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We consider the speed of propagation of a continuous-time continuous-
space branching random walk with the additional restriction that the birth rate
at any spatial point cannot exceed 1. The dispersion kernel is taken to have
density that decays polynomially as |x|−2α , x→∞. We show that if α > 2,
then the system spreads at a linear speed, while for α ∈ ( 1

2 ,2] the spread is
faster than linear. We also consider the mesoscopic equation corresponding
to the microscopic stochastic system. We show that in contrast to the micro-
scopic process, the solution to the mesoscopic equation spreads exponentially
fast for every α > 1

2 .

1. Introduction. We analyze the truncated pure birth model introduced in [6] on the
subject of the speed of space propagation. Our aim is to approach the question from the
microscopic probabilistic as well as the mesoscopic point of views. It turns out that the scaling
significantly changes the behavior of the system: while the microscopic model grows linearly
in time provided the exponent is larger than four, the mesoscopic model spreads exponentially
fast.

The limiting behavior of the branching random walk has been extensively studied. For an
overview of branching random walks and related topics, see for example, [48]. The asymp-
totic behavior of the position of the rightmost particle of the branching random walk under
different assumptions are given in [17] and [16], see also references therein. A shape theorem
for a one-dimensional discrete-space supercritical branching random walk with an exponen-
tial moment can be found in [7]; [8] contains further comments and extensions, in particular
for a multidimensional branching random walk. Further results and references on the branch-
ing random walk with the focus on the position of rightmost particle can be found in [9].
More refined limiting properties have been obtained recently, such as the limiting law of the
minimum or the limiting process seen from its tip or the asymptotics of the position of the
minima of a branching random walk, see [1–4]. For maximal displacement of branching ran-
dom walks in an environment see for example, [20, 38] and references therein. A branching
random walk with a fixed number of particles is treated in [5], where asymptotic properties
are obtained both in time and in the number of particles. In [19], conditions for the survival
and extinction of different versions of the Bolker–Pacala model are given.

Among asymptotic results for other stochastic models, Blondel [10] proves a shape result
and an ergodic theorem for the process viewed from the tip for the East model. A continuous-
space set-valued stochastic growth model with the related shape theorem was given in [15].
The results have been extended in [28]. The agent based model we treat in the present
manuscript shares some features with this set based models.
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The transition from the microscopic probabilistic models to macroscopic deterministic
evolutions is a subject of several works, see for example, [13, 24]. Equations similar to those
considered in the present paper appear in [12] during the analysis of the rightmost particle
of the Branching random walk. Convolution with a probability density is often considered
in biological and ecological models to describe a nonlocal interaction [14, 36]. Evolution
equations involving convolution terms naturally appear as a limiting behavior of rescaled
stochastic processes [18, 21, 35, 41, 45]. We do not give a formal derivation of the macro-
scopic model here, however we show that the microscopic and macroscopic models may have
qualitatively different asymptotic growth rate when the underlying geographic space is not
compact. This phenomenon can also be deduced for other models (see Remark 2.10).

The main results are Theorems 2.1, 2.7 and 2.8. Theorem 2.1 states that the birth process
with the birth rate given by (1) and (2) below propagates not faster than linearly if α > 2. We
give a proof for the negative direction only as the proof for the opposite direction is identical
due to symmetricity. Of course, Theorem 2.1 also applies to any stochastic process dominated
by the birth process defined in Section 2, see Remark 2.6 for more detail. Theorem 2.7 shows
that when α < 2 the birth process does in fact spread faster than linearly. In combination with
Theorem 2.1 it allows us to conclude that α = 2 is a critical value for the birth proces defined
by (1) and (2). On page 1097 two heuristic arguments are given on why one could expect the
critical value to be two. In contrast to the linear speed in the stochastic microscopic model for
α > 2, Theorem 2.8 shows that the solution to the respective mesoscopic equation propagates
exponentially fast. Let us note that the effect is different for the models without restriction:
a dispersion kernel with polynomially decaying tails gives exponentially fast propagation for
both the rightmost particle of the branching random walk (as shown in [17]) and the unique
solution to the corresponding mesoscopic equation (see [11, 23, 26]).

The paper is organized as follows. The models we consider, assumptions and results are
collected in Section 2. Proofs of the main results, Theorems 2.1, 2.7, and 2.8, are contained
in Sections 3 and 5, 4 and 5, and 6, respectively. Sections 3 and 4 are devoted to the discrete-
space version of the birth process. Section 6 also contains a remark on heuristic connection
between the microscopic and mesoscopic models.

2. The model, assumptions and results. Let �0 be the collection of subsets of finite
number of points in R

1,

�0
(
R

1)= {
η⊂R

1 : |η|<∞}
,

where |η| is the number of elements in η. Let also b :R1 × �0 →R+ be the birth rate

(1) b(x, η)= 1∧
(∑

y∈η

a(x − y)

)
, x ∈R, η ∈ �0

(
R

1)

with

(2) a(z)= cα

(1+ |z|2)α , z ∈R,

where α > 1
2 and cα > 0 is such that

∫
R

a(z) dz= 1. The time evolution can be imagined as
follows. We denote the state of the process at time t by ηt ∈ �0. If the state of the system is
η ∈ �0, then the rate at which a birth occurs in a bounded Borel set B is

∫
B b(x, η) dx, that is,

the probability that a new particle appears (a “birth”) in a bounded set B ∈B(R1) over time
interval [t; t +�t] is

�t

∫
B

b(x, η) dx + o(�t).
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More details can be found in [6]. Note that the birth rate without restriction

b̄(x, η)=∑
y∈η

a(x − y)

corresponds to a continuous-space branching random walk.

THEOREM 2.1. Assume that α > 2. For the continuous-space birth process (ηt )t≥0 with
birth rate (1) and initial condition η0 = {0} there exists a constant Cα > 0 such that a.s. for
sufficiently large t ,

(3) ηt ⊂ [−Cαt,Cαt].

REMARK 2.2. As is the case for many shape theorems for growth models, Theorem 2.1
holds true for any initial condition η0 ∈ �0(R

1). Also, the upper bound in (1) does not have
to be 1, it can be any positive constant.

REMARK 2.3. In fact, analyzing the proof of the shape theorem in [6], we can obtain a
stronger result for the one dimensional continuous-space birth process with birth rate satisfy-
ing

b(x, η)≤ Cb ∧
(
Cb

∑
y∈η

a(x − y)

)
,

for some constant Cb > 0, provided that certain additional conditions are satisfied (mono-
tonicity, translation and rotation invariance, and nondegeneracy as defined in [6]). Specifi-
cally, there exists a constant λ > 0 such that for every ε > 0 a.s. for sufficiently large t both

(4) ηt ⊂ [−λ(1+ ε)t, λ(1+ ε)t
]

and

(5)
⋃
x∈ηt

[x − 1, x + 1] ⊃ [−λ(1− ε)t, λ(1− ε)t
]

hold true. In particular, (4) and (5) hold for b defined in (1) and (2). Note that such b does
not satisfy Condition 2.1 from [6], however Condition 2.1 from that paper is only used to
establish that the growth is at most linear, which we do in a different way in Theorem 2.1.

REMARK 2.4. Theorem 2.1 can be compared with the result of Durrett [17], which
shows that we observe an exponential growth for the maximal displacement of a branching
random walk with polynomially decreasing dispersion kernel. A related result for a branch-
ing random walk with dispersion kernel satisfying certain semiexponential conditions can be
found in [25]. Semiexponential kernels in [25] satisfy

P{Y ≥ t} = l(t) exp
(−L(t)tr

)
for t sufficiently large, where Y is a random variable distributed as displacement of the off-
spring from the parent, r ∈ (0,1), l and L are slowly varying functions, and L(t)/t1−r is
nonincreasing for large t . The spread rate for a branching random walk with such a dis-
placement kernel is given in [25] explicitly. The system grows faster than linearly; for some
choices of L the spread rate is polynomial. For Deijfen’s model of a randomly growing set,
Gouéré and Marchand [28] give a sharp condition on the distribution of the outburst radii for
linear or superlinear growth (i.e., faster than linear).
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REMARK 2.5. In the language of statistical physics, Theorem 2.1 means that our model
exhibits the directed percolation (DP) class properties while having longe-range interaction,
see for example, [40], Section 6.7 and elsewhere, [27, 30, 43].

REMARK 2.6. As noted in the Introduction, Theorem 2.1 also applies to any stochastic
process dominated by the birth process with birth rate (1). In particular, the statement holds
true if every particle is removed after an exponential time with mean δ−1, that is, if each
particle also has a death rate equal to δ.

The next result shows that the condition α > 2 in Theorem 2.1 is sharp. The system exhibits
a superlinear spread rate when α ≤ 2.

THEOREM 2.7. Assume that α ∈ (1
2 ,2]. Then (ηt ) grows faster than linearly in the sense

that for any K0,K1 > 0,

(6) P
{
ηt ⊂ [−K0 −K1t,K0 +K1t] for sufficiently large t

}= 0.

Put differently, (6) means that any K0,K1 > 0 the set{
t : ηt \ [−K0 −K1t,K0 +K1t] 
=∅

}⊂ [0,∞)

is a.s. unbounded.
A mesoscopic approximation of the point process (ηt )t≥0 is given by the following evolu-

tion equation:

(7)

⎧⎪⎨
⎪⎩

∂u

∂t
(x, t)=min

{∫
R

a(x − y)u(y, t) dx,1
}

x ∈R, t ∈ (0,∞),

u(x,0)= u0(x) x ∈R,

where a is defined by (2).
It turns out that the mesoscopic model shows a very different behavior. No matter how

large α > 1
2 is in (2), the speed of propagation is faster than linear as we see in Theorem 2.8

which states that the solution to (7) propagates exponentially fast. Moreover, solutions with
roughly speaking “monotone” initial conditions (case 2) propagate faster than solutions with
“integrable” initial conditions (case 1).

THEOREM 2.8. Let 0≤ u0 ∈L∞(R) and u= u(x, t) be the corresponding classical so-
lution to (7) with a(x) defined by (2). Then, for any ε ∈ (0,1), n≥ 1, there exists τ = τ(ε, n)

such that the following inclusions hold:

1. If there exists C > 0 such that u0(x)≤ Ca(x), x ∈ R, and there exist μ > 0, x0 ∈ R,
such that u0(x)≥ μ, x ∈ [x0 −μ,x0 +μ], then for all t ≥ τ ,

(8)
{
x : u(x, t) ∈

[
1

n
,n

]}
⊂ {

x : e 1−ε
2α

t ≤ |x| ≤ e
1+ε
2α

t}.
2. If there exists C > 0 such that u0(x) ≤ C

∫∞
x a(y) dy, x ∈ R, and there exist μ > 0,

ρ ∈R, such that u0(x)≥ μ, x ≤ ρ, then for all t ≥ τ ,

(9)
{
x : u(x, t) ∈

[
1

n
,n

]}
⊂ {

x : e 1−ε
(2α−1)

t ≤ x ≤ e
1+ε

(2α−1)
t}

.

REMARK 2.9. We use the term “mesoscopic approximation” here instead of “macro-
scopic approximation”, even though some authors might use the latter to describe (7). We
follow here [45]; see also [34], [47] for discussions of microscopic, mesoscopic and macro-
scopic descriptions of complex systems.
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REMARK 2.10. Remark 2.6 can also be contrasted with the spread rate of the system
driven by the equation

(10) ut = J ∗ u− u+ f (u),

where J is the dispersion kernel, ‖J‖L1 = 1, and f : [0,1] → R+ is some differentiable
function with f (0)= f (1)= 0 and f ′(0) > 0, and certain other mild conditions. It is shown
in [26] that the solution to (10) has level sets moving faster than linearly. We note that since
the solution to (10) takes values between 0 and 1 (provided that the initial condition lies
between 0 and 1; see [26]), we have J ∗ u≤ 1, and hence (10) can be written as

(11) ut =min{1, J ∗ u} − u+ f (u).

Notation and conventions. Let R+ = [0,∞), R− := (−∞,0] and Z+ = {m ∈ Z : m ≥
0}. For processes indexed by R+ (which represents time) we will use (Xt) as a shorthand
for (Xt)t≥0 or {Xt, t ≥ 0}. For a Poisson process (Nt), 0 < a ≤ b, N(a, b] = Nb − Na and
N({a})= Na −Na−. For a, b ∈ R, a+ =max{a,0}, a ∨ b =max{a, b}, a ∧ b =min{a, b}.
Concening the operation order, we take for a, b, c ∈R,−a∧b=−(a∧b), ab∧c= (ab)∧c,
and the same rules for ∨. Cov(X,Y ) and Var(X) denote the covariance between X and Y and
variance of X, respectively. 1 is an indicator, for example

1{x ≥ 0} =
{

1 if x ≥ 0,

0 if x < 0.

Throughout the paper, C denotes different universal constants whose exact values are irrele-
vant. Even in the concatenation

F ≤ CG≤ CH,

where F , G, and H are some expressions, two occurrences of C may have different values.
We set Br(x)= {y ∈R||x− y| ≤ r} and Br = Br(0). For simplicity of notation we will write
“x ∈R” instead of “a.e. x ∈R” for the elements of L∞(R). We denote

L∞+ (R)= {
f ∈ L∞(R)|f (x)≥ 0, x ∈R;
∃δ > 0, x0 ∈R : f (x)≥ δ, x ∈ Bδ(x0)

}
.

(12)

We will write for f1, f2 ∈L∞(R), A⊂R,

f1(x) � f2(x), x ∈A,

if there exists c > 0 such that f1(x)≤ cf2(x), x ∈A. For p ∈ [1,∞], ‖ · ‖p := ‖ · ‖Lp(R).

A very brief outline of the proof of Theorem 2.1. The proof of Theorem 2.1 is split across
Sections 3 and 5. The main bulk of the proof is carried out in Section 3, where we prove the
equivalent of Theorem 2.1 for the case when the underlying “geographical” space is discrete
Z

1 rather than continuous R
1. This equivalent is given in Theorem 3.12, and Sections 3 is

entirely devoted to the proof of Theorem 3.12. The main idea of the proof is a coupling of the
process seen from its tip with a simpler process. Some of the ingredients are the strong law
of large numbers for dependent random variables, a form of the strong law for martingales,
and Novikov’s inequalities, or Bichteler–Jacod’s inequalities, for discontinuous martingales.
A brief outline of the proof of Theorem 3.12 and Section 3 can be found on Page 1098. In
Section 5 we finally prove Theorem 2.1 by coupling the continuous-space process with the
discrete-space process from Section 3.
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3. Lattice truncated process. Linear growth for α > 2. In this section we introduce a
discrete-space equivalent defined by (13) and (14) for our continuous-space process defined
by (1) and (2). We prove in this section that this discrete-space process spreads not faster than
linearly (Theorem 3.12).

We consider the birth process on Z
Z+ with the birth rate

(13) b(d)(x, η)= 1∧
(∑

y∈Z
η(y)a(d)(x − y)

)
, x ∈ Z

1, η ∈ Z
Z+,

where

(14) a(d)(x)= 1

(1∨ |x|2)α
(for convenience we consider a slightly modified a in this section compared to (2)) and the
initial condition

η0(k)= 1{k = 0}, k ∈ Z.

Thus, if the state of the system is η, the birth at x ∈ Z (i.e., the increase by 1 of the value
at x) occurs at rate b(d)(x, η). In this section we denote the resulting birth process by (ηt ).
The process is constructed from a Poisson point process as a unique solution to a certain
stochastic equation as described below.

Note that since a(d)(x)≤ 1 for all x,

(15) b(d)(x, η)= 1 if η(x)≥ 1.

Our aim now is to show that the process propagates not faster than at a finite speed if α > 2.
Throughout this session we assume α > 2. To this end we introduce the process (ξt )t≥0 as
(ηt )t≥0 seen from its left tip.

DEFINITION 3.1. Define ξt (k)= ηt (tip(ηt )+ k), k ≥ 0, where

tip(η)=min
{
n : η(n) > 0

}
.

Note that (ξt ) takes values in Z
Z++ . Now we introduce another process taking values in

Z
Z++ . We will see later that this process dominates (ξt ) in a certain sense specified below.

DEFINITION 3.2. Let (ζt ) be a process on Z
Z++ evolving as follows. The process starts

from ζ0(x)= 1{x ≥ 0} and

• at rate 1 the configuration is shifted to the right by 1 and a particle is added at zero; that is,
if a shift occurs at t and ζt− ∈ Z

Z++ is the state before the shift, then

ζt (k)= ζt−(k − 1), k ∈N,

and ζt (0)= 1.
• between the shifts, ζt (k), k ∈ Z+, evolves as a Poisson process. The Poisson processes are

independent for different k and of shift times.
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Some heuristics on why the critical value αc is two. As was noted above, Theorem 2.1
and Theorem 2.7 allow us to conclude that for the birth process with rate given by (1) the
critical value of α is two. In this section we prove that the growth is linear for the discrete-
space equivalent model and α > 2. Before describing the proof, we take a brief pause and
give a few heuristic arguments on why the critical value is 2. We give here two arguments,
the first one being shorter and possibly more straightforward, while the second one relying
on a heuristic comparison to other models.

We start from the following observation. Since we take a minimum with 1 in (13), it is
to be expected that, provided that the spread is linear, ηt seen from its tip satisfies for some
c > 0

(16) Eξt (k)≈ ck, k ∈N,

or at least

(17)
1

t

∫ t

0
Eξs(k)≈ ck, k ∈N, t →∞.

We now proceed with the first shorter argument. If the system spreads linearly in time, then
we can expect that (16) holds. Let Xt =− tip(ηt ) be the distance from the leftmost occupied
site to the origin. The rate at which Xt jumps by k is

jk(t)= jk =
∞∑
i=0

a(d)(−k− i)ξt−(i).

For the speed of propagation to be finite we need the sum
∑∞

k=1 kjk to be finite (more pre-
cisely, the time averages of

∑∞
k=1 kjk need to be finite and growing not faster than linearly

in time; note that Xt − ∫ t
0

∑∞
k=1 kjk(s−) ds is a martingale). Substituting ξt−(i) by ci as in

(16), we get

(18)
∞∑

k=1

kjk = c

∞∑
k=1

∞∑
i=0

ik

(i + k)2α
= c

∑
m=1

1

m2α

m∑
k=1

k(m− k)∼ ∑
m=1

m3

m2α
,

where∼means that two series have the same convergence/divergence properties. We see that
the sum in (18) is finite if and only if α > 2, hence one could expect that the critical value
αc = 2.

To make the first heuristic argument rigorous we would have to prove something like (16)
or (17). However, to prove (16) or (17) we would probably need to prove the linear spread rate
first. In the actual proof that α = 2 is critical we dominate (ξt ) by another process satisfying
a weaker version of (16). This auxiliary process helps us derive an inequality giving an upper
bound for certain time averages of (ξt ), see Proposition 3.9.

The second argument is of purely heuristic nature. We introduce two more birth rates,

(19) b(d,1)(x, η)= a(d)(x − tip(η)
)
, x ∈ Z

1, η ∈ Z
Z+,

and

(20) b(d,2)(x, η)=
0∑

y=tip(η)

a(d)(x − y), x ∈ Z
1, η ∈ Z

Z+.

Denote by (η
(d,i)
t ) the respective birth processes, i = 1,2, and by X

(d,i)
t = − tip(η(d,i)) the

distance from the leftmost occupied site to the origin. For η ∈ Z
Z+ with tip(η) well defined,

let the “essential parts” of the configuration be

η̃(d,1)(k)= 1
{
k = tip(η)

}
,

η̃(d,2)(k)= 1
{
k ∈ {

0,−1, . . . , tip(η)
}}

.
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Note that

(21) b(d,i)(x, η)= b(d,i)(x, η̃(d,i)), x ∈ Z
1, η ∈ Z

Z+, i = 1,2,

so to determine the spread rate of (η
d,i
t ) it is sufficient to know only (η̃

(d,i)
t ).

From the definition of b(d,1)(x, η) we see that X(d,1) is a continuous-time discrete-space
random walk with jumps by n ∈ N occuring at rate a(d)(n). Therefore, for b(d,1) the critical
value separating linear and superlinear growth is α = α

(1)
c = 1 in (14).

Now, it is not as straightforward to determine the critical value α
(2)
c for (η

(d,2)
t ). We note

however that (η̃
(d,2)
t ) is a discrete-space equivalent of the Deijfen’s model [15, 28]. It was

shown in [28] that in one dimension the critical exponent in the kernel is three. Hence it
should hold α

(2)
c = 3

2 .

Let us come back to (ηt ) with birth rate (13) and compare (η
(d,1)
t ), (η

(d,2)
t ), and (ηt ). We

start by noting that all three processes are related because they are defined in terms of a(d).
The essential part of (η

(d,1)
t ) is a single site η̃

(d,1)
t . We can roughly say that the essential part

of (η
(d,1)
t ) has dimension zero. The critical exponent for (η

(d,1)
t ) is two, which corresponds

to the critical value α
(1)
c = 1. The essential part of (η

(d,2)
t ), namely η̃

(d,2)
t , can be thought of

as a growing interval. Thus, informally, the essential part of (η
(d,2)
t ) has dimension one. The

respective critical exponent is three, corresponding to the critical value α
(2)
c = 3

2 .
Now, the essential part of ηt is ηt itself, since every site affects the birth rates beyond the

tip. The number of occupied sites for (ηt ) grows at least linearly with time. According to (16),
the number of particles at each occupied site also grows linearly. Thus, roughly speaking, the
essential part of (ηt ) has two dimensions. We can then conjecture that the critical exponent
for (ηt ) should be one more than that for (η

(d,2)
t ), to compensate for the one more dimension

(see also Table 1), and hence αc = 2.
Of course, for the above heuristic argument to work it is necessary also to assume that the

restriction in b given by (13), that is, taking minimum with 1, does not affect the sites beyond
the tip too much. This seems to be plausible, at least for the sites far away from the tip, while
the sites near the tip should not affect the critical value too much.

Knowing that the guess αc = 2 is correct, we can go a little bit further and conjecture that
for this kind of model

(22) Critical exponent=Dimension of the essential part+ 2.

Note that this is compatible with the results of [28] as the “essential part” of their d-
dimensional model would have dimension d as well. Let us add that (22) is also compatible
with the discussion of the DP regime for the one-dimensional long-range contact process in
[27], Page 6 and elsewhere, because the “essential part” of the contact process conditioned
on nonextinction has dimension one. For the birth process in d dimensions with birth rate as
in (13), (22) would mean that the critical value is

α = d + 3

2
.

TABLE 1
The critical exponents and the essential dimension

The process Dimension of the essential part Critical exponent Critical value of α

(η
(d,1)
t ) 0 2 1

(η
(d,2)
t ) 1 3 3

2
(ηt ) 2 ??? ???
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A brief summary of the section. As mentioned above, this section is devoted to proving
that the distance (Xt) from the origin to the leftmost particle of (ηt ) does not grow faster than
linearly in time, as formulated in Theorem 3.12. We rely on the representation Xt =Qt +Mt ,
where (Qt) is a suitable increasing process, and (Mt) is a local martingale later shown to be
a true martingale, see (36), (37), and Lemma 3.8.

We then proceed to show that a.s. (Qt) grows not faster than linearly in time as stated
Proposition 3.9. To prove Proposition 3.9, we introduce in (40) a sequence of random vari-
ables {Yn}n∈N dominating {Qn}n∈N. The sequence {Yn}n∈N is closely related to (ζt ) while
{Qn}n∈N is related to (ξt ), and we make use of the fact that the process (ζt ) stochastically
dominates (ξt ) in the sense made precise below, see Definition 3.3 and Proposition 3.5. We
then proceed to show that {Yn}n∈N grows not faster than linearly with n. A key point in
this step is a certain decorrelation property (43), which we establish using properties of (ζt ).
Thanks to (43) we are able to apply to {Yn}n∈N a strong law of large numbers for dependent
random variables, concluding the proof of Proposition 3.9.

Then, using representation (35) for (Xt) and Novikov’s inequality for discontinuous mar-
tingales, we obtain a moment estimate for (Mt) in Proposition 3.10. This moment estimate
allows us to apply a strong law of large numbers for martingales formulated in Theorem 3.11.

By that point we have practically shown that (Qt) grows at most linearly in time and
Mn

n
→ 0, n ∈ N. This allows us to conclude in Theorem 3.12 that Xt =Qt +Mt does not

grow faster than linearly either.

DEFINITION 3.3. We say that a random element R2 taking values in Z
Z++ stochastically

dominates a random (again Z
Z++ -valued) element R1 if a.s. for every k = 0,1, . . .

(23)
k∑

i=0

R1(i)≤
k∑

i=0

R2(i).

We will say that a process (ζ̂t ) stochastically dominates another process (ξ̂t ) if a.s. for every
t and every k = 0,1, . . .

(24)
k∑

i=0

ξ̂t (i)≤
k∑

i=0

ζ̂t (i).

The following lemma is a straightforward consequence of Definition 3.3.

LEMMA 3.4. Let {ai}i∈Z+ be a nonincreasing sequence of nonnegative numbers. If R2

stochastically dominates R1, both are Z
Z++ -valued random elements, then

(25) E

∑
i∈Z+

aiR1(i)≤ E

∑
i∈Z+

aiR2(i).

In particular, if the right hand side of (25) is finite, then so is the left hand side.

Construction and coupling of (ηt ), (ξt ) and (ζt ). Here we construct the processes (ηt ),
(ξt ) and (ζt ) in such a way that (ζt ) stochastically dominates (ξt ). We start with (ηt ), which
in this section is the discrete space birth process with birth rate given by (13) and (14), and in
whose behavior we are interested in. The processes (ξt ) and (ζt ) are auxiliary processes we
need to analyze the position of the leftmost occupied site of (ηt ).

Let N be a Poisson point process on R+ × Z× [0,1] with mean measure ds × #× du,
where # is the counting measure on Z. Then (ηt ) can be defined as the unique solution to the
equation (see [6], Section 5)

(26) ηt (k)=
∫
(0,t]×{k}×[0,1]

1[0,b(d)(i,ηs−)](u)N(ds di du)+ η0(k).
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Define a filtration of σ -algebras {Ft , t ≥ 0} as the completion of

F 0
t = σ

{
N

(
B1 × {k} ×B2

)
,B1 ∈B

([0, t]), k ∈ Z,B2 ∈B
([0,1])}.(27)

The filtration {Ft , t ≥ 0} is right-continuous and complete. All the stopping times we con-
sider in this section are with respect to this filtration.

Let {N(j)}j∈Z be a collection of independent Poisson processes indexed by Z defined by

N
(j)
t =N

([0, t] × {j} × [0,1])
and let {u(j)

i }j,i∈N be a two-dimensional array of independent uniformly distributed on [0,1]
random variables uniquely defined by

(28) N
({

t
(j)
i

}× {j} × {
u

(j)
i

})= 1,

where t
(j)
i = inf{t > 0 : N([0, t] × {j} × [0,1])= i}. Note that the processes {N(j)}j∈Z and

{u(j)
i }j,i∈N are mutually independent.

The evolution of (ξt ) can be described in terms of {N(j)}j∈Z and {u(j)
i }j,i∈N as follows.

Shifts by m ∈N to the right occur at moments t when

N(tip(η)−m)

(
{t} ×

[
0,

∑
k≥0

ξt−(k)

(k +m)2α

])
= 1,

and a particle at zero is added. Between the shift times, the number of particles at a site j

grows according to N(tip(η)+j) for (ξt ); however, an increment by 1 at time t at the site j

actually occurs if not only N
(tip(η)+j)
t −N

(tip(η)+j)
t− = 1, but also additionally

(29) u
(tip(η)+j)

N
(tip(η)+j)
t

≤∑
k≥0

ξt−(k)

(1∨ |k− j |)2α
.

If (29) is not satisfied, then the value stays the same: ξ
(tip(η)+j)
t = ξ

(tip(η)+j)
t− . Thus, (ξt ) is

a Z
Z++ -valued process started from ξ0(k) = 1{k = 0}, k ∈ Z+, that can be described by the

following list of events:

• for m ∈ N, shifts by m occur at rate
∑

k≥0
ξt−(k)

(k+m)2α . Whenever a shift occurs, a single

particle is added at the origin (this event occurs at moments t when N(tip(η)−m)({t} ×
[0,

∑
k≥0

ξt−(k)

(k+m)2α ])= 1);

• the number of particles at a site j increases by 1 at rate 1 ∧ ∑
k≥0

ξt−(k)

(1∨|k−j |)2α (the in-

crease by 1 occurs at the jump times of N(tip(η)+j) provided that additionally u
(tip(η)+j)

N
(tip(η)+j)
t

≤∑
k≥0

ξt−(k)

(1∨|k−j |)2α );
• The above events happen independently, and no two events occur at the same time.

Let us now define (ζt ) in terms of {N(j)}j∈Z. Recall that the initial configuration is ζ0(k)=
1, k ∈ Z+. A shift by 1 occurs at time moments t when N(tip(η)−1)({t}) = 1. Between the
shift times, the number of particles at a site j grows according to N(tip(ηt−)+j) for (ζt ), that
is, ζt (j)− ζt−(j)= 1 if and only if N

(tip(ηt−)+j)
t −N

(tip(ηt−)+j)
t− = 1.

Let us now list some of the properties of the processes (ζt ) and (ξt ) which are used later
on. They follow from definitions and construction of (ζt ) and (ξt ).

1. A.s. for all t ≥ 0, ξt (0)≥ 1 and ζt (0)≥ 1.
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2. Every shift for (ζt ) is a shift for (ξt ) too, since for m= 1,

∑
k≥0

ξt−(k)

(k +m)2α
≥ ξt−(0)≥ 1.

3. If a shift occurs for (ζt ) ((ξt )) at time t , then ζt (0)= 1 (ξt (0)= 1 respectively).
4. If (ξt (j)) is increased by 1 at time t , j ∈ Z+, then so is (ζt (j)) (but not necessarily

vice versa by (29)).
5. The processes (ηt ), (ξt ), (ζt ) are Markov processes with respect to {Ft , t ≥ 0}.

Let (ϕk)k∈N be the shift times of (ξt ), that is, t ∈ {ϕk}k∈N if and only if for some m ∈N

N
(
{t} × {

tip(ηt )−m
}× [

0,
∑
k≥0

ξt−(k)

(k +m)2α

])
= 1,

or alternatively if for some m ∈N

N
(tip(ηt )−m)
t −N

(tip(ηt )−m)
t− = 1 and u

(tip(ηt )−m)

N
(tip(ηt )−m)
t

≤∑
k≥0

ξt−(k)

(k +m)2α
.

Denote by (Ñt ) the Poisson process such that Ñt − Ñt− = 1 for those t when N
tip(ηt )−1
t −

N
tip(ηt )−1
t− = 1, so that (Ñt ) is the Poisson process whose jumps are exactly the shift times for

(ζt ). Let σk = inf{t > 0 : Ñt = k} be the jump times of the process (Ñt ), that is, t ∈ {σk}k∈N if
and only if Ñt − Ñt− = 1. Let also ϕk = σk = 0 for k = 0,−1,−2, . . . . Note that {σk}k∈N ⊂
{ϕk}k∈N since every shift for (ζt ) is a shift for (ξt ) too. The process (ζt ) has the following
representation (let us stress here that we do not use this representation in the proofs): for t ≥ 0
let n ∈N be such that t ∈ [ϕn,ϕn+1), then

ζt (j)= 1+
n∑

k∈{0,1,...,n}:
Ñϕk

+j≥Ñϕn

N(tip(ηϕk
)+j+Ñϕk

−Ñϕn )(ϕk, ϕk+1 ∧ t], j ∈ Z+.

PROPOSITION 3.5. (ζt ) stochastically dominates (ξt ).

PROOF. Let us show that (24) is satisfied for every k = 0,1, . . . if we take ξ̂t = ξt and
ζ̂t = ζt .

We use induction on k. For k = 0 (24) is clear since by construction every shift of (ζt )t≥0
is a shift for (ξt )t≥0 too, while every time (ξt (0))t≥0 is increased by 1 (ζt (0))t≥0 is increased
too.

Fix n ∈ N and assume that (24) holds for k = 0, . . . , n − 1. At t = 0 (24) with k = n

holds. Let θ <∞ be the first moment when (24) with k = n does not hold; note that θ is
well defined since a.s. there are only finitely many shifts up to any time moment, and finitely
many increments at sites 0,1, . . . , n took place. Thus we have

(30)
n∑

i=0

ξθ−(i)≤
n∑

i=0

ζθ−(i)

but

(31)
n∑

i=0

ξθ (i) >

n∑
i=0

ζθ (i).



1102 BEZBORODOV, DI PERSIO, KRUEGER AND TKACHOV

If (ξt ) got shifted by m at θ , then, at θ , (ζt ) got shifted by 1 or did not change; in either
case

n∑
i=0

ξθ (i)≤ 1+
n−1∑
i=0

ξθ−(i)≤ 1+
n−1∑
i=0

ζθ−(i)≤
n∑

i=0

ζθ (i).

If on the other hand (ξt ) got increased by 1 at a site j , 0 ≤ j ≤ n, at θ , then (ζt ) got
increased by 1 at the same site too. So, (30) and (31) cannot both be satisfied for a finite θ ,
and thus we have a contradiction. �

We now introduce another ZZ++ -valued process defined by

(32) ζ̄t (k)= 1+N(n−k)(σn−k, t], t ∈ (σn, σn+1],
which is equal in distribution to (ζt ) by the strong Markov property of a Poisson point process,
see the appendix in [6]. It is a little bit easier to work with, so we will use it in the estimates
below.

Denote the distance from the leftmost occupied site for (ηt ) to the origin by Xt , so that

Xt := − tip(ηt ).

Note that (Xt) allows the representation

Xt =
∑
m∈N

m

∫
(0,t]×[0,1]

1[0,b(d)(tip(ηs−)−m,ηs−)](u)N(tip(ηs−)−m)(ds du),

t ≥ 0.

(33)

To represent Xt as an integral with respect to a Poisson point process, for 0 < a < b and
m ∈N define the set

T (a, b,m)= {
(s, k) ∈R+ ×Z|a < s ≤ b, tip(ηs−)+m= k

}
and the point process

N(X)((a, b] × {m} ×U
)

=N
(
T (a, b,m)×U

)
, 0 < a < b,m ∈N,U ∈B[0,1].(34)

Note that for 0 < a < b a.s.

N(X)((a, b] × {m} ×U
)
1
{
tip(ηa)= tip(ηb)

}
=N

(
(a, b] × {

tip(ηa)+m
}×U

)
1
{
tip(ηa)= tip(ηb)

}
.

It follows from the strong Markov property for a Poisson point process (as formulated in
the appendix in [6]) that N(X) is a Poisson point process; also, N(X) is equal in distribution
to N. It follows from (33) and (34) that

(35) Xt =
∫
(0,t]×N×[0,1]

m1[0,b(d)(tip(ηs−)−m,ηs−)](u)N(X)(ds dmdu).

The process

Mt :=Xt −
∫ t

0

∑
m∈N

mb(d)(tip(ηs−)−m,ηs−
)
ds

=Xt −
∫ t

0

∑
m∈N

m

(
1∧

∞∑
k=0

ξs−(k)

(m+ k)2α

)
ds, t ≥ 0,

(36)
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is therefore a local martingale with respect to {Ft , t ≥ 0}, see for example, (3.8) in Section 3,
Chapter 2 in [32]. We will see in Lemma 3.8 below that (Mt) is a (true) martingale. We
denote by Qt the second summand on the right hand side of (36), so that

Mt =Xt −Qt.(37)

In the remaining part of this section we prove that (Xt) grows at most linearly (Theo-
rem 3.12). First we prove that (Qt) grows at most linearly (Proposition 3.9), then we show
that the martingale (Mt) has some nice properties (Proposition 3.10) which allow us to apply
a strong law of large numbers for martingales in the proof of Theorem 3.12. The following
lemma collects some relatively straightforward properties which are used multiple times in
the rest of this section.

LEMMA 3.6. Let β , X and Y be nonnegative random variables with finite third moment.

(i) if β ⊥ (X,Y ) (β is independent to (X,Y )), then

Cov(βX,Y )= Eβ Cov(X,Y );
(ii) if X | β ⊥ Y | β (that is, X and Y are conditionally independent given β) and

E[X|β] = E[Y |β] = β , then

Cov(X,Y )=Var(β);
(iii) if E(X | β)= β , then

Cov(X,β)=Var(β), EβX =Eβ2;
(iv) if E(X | β)= E(Y | β)= β and X | β ⊥ Y | β , then

Cov(βX,Y )= Eβ3 −Eβ2
Eβ;

(v) if E(X | β)= β , E(X2 | β)= β2 + β and Y ⊥ (X,β), then

Cov
(
β(X+ Y ), (X+ Y)

)= Eβ2 +Eβ3 −Eβ2
Eβ +EY Var(β)+Eβ Var(Y );

(vi) if N is a Poisson process independent of β , then

E
[
N(β)|β]= β.

PROOF. The proof is based on the properties of conditional expectation. The proofs of
(i)–(v) are done by conditioning on β . We give the proofs for (ii), (iv) and (vi) only; the others
are similar to (ii) and (iv). For (ii),

Cov(X,Y )= EXY −EXEY = EE[XY |β] − (Eβ)2

= E
(
E[X|β]E[Y |β])− (Eβ)2 = Eβ2 − (Eβ)2 =Var(β).

For (iv),

Cov(βX,Y )= EβXY −EβXEY

= EE[βXY |β] −EβEE[βX|β]
= EβE[XY |β] −EβE

(
βE[X|β])

= E
(
βE[X|β]E[Y |β])−EβEβ2 = Eβ3 −EβEβ2.

To prove (vi) we use the disintegration theorem for regular conditional probability dis-
tribution, see for example, Kallenberg [33], Theorem 6.4. To adapt to the notation in the
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preceding reference, let S =D([0,+∞),R) (the Skorokhod space) equipped with the cylin-
drical σ -algebra, and T = R+ equipped with the Borel σ -algebra, and consider N and β

as random elements in S and T respectively. Note that since N and β are independent, the
regular conditional probability distribution of N given β is simply the distribution of N in S,
which we denote by ν. Define f (s, t)= s(t), s ∈ S, t ∈ T . For every q ≥ 0,∫

S
ν(ds)s(q)= EN(q)= q,

hence by the disintegration theorem a.s.

E
[
f (N,β)|β]= ∫

S
ν(ds)f (s, β)=

∫
S
ν(ds)s(β)= β. �

REMARK 3.7. Concerning item (vi), note that the conditional distribution of N(β) given
β is Pois(β), where Pois(q) is the Poisson distribution with parameter q ≥ 0.

LEMMA 3.8. The process (Mt) is a true martingale.

PROOF. By Lemma 3.6 for every t ≥ 0,

EQt = E

∫ t

0

∑
m∈N

m

(
1∧

∞∑
k=0

ξs−(k)

(m+ k)2α

)
ds

≤ E

∫ t

0

∑
m∈N

m

∞∑
k=0

ζ̄s−(k)

(m+ k)2α
ds

=
∫ t

0

∑
m∈N

m

∞∑
k=0

1+EN(n−k)(σn−k, s]1{σn−k ≤ t}
(m+ k)2α

ds

=
∫ t

0

∑
m∈N

m

∞∑
k=0

1+E(s − σn−k)+
(m+ k)2α

ds

≤
∫ t

0

∑
m∈N

m

∞∑
k=0

1+ s

(m+ k)2α
ds

< t(t + 1)
∑
m∈N

m

mα

∞∑
k=0

1

kα

= t (t + 1)
∑
m∈N

1

mα−1

∞∑
k=0

1

kα
,

and hence for every t ≥ 0

E sup
s≤t
|Ms | ≤ E|Xt | +E|Qt | = 2E|Qt |<∞.

The statement of the lemma now follows from Theorem 51 in Protter [46]. �

The following proposition is a key step in the proof of the main result of this section,
Theorem 3.12. We establish here that (Qt) grows at most linearly with t .

PROPOSITION 3.9. (i) There exists C > 0 such that a.s. for sufficiently large t ,

(38)
∫ t

s=0
ds

∑
k∈Z+

ξs(k)

kα
< Ct.



GROWTH PROCESSES WITH LONG RANGE DISPERSION 1105

(ii) There exists C > 0 such that a.s. for sufficiently large t,

Qt ≤Ct.

PROOF. First we show that (i) implies (ii). Indeed,

Qt =
∫ t

0

∑
m∈N

m

(
1∧

∞∑
k=0

ξs−(k)

(m+ k)2α

)
ds

≤
∫ t

0

∑
m∈N

m

∞∑
k=0

ξs−(k)

mαkα
ds

= ∑
m∈N

1

mα−1

∫ t

0

∞∑
k=0

ξs−(k)

kα
ds,

so that (i) yields (ii).
The rest is devoted to the proof of (i). By Lemma 3.4 and Proposition 3.5,

(39)
∫ t

s=0
ds

∑
k∈Z+

1

kα
ξs(k)≤

∫ t

s=0
ds

∑
k∈Z+

1

kα
ζs(k).

Define σ(−i)= 0, i ∈N, and

(40) Yn =
∑

k∈Z+

1+N(n−k)(σn−k, σn+1]
kα

.

Recall that the process (ζ̄t ) was defined in (32). Clearly

(41) Yn ≥
∑

k∈Z+

1

kα
ζ̄t (k), t ∈ (σn, σn+1].

Combining (39) and (41) and recalling that (ζt )
d= (ζ̄t ) result in the observation that it is

sufficient to show that the strong law of large numbers holds for (Zn)n∈N, where

Zn := (σn+1 − σn)Yn.

As jump times of a Poisson process, σn+1 − σn are independent unit exponentials, in par-
ticular

E
(
(σn+1 − σn)

k)= k!, k ∈N.

Note that for every n ∈N

EZn = E

[
(σn+1 − σn)

∑
k∈Z+

1

kα
N(n−k)(σn−k, σn+1]

]
+ ∑

k∈Z+

1

kα

= ∑
k∈Z+

1

kα
E

[
(σn+1 − σn)N

(n−k)(σn−k, σn]]

+ ∑
k∈Z+

1

kα
E

[
(σn+1 − σn)N

(n−k)(σn, σn+1]]

+ ∑
k∈Z+

1

kα
= ∑

k∈Z+

k

kα
+ 3

∑
k∈Z+

1

kα
,

(42)
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and the last two sums are finite. Thus EZn is bounded in n. In (42) we applied Lemma 3.6(iii).
In this proof we make use of Lemma 3.6 in multiple places.

The random variables {Zn}n∈N are not independent, however the covariance is small for
distant elements: we are going to show that there exists a constant CZ > 0 such that for
n,m ∈N.

(43) Cov(Zn,Zn+m)≤ CZ

mα−1 .

We have

Cov(Zn,Zn+m)

= Cov
( ∑

i∈Z+

σn+1 − σn

iα
N(n−i)(σn−i , σn+1],

∑
j∈Z+

σn+m+1 − σn+m

jα
N(n+m−j)(σn+m−j , σn+m+1]

)

= ∑
i,j∈Z+

1

iαjα
Cov

(
(σn+1 − σn)N

(n−i)(σn−i , σn+1],

(σn+m+1 − σn+m)N(n+m−j)(σn+m−j , σn+m+1]).

(44)

Let us denote by COV(i, j) the covariance in the last sum of (44). Recall that we defined
σk = 0 for k = 0,−1,−2, . . . . We can split the interval (σn+m−j , σn+m+1] as follows:

(σn+m−j , σn+m+1]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σn+m−j , σn−i] ∪ (σn−i , σn] ∪ (σn, σn+1] ∪ (σn+1, σn+m+1]
if j > m+ i,

(σn+m−j , σn] ∪ (σn, σn+1] ∪ (σn+1, σn+m+1]
if m+ i ≥ j > m,

(σn, σn+1] ∪ (σn+1, σn+m+1] if j =m,

(σn+m−j , σn+m+1] if j < m,

or, alternatively,

(σn+m−j , σn+m+1]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σn+m−j , σn−i] ∪ (σ(n+m−j)∨(n−i), σn] ∪ (σn, σn+1]
∪ (σ(n+m−j)∨(n+1), σn+m+1] if j > m+ i,

(σ(n+m−j)∨(n−i), σn] ∪ (σn, σn+1]
∪ (σ(n+m−j)∨(n+1), σn+m+1] if m+ i ≥ j > m,

(σn, σn+1] ∪ (σ(n+m−j)∨(n+1), σn+m+1] if j =m,

(σ(n+m−j)∨(n+1), σn+m+1] if j < m,

(45)

and hence (with convention that (a, b] =∅ if a > b)(
(σn+m−j , σn−i] 
=∅

and (σn+m−j , σn−i] ⊂ (σn+m−j , σn+m+1]) ⇔ j > m+ i,(
(σ(n+m−j)∨(n−i), σn] 
=∅

and (σ(n+m−j)∨(n−i), σn] ⊂ (σn+m−j , σn+m+1]) ⇔ j > m,

(σn, σn+1] ⊂ (σn+m−j , σn+m+1] ⇔ j ≥m.

(46)
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We now proceed to estimate COV(i, j). Using (46) we get

COV(i, j)

= Cov
(
(σn+1 − σn)

{
N(n−i)(σn−i , σn] +N(n−i)(σn, σn+1]},

(σn+m+1 − σn+m)
{
1{j > m+ i}N(n+m−j)(σn+m−j , σn−i]

+ 1{j > m}N(n+m−j)(σ(n+m−j)∨(n−i), σn]
+ 1{j ≥m}N(n+m−j)(σn, σn+1]
+N(n+m−j)(σ(n+m−j)∨(n+1), σn+m+1]})

= s11 + s12 + s13 + s14 + s21 + s22 + s23 + s24,

(47)

where suv , u ∈ {1,2}, v ∈ {1,2,3,4}, stands for the covariance of uth and vth summands in
the decomposition in (47), for example

s23 = Cov
(
(σn+1 − σn)N

(n−i)(σn, σn+1],
(σn+m+1 − σn+m)1{j ≥m}N(n+m−j)(σn, σn+1]).

Let us estimate each of suv . To start off, s11 = s21 = s14 = s24 = s22 = 0 as the covariance
of independent random variables. In particular,

s22 = 1{j > m}Cov
(
(σn+1 − σn)N

(n−i)(σn, σn+1],
(σn+m+1 − σn+m)N(n+m−j)(σ(n+m−j)∨(n−i), σn])= 0.

To other terms we apply Lemma 3.6. Assume first that n− i 
= n+m− j . We have by
Lemma 3.6(i), (ii), and (vi),

s12 = 1{j > m}Cov
(
(σn+1 − σn)N

(n−i)(σn−i , σn],
(σn+m+1 − σn+m)N(n+m−j)(σ(n+m−j)∨(n−i), σn])

= 1{j > m}E(σn+1 − σn)E(σn+m+1 − σn+m)

×Cov
(
N(n−i)(σn−i , σn],N(n+m−j)(σ(n+m−j)∨(n−i), σn])

≤ 1{j > m}Cov
(
N(n−i)(σn−i , σn],N(n+m−j)(σn−i , σn])

= 1{j > m}Var(σn − σn−i)= i1{j > m}.
Applying Lemma 3.6(iii), we continue

s13 = 1{j ≥m}Cov
(
(σn+1 − σn)N

(n−i)(σn−i , σn],
(σn+m+1 − σn+m)N(n+m−j)(σn, σn+1])

= 1{j ≥m}E(σn+m+1 − σn+m)EN(n−i)(σn−i , σn]
Cov((σn+1 − σn),N

(n+m−j)(σn, σn+1)

= 1{j ≥m}i Var(σn+1 − σn)= 1{j ≥m}i.
In the same spirit by Lemma 3.6(iv)

s23 = 1{j ≥m}Cov
(
(σn+1 − σn)N

(n−i)(σn, σn+1],
(σn+m+1 − σn+m)N(n+m−j)(σn, σn+1])
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= 1{j ≥m}E(σn+m+1 − σn+m)Cov
(
(σn+1 − σn)N

(n−i)(σn, σn+1],
N(n+m−j)(σn, σn+1])

= 1{j ≥m}[E(σn+1 − σn)
3 −E(σn+1 − σn)

2]
= (3! − 2!)1{j ≥m} = 41{j ≥m}.

The computations started from (47) imply that

(48) COV(i, j)≤ (2i + 4)1{j ≥m}
provided j 
=m+ i.

If j =m+ i then

COV(i, j)= Cov
(
(σn+1 − σn)N

(n−i)(σn−i , σn+1],
(σn+m+1 − σn+m)N(n−i)(σn−i , σn+m+1])

= Cov
(
(σn+1 − σn)N

(n−i)(σn−i , σn+1],
(σn+m+1 − σn+m)N(n−i)(σn−i , σn+1])+ 0

(49)
= Cov

(
(σn+1 − σn)N

(n−i)(σn−i , σn+1],N(n−i)(σn−i , σn+1])
= Cov

(
(σn+1 − σn)

{
N(n−i)(σn−i , σn] +N(n−i)(σn, σn+1]},{

N(n−i)(σn−i , σn] +N(n−i)(σn, σn+1]})
= 2+ 6− 2+ i + 2i = 3i + 6

by Lemma 3.6(v) where we can take β = σn+1 − σn, X = N(n−i)(σn, σn+1] and Y =
N(n−i)(σn−i , σn]. Note that EN(n−i)(σn−i , σn] = E(σn − σn−i )= i,

E
[(

N(n−i)(σn, σn+1])2|(σn, σn+1]]= (σn+1 − σn)
2 + σn+1 − σn,

and

Var
(
N(n−i)(σn−i , σn])
= E

[(
N(n−i)(σn−i , σn])2|σn − σn−i

]− (
E

(
N(n−i)(σn−i , σn]))2

= E
(
(σn − σn−i)

2 + σn − σn−i

)− (
E(σn − σn−i)

)2

= E(σn − σn−i )+Var(σn − σn−i)= 2i.

In conjunction with (48), (49) allows us to estimate Cov(Zn,Zn+m). Recalling (44), we
get

Cov(Zn,Zn+m)= ∑
i,j∈N

1

iαjα
COV(i, j)

≤ ∑
i,j∈N,i 
=j

(2i + 4)1{j ≥m}
iαjα

+∑
i∈N

3i + 6

iα(i +m)α

≤∑
i∈N

2i + 4

iα

∞∑
j=m

1

jα
+ 1

mα

∑
i∈N

3i + 6

iα
.

(50)

Since
∑∞

j=m
1
jα =O( 1

mα−1 ) as m→∞, (50) implies (43). The statement of (i) follows from
(43) and the strong law of large numbers for dependent random variables, see for example,
Hu, Rosalsky, and Volodin [31], or Corollary 11 of Lyons [37]. �
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Let �Mn =Mn+1−Mn, and let �Xn and �Qn be defined in the same way. In the follow-
ing proposition we establish finiteness of a moment of the martingale difference �Mn. Later
on this allows us to apply a strong law of large numbers for martingales to Mn.

PROPOSITION 3.10. Let p ∈ (1, (α− 1))∩ (1,2]. Then E|�Mn|p is bounded uniformly
in n.

PROOF. By (35),

�Xn =
∫
s∈(n,n+1],m∈N,u∈R+

m1
{
u≤ 1∧ ∑

k∈Z+

ξs−(k)

(k +m)2α

}

×N(X)(ds dmdu).

(51)

Note that for every k ∈ Z and s ≥ 0, Eηs(k)≤ k+ 1 because (ηt (k)−η0(k))t≥0 is dominated
by a Poisson process, and consequently also

Eξs−(k)≤ k+ 1.

Novikov’s inequalities for discontinuous martingales (also known as “Bichteler–Jacod’s
inequalities”; see Novikov [42], or Marinelli and Röckner [39] for generalizations and his-
torical discussions) give

E|�Mn|p

= E

∣∣∣∣�Xn −
∫
s∈(n,n+1],m∈N,

u∈R+
m1

×
{
u≤ 1∧ ∑

k∈Z+

ξs−(k)

(k +m)2α

}
ds#(dm)du

∣∣∣∣p

≤ CE

∫
s∈(n,n+1],m∈N,

u∈R+
mp1

{
u≤ 1∧ ∑

k∈Z+

ξs−(k)

(k +m)2α

}
ds#(dm)du

= C

∫ n+1

n
ds

∑
m∈N

mp

(
1∧ ∑

k∈Z+

Eξs−(k)

(k +m)2α

)

≤ C

∫ n+1

n
ds

∑
m∈N

mp
∑

k∈Z+

k+ 1

(k + 1)αmα

= C
∑
m∈N

1

mα−p
×∑

k∈N

1

kα−1 .

(52)

Hence

E|�Mn|p < C <∞,

where C does not depend on n. �

We are now ready to prove the main result of this section. We will need the following form
of the strong law of large numbers for martingales, which is an abridged version of [29],
Theorem 2.18.
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THEOREM 3.11. Let {Sn =∑n
i=1 xi, n ∈ N} be an {Fn}-martingale and {Un}n∈N be a

nondecreasing sequence of positive real numbers, limn→∞Un =∞. Then for p ∈ [1,2] we
have

lim
n→∞U−1

n Sn = 0

a.s. on the set {∑∞
i=1 U

−p
n E[|xi |p|Fi−1]<∞}.

THEOREM 3.12 (Linear speed). There exists C̄ > 0 such that a.s.

(53) Xt ≤ C̄t

for sufficiently large t .

PROOF. Note that a.s. ∑ E(|�Mn|p|Fn−1)

np
<∞,

since by Proposition 3.10

(54) E

∑ E(|�Mn|p|Fn−1)

np
=∑ E|�Mn|p

np
<∞.

Then Proposition 3.10 and Theorem 3.11, where we take Sn =Mn, Un = n, and p = α
2 ∧ 2,

imply that a.s.

(55)
Mn

n
→ 0, n ∈N.

Hence Proposition 3.9(ii), yields that a.s. for large n

(56)
Xn

n
= Mn

n
+ Qn

n
≤ CX,

where CX > 0 is independent of n.
Since Xt is nondecreasing, (56) holds for continuous parameter too if we increase the

constant: a.s. for large t ,

(57)
Xt

t
≤ CX + 1. �

4. Superlinear growth for α ∈ (1
2,2] in the discrete-space settings. Our aim in this

section is to prove the discrete-space equivalent of Theorem 2.7. This is done in Theorem 4.3.
In Section 5 we use Theorem 4.3 to prove Theorem 2.7. The idea of the proof of Theorem 4.3
is to find a certain system growing slower than our system, and then estimate the probability
of births outside an interval linearly growing with time.

Let (ηt ) be the birth process on Z
Z+ with birth rate (13), (14), but with α ∈ (1

2 ,2]. As in
Section 3, (ηt ) can be obtained as the unique solution to (26). We focus here on the positive
half line because it is sufficient for our purposes.

The next lemma has an auxiliary character and is a straightforward application of the large
deviations principle.

LEMMA 4.1. Let χ be a Poisson random variable with mean λ > 0. Then for large λ,

(58) P

(
χ ≤ λ

3

)
≤ e−

λ
6 .
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PROOF. Assume first that λ ∈N. Then

χ
d= χ1 + · · · + χλ,

where χ1, χ2, . . . are i.i.d. Poisson random variables with mean 1. The cumulant-generating
function of χ1 is �(u)= eu − 1, and the corresponding rate function

�∗(x)= sup
u∈R

(
ux −�(u)

)= x lnx − x + 1, x ≥ 0.

By the large deviations principle, see for example, [33], Theorem 27.5,

lim sup
λ→∞

λ−1 lnP

(
1

λ

λ∑
i=1

χi ≤ 1

3

)
≤− inf

x∈[0, 1
3 ]

�∗(x)=−2− ln 3

3
.

Hence for large λ

lnP
(
χ ≤ λ

3

)
≤−2− ln 3

3
λ+ o(λ) <−λ

4
,

which gives the desired result for λ ∈ N. The statement for λ /∈ N follows by considering a
Poisson random variable with mean �λ� and noting that for large λ, �λ�4 > λ

6 . �

In the next lemma it is shown that ηt dominates a “rectangle-like” configuration, at least
for large t .

LEMMA 4.2. A.s. for sufficiently large t

(59) ηt (x)≥ t

10
,

for all x ∈ Z∩ [0, t
4 ].

PROOF. Let (γt ) be another birth process with birth rate

(60) b(γ )(x, η)= 1∧ (
η(x)+ η(x − 1)− 1

)
+, x ∈ Z

1, η ∈ Z
Z+,

where κ+ =max(κ,0), and the initial condition γ0(k)= 1{k = 0}, k ∈ Z. Alternatively,

(61) b(γ )(x, η)=
{

1 if η(x)+ η(x − 1) > 0,

0 otherwise.

The process (γt ) can be obtained as a unique solution to (26) with the birth rate b(γ ) instead
of b(d).

We have

(62) b(γ )(x, η)≤ b(d)(x, η), x ∈ Z, η ∈ Z
Z+.

Using (62), it is not difficult to show that a.s. for all t ≥ 0,

(63) γt ≤ ηt .

In the continuous-space settings, the fact that (62) implies (63) is proven in [6], Lemma 5.1.
In our case here we can take exactly the same proof.

Let τ(n) := inf{t : γt (n) > 0} be the time when n ∈ Z+ becomes occupied for (γt ). Note
that a.s. τ(1) < τ(2) < · · · . Let X

(γ )
t :=max{n : γt (n) > 0} be the position of the rightmost

occupied site for (γt ). The process (X
(γ )
t ) is a counting Markov process (that is, having unit
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jumps only) and with jump rate constantly being 1. Therefore (X
(γ )
t ) is a Poisson process

whose nth jump time coincides with τ(n). By the law of large numbers, a.s. for large n,

τ(n) <
5

4
n.

Therefore, a.s. for large n for x ∈ {0,1, . . . , n}, t ∈ [5
4n,2n], we have b(γ )(x, ηt )= 1. By

(26) (recall that the birth rate for (γt ) is b(γ ) instead of b(d))

γ2n(x)− γ 5
4 n

(x)=N
([

5

4
n,2n

]
× {x} × [0,1]

)
, x = 1, . . . , n,

hence a.s. for large n

(64) γ2n(x)≥N
([

5

4
n,2n

]
× {x} × [0,1]

)
, x = 1, . . . , n.

The random variables ω
(n)
x :=N([5

4n,2n] × {x} × [0,1]), x = 1, . . . , n, are i.i.d Poisson with
mean 3

4n. By Lemma 4.1 for x = 0,1, . . . , n,

P

{
ω(n)

x <
n

4

}
≤ e−

n
8 ,

hence

(65) P

{
ω(n)

x <
n

4
for some x ∈ {1, . . . , n}

}
≤ ne−

n
8 .

Since
∑

n∈N ne− n
8 <∞, by the Borel–Cantelli lemma the event in (65) happens a.s. finitely

many times only, therefore a.s. for sufficiently large n

ω(n)
x ≥ n

4
, x ∈ {1, . . . , n}.

By (63), (64), and the definition of ω
(n)
x , a.s. for sufficiently large n,

(66) η2n(x)≥ γ2n(x)≥ n

4
, x ∈ {1, . . . , n}.

By taking n= � t
2� − 1 in (66) we get a.s. for large t

(67) ηt (x)≥ t

10
, x ∈

{
1, . . . ,

⌊
t

2

⌋
− 1

}
,

and the statement of the lemma follows. �

Now we are ready to prove the main result of the section.

THEOREM 4.3. For every K0,K1 > 0 the set{
t : ∑

x∈Z,
x>K0+K1t

ηt (x) > 0
}

is a.s. unbounded.

PROOF. Without loss of generality we assume that K1 > 1. Let ζt be defined by ζt (k)=
� t

10�1{0≤ k ≤ t
4}, hence by Lemma 4.2 a.s. for large t ,

(68) ζt ≤ ηt .
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Provided that t is sufficiently large, the rate of a birth occuring inside [K0+K1t+K1,∞)

at time t is ∑
x∈Z:

x>K0+K1t+K1

b(d)(x, ηt )≥
∑
x∈Z:

x>K0+K1t+K1

b(d)(x, ζt )

≥ 1∧ ∑
x∈Z:

x>K0+K1t+K1

� t
4 �∑

k=0

ζ(k)a(d)(x − k).

(69)

Note that

(70)
� t

4 �∑
k=0

a(d)(x − k)=
� t

4 �∑
k=0

1

|x − k|2α
≥
� t

4 �∑
k=0

1

|x|2α
=

⌊
t

4

⌋
1

|x|2α

hence for large t

∑
x∈Z:

x>K0+K1t+K1

� t
4 �∑

k=0

a(d)(x − k)

≥
⌊

t

4

⌋ ∑
x∈Z:

x>K0+K1t+K1

1

|x|2α

≥ t

5
× 1

2(2α − 1)|K0 +K1t +K1 + 1|2α−1 ≥
C

t2α−2 .

(71)

Since ζ(k)= � t
10�, k ∈ 0,1, . . . , � t

4�, by (69) and (71),

(72)

∑
x∈Z:

x>K0+K1t+K1

b(d)(x, ηt )≥ 1∧
(⌊

t

10

⌋
C

t2α−2

)
≥ 1∧ c

t2α−3 ,

where c > 0 is a constant depending on K0, K1, α, but not on time t .
Let Lt be the number of jumps for (ηt ) that have occured prior t to the right of a growing

interval [0,K0 +K1s] for some s ≤ t , that is,

Lt = #
{
(s, k) : s ∈ (0, t], k ∈ (K0 +K1s,∞)∩Z, ηs(k)− ηs−(k)= 1

}
=

∫
{(s,k,u):s∈(0,t],

k∈(K0+K1s,∞)∩Z,u∈[0,1]}
1[0,b(d)(k,ηs−)](u)N(ds dk du).

(73)

Let n ∈N. We have

Ln+1 − Ln =
∫

{(s,k,u):s∈(n,n+1],
k∈(K0+K1s,∞)∩Z,u∈[0,1]}

1[0,b(d)(k,ηs−)](u)N(ds dk du)

≥
∫

{(s,k,u):s∈(n,n+1],
k∈(K0+K1n+K1,∞)∩Z,u∈[0,1]}

1[0,b(d)(k,ηn)](u)N(ds dk du).

(74)

Define the sequence of independent random variables {Fn}n∈N,

(75) Fn :=
∫

{(s,k,u):s∈(n,n+1],
k∈(K0+K1n+K1,∞)∩Z,u∈[0,1]}

1[0,b(d)(k,ζn)](u)N(ds dk du).

By (68) and (74), a.s. for large n

(76) Ln+1 − Ln ≥ Fn.
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Since ζn is a nonrandom element of ZZ+, Fn is a Poisson random variable with mean

mn :=
∑
x∈Z:

x>K0+K1n+K1

b(d)(x, ζn).

As we saw in (72), mn ≥ 1∧ cn−(2α−3) large n. Hence, at least for large n,

(77) P{Fn ≥ 1} = 1− e−mn ≥ 1− exp
{−1∧ cn−(2α−3)}.

Recall that for c1, c2 ∈R, −c1 ∧ c2 =−(c1 ∧ c2). The series

(78)
∑
n∈N

(
1− exp

{−1∧ cn−(2α−3)})
diverges since 2α − 3≤ 1. Hence by the Borel–Cantelli lemma and (77),

(79) P{Fn ≥ 1 for infinitely many n ∈N} = 1.

Finally, by (76) and (79),

(80) P{Ln+1 − Ln ≥ 1 for infinitely many n ∈N} = 1.

Recalling the definition of Ln in (73), we see that our theorem is proven. �

5. Continuous-space model. We now return to the continuous-space model with the
birth rate (1) described in the Introduction. To prove Theorem 2.1 and Theorem 2.7, we
couple the continuous-space process with the discrete-space process from Sections 3 and 4
and make use of Theorem 3.12 and Theorem 4.3.

The continuous-space birth process defined by (1) and (2) can be obtained as a unique
solution to the stochastic equation

|ηt ∩B| =
∫
(0,t]×B×[0,∞)

1[0,b(c)(x,ηs−)](u)N(c)(ds, dx, du)

+ |η0 ∩B|, t ≥ 0,B ∈B
(
R

1)
,

(81)

where (ηt )t≥0 is a cadlag �0-valued solution process, N(c) is a Poisson point process on
R+ ×R

1 ×R+, the mean measure of N(c) is ds × dx × du, and η0 = {0}. Equation (81) is
understood in the sense that the equality holds a.s. for every bounded B ∈B(R1) and t ≥ 0.
In the integral on the right-hand side of (81), x is the location and s is the time of birth of
a new particle. Thus, the integral over B from 0 to t represents the number of births inside
B which occurred before t (see [6] for more details). The birth rate b(c) is as in (1) with a

defined in (2).
In this section we denote the solution to (81) by (η

(c)
t ) with the upper index “(c)” standing

for “continuous”. We compare (η
(c)
t ) to the solution (η

(d)
t ) ((d) for “discrete”) of another

equation

(82) ηt (k)=
∫
(0,t]×{k}×[0,1]

1[0,Cαb(d)(i,ηs−)](u)N(d)(ds di du)+ η
(d)
0 (k),

which is of the form (26) but with the birth rate multiplied by Cα > 0:

(83) Cαb(d)(x, η)=Cα ∧
(
Cα

∑
y∈Z

η(y)a(d)(x − y)

)
, x ∈ Z, η ∈ Z

Z+,

with a(d) as in (14) and η
(d)
0 (k)= 1{k = 0}, and with the driving Poisson point process

N(d)([0, t] × {k} × [0, u])=N(c)

(
[0, t] ×

(
k − 1

2
, k+ 1

2

]
× [0, u]

)
.
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Note that (η
(d)
t ) is the process from the previous section evolving Cα times faster in time

(or slower if Cα < 1), and Theorem 3.12 applies to (η
(d)
t ) too.

Define also the discretization of the continuous-space process (η
(c)
t ) as the process (η

(dc)
t )

taking values in ZZ+ and

(84) η
(dc)
t (k)=

∣∣∣∣η(c)
t ∩

(
k− 1

2
, k+ 1

2

]∣∣∣∣, k ∈ Z.

Recall that for c1, c2, c3 ∈R, c1c2 ∨ c3 = (c1c2)∨ c3, and the same for ∧.

PROPOSITION 5.1.

(i) Let Cα ≥ cα2α ∨ 2. Then a.s. for all t ≥ 0

(85) η
(dc)
t (k)≤ η

(d)
t (k), k ∈ Z.

(ii) Let Cα ≤ cα4−α ∧ 1
2 . Then a.s. for all t ≥ 0

(86) η
(dc)
t (k)≥ η

(d)
t (k), k ∈ Z.

PROOF. We start with (i). The proof will be done by induction on the birth moments of
(η

(c)
t ). Let {θk} be the moment of kth birth for (η

(c)
t ), θ0 = 0. For t = θ0, (85) is satisfied. For

x ∈ R, let here round(x) is the closest integer to x, with convention that round(m+ 1
2)=m,

m ∈ Z. It is sufficient to show that if a birth occurs for (η
(c)
t ) at time θ at x ∈ R, then a birth

also occurs for (η
(d)
t ) at θ at round(x). Assume (85) holds for k < n ∈ N and let xn be the

place of birth at time θn. Since (η
(c)
t ) solves (81), we have a.s.

N(c)({θk} × {xn} × [
0, b(c)(xn, η

(c)
θk−

)))= 1.

Since 1∨| round(x)|2α

(1+|x|2)α ≤ 2α for x ∈R, we have

(87) a(x)≤ cα2αa(d)(round(x)
)
, x ∈R,

and hence by the induction assumption a.s.

b(c)(xn, η
(c)
θk−

)≤ Cαb(d)(round(xn), η
(dc)
θk−

)
.

Consequently, we also have a.s.

N(d)({θk} × {
round(xn)

}× [
0,Cαb(d)(round(xn), η

(d)
θk

)))= 1,

and so we also have a birth for (η
(d)
t ) at time θk at round(xn) since η

(dc)
θk− ≤ η

(d)
θk− and thus (85)

holds at θn as well.
The proof of (ii) can be done by induction on the birth moments of (η

(d)
t ), following exactly

the same steps as the proof of (i), so we omit it. We just point out that the counterpart of (87):

a(x)≥ cα4−αa(d)(round(x)
)
, x ∈R. �

PROOF OF THEOREM 2.1. The statement of the theorem follows from Theorem 3.12 and
Proposition 5.1(i). �

PROOF OF THEOREM 2.7. The statement of the theorem is a consequence of Theo-
rem 4.3 and Proposition 5.1(ii). �
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6. Mesoscopic equation. In this section we study the long time behavior of nonnegative
bounded solutions to the following nonlinear nonlocal evolution equation

(88)

⎧⎨
⎩

∂u

∂t
(x, t)=min

{
(a ∗ u)(x, t),1

}
x ∈R, t ∈ (0,∞),

u(x,0)= u0(x) x ∈R.

Here u ∈ C(R+,L∞(R)) ∩ C1((0,∞),L∞(R)) is a classical solution to (88), u0 ∈
L∞(R,R+) is an initial condition; the function a ∈ L1(R) := L1(R, dx) is a probability
density, that is, a(x)≥ 0 for a.a. (almost all) x ∈R and

(89)
∫
R

a(x) dx = 1;
the symbol ∗ stands for the convolution in x on R, that is,

(a ∗ u)(x, t) :=
∫
R

a(x − y)u(y, t) dx.

An informal scaling and link between the microscopic and mesoscopic models. Here we
describe the heuristic arguments which connect the birth process defined by (1) and (2) and
the solution to the equation (88). We follow here the line of thought from [24], Theorem 5.3.
Let us stress that we do not in any way give a rigorous proof of the link.

For a bounded measurable function φ : �0 →R consider the birth rate

(90) bn(x, η)= n∧
(∑

y∈η

a(x − y)

)
,

and the corresponding spatial birth process (ηn
t )t≥0.

For t ≥ 0, let νn
t be a random purely atomic measure on R defined by

νn
t (A)= ∣∣ηn

t ∩A
∣∣.

The intuition is that considering (ηn
t )t≥0 and (νn

t )t≥0 we increase the birth rate but then
we are going to rescale the process by multiplying by 1

n
to compensate for the increase in

the number of particles. Let M (R) be the space of finite nonnegative measures equipped
with the vague topology. Assume that if 1

n
νn

0 (dx) converges in law to a deteministic mea-

sure μ0(dx), then the measure valued function 1
n
νn
t (dx) converges in law in the Skorokhod

space D([0, T ],M (R)) to a deterministic M (R)-valued function t �→ μt . Since (92) below
is a martingale with a vanishing quadratic variation, this limiting measure-valued function
should then be a unique solution to the integral equation written in the weak form:

(91) 〈μt, f 〉 = 〈μ0, f 〉 +
∫ t

0
ds

∫
x∈R

f (x)min
{

1,

∫
y∈R

a(x − y)μt (dy)

}
dx.

Assume furthermore that μt has a density with respect to the Lebesgue measure provided
that the initial condition does: μ0(x)= u0(x) dx. We denote the density of μt by u(t, x), so
that μt(dx)= u(t, x) dx. Denote ut = u(t, ·), (ut is a function on R). Then we have

1

n

∑
y∈ηn

t

a(x − y)→ (a ∗ ut )(x)

and hence, assuming that u is differentiable,

∂u(t, x)

∂t
(t, x)= lim

n

1

n
b(n)(x,ηn

t

)
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= lim
n

1

n

[
n∧

( ∑
y∈ηn

t

a(x − y)

)]

= lim
n

1∧
(

1

n

∑
y∈ηn

t

a(x − y)

)
= 1∧ (

(a ∗ ut )(x)
)
,

which coincides with (88).
The proof that the limiting measure is indeed the unique solution to (91) would have to rely

on the martingale properties of the spatial birth processes. The generator of the birth process
with the rate (90) is

(
Lnφ

)
(η)=

∫
R

bn(x, η)
[
φ(η ∪ x)− φ(η)

]
dx.

As in [24], one could show that for any bounded measurable f :R→R

M
n,f
t := 1

n

∫
R

f (x)νn
t (dx)− 1

n

∫
R

f (x)ν0(dx)

− 1

n

∫ t

0

∫
R

[
n∧

∫
R

a(x − y)νn
t (dy)

]
f (x) dx ds

(92)

is a càdlàg martingale with the quadratic variation

〈
Mn,f 〉

t =
1

n2

∫ t

0

∫
R

[
n∧

∫
R

a(x − y)νn
t (dy)

]
f 2(x) dx ds.

Hence

E
∣∣Mn,f

t

∣∣2 = E
〈
Mn,f 〉

t ≤
cα‖f ‖E|ηn

t |
n

,

where ‖f ‖ = supx∈R f (x). Thus E|Mn,f
t |2 → 0 a.s. uniformly on any finite interval [0, T ],

n→∞.
The proof of Theorem 2.8 falls naturally into two parts. First, we obtain an estimate of

the solution u from above (see Proposition 6.11), which implies that u propagates at most
exponentially. Second, we construct subsolutions (114) to (88) in order to estimate “small”
level-sets of the solution from below. Then, locally uniform convergence of u to infinity
(Lemma 6.6) demonstrates that the solution does not propagate slower than exponentially.

We start with general properties of the solutions to (88).

DEFINITION 6.1. We call an operator G in L∞(R) monotone, if for all h1, h2 ∈ L∞(R),

h1(x)≤ h2(x), x ∈R ⇒ Gh1(x)≤Gh2(x), x ∈R.

We call an operator G in L∞(R) Lipschitz continuous, if there exists K > 0, such that for all
h1, h2 ∈ L∞(R),

‖Gh2 −Gh1‖L∞(R) ≤K‖h2 − h1‖L∞(R).

REMARK 6.2. Gu = min{a ∗ u,1} is a monotone and Lipschitz continous operator in
L∞(R) with the Lipschitz constant K = 1.

Since G is Lipschitz-continuous in the Banach space L∞(R), well-posedness of (88) is
easily shown by a Picard iteration scheme (see, e.g., [44], Chapter 6, Theorem 1.2, Theo-
rem 1.7). For completeness we provide the details (cf. [49]).
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PROPOSITION 6.3. Let G be Lipschitz continuous on L∞(R) and u0 ∈ L∞(R). Then for
any T > 0 there exists a unique classical solution u ∈ C(R+,L∞(R))∩C1((0,∞),L∞(R))

to the equation,

(93)

⎧⎨
⎩

∂u

∂t
(x, t)= (Gu)(x, t) t ∈ (0,∞), x ∈R

1,

u(x,0)= u0(x) x ∈R
1.

PROOF. For 0≤ τ < ϒ <∞, v ∈ C([τ,ϒ],L∞(R)), w ∈L∞(R), we define,

(94) (�wv)(x, t) :=w(x)+
∫ t

τ
(Gv)(x, s) ds, t ∈ [τ,ϒ], x ∈R.

Let ‖v‖τ,ϒ := supt∈[τ,ϒ] ‖v(·, t)‖∞. Then, one easily gets, that ‖�wv‖τ,ϒ <∞ and

‖�wv1 −�wv2‖τ,ϒ ≤K(ϒ − τ)‖v1 − v2‖τ,ϒ ,

where K is the Lipschitz constant of G. Therefore, �w is a contraction mapping on
C([τ,ϒ],L∞(R)), provided that ϒ − τ < 1

K
. Fixing any δ ∈ (0, 1

K
), one gets that there

exists the limit u of (�w)nv, n→∞, for any v, on time intervals [kδ, (k+ 1)δ], k ∈N∪ {0},
with the corresponding w(x) = u(x, kδ). Therefore, for any 0 ≤ τ < ϒ , we have that
u ∈C([τ,ϒ],L∞(R)) and

u(x, t)= (�u(·,τ )u)(x, t), t ∈ [τ,ϒ].
Since G is Lipschitz continuous, then it follows that u ∈ C(R+,L∞(R)) ∩ C1((0,∞),

L∞(R)) and it solves (93). The proof is completed. �

We introduce the following operators:

Zyv(x)= v(x − y), v ∈L∞(R), y ∈R,(95)

Qtv(x)= u(x, t), t ≥ 0, x ∈R,(96)

where u(x,0) = v(x) and u solves (93). Thus Zy is a shift operator in R, and Qt is the
semiflow generated by (93). The following important property follows form the proof of
Proposition (6.3).

COROLLARY 6.4. If Zy and G are commutative for all y ∈ R, then the operators Zy

and Qt are commutative, namely,

(97) ZyQt =QtZy, y ∈R, t ≥ 0.

PROOF. Following the notation of the proof of Propostion 6.3, we have for v ∈
C([0, δ],L∞(R)), u0 ∈ L∞(R), y ∈R,

(Zy�u0v)(x, t)= (�Zyu0Zyv)(x, t), x ∈R, t ∈ [0, δ].
Hence, we have, for t ∈ [0, δ], y ∈R,

ZyQtu0 = Zy lim
n→∞�n

u0
v = lim

n→∞�n
Zyu0

Zyv =QtZyu0.

Repeating the same argument on [δ,2δ], . . . , [kδ, (k+ 1)δ], . . . , finishes the proof. �

We denote, for u ∈ C([0, T ],L∞(R))∩C1((0, T ],L∞(R)),

(98) Fu(x, t) := ∂u

∂t
(x, t)−Gu(x, t), x ∈R, t > 0.
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PROPOSITION 6.5 (Comparison principle). Let G be monotone and Lipschitz on L∞(R),
T ∈ (0,∞) be fixed and functions u1, u2 ∈ C([0, T ],L∞(R))∩C1((0, T ],L∞(R)), be such
that, for any (x, t) ∈R

1 × (0, T ],
Fu1(x, t)≤Fu2(x, t),(99)

0≤ u1(x, t), 0≤ u2(x, t)≤ c, u1(x,0)≤ u2(x,0).(100)

Then u1(x, t)≤ u2(x, t), for all (x, t) ∈R
1 × [0, T ]. In particular, u1 ≤ c.

PROOF. Define the following functions for x ∈R
1, t ∈ (0, T ], w ∈ L∞(R):

f (x, t) :=Fu2(x, t)−Fu1(x, t)≥ 0,(101)

F(x, t,w) :=G(w+ u1)(x, t)−Gu1(x, t)+ f (x, t),(102)

v(x, t) := u2(x, t)− u1(x, t).(103)

Clearly, v ∈ C([0, T ],L∞(R)) ∩ C1((0, T ],L∞(R)), and it is straightforward to check
that

(104)
∂

∂t
v(x, t)= F

(
x, t, v(x, t)

)
,

for all x ∈R
1, t ∈ (0, T ]. Therefore, v solves the following integral equation in L∞(R):

(105)

⎧⎨
⎩v(x, t)= v(x,0)+

∫ t

0
F

(
x, s, v(x, s)

)
ds (x, t) ∈R

1×(0, T ],
v(x,0)= u2(x,0)− u1(x,0) x ∈R

1,

where v(x,0)≥ 0, by (100).
Consider also another integral equation in L∞(R):

ṽ(x, t)= (�ṽ)(x, t), (x, t) ∈R
1 × (0, T ],(106)

where

(�w)(x, t) := v(x,0)+
∫ t

0
max

{
F

(
x, s,w(x, s)

)
,0

}
ds,

w ∈C
([0, T ],L∞(R)

)
.

(107)

It is easily seen that 0≤w ∈ C([0, T ],L∞(R)) yields

0≤�w ∈C
([0, T ],L∞(R)

)
.

Next, for any T̃ < T and for any w1, w2 from C([0, T̃ ],L∞(R,R+)), one gets by (107) that

‖�w1 −�w2‖T̃ ≤ T̃ K‖w2 −w1‖T̃ ,(108)

where K > 0 is the Lipschitz constant of G and we used the elementary inequality
|max{a,0} −max{b,0}| ≤ |a − b|, a, b ∈ R. Therefore, for T̃ < K−1, � is a contraction on
C([0, T̃ ],L∞(R,R+)). Thus, there exists a unique solution to (106) on [0, T̃ ]. In the same
way, the solution can be extended on [T̃ ,2T̃ ], [2T̃ ,3T̃ ], . . . , and therefore, on the whole
[0, T ]. By (106), (107),

(109) ṽ(x, t)≥ v(x,0)≥ 0,

hence, by (107),

(110) ṽ(x, t)= v(x,0)+
∫ t

0
F

(
s, ṽ(x, s)

)
ds =:�(ṽ)(x, t).
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Since 0 ≤ ṽ ∈ C([0, T ],L∞(R)) and G is monotone, (110) implies that ṽ is a solu-
tion to (105) as well. The same estimate as in (108) shows that � is a contraction on
C([0, T̃ ],L∞(R)), for small enough T̃ . Thus ṽ = v on R

1 × [0, T̃ ], and one continues this
consideration as before on the whole [0, T ]. Then, by (109), v(x, t)≥ 0 on R

1 × [0, T ], and
the statement of the proposition follows. �

Let us recall that Bσ denotes the interval [−σ,σ ] and L∞+ (R) is defined by (12).

LEMMA 6.6. Suppose there exists σ > 0 such that a(x)≥ σ , x ∈ Bσ . Suppose also that
u0 ∈L∞+ (R) and u be the corresponding solution to (88).

Then for any r > 0, the following limit holds:

(111) lim
t→∞ inf

x∈Br

u(x, t)→∞.

PROOF. By assumptions of the lemma,

d(x) := σ1Bσ (x)≤ a(x), x ∈R.

Since u0 ∈ L∞+ (R), there exist δ > 0, x0 ∈R, such that u0(x)≥ v0(x) := δ1Bδ(x0)(x), x ∈R.
Let v satisfy

∂v

∂t
(x, t)= (d ∗ v)(x, t), x ∈R, t > 0; v(x,0)= v0(x)≤ u0(x).

We define Df := d ∗ f . Since for any r1 ≤ r2,

(1B2r1
∗ 1B2r2

)(x)≥ r11B2r2+r1
(x), x ∈R,

the following estimate holds:

δ
∑
j≥0

(
min{δ, σ })j tj σ j

2j j ! 1Bδ+σj/2(x)≤∑
j≥0

tjDjv0(x)

j ! = v(x, t), x ∈R, t ≥ 0.

Hence, for any t > 0, r > 0,

νt := inf
x∈Br+σ

v(x, t) > 0.

Let us define,

T := inf
{
t > 0,

∥∥v(·, t)∥∥∞ ≥ 1
}
> 0.

By Proposition 6.5, applied with Gu=min{a ∗ u,1},
u(x, t0)≥ v(x, t0)≥ νt0, x ∈ Br+σ , t0 ∈ (0, T ).

Since u≥ 0, then by (88), u(x, t) is nondecreasing in t . Thus for all t ≥ t0, x ∈ Br ,

∂u

∂t
(x, t)=min

{
(a ∗ u)(x, t),1

}≥min
{
(a ∗ u)(x, t0),1

}≥min
{

σνt0

2
,1

}
> 0.

As a result, (111) holds. The proof is completed. �

From now on we study the case when a(x) is defined by (2), with α > 1
2 .

LEMMA 6.7. Let a(x) be defined by (2) with α > 1
2 and u0 ∈ L∞+ (R). Then there exists

R > 0 such that the following statements hold:
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1. For all |x| ≥R,

(112) |x|−2α � a(x) � (a ∗ u0)(x).

2. If there exist μ > 0, ρ ∈R, such that u0(x)≥ μ, x ≤ ρ, then for all x ≥R,

(113) x−2α+1 �
∫ ∞
x

a(y) dy � (a ∗ u0)(x).

PROOF. We start with the first part of the lemma. Without loss of generality we may
assume that u0 ∈ L1(R).

By (12), there exist δ > 0 and x0 ∈ R, such that u0(x) ≥ δ, x ∈ Bδ(x0). Since for any
r ≥ |x0|, a(x) ∼ a(|x| + r) as |x| → ∞, then there exists R > 0 such that the following
estimate holds, for all |x| ≥R,

|x|−2α � a(x)

� a
(|x| + r

) ∫
|y|≤r

u0(y) dy

≤
∫
|y|≤r

a(x − y)u0(y) dy ≤ (a ∗ u0)(x).

Now we prove the second part of the lemma. By the assumptions on u0, there exists decreas-
ing smooth v0 ∈ L∞+ (R) such that v0(x)→ 0 as x→∞, v0 ≤ u0 and ∂v0(x)

∂x
≤ 0 is compactly

supported. Then by the first part of the lemma applied to − ∂v0(x)
∂x

instead of u0, there exists
R > 0 such that

x−2α � a(x) �−
(
a ∗ ∂v0

∂x

)
(x), x ≥R.

Hence, for all x ≥R,

x−2α+1 �
∫ ∞
x

a(y) dy �−
∫ ∞
x

(
a ∗ ∂v0

∂y

)
(y) dy = (a ∗ v0)(x)≤ (a ∗ u0)(x).

The proof is completed. �

LEMMA 6.8. Let a be defined by (2) with α > 1
2 , and we define

h(x, t)= 1R−(x)+min
{
1, x−2α+1e(1−ε)t1(0,∞)(x)

}
,

g(x, t)=min
{
1, |x|−2αe(1−ε)t}.(114)

Then, for any ε ∈ (0,1) there exists τ0 = τ0(ε) > 0 such that for all l > 0 the functions

H(x, t, l) := 1

l

∫ t+l

t
h(x, s) ds,

G(x, t, l) := 1

l

∫ t+l

t
g(x, s) ds,

(115)

are sub-solutions to ∂tu= a ∗ u on [τ0,∞), namely (cf. (98)), for all l > 0,

∂G

∂t
(x, t, l)≤ (a ∗G)(x, t, l),

∂H

∂t
(x, t, l)≤ (a ∗H)(x, t, l), x ∈R, t ≥ τ0.

In this case one can understand g and h as “weak” sub-solutions to ∂tu= a ∗ u.
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PROOF. We denote rt = exp( t−εt
2α−1). Note that h(x, t)= 1⇔ x ≤ rt . Since t → h(x, t) is

absolutely continuous, then for all x ∈R and almost all t > 0, we have

(116) −∂h

∂t
(x, t)+ (a ∗ h)(x, t)=−(1− ε)h(x, t)1x≥rt + (a ∗ h)(x, t).

Note that
∂H

∂t
(x, t, l)= h(x, t + l)− h(x, t)

l
= 1

l

∫ l+t

t

∂h

∂t
(x, s) ds,(117)

(a ∗H)(x, t, l)= 1

l

∫ l+t

t
(a ∗ h)(x, s) ds.(118)

Hence, by (117), H ∈ C(R+,L∞(R))∩C1((0,∞),L∞(R)). Moreover, by (117) and (118),
∂th≤ a ∗ h, for all x ∈R and almost all t > 0, yields ∂tH ≤ a ∗H , for H as a vector valued
function. Thus, it is sufficient to check that the right-hand side of (116) is nonnegative.

Take δ ∈ (0,1). There exists x0 = x0(δ) > 0, such that

(119) sup
|y|≤√x

(
x + y

x

)2α−1
≥ 1− δ, x ≥ x0.

Let τ > 0 be such that rt ≥ x0, t ≥ τ . By (116), in order to show that h is a subsolution, it
is sufficient to prove that there exists t0 = t0(ε, δ) > τ , such that

(120)
(a ∗ h)(x, t)

h(x, t)
≥ (1− δ)

∫ rt

−√rt

a(y) dy

for all x ∈R and t ≥ t0. Note that,

(121) (a ∗ h)(x, t)≥
∫ rt

−√rt

a(y)h(x − y, t) dy

for x ∈R and t > τ .
1. Let x ∈ (−∞, rt −√rt ), t > τ . Since h(x, t)= 1, for x ≤ rt , then we have

(a ∗ h)(x, t)

h(x, t)
=

∫
R

a(y)h(x − y, t) dy

h(x, t)

≥
∫
R

a(y)1x−y≤rt (y) dy

=
∫ ∞
x−rt

a(y) dy

≥
∫ ∞
−√rt

a(y) dy,

(122)

and (120) holds.
2. Let x ∈ [rt −√rt , rt ), t > τ . Note that h(x, t)= 1, and h(x − y, t)= 1 for y ≥ x − rt .

Then (121) yields, that

(123)
(a ∗ h)(x, t)

h(x, t)
≥

∫ rt

x−rt

a(y) dy +
∫ x−rt

−√rt

a(y)

(
rt

x − y

)2α−1
dy.

Next, for the considered x, −√rt ≤ y ≤ x − rt yields 0 ≤ x − y − rt <
√

rt , and hence, by
(119), there exists t1 > τ such that for all t ≥ t1 and x ∈ [rt −√rt , rt )(

rt

x − y

)2α−1
=

(
rt

rt + (x − y − rt )

)2α−1

≥
(

rt

rt +√rt

)2α−1
≥ 1− δ,

that, together with (123), implies (120).
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3. Let x ≥ rt , t > τ . Then, by (121),

(124)
(a ∗ h)(x, t)

h(x, t)
≥ x2α−1

e(1−ε)t

∫ rt

x−rt

a(y) dy +
∫ x−rt

−√rt

a(y)

(
x

x − y

)2α−1
dy.

Next, e(1−ε)t = r2α−1
t ≤ x2α−1 for t > τ . The latter also implies that (x − y)2α−1 ≤ x2α−1 if

0≤ y ≤ x − rt . Finally, by (119), there exists t2 > t1, such that x2α−1 ≥ (1− δ)(x − y)2α−1,
if only −√rt ≤ y < 0, x ≥ rt , t ≥ t2. As a result, (124) implies (120), which is proved hence
for all x ∈R and t ≥ t2. The proof for g(x, t) with rt = exp( t−εt

2α
) is similar. �

LEMMA 6.9. Let a be defined by (2) with α > 1
2 . Then for any γ ∈ ( 1

2α
,1) the following

limit holds:

(125)
a ∗ aγ (x)

aγ (x)
→ 1, |x| →∞.

PROOF. Take arbitrary δ ∈ (0,1), γ ∈ ( 1
2α

,1). Let us consider, for x such that |x|> 2|x|δ ,
a disjoint decomposition R=D1(x) �D2(x) �D3(x), where

D1(x) := [−|x|δ, |x|δ],
D2(x) :=

(
−|x|

2
,−|x|δ

)
∪

(
|x|δ, |x|

2

)
,

D3(x)=
(
−∞,−|x|

2

]
∪

[ |x|
2

,∞
)
.

Then, (a∗aγ )(x)
aγ (x)

= I1(x)+ I2(x)+ I3(x), where

Ij (x) :=
∫
Dj (x)

a(y)

(
1+ |x|2

1+ |x − y|2
)αγ

dy, j = 1,2,3.

Using the inequality |x − y| ≥ |x| − |y| ≥ |x| − |x|δ for y ∈D1(x), |x|> 21−δ , one has

I1(x)≤
(

1+ |x|2
1+ (|x| − |x|δ)2

)αγ ∫
D1(x)

a(y) dy→ 1, |x| →∞.

Next, we evidently have, for any |y|< |x|
2 , that 1+ |x− y|2 ≥ 1+ (|x| − |y|)2 ≥ 1

4(1+ |x|2);
therefore,

I2(x)≤ 4αγ
∫
{|y|≥|x|δ}

a(y) dy→ 0, |x| →∞.

Finally, a(y)≤ cα

(1+ x2
4 )α

for y ∈D3(x), hence

I3(x)≤ cα4α (1+ |x|2)αγ

(4+ |x|2)α
∫
D3(x)

1

(1+ |x − y|2)αγ
dy

≤ cαcαγ 4α

(
(1+ |x|2)γ

4+ |x|2
)α

→ 0, |x| →∞,

where cα is the normalising constant defined in (2). As a result (125) holds. The proof is
completed. �
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LEMMA 6.10. Let a be defined by (2) with α > 1
2 , γ ∈ ( 1

2α
,1). Then, for any δ ∈ (0,1),

there exists λ= λ(δ, γ ) > 0, such that

(a ∗ωλ)(x)≤ (1+ δ)ωλ(x), x ∈R,

where

(126) ωλ(x) :=min
{
λ,aγ (x)

}
, x ∈R

1.

PROOF. For any λ > 0, we define the set

(127) �λ :=�λ(γ ) := {
x ∈R

1 : aγ (x) < λ
}
.

By (126), for an arbitrary λ > 0, we have ωλ(x)≤ λ, x ∈ R
1; then (a ∗ ωλ)(x)≤ λ, x ∈ R

1,
as well. In particular (cf. (126)),

(128) (a ∗ωλ)(x)≤ ωλ(x), x ∈R
1 \�λ.

Next, by Lemma 6.9, for any δ > 0 there exists λ= λ(δ) ∈ (0,1) such that

sup
x∈�λ

(a ∗ aγ )(x)

aγ (x)
≤ 1+ δ,

in particular, (
a ∗ aγ )

(x)≤ (1+ δ)aγ (x)= (1+ δ)ωλ(x), x ∈�λ.

Therefore, for all x ∈�λ,

(129) (a ∗ωλ)(x)= (
a ∗ aγ )

(x)− (
a ∗ (

aγ −ωλ

))
(x)≤ (1+ δ)ωλ(x),

where we used the obvious inequality: aγ ≥ ωλ. By (128) and (129), one gets the statement.
�

For a function ω :R1 → (0,+∞), we define, for any f :R1 →R,

(130) ‖f ‖ω := sup
x∈R1

|f (x)|
ω(x)

∈ [0,∞].

PROPOSITION 6.11 (cf. [22], Propostion 3.1). Let a be defined by (2) with α > 1
2 , func-

tion ω : R1 → (0,+∞) be such that a ∗ ω is well-defined (for example, let ω be bounded)
and, for some ν ∈ (0,∞),

(131)
(a ∗ω)(x)

ω(x)
≤ ν, x ∈R

1.

Let 0≤ u0 ∈ L∞(R1) and ‖u0‖ω <∞; let u= u(x, t) be the corresponding solution to (88).
Then

(132)
∥∥u(·, t)∥∥ω ≤ ‖u0‖ωeνt , t ≥ 0.

PROOF. For any f :R1 →R+, with ‖f ‖ω <∞, we have

min{(a ∗ f )(x),1}
ω(x)

≤ (a ∗ f )(x)

ω(x)

≤
∫
R1

a(y)ω(x − y)

ω(x)

|f (x − y)|
ω(x − y)

dy(133)

≤ a ∗ω(x)

ω(x)
‖f ‖ω.
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By Proposition 6.3 and (94), for any 0≤ τ < ϒ , we have that

u(x, t)= (�u)(x, t), t ∈ [τ,ϒ],
where �=�u(·,τ ). Suppose that for some τ = (N−1)δ, δ ∈ (0,1), N ∈N, we have ‖uτ‖ω ≤
‖u0‖ωeντ . Take any v ∈ C([τ,ϒ],L∞(R,R+)), t ∈ [τ,ϒ], ϒ := τ + δ, 0 ≤ uτ ∈ L∞(R)

such that

(134)
∥∥v(·, t)∥∥ω ≤ ‖u0‖ωeνt , t ∈ [τ,ϒ].

We will check the following inequality:∥∥(�v)(·, t)∥∥ω ≤ ‖u0‖ωeνt , t ∈ [τ,ϒ].
By (94), (133), (134), one gets, for t ∈ [τ,ϒ],

0≤ (�v)(x, t)

ω(x)

≤ uτ (x)

ω(x)
+

∫ t

τ

(a ∗ v)(x, s)

ω(x)
ds

≤ ‖u0‖ωeντ + ‖u0‖ω
∫ t

τ
νeνs ds = ‖u0‖ωeνt .

Since, by the proof of Proposition 6.3, u is the limiting function for the sequence �nv, n ∈N,
and uτ (x)= u(x, τ ), one gets the statement. �

PROPOSITION 6.12. Let a be defined by (2) with α > 1
2 , u0 ∈ L∞+ (R), and u is the

corresponding solution to (88). Then for any ε > 0 the following statements hold:

1. If u0(x) � a(x) for x ∈R, then there exists t0, such that for all t ≥ t0,

(135) u(x, t)� e−
εt
2 , x ∈ (−∞,−e

1+ε
2α

t )∪ (
e

1+ε
2α

t ,∞)
.

2. If u0(x) �
∫∞
x a(y) dy for x ∈R, then there exists t0, such that for all t ≥ 0,

(136) u(x, t)� e−
εt
2 , x ∈ (

e
1+ε

2α−1 t ,∞)
.

PROOF. We start with proving the first statement. Recall that ωλ(x) = min{aγ (x), λ},
x ∈ R, for γ ∈ ( 1

2α
,1). By Lemma 6.10 and Proposition 6.11, for any δ ∈ (0,1) there exists

λ > 0 such that, for ω := ωλ,

u(x, t)≤ ‖u0‖ωe(1+δ)t min
{
aγ , λ

}
, x ∈R, t ≥ 0.

Then for t0, such that aγ (e
1+ε
2α

t0)≤ λ, and for all t ≥ t0, |x| ≥ e
1+ε
2α

t ,

u(x, t)≤ cα‖u0‖ω e(1+δ)t

(1+ e
1+ε
α

t )αγ
≤ cα‖u0‖ωe(1+δ−εγ−γ )t ,

where the first inequality holds by (2). Hence it suffices to choose

γ ∈
(

1

min{2,2α} ,1
)
, δ ∈

(
0, ε

(
γ − 1

2

))
,

and redefine t0 such that cα‖u0‖ωe(1+δ−εγ−γ+ ε
2 )t0 ≤ 1.
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To prove the second statement we note that, by Lemma 6.10, for any δ ∈ (0,1), there exists
λ > 0, such that for ωλ(x)=min{λ,aγ (y)}, ω(x)= ∫∞

x ωλ(y) dy,

(a ∗ω)(x)=
∫ ∞
x

(a ∗ωλ)(y) dy

≤ (1+ δ)

∫ ∞
x

ωλ(y) dy = (1+ δ)ω(x), x ∈R.

Hence Proposition 6.11 may be applied. The rest of the proof is analogous to the first part.
The proof is completed. �

Now we can prove the main result.

PROOF OF THEOREM 2.8. We prove the first part of the theorem. Let v solve (88)
with v(x,0) = v0(x) = min{u0,

1
2}. By Proposition 6.5, for fixed t0 ∈ (0, T ), T := inf{t :

‖v(·, t)‖∞ ≥ 1},

(a ∗ v0)(x) �
∑
j≥0

t
j
0 Aj

j ! v0(x)= v(x, t0)≤ u(x, t0), x ∈R,

where Af := a ∗ f . Hence, by the first part of Lemma 6.7 applied to v0, and since u(x, t) is
increasing in t , there exists R > 0 such that

(137) |x|−2α � u(x, t), |x| ≥R, t ≥ t0.

By (137) and Lemma 6.6, there exists τ1 ≥ t0 such that

min
{
1, |x|−2αe(1− ε

2 )(τ0+1)} � u(x, τ1), x ∈R,

where τ0 is defined in Lemma 6.8. Hence, by Proposition 6.5 and Lemma 6.8, there exits
λ ∈ (0,1), such that

λg(x, t + τ0)= lim
l→0

1

l

∫ t+l

t
λg(x, s + τ0) ds

= lim
l→0

λG(x, t + τ0, l)

≤ u(x, t + τ1), x ∈R, t ≥ 0,

where g is defined by (114) with ε
2 instead of ε and we used, by the monotonicity of g in t ,

λG(x, τ0, l)≤ λg(x, τ0 + 1)≤ u(x, τ1), x ∈R, l ∈ (0,1).
By Lemma 6.6 and (97), for any n > 0 there exists tn such that u0(x)≥ λ, for x ∈ B1(x0),

yields u(x, t + tn)≥ n, for x ∈ B1(x0), t ≥ 0. Hence, for t ≥ 2−2ε
ε

(τ1 + tn),

u(x, t + τ1 + tn)≥ n, x ∈ {
x : |x|−2αe(1−ε)(t+τ1+tn) ≥ 1

}
,

since {x : |x|−2αe(1−ε)(t+τ1+tn) ≥ 1} ⊂ {x : λg(x, t + τ0) ≥ λ} = {x : |x|−2αe(1− ε
2 )t ≥ 1}. On

the other hand by Proposition 6.12 there exits τ ≥ tn + τ1 such that

u(x, t)≤ 1

n
, x ∈ {

x : |x|−2αe(1+ε)t ≤ 1
}
.

As a result (8) is proved.
Let us prove (9). Let v solve (88) with v0(x) := v(x,0) 
≡ 0 such that v0 ∈ C∞(R) is

decreasing and v0 ≤min{u0,
1
2}. As before,

(a ∗ v0)(x) � v(x, t0)≤ u(x, t0), x ∈R.
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Similarly to (137), by the second part of Lemma 6.7,

(138) x−2α+1 � u(x, t), x ≥R, t ≥ t0.

By Corollary 6.4 and since v0 is decreasing, then v(·, t) is decreasing in x, for all t ≥ 0.
Therefore by Proposition 6.5 and Lemma 6.6, for any r ∈R,

(139) ∞= lim
t→∞ inf

x≤r
v(x, t)≤ lim

t→∞ inf
x≤r

u(x, t).

By (138) and (139) there exists τ1 ≥ t0, such that

1R−(x)+min
{
1, x−2α+1e(1− ε

2 )(τ0+1)1R+(x)
}
� u(x, τ1), x ∈R.

Hence,

λh(x, t + τ0)≤ u(x, t + τ1), x ∈R, t ≥ 0,

where h is defined by (114) with ε
2 instead of ε. The rest of the proof runs as before. �
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