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INTRODUCTION 

Maize is the third most important food crop next to 

wheat and rice. India is among the top 10 maize pro-

ducers in the world and contributes around 2-3% of the 

total global production and is among the top 5 maize 

exporters in the world contributing 14% of the total 

maize exported to various countries around the world. 

Maize is an important cereal crop of India for a larger 

section of populations, the raw material for industries 

and feed for animals and plays a major role in agro-

based economy.  Maize is consumed as basic food in 

some of the major countries as, corn flakes, corn syrup 

and oil. For animal feed, its feed value from grain, leaf 

and stem is gaining more importance in many coun-

tries. For industrial and pharmaceutical applications, it 

can be used to produce starch, ethanol, plastics and 

as a base product for antibiotic production. Starch is 

the main product of maize used in industries for manu-

facturing dextrin, liquid glucose, modified starches, 

maltose, etc. (Peter et al., 2014; Malhotra, 2017: Bush-

ra, et al., 2019).  

In recent decades, because of its importance maize 

area has been steadily increasing or remaining stable 

in the maize producing countries. Maize processing 

industries encourages farmers to enhance the cultiva-

ble area under maize in order to sell the maize as a 

cash crop. Maize is an exhaustive crop having high 

potential than other cereals and also absorbs a huge 

quantity of nutrients from the soil at different growth 

stages of the crop (Rafael et al., 2013). The biggest 

user of maize in India is the poultry industry, with 49% 

of the share, followed by human consumption at 23%. 

Other usages include cattle feed (12%) and industrial 

(starch) products (15%) followed by the food and bev-

erage industry with a 1% share each (Dass 2013; 

USDA 2013; Malhotra, 2017). 

Normal maize has poor nutritional value because of 

poor contents of essential amino acids, such as lysine 

and tryptophan. But quality protein maize contains a 

higher amount of these amino acids in the endosperm 

than normal maize. The productivity of quality protein 

maize is low due to inherent low soil fertility and poor 
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nutrient management practices, and no use of second-

ary and micronutrients (Firoz et al., 2019). The inte-

grated use of organic manure and chemical fertilizers 

can augment the nutrient use efficiency and also en-

hance the productivity of quality protein maize (Singh 

et al., 2020). The balanced combination of amino acids 

in quality protein maize has resulted into its higher bio-

logical value ensuring more availability of protein to 

both human and animal as compared to normal maize 

(Chaudhary et al., 2012; Boddupalli et al., 2019).   

Biofortification is one such unique practice done 

through fertilization with nutrients and has been exten-

sively used in maize with supplemental foliar spray for 

increasing the high concentrations of nutrients in the 

grain. Even though this practice is common in crops, 

spraying minerals at the appropriate time during plant 

growth turns to an efficient nutritional starter/gainer in 

plant parts which helps in direct nutritional support to 

human population and animals, etc. (Garg et al., 

2018).  

WHY BIOFORTIFICATION? 

Billions of deprived people worldwide suffer from var-

ied physical disabilities due to (micronutrient malnutri-

tion) insufficient supply of nutrients, amino acids, vita-

mins and minerals. India is also one such country 

where a huge malnourished people are identified 

which needs quick interventions.  The problem of mi-

cronutrient deficiencies arises in developing countries 

where the rural population are totally dependent on 

cereal-based diet as a staple food (Prasad et al., 

2014).  

Essential human nutrition is protein, lysine, tryptophan, 

iron, zinc, vitamin A and vitamin C, and their deficiency 

will lead to various health disorders. Similarly, antinutri-

tional compounds such as erucic acid, glucosinates 

and Kunitz trypsin inhibitor (KTI) consumed at high 

concentration levels will lead to complication in the 

health of humans and livestock (Pfeiffer and McClaffer-

ty, 2007; Gupta et al., 2015; Devendra et al. 2018). 

The most cost-effective and sustainable technique to 

overcome the nutritional problem, is by enriching nutri-

ents in staple food through biofortification. Biofortifica-

tion plays a crucial role in reducing the gap between 

the micronutrient requirements and increased intake of 

three micronutrient dietaries, Vitamin A, Iron and Zinc 

which is of public health significance worldwide. The 

Biofortified crops are delivered with enriched nutrients 

to rural communities or the lower income group, where 

commercial fortification or supplementation is not ac-

cessible. The primary targets of biofortification are the 

women and children, where their requirements are 

high and this often goes as unmet (Graham and 

Cakmak, 2015). 

The challenge remains, is to deliver nutritious, safe 

and cost-effective food to help improve the impact of 

nutritional security. Various interventions like supple-

mentation diet and dietary diversification has been 

tried to alleviate micronutrient deficiencies, and to be 

specific, none of these approaches was found to be 

quietly effective, because of its poor distribution sys-

tem and infrastructure and expensive (Tanumihardjo et 

al., 2007; Francesco et al., 2011).  

Plants are capable of synthesizing essential dietary 

micronutrients and act as a biochemical storage 

house. The plant-based foods consumed abundantly 

from rice, wheat, cassava and maize by populations 

contains several micronutrients that are insufficient to 

meet daily nutritional requirements.  These nutrients 

are unevenly distributed in plant parts. For example, 

iron and provitamin carotenoids content is high in rice 

leaves but low in polished grain and similarly high in 

wheat bran and low in polished wheat flour.  Biofortifi-

cation efforts are directed towards increasing levels of 

micronutrients in edible tissues of crops by integrating 

crop management practices and genetics and breed-

ing approaches (Chavali and Seetharam, 2017).   

IMPORTANCE OF BIOFORTIFICATION THROUGH 

FERTILIZATION 

The effective role of fertilizers is to provide nutrients to 

plants in order to grow, mainly with Nitrogen, Phospho-

rus and Potassium. This approach has an advantage, 

because it works faster. But for a long-term strategy 

focussing on improving human health, there found to 

be a serious limitation with enhanced fertilizers. They 

are costly and expensive and need to be applied con-

tinuously.  The potential of biofortified crops is to pro-

vide a continuous supply of micronutrients to large 

populations with cost effective and easily accessible 

(Stein et al., 2006; Meenakshi et al., 2010; Adnane 

Bargaz et al., 2018; Carla et al., 2019). Continued 

technical developments combined with economic sav-

ings, biofortification focuses on the path of “nutritional 

security” (Shetty, 2009). The importance of biofortifica-

tion noted by (Valenca et al., 2017; Chavali and 

Seetharam, 2017) are:  

Priority in selective nutrition: Biofortification allows 

selected nutrition to a particular crop, either by genetic 

or breeding or agronomic approach. This method of 

approach reduces the drudgery of consuming multiple 

foods so that required nutrients are incorporated in the 

crop. Ex., Fortification of Golden rice with vitamin A, so 

that poor people can consume nutritious food and Or-

ange sweet potato for Vitamin A which yielded signifi-

cant results in mothers and children. 

Need for overspending on food: In developing poor 

countries, people could not afford to spend on nutri-

tious food, for which biofortification gives a rescuing 

hand. Since nutrition is focussed on a single source, 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Burchi%20F%5BAuthor%5D&cauthor=true&cauthor_uid=21556191
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bargaz%20A%5BAuthor%5D&cauthor=true&cauthor_uid=30108553
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people need not spend on multiple foods. Lots of  

money can be saved and been used for their welfare 

activities.  

Increase in human productivity: Due to lack of  

nutrients, there is a reduction in efficiency in human 

workforce output. Substitution with nutrients in an effi-

cient manner can improve productivity, which contrib-

utes to economic and social growth and development.  

Biofortification is a multistage process which requires 

evaluation at every step and finally judged by the peo-

ple/populations. Biofortification has many advantages 

in nutritional interventions. For ex., In heart disease, 

researchers must wait for decades to conclude if diet 

brings any difference. So they decided to measure the 

intermediate points, not the final outcomes. Heath con-

sequences of malnutrition emerge quickly, like anae-

mia in women, blindness in children and early death. 

Only biofortified food crops can make a difference, and 

these developments and improvements will appear 

quickly in the coming years ( Garg, 2018).  

Biofortification through foliar fertilization is a new tech-

nique extensively used in maize because of the intro-

duction of hybrids with the high increased use of ferti-

lizers containing high concentrations of nutrients with 

the target levels of micronutrients. Keeping in view the 

growing importance of maize as food and feed, biofor-

tification of maize includes enrichment of micronutri-

ents like provitamin A, Fe and Zn in grain, which plays 

a significant role in the human health system (Kumar 

et al., 2019). 

MICRONUTRIENT IN HUMAN NUTRITION 

Micronutrient deficiency-related health issues or prob-

lems are more prevalent in both urban and rural areas. 

Under present scenario, three billion people around 

the globe are deficient in vitamins, minerals, specifical-

ly vitamin A, Iodine (I), iron (Fe) and Zinc (Zn) (Dahiya 

et al., 2008). This is due to lack of awareness about 

dietary practices, poverty, and lack of affordability to-

wards balanced foods, which leads to micronutrient 

deficiency.  

Vitamin A: Plays an essential role in vision, immune 

response, bone growth, reproduction, embryonic de-

velopment and regulation of adult genes. An early 

symptom of Vitamin A deficiency is night blindness. 

According to the World Health Organization, around 

2.5 – 5.0 lakh children are becoming blind every year 

and half of which die within a year of losing sight. 

Since humans and animals cannot synthesize vitamin 

A in their body, the only source achieved is through 

dietary means. In rural poor populations, plant foods 

are generally preferred than animal products, because 

of its rich source of provitamin A carotenoids. As a 

vitamin A supplement, β- Carotene rich maize is found 

efficient when consumed as a staple food when com-

pared to other commercial fortified products (Gannon 

et al., 2014). 

Iodine: It is a component of thyroid hormones. Iodine 

deficiency disorders lead to the greater cause of pre-

ventable brain damage in the foetus and infants and 

retarded psychomotor development in young children. 

It is estimated that more than one billion individuals 

suffer from goitre worldwide, out of which half of them 

from Asia are worst affected (Creswell et al., 2018). 

Iron: An active constituent of the catalytic site of heme 

and non-heme proteins. More than one-third popula-

tion suffers from anaemia out of which half of is by 

iron-deficiency. Iron deficiency affects cognitive devel-

opment, resistance to infection, slows work productivi-

ty, dizziness and pregnancy, etc. Children of anaemic 

mothers have low iron reserves and require more iron 

than supplied by breastfeeding. It is estimated around 

8 lakh deaths annually are attributed to iron deficiency 

anaemia (James and Balk, 2019). 

Zinc: It is involved in RNA and DNA synthesis and is 

a constituent of zinc-containing enzymes mainly for its 

cellular growth. One-third of the population is at high 

risk due to zinc deficiencies. Zinc deficiency leads to 

impaired growth, immune dysfunction, increased mor-

tality and abnormal neurobehavioral development. 

Zinc deficiency is directly related to the severity and 

frequency of diarrhoea in children causing even death 

(Cakmak and Kutman, 2018).    

In contrast, Fe and Zn is an important nutritional prob-

lem specifically in developing countries like India and 

Africa, which needs genetic and agronomic biofortifi-

cation of food crops by enriching with Fe and Zn 

(other micronutrients) in grains or plant parts. Alt-

hough it’s very simple and cost less, the application of 

essential micronutrients is complicated due to method 

of application, soil fertility, and mineral mobility in the 

plant and its accumulation in different sites (Zhu et al., 

2007). This strategy has been successful in limited 

levels within specific locations only. Increasing the 

concentration of micronutrients in staple crop is the 

first step in making a rich source of nutrition for human 

(Prasad et al., 2014). 

AGRONOMIC BIOFORTIFICATION OF MAIZE 

Agronomic biofortification can provide temporary in-

crease in micronutrient through fertilization enhance-

ment in productive parts. Maize is one of the major 

staple crops with a variety of uses. Maize owes world-

wide significance due to its utilization in human food 

and livestock feed.  Use of maize as human food and 

animal feed has led to the increased productivity and 

rise in fertilizer applications and thus enhances the 

soil depletion and loss of phyto-availability mineral 

(Raut et al., 2010; Lal, 2009). Due to this, mineral defi-

ciencies have become a critical (limiting) factor in 
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productivity and quality of the crop.  

Among the Biofortification methods, application of forti-

fied fertilizers with micronutrients is the cost-effective 

and simplest method, and the success of agronomical 

biofortification is highly variable due to its mineral mo-

bility, its accumulation and soil compositions in the 

specific locations. Soil composition analysis has indi-

cated that ½ of the agricultural soils are Zn deficient. 

Agronomic Biofortification is cost-effective and labori-

ous as it demands continuous micronutrient applica-

tion to the soils or plants. Biofortification by Fe foliar 

spray in rice crops was an effective way to improve 

iron concentration in rice grains (Fang et al., 2008; He 

at al., 2013; Yuan et al., 2013; Roman et al., 2019). 

Micronutrient fertilizers should be applied regularly and 

are costly and environmentally biased. Overall such 

strategies are applied to specific crops with the miner-

al potentiality to boost the nutritional quality of foods. 

In general staple crop, grains have very low bioavaila-

ble levels of 5 % total Fe and 25% total Zn (Bouis and 

Welch, 2010). Mainly the presence of antinutrients in 

plant foods plays a significant role in reducing the bio-

availability of essential micronutrients (Graham et al., 

2001). Following are the antinutrients, which reserve 

the function of micronutrient bioavailability in plant 

parts (Table 1). 

Further, it is not always possible to target the edible 

portion of plant parts like seed or fruit. It even results in 

the accumulation of nutrients in leaves or non-edible por-

tions of plants. Therefore this technique is successful with 

certain minerals under specific crops/species. In addition, 

fertilizer accumulation in soil and water poses adverse 

environmental effects (Garg et al., 2018). 

Agronomic Biofortification which includes fertilization, 

can boost the Fe, Zn, I and Se levels in foods. Deficien-

cies of I and Se does not limit the crop growth, whereas 

correction of Fe and Zn deficiency can benefit both crops 

and consumers. Timing of foliar application of micronutri-

ents is found to be critical besides following agronomic 

practices in maximizing micronutrient accumulation of 

Zn and Fe. Application of Zn and Fe is a complemen-

tary solution to plant breeding, and both are required for 

better efficacies (Graham, 2018). 

ROLE OF MINERAL FERTILIZATION (Zn and Fe) 

IN MAIZE CROP 

Minerals are essential for plant growth, reproduction 

and nutrient deficiencies which limit the yield potential 

and plant products, that contributes an important 

source of minerals in the human diet (Kumar et al., 

2015). Application of Zn and Fe fertilizers is a short-

term solution and act as complementary to plant 

breeding. In addition, it appears that improving the 

nitrogen nutritional status of plants promotes the accu-

mulation of Fe and Zn in grain (Cakmak, 2010; White 

and Broadley, 2011; Monica et al., 2014). 

For instance, a positive and highly significant correla-

tion between Fe and Zn concentrations had been ob-

served in many crops (Gregorio et al., 2000; Ozkan et 

al., 2007; Velu, 2013). Such correlations among micro-

nutrients indicate that improvement in one element 

may simultaneously improve the concentration of other 

elements (Ozkan et al., 2007). Both Fe and Zn interact 

positively with N, and inversely with P. A positive N x 

Zn interaction in cereals was reported by a number of 

researchers (Prasad et al., 2014). This is due to im-

provement in root uptake and translocation of Zn due 

to nitrogen (Kutman et al., 2010; Prasad et al., 2014). 

Fe and Zn application are utmost important and in the 

specific foliar application help in absorption and control 

of deficiency. This was found to be the best method for 

biofortification in maize crop.   

Iron is transported around the plant in a chelated form, 

mainly as citrate and malate in xylem and nicotiana-

mine (NA) synthase and its derivatives in the phloem. 

In plants, iron is stored in the form of ferritin. Plant fer-

ritin gene has been overexpressed in wheat, rice and 

maize, using endosperm as specific promoters. As 

stated earlier, the bioavailability of iron is low (<15%) 

in plant foods and thus an important factor need to be 

considered in biofortification approach in staple crops 

like maize. Hence targeting iron specifically in the en-

dosperm is an alternative solution to the antinutrient 

(phytate) problem (Connorton et al., 2017). 

The removal of antinutrients from plants increases 

bioavailable mineral content. Phytic acid (also known 

as phytate) is an antinutrient that chelates minerals 

and reduces the bioavailability in the gut (Denbow et 

al., 1998). An expression of iron-storage protein and 

phytase (a fungal enzyme that breaks down phytate) 

has been achieved in rice and maize with a combined 

approach (Drakakaki et al., 2005). This combined min-

eral biofortification will provide maximum levels of bio-

Augustine R. and Kalyansundaram, D. / J. Appl. & Nat. Sci. 12(3): 430 - 437 (2020) 

Antinutrients Essential micronutrients 
reserved 

Phytic acid Fe, Zn, Cu, Ni 

Cellulose, hemicelluloses, 
lignin, cutin, suberin 

Fe, Zn, Cu 

Tannins and Polyphenols Fe 

Lectins Fe 

Goitrogens I 

Heavy Metals (e.g., Cd, 
Hg, Pb) 

Fe, Zn 

Source: Philip and Martin (2005) 

Table 1. Influence of antinutrients against essential  

micronutrients. 
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available iron. 

Iron is required for the synthesis and stabilization of 

chlorophyll, which is why the chlorophyll content signif-

icantly decreases in Fe-deficient plants. As a result, 

iron deficiency has a market effect on plant growth and 

product quality (Gyana and Sunita, 2015). A foliar ap-

plication of 2-3% Fe concentration in Fe-deficient soils 

increases Fe level in crops and improves yield, applied 

at different intervals. When applied in excess, Fe ferti-

lization remains complicated and has a strong reaction 

towards insolubility. These are expensive and improp-

er applications leads to environmental hazards.  Iron 

deficiency affects more than two billion people, which 

directs to consider (Fe) mineral as a priority in maize 

biofortification. Iron has low mobility in soil, and due to 

this, the foliar application is recommended with FeSo4 

and the Fe-EDDHA chelates and Fe-EDTA for better 

absorption (Frossard et al., 2000; Zhu et al., 2007). 

Translocation of foliar-applied iron may be enhanced 

by chelation and by treatment with GA3 or kinetin. In 

corn, ferrous sulphate with chelating agents (EDTA or 

DTPA) considerably increased the translocation of iron 

out of the treated leaf (Ferrandon and Chamel, 1989; 

Gyana and Sunita, 2015).    

The ideal Fe, provided in the chelate form is more 

available and effective against Fe deficiency, which is 

quite expensive and found to be marginally better in 

increasing Fe concentration in grain. Foliar application 

of ferrous sulphate (Fe2So4)3 has shown a better effect 

than soil application in increasing Fe concentration in 

cereals (grain), which also enhances the yield of 

crops. Iron, when used under process fortification, has 

been successful for Fe fortification which includes rice, 

fish, soy sauce, wheat flour & maize flour, milk and 

infant formulas (Flora et al., 2019). 

Zinc has diverse physiological functions in biological 

systems (Krezel and Maret, 2016). Zinc (Zn) is the 

most abundant element next to iron and is an essential 

micronutrient for plants. The fertilization of crop with 

Zn either through soil or foliar application is a common 

practice in agriculture crop/soil where Zn deficiency 

plays a critical role in crop productivity. The main focus 

is to correct Zn deficiency and improve the yield with 

more attention paid from the human nutritional per-

spective towards the presence of Zn concentration in 

the edible parts of seeds or grains or starchy roots. 

Usually, soil applications of Zn had little effect on the 

Zn concentration in grain, whereas foliar Zn sprays 

were quiet effective in Zn accumulation in grains. Foli-

ar Zn applications in wheat and rice are quite effective 

in enriching the grain with Zn if they are applied at a 

later stage than on earlier developmental stage, pref-

erably during grain-filling (Cakmak et al., 2010a; Boon-

chuay et al., 2013; Abdoli et al., 2014; Cakmak and 

Kutman, 2018). Foliar application of zinc fertilizer in 

wheat grain increases grain zinc concentration by up 

to 20 ppm in India and Pakistan (Zhou et al., 2012) 

and in rice up to 27% (Cakmak and Kutman, 2018). 

Foliar applications of zinc at reproductive stages of 

crop development are most effective at increasing the 

amount of zinc accumulated in the grain of staple cere-

al crops such as wheat. Using both soil-applied zinc 

fertilizers and foliar sprays results in the maximum 

accumulation of zinc in grains (Yang et al., 2011; Miller 

and Welch, 2013). 

Zinc fertilizers have been widely used to enhance the 

crop yield and to increase Zn concentration in grains 

by various (broadcasting, foliar spray, banding and in 

combinations) methods (Rehim et al., 2014; Imran et 

al., 2015; Sarwar et al., 2015; Imran and Rehim, 

2017). Foliar spray of Zn improved grain yield and in-

creased Zn and starch contents (Imran et al., 2016). 

The foliar application of Zn was effective against re-

ducing phytate (antinutrient) concentration in grain 

( Cakmak et al., 2010; Cakmak and Kutman, 2018). 

The bioavailability of Zn in diets is promising based on 

phytate/Zn molar ratio. In general, foliar Zn applica-

tions are Zinc Sulphate (ZnSo4) and EDTA – Chelated 

Zn. For correcting Zn-deficiency, Chelated Zn is supe-

rior to ZnSo4, but the cost-effective option should be 

compared with high priced Zn-EDTA. Above all, the 

timing of foliar Zn-application is more important to de-

termine the effectiveness in biofortification (Dennis and 

Welch, 2013; Cakmak and Kutman, 2018). Agronomic 

efficiency of Zn as the foliar application was four times 

higher than soil applications and also the rate of appli-

cation was lower when applied as a foliar spray 

(Dhaliwal et al., 2010). The dosage rate of 25 to 50 kg 

ZnSO4 per ha is generally proposed for use in fertiliza-

tion of soils/crops with Zn deficiency (Cakmak, 2008). 

Depending on the severity of the Zinc deficiency prob-

lem, a cost-effective model in fertilization needs to be 

worked out, to understand the better practices adopted 

in the region. At the initial stage, farmers need to be 

motivated about the strategy of Agronomic Biofortifica-

tion use in staple crops, quality seeds and awareness 

about the Zinc nutrition to human health (Cakmak and 

Kutman, 2018). This will bring a potential growth in 

fertilization (biofortification) of Zn as a foliar spray or 

foliar + soil application, irrespective of stages it reach-

es for maintaining yield and helps in accumulation of 

available Zn in grain. Thus enriched micronutrient (Fe 

and Zn) in maize overcomes malnutrition, which holds 

immense quality for sustainable and cost-effective so-

lutions (Maqbool and Beshir, 2019).  

Conclusion 

Agronomic biofortification is the simplest and fastest 

way for biofortification of grains with Fe, Zn or other 

micronutrients, where cereals are mainly the staple 
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food in developing countries. This is an alternate route 

to reach the rural poor populations, who cannot afford 

to buy mineral supplements nor can afford to improve 

the diet components. Although nutrients present in the 

soil, their availability of plant roots is limited, because 

of complicated soil processes and conditions, the foli-

ar application can help faster and higher absorption 

rate and cure deficiency symptoms. Thus, the foliar 

application can be an effective method in biofortifica-

tion of crops. Adequate Fe and Zn fertilization are 

necessary when GM cultivars with improved Fe and 

Zn are developed. Thus, genetic and agronomic ap-

proaches are complementary to each other and 

should progress in tandem. However, a better under-

standing of micronutrient reactions, their absorption 

and translocation in plants, specifically to grains, is 

required.  
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