well known, complete
integrability amounts to the flow being conjugate to a liflax on either cylinders
or tori. For the sake of definitness, we will consider hergydhé compact case,
that is, quasi-periodicity of the dynamics.

As already mentioned, several treatments of nonholonon@mitkion-Jacobi
equation point out, or at least mention, the interest of tstdading the possible
relations, in the nonholonomic context, between inteditgtzind Hamilton-Jacobi
theory. Reference [12] goes so far as to define the notionarhptete integral’
of a nonholonomic Hamilton-Jacobi equation, without hogreelating it to inte-
grability. As far as we can tell, there are no discussionshf telationship, nor
clarifications of its possibility or limitations. We provedone such analysis in the
next section.

4. NonnoroNomic HAMILTON-JACOBI AND INTEGRABILITY

4.1. Integrability as quasi-periodicity. In order to do this analysis, we identify
‘integrability’ with quasi-periodicity (that is, the flonsiconjugate to a linear flow
on tori) and base our analysis on the following charactednanf quasi-periodicity,
that clarifies how many integrals and how much symmetry isleedor it. This
would seem rather natural, but we know of no earlier cleamtdation than the
one due to Bogoyavlenskij [10] (see also [21])

Tueorem 4.1. Assume that on a d-dimensional manifold M there exist, faneso
1<k<d,

1. A submersion £ (fi, ..., fo_x) : M — R% ¥ with compact and connected
fibers.

2. k everywhere linearly independent vector fields.Y., Yx which pairwise
commute and are such thé¢, fi = Ofor all i, j.

Then
1. The fibers of f are k-tori.

IThe requirement of invariance is necessary to give a medaiafj this: locally, in a neighbour-
hood of every regular point, by the Hamiltonian flow box thexor(see e.g. [24]), every Hamiltonian
system has integrals of motion in involution.
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2. Ifavector field X on M has,f..., fy_x as integrals of motion andyY.. ., Yk
as dynamical symmetries, then its flow is conjugate to a tifleas on the
fibers of f.

First integrals and symmetries with these properties aweist (at least at
a semi-global level) when the dynamics is conjugate to aafirilow on tori, so
in a sense this is more a characterization of quasi-peitgditan a criterion for
guasi-periodicity. In this regard, Bogoyavlenskij's them is diferent from the
Liouville-Arnol'd theorem [2] and its noncommutative geaklizations for systems
with invariant isotropic tori of any dimension (see [26, 2Bid for a review [17]),
that in the Hamiltonian case derive integrability from owlge set of data — the
integrals of motion. This is made possible by the Lie algetmt-homomorphism
between functions and Hamiltonian vector fieldfg:(, = [Xg, X¢]) specific to the
Hamiltonian case, that provides a mechanism to producerfaging) dynamical
symmetries out of (commuting) integrals of motion. Foramste, in the Liouville-
Arnold case one hag = 2n and then commuting dynamical symmetries are the
Hamiltonian vector fields of the commuting integrals of motion.

It should be noted that the special link between integralsnofion and dy-
namical symmetries, peculiar to Hamiltonian mechanicqrésent, at least at a
local level, in the Hamilton-Jacobi method as well. In faas, noticed above,
a complete integral of the Hamilton-Jacobi equation presitwo sets of data:
the integrals of motiorand the times along the flows of their Hamiltonian vector
fields, namely the integrals of motiand their Hamiltonian vector fields. Thus,
the greater Hamilton-Jacobi miracle is that a completegnadeprovides both the
integrals of motion and the dynamical symmetries leadingtegrability in the
Liouville-Arnold sense. (This link is present in noncomiirte integrability as
well, but there is no Hamilton-Jacobi description for ite tHamilton-Jacobi equa-
tion can describe only Lagrangian foliations, not othetriguic foliations).

4.2. Commuting integrals of mation. In order to illustrate this situation we in-
vestigate the implications of the existence of a humber wfoat—Poisson com-
muting integrals of motion of a nonholonomic system. Oncairagassume that
configuration spac®) is n-dimensional, and that the constraint maniféldhas
codimensiork.

LEmMa 4.2. Consider p> 1 functionally independent functions, f.., f, : M - R
and their nonholonomic vector fieId#‘P,(. . X?:

1. The )Qihs are tangent to the joint level sets of, f.., f, if and only if
{fi, fj" = Ofor all i, j.

2. wy vanishes on the distributiospané(”lh,...,X?:) c H if and only if
(£, ;)7 = Ofor alli, j.

3. Assume(f;, fj}™" = 0 for all i,j. Then the vector fields R pairwise

commute if and only if the matrix of vector fields whose ilj congnt is
Z(fi, fj,-) vanishes identically.
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Proof. The first statement follows fromxﬁh fi = {fi, f }”h. The second from

the fact that the vector fleldX”hs are sectlons oH and the definition of the
almost-Poisson bracket. leen any three functifn§, g, the identity @th th]g =

{fi, {f5, @M —{f;, (£, g"MM = (i, fj, 9)—{g. {fi, f;)"" " holds. The third state-
ment follows from this immediately. g.e.d.

Note that the first two staments owe their validity to the fdtt the Jacobi
identity does not enter their proof; the failure of the Jaddbntity manifests itself
in the third.

4.3. Integrability a la Hamilton-Jacobi. By this, we mean a mechanism that
derives the dynamical symmetries needed for integralfiliyn a set of integrals
of motion in involution. Mimicking the Hamiltonian case,etlobvious candidate
would be the nonholonomic vector fields of the commutinggrdés. In fact, this
is more than just mimicking: no other way of deriving a vedield from a func-
tion, without any further information (e.g., symmetry gpsusee below), has been
devised so far in nonholonomic mechanics. So, this is likB only general
mechanism one might have. However, it obviously faces tfiecdity that, due
to the failure of the Jacobi identity, the nonholonomic wedtelds of functions
that almost-Poisson commute need not commute.

Let us anyway look into this possibility. Sineey has rank 2¢ — k), there
cannot be more tham— k functionally independent functions dvi which are pair-
wise in involution and whose nonholonomic vector fields arergwvhere linearly
independent. Let us thus assume that we have this maximurherurhfunction-
ally independent integrals of motiofa, ..., f,-x : M — R which are pairwise in
H-involution, {f;, fj}”h =0 for alli, j, and whose joint level sets

Ne=fric) n---n fik(eni),  c=(CL. .k,

are compact and connected. We assume that the Hamiltbn@drthe system,
which is an integral of motion, is one of tHgs, sayf; = h.

SinceM has dimensionr?-k, the invariant setbl. have dimensiom. We would
like them to be tori and the dynamics to be quasi-periodichemt According to
Theorem 4.1 we need diM — (n — k) = n commuting dynamical symmetries
which are tangent to thid.s. By Lemma 4.2, the(“hs have some of the properties
to be considered as candidates. However, even if theservielts are tangent
to the Ncs, there are some obstructions: not only are there too fevovéelds,
but neither is it granted that they are dynamical symmetfiesf;} = 0 does not
automatically impliesXq", X{"] = 0) nor that they commute. And even if th@"s
commute, more dynamical symmetrles or more integrals ofonatre needed, that
were not obviously present initially and seem to definiteholutside the Hamilton-
Jacobi realm.
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4.4. Integrability without Hamilton-Jacaobi. We do not know any example of
integrable nonholonomic systems that fits the previous, ik@mJlacobi-like set-

ting. In known examples of integrable nonholonomic systehesdynamical sym-

metries identifiable through Bogoyavlenskij's charaa&tion do not arise in this
way.

In certain cases, both the integrals of motion and the dycamymmetries may
be interpreted as generated by an underlying symmetry ghutjn a ‘gauge-like’
way (see [8] or [18]). In this mechanism, integrals of moteme constructed as
momenta of suitable varying linear combinations of the itdgimal generators of
the group action. It is enlighting to compare the two mecéasi in the simplest
example.

ExamriLE 4.3. (The nonholonomic oscillator [7]) Consider the nowim@mic sys-
temwithQ = R3 5 (x,Y,2), h = 3(p3+ P+ p2)+3 Y>andM = {(X.Y,Z Px. Py, P2) €
T*R% p, = y px}. In this caseH = span, {yd; + 6, by, p,. dp,} and the nonholo-
nomic vector field of the Hamiltoniahis

Xﬂh = pxax + pyay + y pxaz - %yz px pyapx - yapy

By inspection,x{]‘h is invariant by translations ir andz. ThisR? symmetry leads

to the gauge momentum conservation law py+/1+ y2. Togetherh andk are
two integrals of motion irH-involution. Their joint level sets are compact, b(#‘
and

XM= — 2 (9+9,)
V1+y2
do not commute. However, the infinitesimal generatirandd, of the R2-action
are dynamical symmetries &", commute, and tangent to the joint level sets of
h andk. Therefore, the system has the two independent integratsotbn h and
k and the three dynamical symmetrbéﬁ", 0y andd, and is integrable, with quasi-
periodic dynamics on tori of dimension three.

A similar situation is met in other simple nonholonomic gyss, such as a heavy
ball rolling inside a vertical cylinder or inside a convexfage of revolution, and
the rolling disk; for this aspect of these well known systesms [8, 18, 19]. Itis not
clear if the gauge method is a mechanism capable of exptathi@ integrability
of some natural class of symmetric nonholonomic systentscdatiainly it is not
amenable to a Hamilton-Jacobi treatment.

4.5. More general integrability scenarios. It is not clear that quasi-periodicity
is the characteristic property of integrable nonholonomic ayste Besides the
obvious possibility of non-compact invariant sets, for @fhive could repeat the
analysis done so far, with the same conclusions, a well krmeason is that quasi-
periodicity is often met only after a time reparameterizati At a deeper level,
another possibility is that one need not insist that the dyoal symmetries com-
mute. Instead, they may generate a finite dimensional sel\db algebra. Then
it is still possible to integrate the fiérential equations. Perhaps structurally not as
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nice, but we are able to solve thdidrential equations when the vector fields still
have a “solvable structure” but what they generate is ndefidimensional. The
kind of thing we have in mind is illustrated by the following

ExampLE 4.4. Consider the problem of integrating the flow of the vefittd Z =
aX+ bYif aandb are constantsX = dx andY = f(x,y)dy. It is straightforward

to find integral curves o, even though the algebra of vector fields generated by
X andY under the Lie bracket is not finite dimensional. In essenus, means
that one still has to compute an integral, and can not do shitygpurely algebraic
steps.

But these possibilities are even more remote from the Hamiliacobi descrip-
tion.
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