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Abstract— In this paper we consider the asymptotic be-

haviour and the trajectory generation problem for the Chap-

lygin sleigh interacting with a potential fluid. We investigate

which trajectories can be obtained, at least asymptotically as t

tents to infinity, by controlling some of the coordinates (shape–

control variables) and using the theory of reconstruction. More-

over we support our conclusions via numerical simulations.

I. INTRODUCTION
The control of nonholonomic mechanical systems is a

well-studied field of research, extremely active in the last
forty years, with strong relations with other fields of mathe-
matics and with applications to control, trajectory generation
and to robotics (a non-exhaustive list of references that
show the huge research in the field includes [26], [21], [29],
[3], [24], [32], [7], [20], [33]). Nonholonomic systems are
mechanical systems, in which not all the velocity directions
are permitted. Simple examples are a penny that rolls without
sliding on a table, the snakeboard, the so–called Chaplygin
sleigh and many others (see e.g. [3], [15]).
In this work we investigate the trajectory generation problem
of the so–called hydrodynamical Chaplygin sleigh introduced
in [17]. The Chaplygin sleigh is a nonholonomic system
introduced by Chaplygin in 1905 [13], that models a plat-
form, supported on two points and on a blade, that moves
on a horizontal plane. The blade is free to rotate about the
axis orthogonal to the plane and passing through the contact
point of the blade with the plane, under the nonholonomic
constraint that displacements in the direction orthogonal to
the blade are forbidden. While in [17] the authors analyze
only the dynamics of the hydrodynamic Chapligin sleigh,
here we investigate the trajectory generation by adding
a moving mass on the platform whose coordinates play
the role of shape control variables. To the best of our
knowledge, besides the research efforts, the controllability
or even the small time local controllability by using external
forces as controls has not been proved yet, even for the
classical Chaplygin sleigh, (see e.g. [5], [3], [28], [6], [33]).
Some authors (see e.g. [11], [30], [31]) have investigated
the controllability, motion planning and trajectory tracking
exploiting the interaction with different kind of surfaces.
Controllability results have been recently proved by using
several shape control variables [33],1 while we use only
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one additional mass. The dynamics of the Chaplygin sleigh
with addition of masses has been deeply investigated in
[8], [10] and in the presence of friction in [9], but without
taking into account the interaction with a potential fluid and
without the use of reconstruction from periodic orbits. A first
investigation on the control of a Chaplygin sleigh in an ideal
fluid has been carried out in [2], but with only one shape
parameter. In this work we investigate the more interesting
case of two shape parameters.
Inspired by [16], we show that we are able to predict the kind
of trajectory attainable after a periodic control loop, using
reconstruction techniques from reduced periodic orbits, and
exploiting the symmetry properties of the system (see [19],
[22], [1], [15] for basic aspects on reconstruction theory and
[16] for a first link of reconstruction techniques and trajectory
generation). In [16], the authors apply reconstruction tech-
niques to systems whose equations of motion depend linearly
on the controls. Our hydrodynamic Chaplygin sleigh is a neat
example where the equations are more involved, because of
affine and polynomial dependance on the controls and the
techniques in [16] cannot be directly applied. The use of tools
of reconstruction theory is ensured by proving the existence
of periodic solutions of a certain affine system of ODE’s with
periodic coefficients, and the (controlled) reduced equations
of the hydrodynamic Chaplygin sleigh turn out to be of this
type for some choice of the controls.
The article is organised as follows. In Section II we intro-
duce the notation and basic tools of nonholonomic systems
with symmetry and geometric control theory, specifying the
particular case of control systems on principal bundles. Then
we review the main results on reconstruction from (reduced–
)periodic orbits. In Section III we introduce an example
of nonholonomic control system on a principle bundle: the
hydrodynamic Chaplygin sleigh that is the classical Chaply-
gin sleigh interacting with a potential fluid. In Section IV,
we show which kind of trajectories can be obtained by
using periodic controls and the reconstruction techniques
outlined above. We also support our theoretical predictions
by numerical simulations. A short Section of Conclusions
and perspectives for future works follows.
Unless differently said, all mathematical objects are assumed
to be smooth, all vector fields are assumed to be complete,
every Lie group is assumed to be connected, and every group
action to be free, proper and, for the sake of simplicity, with
trivial isotropy. All numerical simulations and graphs were
made with the software Mathematica c�.



II. Basic notions on nonholonomic systems,

controllability and reconstruction theory

Definition 1: A nonholonomic mechanical system with
symmetry is a quadruple (Q,L,D, G), where (Q,L,D) is
a nonholonomic mechanical system, in which Q is an n–
dimensional configuration manifold, L : TQ �! R L =
T �V is a mechanical Lagrangian, with T and V the kinetic
and potential energy, respectively, and D a constant rank
non–integrable distribution on Q. G is a Lie group that
acts on Q leaving either the Lagrangian and the constraint
invariant.

We consider the notion of nonholonomic mechanical shape
control system, in which the control input are given in terms
in term of an internal ‘shape’ variable

Definition 2: A nonholonomic mechanical shape–control
system is a sextuple (Q,L,D,S, U,G), where (Q,L,D, G)
is a nonholonomic mechanical system with symmetry. S :=
Q/G, the so–called shape space, represents the controlled
variables, and is assumed to be diffeomorphic to Rh, for
some positive integer h and U diffeomorphic to Rh as well,
is the control space.
Let (g, p, s, ṡ) be coordinates on D adapted to the constraint
and to the symmetry. Following [29], the equations of motion
are then

8
><

>:

s̈ = f(s, ṡ, p) + u

ġ = q(J(s)p+A(s)ṡ)

ṗ = hM(s)p, pi+ hN(s)p, ṡi+ hC(s)ṡ, ṡi

(1)

where u : t �! U an admissible control, and define a
dynamical system on D. The invariance properties of the
constraint and of the Lagrangian, guarantee that equations
of motion (1) define a dynamical system on the principal
bundle D �! D/G. If one assumes to directly control the
shape variables, the equations of motion read:

8
><

>:

ṡ = u

ġ = g(J(s)p+A(s)u)

ṗ = hM(s)p, pi+ hN(s)p, ui+ hC(s)u, ui

(2)

with u : t 7�! u(t) is an admissible control. As above
equations (2) define a dynamical system on the principal
bundle D ! D/G.

Remark 3: In Section III we will consider the case in
which Q = G ⇥ S and G acts on Q leaving L, D and S

invariant. Precisely for the hydrodynamic Chaplygin system
G = SE(2) and S is the product of two intervals of R.

A. Basic reconstruction techniques
The reconstruction of the dynamics from reduced equi-

libria and reduced periodic orbits has been well studied in
[19], [22], when the symmetry group is compact and in [1] in
the non–compact case. In this subsection we shortly review
the basic results of reconstruction theory in the simplest
framework, of free and proper group actions. We consider
a Lie group G that acts on a manifold M . The freeness and
properness of the action guarantee that the quotient space
M/G has a manifold structure and ⇡ : M �! M/G is

a principal bundle with structural group G. Let X be a G–
equivariant vector field on M , then there exists a vector field
X̂ on M/G, ⇡–related to X .

Definition 4: • Let m0 2 M . A G–orbit Om0 = G·m0

is a relative equilibrium for X , if it is invariant with
respect to the flow of X .

• A G-invariant subset P of M is called a relative periodic
orbit for X , if its projection by ⇡P on the quotient
manifold M/G is a periodic orbit of X̂ . We call a
periodic orbit on M/G a loop.

Let P be a relative periodic orbit and � a curve in P . By
the periodicity of the reduced dynamics, the integral curves
of the complete system, that pass through �(0), returns
periodically, with period ⌧ > 0, to the G–orbit through �(0).
The freeness of the action of G on M guarantees that 8� in
P there exists a unique p(�̂) in G such that

�
X
⌧ (�) =  p(�̂)(�) ,

where �X⌧ is the flow of X at time ⌧ ,  g is the action of
G on M , �̂ is the projection of � on M/G with respect to
⇡, and the map p : P ! G, � 7! p = p(�̂) is the so–
called phase [16]. The phase p is a piecewise smooth map,
constant along the orbits of X (i.e. p ��Xt = p, 8t) and it is
equivariant with respect to conjugation, that is p(h · �) =
h p(�̂)h�1

, 8h 2 G, 8� 2 P .
Let us now introduce the following

Definition 5: • A flow of a vector field is called quasi-
periodic with k frequencies if there exist a differentiable
map which conjugates it to a linear flow on a torus Tk.

• [16] A flow of a vector field is called spiral flow if it
is an action of R on Tk

⇥ Rn as

(t,↵, z) ! (↵+ tw (mod 1), z + tv)

with w 2 Rk and v 2 R, v 6= 0.
Then the following Proposition holds.
Proposition 6: [19], [22], [1] Let P be a relative periodic

orbit of X and let P̂ the projection of P on D/G with respect
to ⇡P . Then

i) if the group G is compact, the flow of X over P̂ is
quasi–periodic with at most rankG+ 1 frequencies;

ii) if G is non–compact, the flow of X over P̂ is either
quasi–periodic, or a spiral flow.

The non–compact case is the most frequent and also the
most interesting. For example one can say more on which
of the two behaviours (quasi–periodic or spiral) is “generic”,
by investigating the group G. A behaviour is called generic
depending on the codimension of the two sets

gT := {⇠ 2 g | K(⇠) is a torus}
gR := {⇠ 2 g | K(⇠) is a subgroup isomorphic to R} .

More precisely, according to [1], if the codimension of gT
(respectively gR) is low, the corresponding quasi–periodic
flow (respectively spiral flow) is generic, on the other hand,
if its codimension is high,2 we call the corresponding flow
special. (For more details and examples see [1]).

2Here low and high depend on the relations between the dimensions of
gT and gR.



III. The model

The hydrodynamic Chaplygin sleigh is a planar rigid
body that slides on a horizontal plane immersed in an ideal
incompressible and irrotational fluid. The body is supported
at three points, two of which slide freely without friction
while the third is a blade, that cannot move transversely with
respect to itself (see [25] for the classical Chaplygin sleigh
and [17] for the hydrodynamical one).

(x,y)	
θ	

ν	
e1	

e2	 (s1,s2)	

Fig. 1. The hydrodynamic Chaplygin sleigh

A. Hydrodynamics

Following [17], we consider an elliptic planar rigid body
of mass M, major semi–axis A and minor semi–axis B,
immersed in a potential incompressible fluid, with a mass
m free to move on the platform. Let (ex, ey) denote an
orthonormal inertial reference frame fixed in space and
(e1, e2) an orthonormal ‘body’ reference frame attached to
the platform. We assume, without any restriction, that the
body frame is centered in the center of mass (x, y) of the
platform and that the axis e1 is oriented as the blade (see
Figure 1). ✓ denotes the angle that the major semi-axes of
the platform forms with the x–axis. The coordinates (✓, x, y)
on S

1
⇥ R2 identify the position and the orientation of the

rigid body with respect to the fixed inertial frame. Since
a configuration of the platform is given by an element of
SE(2), (✓, x, y) identifies an element g 2 SE(2). Let ⌦
and V = (v1, v2) denote, respectively, the angular and the
translational velocity of the platform in the the body frame
representation, and ✓̇ and (ẋ, ẏ), the same velocities in the
space representation. The velocity in the body representation
in a configuration g of SE(2) is related to the one in
the space representation by multiplication of an element of
SE(2), precisely:

(✓̇ ẋ ẏ)T = g(⌦ v1 v2)
T
. (3)

Therefore (✓, x, y,⌦, v1, v2) are left trivialized coordinates
on SE(2)⇥R3, where we identify se(2) with R3 as vector
spaces.

Let (s1, s2) be the coordinates of the mass m (see
Figure 1) and (vs1 , vs2) its velocity in the body frame
representation. Thus the configuration space of the system
formed by the platform and the mass is a Lie group
diffeomorphic to SE(2) ⇥ R2 and the tangent bundle to
the configuration space is diffeomorphic to SE(2) ⇥ R2

⇥

R3
⇥ R2. We equip T (SE(2) ⇥ R2) with local coordi-

nates (✓, x, y, s1, s2,⌦, v1, v2, vs1 , vs2) in the body frame
representation, and (✓, x, y, s1, s2, ✓̇, ẋ, ẏ, ṡ1, ṡ2) in the space
frame representation.

By denoting with � = (⌦, v1, v2, vs1 , vs2)
T the velocity

of the system in the body frame representation, the kinetic
energy of the body reads

T
B =

1

2
�T

0

B@

I + m(s21 + s22) �ms2 ms1 �ms2 ms1
�ms2 m + M 0 m 0
ms1 0 m + M 0 m
�ms2 m 0 m 0
ms1 0 m 0 m

1

CA�

By taking into account the motion of the potential fluid that
surrounds the body (see e.g. the classical book of Lamb [23]
for details), it can be shown that the pressure forces exerted
by the fluid are actually kinetic terms [34]. Therefore the
system given by the body and the fluid is a geodesic dynamic
with Lagrangian given by the sum of the kinetic energy of
the body and the one of the fluid. Denoting by u = u(x, t)
the fluid’s velocity at the point x, the kinetic energy of the
fluid is

T
f =

Z

R2\B

|u(x)|2

2
dx ,

where B represents the domain occupied by the elliptic
platform. It is well known that the velocity field of an
incompressible potential fluid can be determined by setting
u = r�, for some function � called stream function and by
solving the Neumann problem in the exterior domain

8
><

>:

�� = 0 x 2 R2
\ B

@�
@n = (V + ⌦⇥ x) · n , x 2 @B

|�| ! 0 |x| ! 1

where n the unit exterior normal to @B. Moreover, since the
rigid body is an ellipsis, by applying Kirchhoff decomposi-
tion and added masse theory [26], the kinetic energy of the
fluid can be expressed as the quadratic form

T
f =

1

2
�T

0

BB@

⇡⇢
4 K 0 0 0 0
0 ⇡⇢H

⇡⇢
2 K sin 2⌫ 0 0

0 ⇡⇢
2 K sin 2⌫ ⇡⇢H 0 0

0 0 0 0 0
0 0 0 0 0

1

CCA� ,

(4)
where we set K = A

2
�B

2 and H = B
2 sin2 ⌫+A

2 cos2 ⌫,
where ⌫ is the angle that the blade possibly forms with the
major semi-axes (see Figure 1), ⇢ is the density of the fluid,
and as above A is the major and B the minor semi–axis.
The Lagrangian of the system is then given by the sum of
the kinetic energy of the body and of the fluid:

L = T
b + T

f
. (5)

Kirchhoff’s equations for a (planar) rigid body on a potential
fluid are Lie–Poisson equations on the dual of the Lie algebra
of SE(2) (see e.g. [27], [20] for details on that) or Euler–
Poincaré equations on the Lie algebra, if one considers their
Lagrangian formulation.



B. The nonholonomic constraint and the symmetry of the
system

The hydrodynamic Chaplygin sleigh is an LL–system,
see [17] for details. In the case under study, according to
Definition 2, the group action is given by the lift of left
multiplication by SE(2) and represents the invariance of
the Lagrangian under translations and rotations in space. By
assuming that the axes of the body frame are oriented as the
principal axes of inertia of the platform and that the blade
is oriented as the major principal axis of inertia (i.e ⌫ = 0),
the nonholonomic constraint, that forces the blade to slide
only along the e1 direction, is

� ẋ sin ✓ + ẏ cos ✓ = 0, or in body coordinates v2 = 0 . (6)

C. Equations of motion
The conjugate momenta are,

p⌦ =
@L

@⌦
p1 =

@L

@v1
. (7)

By expressing the momenta in function of ⌦ and v1 and by
taking into account the nonholonomic constraint, we get

⌦ =
m⌅s2 + (p⌦ +mvs2s1 �mvs1s2)(m+M +B

2
⇡⇢)

m2s22 � (m+M +B2⇡⇢)(T + K2⇡⇢
4 )

v1 =
[⌅(I +ms

2
1) +m(p⌦ �mvs2s1)s2 +mp1s

2
2] +K

2⌅⇡⇢

2m2s22 � (m+M +B2⇡⇢)(T + K2⇡⇢
4 )

v2 = 0
(8)

where we set: ⌅ = p1 �mvs1 , T = I +ms
2
1 +ms

2
2 and as

above K = A
2
�B

2. The reduced equations are

ṗ⌦ = �v1m

⇣
vs2

2
+ s1⌦

⌘
, ṗ1 = ⌦m

⇣
vs2

2
+ s1⌦

⌘
(9)

ṡ1 = u1, ṡ2 = u2 (10)

where the equations for p⌦ and pv1 are the so called momen-
tum equations. If one integrates the momentum equations
obtains the dynamics of the group configuration variables
by the reconstruction equations (3) and the nonholonomic
constraint (6). Moreover observe that equations (8), up to a
premultiplication for the group variables, and (9),(10), are
exactly of the type (2) and are affine and polynomial in the
controls.
IV. TRAJECTORY GENERATION OF THE HYDRODYNAMIC

CHAPLYGIN SLEIGH

In this section we assume to be able to assign the ve-
locities, ṡ1, ṡ2, of the moving mass as functions of time,
that is as shape control functions. We then show that using
periodic controls it is possible to make the sleigh moving
along a circle or spiraling away in a certain direction as t

tends to infinity.

A. The strategy
In the spirit of Proposition 6 in Section II , the control

strategy uses periodic controls to produce periodic solutions
of the reduced equation (9), whose reconstructed trajectories
are either quasi–periodic or spirals (see Definition 5). More

precisely we give conditions under which the infinitesimal
generator of the phase, coming from a periodic (loop) solu-
tion of the reduced equations, generates a circular dynamic
or a spiral flow in certain directions.
As already mentioned the symmetry group of the hydro-
dynamic Chaplygin sleigh is non–compact and the (semi–
algebraic) sets gT and gR are

gT := {(⇠v1 , ⇠⌦) 2 R⇥ R | ⇠⌦ 6= 0} [ {(0, 0)}

gR := {(⇠v1 , ⇠⌦) 2 R⇥ R | ⇠⌦ = 0, v1 6= 0} ,

where ⇠ = (⇠v1 , ⇠⌦) is the infinitesimal generator of the
phase, and codim(gT) = 0, codim(gR) = 1 .3

By Proposition 6, the generic reconstructed behaviour is then
the quasi–periodic flow and the special one is the spiral flow.
Given a loop in the reduced space, the values of ⇠v1 and ⇠⌦
determine the type of the reconstructed dynamics. Precisely:
if ⇠⌦ 6= 0, the hydrodynamic Chaplygin sleigh moves along
a circle. On the other hand, if ⇠⌦ = 0, it moves spiralling
along a certain direction. Given periodic controls, conditions
under which there exists at least one periodic solution of the
momentum equation (9), are not straightforward. See Section
below for a proof of this fact.

B. Extended Floquet theory

Here we show why for the hydrodynnamic Chaplygin
sleigh system we are allowed to suppose the existence of a
periodic solution of the reduced equation choosing periodic
controls. We exploit the following general theorem. Let us
consider the following ordinary differential equation

q̇ = A(t)q + b(t) (11)

with t 7! A(t) is a T–periodic matrix function and t 7! b(t)
a T–periodic vector function.

Theorem 7: [14] If one is not an eigenvalue of the mon-
odromy matrix of the T–periodic homogeneous system q̇ =
A(t)q, then (11) has at least one T–periodic solution.

Now consider the reduced equations of the hydrodynamic-
Chaplygin sleigh given by (9) (10), with ⌦ and v1 given
by equations (8). Let us assign u1(t) = 0, and s1(0) = 0
for all t, thus integrating ṡ1 = u1 we obtain s1(t) = 0 for
all t. This assumption guarantees that the quadratic term in
p in the momentum equation vanishes. Moreover suppose
that the control u2(t) is periodic of period T . Using these
controls u1(t) and u2(t) in the reduced equations, we have
that clearly equations (10) have a periodic solution and the
momentum equations are of type (11). Indeed ⌦ and v1 are
affine functions of p⌦ and p1 with coefficients depending
on u2 and s2 which are T -periodic. Hence we can use the
previous Theorem which gives us conditions on the matrix
A(t) and the vector b(t) to have the existence of at least one
T–periodic solution. Thus, under these conditions, we have a
periodic solution of the reduced equations and we can exploit
the reconstruction techniques from periodic orbits.

3For the definition of a semi–algebraic set and its codimension see [1].



C. Trajectory generation

We now show, that we are always able to find control
inputs that starting from a certain point in the plane put the
system on a trajectory which asymptotically approaches a
straight line with the desired direction.

Theorem 8: Let us suppose to start from a certain group
configuration (xA, yA, ✓A) in the plane and suppose that,
there exist two control loops P̂

⌧ = (s⌧1(t), s
⌧
2(t)), P̂

R =
(sR1 (t), sR2 (t)), such that the flow of the vector field defined
by (8) (9) and (10) over P̂

⌧ is a circular motion in (x, y)
and the flow over P̂

R is a spiral flow along a certain
direction. Then it is possible to steer the Chaplygin sleigh
on a trajectory that in mean, asymptotically approaches a
straight line motion in a certain direction of the (x, y)–plane
(see also Figure 3 in Subsection IV-D) .
Proof: Without loss of generality assume that at t = 0, ✓A =
0. Let ↵ be the angle between the asymptotic direction of the
spiral flow generated by P̂

R as t ! 1 and the x–axis, and
� be the angle between the desired direction and the positive
direction of the x–axis. The strategy is the following: use the
control loop P̂

⌧ until a time T1 > 0 such that ✓(T1) = ��↵.
Then consider the following control functions

f1(t) =

8
>><

>>:

s
⌧
1(T1) if t < 0

s
⌧
1(T1) +

2sR1 (0)

T2 t
2 if 0  t  T

2
4s⌧1 (T1)

T2 (t� T )2 � sR1 (0)(2t2�5tT+T2)

2T2 if T
2  t  T

s
R
1 (t� T ) if t � T

f2(t) =

8
>><

>>:

s
⌧
2(T1) if t < 0

s
⌧
2(T1) +

2sR2 (0)

T2 t
2 if 0  t  T

2
4s⌧2 (T1)

T2 (t� T )2 � sR2 (0)(2t2�5tT+T2)

2T2 if T
2  t  T

s
R
2 (t� T ) if t � T

Using these two functions as controls for t � T the trajectory
in mean, as t ! 1 asymptotically approaches a straight line
that forms an angle ↵ with the x-axis. Thus setting

s
⇤
1(t) =

(
s
⌧
1(t) if 0  t  T1

f1(t� T1) if t > T1

s
⇤
2(t) =

(
s
⌧
2(t) if 0  t  T1

f2(t� T1) if t > T1

we have that the corresponding trajectory is the one obtained
with the previous controls affected by a rotation about the
center of the initial circular trajectory by the angle � � ↵.
Therefore the controls (s⇤1, s

⇤
2) satisfy the statement of the

theorem. ⇤
The simulations in Section IV-D show that we are able to

produce both rotation (quasi–periodic flow) and translation
(spiral flow) behaviours.

D. Numerical simulations using periodic controls

In this subsection we show some numerical simulations
that support the validity of the first control strategy proposed
above to use periodic controls to steer the hydrodynamic
Chaplygin sleigh in the plane.

We refer to equations (8) and (9), and use the following
parameters: A = 2, B = 2p

3
, ⇢ = 1, M = 1, m = 0.01 and

J = A
2+B

2 = 16
3 . At first we chose the following periodic

controls vs1(t) = 3 cos t, vs2(t) = 10 sin t .
Integrating the momentum equation (9) with initial data:
s1(0) = 0, s2(0) = 1, p1(0) = 1, p⌦(0) = 0, we end up
with the following periodic reduced solutions

0 1 2 3 4 5 60.9980
0.9985
0.9990
0.9995
1.0000
1.0005

t

p1

1 2 3 4 5 6

0.01
0.02
0.03
0.04
0.05
0.06

t

p⌦

-40 -20 20 40

20

40

60

80

100

x

y

Fig. 2. Reduced periodic solutions of (9) on the left and reconstructed
periodic trajectory on the right.

Integrating the reconstruction equations (3) over the pe-
riodic orbit corresponding to the solutions in Figure 2 on
the left, and iterating the control loop for several periods,
we get, as expected, a periodic trajectory (Figure 2 on the
right) in the (x, y)–plane. This matches the predictions from
the theory, since the generic behaviour for a nonholonomic
mechanical control system with symmetry group SE(2)
is the quasi–periodic one, i.e a circle. We now exhibit a
choice of periodic controls that produces the so–called spe-
cial behaviour of the reconstructed trajectory, i.e. the spiral
flow. Given the periodic controls vs1(t) = cos

�
t+ ⇡

2

�
,

vs2(t) = sin 2t , the corresponding periodic solutions of the
momentum equations with initial data s1(0) = 0, s2(0) =
1, p1(0) = 1, p⌦(0) = 0 are the first two of Figure 3, and
the reconstructed trajectory in the (x, y)–plane is the last one
in Figure 3 and turns out to be horizontal.
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Fig. 3. Reduced periodic solutions of (9), that give rise to a special
reconstructed behaviour.

Remark 9: We notice that the idea for proving the asymp-
totic behaviour of the system are similar to the ones used
for the proof without hydrodynamics [28], in which only
reconstruction from equilibria is taken into account. This
means that the system of the Chaplygin sleigh preserves
its dynamical properties, when immersed in an ideal incom-
pressible irrotational fluid. Furthermore we observe that out
result extends to the case in which also circulation is present



as in [18].

V. CONCLUSIONS AND PERSPECTIVES

In this paper we consider the so–called hydrodynamic
Chaplygin sleigh and analyze the trajectories attainable using
periodic shape deformations, via reconstruction techniques.
More precisely, we prove that combining periodic shape
controls, it is possible to steer the hydrodynamic Chap-
lygin sleigh on a trajectory that in mean, asymptotically
approaches a straight line motion in a certain direction in
the plane. Moreover, through numerical simulations we show
that we are able to produce both rotation and translation
behaviours.
The reconstruction techniques are an important tool that
can be used to predict and analyze the kind of trajectories
performed by a non-holonomic system which is controlled by
periodic shape actuators. Here we applied these techniques
to the paradigmatic example of the hydrodynamic Chaplygin
sleigh, but we conjecture that the strategy proposed here,
can be used for more general non-holonomic shape control
systems and, up to our knowledge, it is an important step
forward in the study of the controllability of these kind of
systems. Moreover we point out that our techniques could
be adapted and extended to the case of obstacle avoidance
problem. A rigorous proof of the extension of our results to a
wider class of systems will be the subject of further studies.
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