
INVESTIGATION INTO RUNTIME WORKLOAD
CLASSIFICATION AND MANAGEMENT

FOR ENERGY-EFFICIENT MANY-CORE SYSTEMS

Ali Majeed M. Aalsaud

A Thesis Submitted for the Degree of

Doctor of Philosophy at Newcastle University

School of Electrical and Electronic Engineering

Faculty of Science, Agriculture and Engineering

August 2019

Ali Aalsaud: Investigation into Runtime Workload Classification and Man-
agement for Energy-efficient Many-core Systems ©2019

D E C L A R AT I O N

I hereby declare that this thesis is my own work and effort and that it
has not been submitted anywhere for any award. Where other sources
of information have been used, they have been acknowledged.

Newcastle upon Tyne August 2019

Ali Aalsaud

C E RT I F I C AT E O F A P P R O VA L

I confirm that, to the best of my knowledge, this thesis is from the
student’s own work and effort, and all other sources of information
used have been acknowledged. This thesis has been submitted with
my approval.

ALEX YAKOVLEV
FEI XIA

RISHAD SHAFIK

To my greatest supporters that is my wonderful parents, my beloved wife,
Nouranse, my lovely daughters, and my lovely son Elia.

— Ali

A C K N O W L E D G E M E N T S

I would like to express my sincere gratitude to my supervisors Prof.

Alex Yakovlev, Dr. Fei Xia and Dr.Rishad Shafik for their support and

guidance through my studies. They have been and always will be a

source of inspiration and my role model as a researcher.

I am grateful to my sponsor Iraqi Ministry of Higher Education

and Scientific Research and Mustansiriyah University for funding my

Ph.D. study through their scholarship program.

I am also grateful to my colleagues and friends in the School of Elec-

trical and Electonic Engineering, especially those in Microelectronic

Systems research group, at Newcastle University for their assistance

and guidance in my studies.

I would like to express my great thanks to (PRiME) project members

for their support and useful discussions. I am thankful to Dr. Ashur

Rafiev for his supporting through continues discussions, experimental

works, and preparing mthread benchmark programs.

Finally, I would like to offer my special regards to all the staff of the

school of Electrical and Electronic Engineering in Newcastle university.

Last but not least, I would like to thank my beautiful family for their

continuous support and motivation throughout my Ph.D. journey.

vi

A B S T R A C T

Recent advances in semiconductor technology have facilitated plac-
ing many cores on a single chip. This has led to increases in system
architecture complexity with diverse application workloads, with sin-
gle or multiple applications running concurrently. Determining the
most energy-efficient system configuration, i.e. the number of parallel
threads, their core allocations and operating frequencies, tailored for
each kind of workload and application concurrency scenario is ex-
tremely challenging because of the multifaceted relationships between
these configuration knobs. Modelling and classifying the workloads
can greatly simplify the runtime formulation of these relationships,
delivering on energy efficiency, which is the key aim of this thesis.

This thesis is focused on the development of new models for clas-
sifying single- and multi-application workloads in relation to how
these workloads depend on the aforementioned system configurations.
Underpinning these models, we implement and practically validate
low-cost runtime methodologies for energy-efficient many-core pro-
cessors.

This thesis makes four major contributions. Firstly, a comprehen-
sive study is presented that profiles the power consumption and
performance characteristics of a multi-threaded many-core system
workload, associating power consumption and performance with mul-
tiple concurrent applications. These applications are exercised on a
heterogeneous platform generating varying system workloads, viz.
CPU-intensive or memory-intensive or a combination of both. Fun-
damental to this study is an investigation of the tradeoffs between
inter-application concurrency with performance and power consump-
tion under different system configurations.

The second is a novel model-based runtime optimization approach
with the aim of achieving maximized power normalized performance
considering dynamic variations of workload and application scenarios.
Using real experimental measurements on a heterogeneous platform
with a number of PARSEC benchmark applications, we study power
normalized performance (in terms of IPS/Watt) underpinned with
analytical power and performance models, derived through multi-
variate linear regression (MLR). Using these models we show that
CPU intensive applications behave differently in IPS/Watt compared
to memory intensive applications in both sequential and concurrent
application scenarios. Furthermore, this approach demonstrate that
it is possible to continuously adapt system configuration through a
per-application runtime optimization algorithm, which can improve
the IPS/Watt compared to the existing approach. Runtime overheads

vii

are at least three cycles for each frequency to determine the control
action.

To reduce overheads and complexity, a novel model-free runtime
optimization approach with the aim of maximizing power-normalized
performance considering dynamic workload variations has been pro-
posed. This approach is the third contribution. This approach is based
on workload classification. This classification is supported by anal-
ysis of data collected from a comprehensive study investigating the
tradeoffs between inter-application concurrency with performance and
power under different system configurations. Extensive experiments
have been carried out on heterogeneous and homogeneous platforms
with synthetic and standard benchmark applications to develop the
control policies and validate our approach. These experiments show
that workload classification into CPU-intensive and memory-intensive
types provides the foundation for scalable energy minimization with
low complexity.

The fourth contribution combines workload classification with model
based multivariate linear regression. The first approach has been
used to reduce the problem complexity, and the second approach has
been used for optimization in a reduced decision space using linear-
regression. This approach further improves IPS/Watt significantly
compared to existing approaches.

This thesis presents a new runtime governor framework which
interfaces runtime management algorithms with system monitors and
actuators. This tool is not tied down to the specific control algorithms
presented in this thesis and therefore has much wider applications.

viii

P U B L I C AT I O N S

List of publications:

1. Aalsaud, Ali, Rishad Shafik, Ashur Rafiev, Fie Xia, Sheng Yang,
and Alex Yakovlev. "Power–Aware Performance Adaptation of
Concurrent Applications in Heterogeneous Many-Core Systems."
In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design, pp. 368-373. ACM, 2016.

2. Aalsaud, Ali, Ashur Rafiev, Fei Xia, Rishad Shafik, and Alex
Yakovlev. "Model-Free Runtime Management of Concurrent
Workloads for Energy-Efficient Many-Core Heterogeneous Sys-
tems." In 2018 28th International Symposium on Power and
Timing Modeling, Optimization and Simulation (PATMOS), pp.
206-213. IEEE, 2018.

3. Aalsaud, Ali, Haider Alrudainv, Rishad Shafik, Fei Xia, and
Alex Yakovlev. "MEMS-Based Runtime Idle Energy Minimization
for Bursty Workloads in Heterogeneous Many-Core Systems."
In 2018 28th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pp. 198-205.
IEEE, 2018.

4. Aalsaud, Ali, Ashur Rafiev, Fei Xia, Rishad Shafik, and Alex
Yakovlev. "Reduced-Complexity Runtime Management of Con-
current Workloads for Energy-Efficient Many-Core Systems."
Journal paper under preparation.

5. Gensh, Rem, Ali Aalsaud, Ashur Rafiev, Fei Xia, Alexei Iliasov,
Alexander Romanovsky, and Alex Yakovlev. Experiments with
odroid-xu3 board. Newcastle University, Computing Science,
2015.

I also contributed in the following works:

1. Xia, Fei, Ashur Rafiev, Ali Aalsaud, Mohammed Al-Hayanni,
James Davis, Joshua Levine, Andrey Mokhov et al. "Voltage,
Throughput, Power, Reliability, and Multicore Scaling." Com-
puter 50, no. 8 (2017): 34-45.

2. Rafiev, Aashur, Fei Xia, Alexei Iliasov, Rem Gensh, Ali Aalsaud,
Alexander Romanovsky, and Alex Yakovlev. "Order graphs and

ix

cross-layer parametric significance-driven modelling." In Ap-
plication of Concurrency to System Design (ACSD), 2015 15th
International Conference on, pp. 110-119. IEEE, 2015.

3. Rafiev, Ashur, F. Xia, Alexei Iliasov, Rem Gensh, Ali Aalsaud,
Alexander Romanovsky, and Alexandre Yakovlev. "Selective ab-
straction and stochastic methods for scalable power modelling of
heterogeneous systems." In Specification and Design Languages
(FDL), 2016 Forum on, pp. 1-7. IEEE, 2016.

4. Rafiev, Ashur, Andrey Mokhov, Fei Xia, Alexei Iliasov, Rem
Gensh, Ali Aalsaud, Alexander Romanovsky, and Alex Yakovlev.
"Resource-Driven Modelling for Managing Model Fidelity." In
Model-Implementation Fidelity in Cyber Physical System Design,
pp. 25-55. Springer, Cham, 2017.

5. Romanovsky, Alexander, and Alex Yakovlev. "Power-proportional
modelling fidelity Ashur Rafiev, Fei Xia, Alexei Iliasov, Rem
Gensh, Ali Aalsaud." (2015).

x

C O N T E N T S

I Thesis Chapters 1

1 introduction 2

1.1 Motivation . 2

1.2 Statement of originality 4

1.3 Thesis Organization . 5

2 background and literature review 7

2.1 Introduction . 7

2.2 Power Consumption of CPU 7

2.3 Power management techniques 8

2.3.1 Dynamic Voltage and Frequency Scaling 9

2.3.2 Many/multi-cores Systems 10

2.3.3 Heterogeneous Many-core Systems 11

2.3.4 Power-aware dark silicon management 13

2.3.5 Workload scheduling and sharing resources . . 13

2.4 Literature Review . 14

2.4.1 Power Management Techniques During Design 14

2.4.2 Runtime Power Management Techniques 17

3 platform exploration experiments 31

3.1 Introduction . 31

3.2 System Architecture and Platform description 32

3.2.1 Applications Workload 33

3.2.2 Performance Counters 37

3.3 Characterization Experiments 37

3.3.1 Dynamic voltage frequency scaling 38

3.3.2 CPU-power and number of active cores 41

3.3.3 Duty cycling with idle-wait state 43

3.3.4 Performance Evaluation 44

3.4 Summary and Conclusion 44

4 model-based runtime management of concurrent

workloads 47

4.1 Introduction . 47

4.2 System Architecture and Applications 50

4.2.1 Heterogeneous System 50

4.2.2 Applications Workload 50

4.3 Proposed Approach . 51

4.3.1 Modeling Power/Performance Tradeoffs 51

4.3.2 Modelling offline and online 65

xi

contents xii

4.3.3 Runtime Adaptation 65

4.4 Experiment Results . 67

4.5 Summary and Conclusion 70

5 model-free runtime management of concurrent

workloads 71

5.1 Introduction and Motivation 71

5.2 Experimental Platform And Applications 74

5.3 Workload Classification Taxonomy 76

5.4 Runtime Management Method And Governor Design . 77

5.4.1 Workload classification 79

5.4.2 Control decision making 83

5.4.3 runtime management (RTM) govenor design . . 87

5.5 Experimental Results . 87

5.5.1 A Case Study of Concurrent Applications . . . 87

5.5.2 Per-interval Re-classification 90

5.5.3 RTM stability, tobustness and complexity 95

5.5.4 Comparative evaluation of the RTM 95

5.6 Summary and Conclusion 97

6 reduced-complexity runtime management of con-
current workloads 98

6.1 Introduction . 98

6.2 State space analysis . 99

6.3 Proposed Methodology 99

6.4 Power and Performance Related Models 101

6.5 RTM Workload Classifications 102

6.6 Low-Complexity runtime 102

6.7 Proposed RunTime results 104

6.8 Summary and Conclusion 105

7 conclusions and future work 106

7.1 Summary and Conclusion 106

7.2 Future Work . 108

II Thesis Appendices 109

III Thesis Bibliography 126

bibliography 127

L I S T O F F I G U R E S

Figure 1.1 Processing element number is projected to scale
exponentially according to ITRS [91] 2

Figure 1.2 Power trends until 2020 (Source: International
Technology Roadmap for Semiconductors [92]. 3

Figure 1.3 Thesis organization. 6

Figure 2.1 Transister integration capacity [15]. 8

Figure 2.2 Approaches To Power Management 9

Figure 2.3 dynamic voltage frequency scaling with two
voltage supply [57] 9

Figure 2.4 A single-core microprocessor that runs at a lower
clock speed can be made to operate at lower en-
ergy per operation. Two single-core processors
can be run in parallel to recover the overall sys-
tem performance [45]. 11

Figure 2.5 CPU-Power consumption relationship with num-
ber of active cores [106]. 12

Figure 2.6 Flow of patterning, mapping, prediction (pmp) [37] 13

Figure 2.7 Examples of thread-to-core mapping in chip-
multiprocessor (CMP) configurations [132] . . . 14

Figure 2.8 Three-layer power control architecture for a 16-
core chip multiprocessor [68] 16

Figure 2.9 Proposed architecture of power delivery network
(PDN) to support dynamic voltage scaling. The
output voltage of each VRM is fixed [7] 17

Figure 2.10 Three power-supply configurations for a 4-core
CMP [54] . 18

Figure 2.11 A taxonomy of runtime power management tech-
niques. 19

Figure 2.12 Block diagram of the proposed energy minimiza-
tion approach [128]. 20

Figure 2.13 Proposed energy minimization approach [93] . 20

Figure 2.14 Agent-environment interaction Model. 26

Figure 2.15 Overall flow of power management based on
multilevel reinforcement based learning [76] . . 27

Figure 3.1 Exynos 5422 block diagram [2]. 33

Figure 3.2 Exynos 5422 system set. 34

Figure 3.3 Cortex-A7 voltage-frequency characteristic. . . . 38

Figure 3.4 Cortex-A15 voltage-frequency characteristic. . . 39

Figure 3.5 Cortex-A7 and Cortex-A15 voltage-frequency
characteristic under 100% workload 39

xiii

List of Figures xiv

Figure 3.6 Cortex-A7 and Cortex-A15 voltage–power char-
acteristic under 100% workload 40

Figure 3.7 Cortex-A7 and Cortex-A15 power-frequency char-
acteristic under 100% workload 40

Figure 3.8 Cortex-A7 and Cortex-A15 power-execution time
characteristic under 100% workload. 41

Figure 3.9 Cortex-A7 and Cortex-A15 frequency-execution
time characteristic under 100% workload. 41

Figure 3.10 Experimental measurements of idle power by
adopting Odroid-XU3 big.LITTLE platform (a)
1400MHz big.LITTLE; (b) 2000MHz big, 1400MHz
LITTLE at 1400 MHz to 1 Watt at 2000 MHz. . . 42

Figure 3.11 Power consumption of A7 domain with different
number of active cores. 42

Figure 3.12 Power consumption of A15 domain with differ-
ent number of active cores. 42

Figure 3.13 Dependence of total energy and calculation en-
ergy on A7 CPU loading 43

Figure 3.14 Dependence of total energy and calculation en-
ergy on A15 CPU loading 44

Figure 3.15 Total IPC for different workloads types 45

Figure 4.1 Total power for ferret and bodytrack applications
at 200 MHz and 1400 MHz frequencies. 53

Figure 4.2 Total power for single and concurrent applica-
tions in different configuration running at 1400

MHz. 54

Figure 4.3 Total IPS for single and concurrent applications
obtained from performance counters. 58

Figure 4.4 Total IPS/Watt for single and concurrent appli-
cations in different frequencies. 62

Figure 4.5 Total power normalized performance for differ-
ent core-allocations at 1400 MHz for bodytrack,
ferret and bodytrack+ferret applications. 63

Figure 4.6 Total IPS/Watt for different workloads types. . 64

Figure 4.7 Flowchart of the proposed runtime adaptation
cycle. 66

Figure 4.8 Comparative IPS/Watt between the proposed
approach and ondemand governor [75] with all
8 cores allocated to the applications. 68

Figure 4.9 The execution time for different core allocation
at 600 MHz and 1400 MHz respectively for ferret
application. 69

Figure 5.1 Flowchart of mthreads synthetic benchmark. M
and N are controlled parameters. 77

Figure 5.2 IPS/Watt for different memory use rates (0 6
M 6 1). 78

Figure 5.3 RTM architecture showing two-way interactions
between concurrent applications and hardware
cores. 78

Figure 5.4 mthreads and their Performance Counter Metrics
on Hetrogenous Many-core Systems. 80

Figure 5.5 Code implementing Table 4 85

Figure 5.6 Governor implementation based on RTM. 87

Figure 5.7 Execution trace with task mapping (TM) and
dynamic voltage frequency scaling (DVFS) de-
cisions. 91

Figure 5.8 Core allocation for Fluidanimate application,
Two Memory concurrent applications , Three
Memory concurrent applications. 92

Figure 5.9 Core allocation for Ferret application, Two CPU
concurrent applications. 93

Figure 5.10 Fluidanimate (left) and ferret (right) classifica-
tion and power traces 94

Figure 6.1 Block diagram for proposed runtime concurrent
workloads power controller. 100

Figure 6.2 Simplified overview of proposed methodology. 101

Figure 6.3 Power/performance characteristics for ferret, flu-
idanimate, and three different concurrent appli-
cations . 103

Figure 6.4 Simulation flow to obtain the results. 104

L I S T O F TA B L E S

Table 2.1 Features and limitations of the supervised model-
based learning techniques approaches. 22

Table 2.2 Features and limitations of the supervised classification-
based and model-based learning techniques ap-
proaches. 25

Table 2.3 Features and limitations of the existing approaches
of the model based Reinforcement learning (RL). 28

Table 2.4 Features and limitations of the existing model-
free reinforcement approaches. 30

Table 3.1 Qualitative summary of the inherent key char-
acteristics of PARSEC benchmarks [10]. 36

Table 3.2 Performance Counter Events. 37

Table 4.1 Features and limitations of the existing approaches. 48

Table 4.2 Single Application Power Models. 55

Table 4.3 Concurrent Application Power Models. 55

Table 4.4 Single Application Performance Models. 59

xv

Table 4.5 Concurrent Application Performance Models. . 59

Table 5.1 Features of existing approachs and this work. . 73

Table 5.2 Performance counter events 75

Table 5.3 Metrics used to derive classification. 79

Table 5.4 PARSEC applications and their performance counter
metrics on hetrogenous many-core systems . . . 82

Table 5.5 PARSEC applications and their performance counter
metrics on Intel Core i7 Sandybridge CPU . . . 82

Table 5.6 Classification details. 83

Table 5.7 RTM control decisions. 84

Table 5.8 The Power, Frequency, Number of Cores, Classi-
fication results for ferret Application. 89

Table 5.9 Percentage IPS/WATT improvements of the RTM

ovber the LINUX ONDEMAND Governor. . . . 97

Table 5.10 Comparison of performance in terms of IPS of
the proposed RTM with the LINUX ONDEMAND
Governor. 97

Table 6.1 Nnmber of possible core allocations 99

Table 6.2 Percentage IPS/WATT Improvements of the RTM
over the LINUX Ondemand Governor 105

L I S T O F A L G O R I T H M S

4.1 Runtime system adaptation algorithm to generate maxi-
mum IPS/Watt. 65

5.1 Inside the RTM cycle. 83

5.2 Mapping the RTM decisions to the core affinites 86

A C R O N Y M S

MLR Multivariate linear regression

OL offline

RT runtime

TM task mapping

WLC workload classification

xvi

acronyms xvii

OS operating system dark silicon management (DaSiM)

DRAM Dynamic random-access memory

DVS Dynamic voltage scaling

DFS dynamic frequency scaling

DCT dynamic concurrency throttling

CMP chip-multiprocessor

CMPs chip-multiprocessors

CMOS complementary metal-oxide-semiconductor

P polynomial

NP non-polynomial

SMDP semi-Markov decision process

DaSiM dark silicon management

LR linear regression

DPM dynamic power management

DSP Digital signal processing

DVFS dynamic voltage frequency scaling

RL Reinforcement learning

TD temporal difference

RTM runtime management

OH overheads

FPGA field-programmable gate array

MDP Markov Decision Process

GPU graphics processing unit

LPM local power manager

GPM global power manager

MRPI Memory Reads Per Instruction linear programming (LP)

LP linear programming

ITRS international technology roadmap for semiconductors

PDN power delivery network

SoC system-on-chip

Part I

Thesis Chapters

1

1
I N T R O D U C T I O N

1.1 motivation

In the last four decades, contemporary computing systems, including
embedded and high performance systems, are exhibiting increased
complexities in two dimensions. In one dimension, the number and
type of computing resources (cores) are growing in hardware plat-
forms, and in the other, an increasing diversity of applications are
being executed concurrently on these platforms [17, 81, 125]. In terms
of system architecture, an important trend is to increase the number
and type of cores on a chip while reducing their individual complexity.
Figure 1.1 is from the international technology roadmap for semicon-
ductors (ITRS) which expects that the overall number of cores that can
be placed in a single chip will dramatically grow with technology
scaling [91].

Figure 1.1: Processing element number is projected to scale exponentially
according to ITRS [91] .

In the last decades, the clock frequencies of CPU have increased
rapidly to meet growing performance needs [70]. Despite the rapidly
increase in the recent technology scaling [15], the speed of transistor
may not increase at the historic rate due to threshold leakage cur-
rent, and supply voltage scaling described by Moore’s Law [73, 94].
This results in power consumption not scaling with technology fea-
ture size reduction [85]. Moreover, according to the ITRS, by the year

2

1.1 motivation 3

2020, the semiconductor technology will see a consistent rise in chip
power consumption as opposed to requirement as can be seen in Fig-
ure 1.2 [92]. Consequently, power and energy consumption has become
a limiting factor to continued technology scaling and performance
improvements.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Power Trend

Power Requirement

Logic static power Logic dynamic power
`

Memory dynamic power Memory static power

P
ow

er
 [m

w
]

Figure 1.2: Power trends until 2020 (Source: International Technology
Roadmap for Semiconductors [92].

In terms of executing multiple applications, parallelization has been
used to maintain a reasonable balance between energy consumption
and performance in computing platforms [35].

On the other hand, managing hardware resources, to achieve en-
ergy efficiency, under different application scenarios (single or con-
current) is proving highly challenging due to runtime state-space
expansion [14]. This has led to techniques for mitigating power con-
sumption and performance degradation concerns. Power-aware plat-
form design techniques including many-core architectures with the
provision for dynamic task mapping and dynamic voltage frequency
scaling (DVFS) have been the preferred tools for system designers over
the years [79, 125].

Existing approaches for energy efficiency can be categorized into two
types: offline (OL) and runtime (RT). In OL approaches, the system is
extensively reasoned to derive energy and performance models [78, 4].
In RT approaches, the models are typically learnt using monitored in-
formation [128, 117]. Since RT modelling is costly in terms of resources,
often OL and RT are complementarily coupled [4].

Modern applications exercise underline hardware in different ways,
generating varying tradeoffs between power and performance. For
example, CPU intensive applications tend to have higher computing
workloads with less memory band-width. On the other hand memory
intensive applications typically exercise higher memory bandwidth
with low CPU workloads [111]. When these applications run concur-
rently the workloads generated by the hardware may vary significantly

1.2 statement of originality 4

compare to that of a single application. Hence, energy efficiency can-
not be automatically guaranteed using the existing approaches that
are agnostic of concurrent application workloads and behaviours [4].

This thesis opens a new research trend in the development of new
framework design to dynamically select the number and type of cores
with their frequencies for single and concurrent applications in hetero-
geneous many-core systems in order to improve energy efficiency. To
achieve that we present new models, techniques and architectures.

1.2 statement of originality

The major contributions of this thesis can be summarized as follows:

• A comprehensive literature study of power management tech-
niques for many-core systems is presented. This study analyzes
the advantages, disadvantages and limitations of the previous
techniques of power management. The conclusions from this
study can form a basis for any research aiming to utilize these
management techniques’ advantages and addressing their chal-
lenges.

• Experiments with the Odroid-XU3 platform were carried out
in order to examine the power management of heterogeneous
systems using directly measured values from the performance
counters and built-in monitors, these experiments include man-
aging the number of big cores, number of LITTLE cores, different
core allocation, and the operating frequencies as a function of
workload type. Furthermore, other experiments were carried out
to investigate the impact of the CPU duty cycle with idle-wait
state power, and controlling the number of active cores on the
CPU performance and power tradeoffs [30].

• Developing a new performance counter for measuring the on-
chip power consumption and performance caused by executing
single and concurrent applications on heterogeneous many core
systems. This performance counter can monitor system perfor-
mance events (e.g. cache misses, cycles, instruction retired) and
capturing the voltage, current, power, and temperature directly
from the sensors of hardware platforms.

• Propose model-based runtime optimization approach for concur-
rent applications, practically implemented and demonstrated on
a heterogeneous many-core system. Multivariate linear regres-
sion (MLR) is used to model power and performance tradeoffs
expressed as IPS/Watt, determine the optimal system configu-
ration (i.e. the number of parallel threads, their core allocations
and operating frequencies) tailored for each kind of workload,

1.3 thesis organization 5

and maximize IPS/Watt for single and concurrent application
scenarios using low-cost runtime adaptation algorithm [4].

• Propose a low-complexity, model-free and low-cost runtime ap-
proach for synergistic controls of dynamic voltage frequency
scaling (DVFS) and task mapping (TM). Fundamental to this ap-
proach is an empirical and data-driven method, which classifies
applications based on their memory and CPU requirements. The
objective is to derive DVFS and TM policies, tailored to the clas-
sified workloads without requiring any explicit modelling at
runtime. Due to simplified runtime classification, our approach
can significantly reduce overheads. Furthermore, the model-free
classification approach based RT enhances scalability for any
concurrent application mix, platform, and metric having linear
complexity which is not affected by the system heterogeneity,
and the number of concurrent applications [6].

• To reduce overhead and complexity, workload classification is
combined with model-based (multivariate linear regression tech-
nique) in a novel low-complexity runtime optimization approach
with the aim of achieving maximized energy efficiency consider-
ing dynamic variations of workload and application scenarios.

• Implement the new approach for low-complexity runtime power
adaptation as a Linux power governor to determine the hardware
configuration knobs, such as the number and type of cores with
their frequencies tailored to the workload type and application
scenario. Validate this governor through extensive experimenta-
tion to demonstrate significant IPS/Watt improvements.

1.3 thesis organization

This thesis is organized into seven chapters, as shown in Figure 1.3.
Chapter 1 "Introduction": introduces the motivations, objectives,

contributions and structure of this thesis.
Chapter 2 "Background and Literature Review": provides back-

ground information and summarizes the literature on topics relevant
to this thesis. In addition, the emerging on-chip interconnects included
in recent literature is reviewed and discussed in details.

Chapter 3 "Platform Exploration Experiments": presents several
experiments with the Ordoid-XU3 board to reveal the impact of par-
allelism in different types of heterogeneous cores on performance,
power consumption and idle power efficiency.

Chapter 4 "Model-based Runtime Management of Concurrent Work-
loads": proposes the novel runtime optimization approach for con-
current applications, practically implemented and demonstrated on a
heterogeneous many-core system by using MLR to model power and
performance tradeoffs expressed as IPS/Watt.

1.3 thesis organization 6

Chapter 1:
Introduction

Chapter 2:
Background and
literature review

Chapter 3:
Platform

Exploration
Experiments

Chapter 7:
Conclusion and future work

Figure 1.3: Thesis organization.

Chapter 5 "Model-free Runtime Management of Concurrent Work-
loads": proposes an runtime adaptation approach to improve the
energy efficiency of a heterogeneous many-core system with concur-
rent workloads by using workload classification (WLC) techniques to
derive DVFS and TM policies, tailored to the classified workloads.

Chapter 6 "Reduced-Complexity Runtime Management of Con-
current Workloads" develops the model-based runtime optimization
approach by using the workload classification technique to reduce
state-space size of the many-core heterogeneous system . Includes all
possible core allocations and all possible DVFS combinations.

Chapter 7 "Conclusions and Future Work" summarizes the contribu-
tions of the thesis, discusses the implications of the presented research
and draws the horizon for potential future work.

2
B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

This chapter presents the fundamental concepts involved in this thesis
and gives a review of the existing work. The remainder of this chapter
is organised as follows. Section 2.2 presents the principle of power
consumption of complementary metal-oxide-semiconductor (CMOS)
circuits of multiprocessors system on chip and Section 2.3 introduces
the power management techniques which include dynamic voltage
frequency scaling, many/multi-core architecture, heterogeneity of
many core systems, dark silicon and workload scheduling. Finally,
Section 2.4 gives an overview of the proposed techniques in the previ-
ous work relevant to the presented research.

2.1 introduction

Over the last four decades, progress in information technology has
changed every aspect of our lives – the ways we think, work, commu-
nicate, commute, and entertain ourselves. Modern computing systems,
and especially mobile and embedded systems have had an enormous
effect on our lives, including in areas such as the internet to consumer
electronics, transporting, healthcare and manufacturing. However,
these computing systems involve a performance-energy trade off as
the current size of transistors is scaled down further [55]. This has
led many researchers to investigate techniques to mitigate power con-
sumption and performance degradation concerns. Such techniques
include: power gating, dynamic voltage frequency scaling, emerging
devices, and many-core architectures. The many-core technique has
emerged as a consequence of recent advances in the integration den-
sity of transistors on a single chip, which has been achieved through
the use of modern semiconductor processes [55]. However, despite
the rapid recent increase in technology scaling [15], the speed of tran-
sistors may not increase at the historic rate due to threshold leakage
current, with the supply voltage being scaled down, as shown in
Figure 2.1.

2.2 power consumption of cpu

The dynamic power consumption and the static power consumption
are the two components of the power consumption in CMOS processors
as can be seen in (2.1)

Ptotal = Pdynamic + Pstatic (2.1)

7

2.3 power management techniques 8

Figure 2.1: Transister integration capacity [15].

where Pdynamic is the dynamic power consumption due to charg-
ing and discharging activities of load capacitance whenever the CMOS

circuit is running a useful application i.e active operation, and Pstatic
is the static power consumption due to several sources such as gate
leakage and sub-threshold leakage whenever the CMOS circuits are not
running useful computation i.e. idle mode [52][19].

Due to continued technology scaling the static power consumption
is now a significant source of power consumption even in operation
mode. The total power consumption (static and dynamic power) has
to be optimized instead of simple dynamic power reduction. Design
techniques exploration of the power consumption optimization need
to work in a large dimension search space [46]. We discuss these in
the subsections that follow.

2.3 power management techniques

Over the past decades, advances in chip fabrication has continued
at a steady stride and have yielded substantial improvements in the
power efficiency of CMOS chips. Power and energy always had a
significant impact on processor design. However, a few recent studies
propose power control algorithms for many-core architectures [34]. A
number of power management techniques for many- and multiple-core
processors have been proposed and these techniques can be classified
into two approaches: power management during design time and
power management at runtime, as can be seen in Figure 2.2. These two
approaches, including sets of hardware and software techniques, have
been used to reduce the power consumption while meeting system
performance requirements.

In this chapter, many techniques for the management of power
consumption are discussed, such as dynamic voltage frequency scaling,
CPU-power and number of active cores, power-aware dark silicon
management, and workload scheduling plus sharing resources.

2.3 power management techniques 9

Figure 2.2: Approaches To Power Management

2.3.1 Dynamic Voltage and Frequency Scaling

Many studies have recently been conducted aiming to reduce the
power consumption of many-core processors based on various tech-
niques. These techniques include varying the clock frequency, and
supply voltage correspondingly while a task is being processed, called
dynamic voltage frequency scaling (DVFS) control [39, 58, 53, 31], this
technique was introduced in the 1990’s. DVFS is able to help decrease
the power dissipation of CMOS circuits by reducing the supply voltage
and/or frequency as shown in the equation below:

Pdynamic = αCswitchedfV
2 (2.2)

where α is the switching probability or activity, Cswitched repre-
sents the effective switched capacitance of the transistor gates, f is the
operating clock frequency, and V is the supply voltage [50, 57]. This
equation shows that the Pdynamic is proportional to the product of
the operating frequency and the square of supply voltage. DVFS is a
hardware power minimization technique which has been developed
for embedded systems where the frequency and supply voltage are
dynamically changed depending on the workload variation.

Figure 2.3: dynamic voltage frequency scaling with two voltage supply [57]

2.3 power management techniques 10

For instance, LeSueur et al. [57] circuits designed for dynamic volt-
age frequency scaling using two individual power supply voltages
of 1.3 v and 0.8 v on a nine core processor as shown in Figure 2.3
and this technique resulted in an average energy 52% of the original
energy on a JPEG application.

DVFS may be controlled at the system software level. For instance,
DVFS is controlled in Linux with power governors [14], such as onde-
mand, performance, conservative, userspace and powersave. These
governors use DVFS control to manage system power according to the
knowledge and prediction of workload and user preference. Current
Linux governors are, however, not able to optimize energy consump-
tion, primarily because they select only either the maximum or min-
imum frequency depending on whether the workload is higher or
lower than a given threshold [14]. This coarse-grain approach is not
capable of taking advantage of the different degrees of parallelizability
of applications and producing the most efficient scheduling.

2.3.2 Many/multi-cores Systems

In 1971, while microprocessors have been invented, performance en-
hancements from one era of processors to the following have been
ruled via Pollack’s regulation [15]. This states that the improvements
in performance of the microprocessors is proportional to the square
root of complexity (or area, assuming that the implementation makes
use of the same CMOS technology). For instance, a dual-small core
microprocessor can provide a performance improvement of 70-80 %,
as compared to only 40% from a large monolithic core [15]. Each core
is designed to run at a slower clock speed in order to reduce its energy
per operation [45], while overall system performance can be recovered
by operating both of the processors in parallel, as shown in Figure 2.4.

Despite the fact that, due to the generation scaling driven by Moore’s
law, a multi/many-core processor layout possibility has emerged
which overcomes Pollack’s regulation. This is because the use of
multiple processors can offer close to-linear overall performance en-
hancement.

As the power consumption issue is becoming exacerbated with the
newer micro-architecture design of microprocessors, parallel-computing
has become widely employed in microprocessors. Therefore the multi/many-
cores systems can be considered for solving these problems:

1. Saving the power consumption can be possible by turning on or
off for each core.

2. It is possible to operate each core separately in reliable region
(optimized voltage and clock frequency) depending on power
budget.

2.3 power management techniques 11

Figure 2.4: A single-core microprocessor that runs at a lower clock speed can
be made to operate at lower energy per operation. Two single-core
processors can be run in parallel to recover the overall system
performance [45].

3. It is possible to distribute the heat across the die by distributing
the application workloads among processor cores.

4. Establishing many core system which able to decide how and
when to control the dynamic reconfiguration of processing cores
with application needs.

The connection between core-power and number of cores has been
studied to calculate the power dissipation in many-cores systems. For
example, Intel Xeon CPU E5540 processors are used to investigate the
relationship between processor power and number of active cores, as
can be seen in Figure 2.5 which has a linear trend line [106].

2.3.3 Heterogeneous Many-core Systems

Advanced embedded systems such us mobile devises have enjoyed
dramatic growth over the last decades, and their functionality has
increased at a similar rate as they enable more immersive experiences.
The expectations for more powerful features, greater flexibility, and
high-performance are increasing dramatically [112].

Low power techniques have been used from clock power gating
through dynamic voltage/frequency scaling, then the many cores
which have been explained in previous sections. And most recently
heterogeneous processing technology allows the use of multiple types
of cores. There are many types of heterogeneity as shown below [88,
99]:

1. using different types of cores

a) different types of CPU (such as ARM big.LITTLE)

2.3 power management techniques 12

Figure 2.5: CPU-Power consumption relationship with number of active
cores [106].

b) integrating graphics processing unit (GPU) with CPU

c) using specific types of programmable core such as accelera-
tors

2. different types of hierarchies

3. using different types of software (operating system (OS), tools,...)

ARM big.LITTLE is the latest in a series of innovations, that have
allowed high improvements in embedded system performance within
a constant power budget [23]. LITTLE refers to smaller high efficiency
core on the system-on-chip (SoC) which has been used to low perfor-
mance applications for example, e-mail , web browsing, etc. While big
refers to bigger higher performance cores which have been used for
high performance applications for example, gaming, multimedia, etc.
These cores are connected by a coherent interconnect, rustling in an
embedded system [1]. In such many core systems the big cores can
produce peak performance, and the little cores can consume minimal
power. To ensure that tasks are paired dynamically to the appropri-
ate core type, the OS must be aware of the performance requirement
for each application type. Global task mapping software adjusts the
kernel scheduler to be aware of the performance requirements for
each thread. As performance changes the tasks are switched between
the big and LITTLE cores to maintain the most efficient performance.
Global task scheduling provides the most flexibility for tuning the
performance and power balance in an SoC [131]. With the efforts being

2.3 power management techniques 13

no more complex and for a standard DVFS based system. The other
types of heterogeneity are out of scope of this thesis.

2.3.4 Power-aware dark silicon management

In recent years, the dark silicon power management technique has
been widely used in many-core systems. The dark silicon indicates
that for a fixed power budget, only finite numbers of cores can be
powered on (operating at high performance) in the reliable region
while others remain unpowered (dark).

Shafique et al. [37] presented the basic flow of connections between
the various elements of the dark silicon management (DaSiM) technique
as can be seen in Figure 2.6. This technique is based on two concepts.

Figure 2.6: Flow of patterning, mapping, prediction (pmp) [37]

At first runtime application mapping and the dark cores technique is
used to establish the power control of cores. Secondly, temperature
prediction (section III-B2 in Figure 2.6) is used to establish the thermal
matrix for each thread. A Gem 5 [11] simulator with McPAT [63] has
been used in the experimental setup to demonstrate this technique.

2.3.5 Workload scheduling and sharing resources

In recent embedded systems and chip-multiprocessors (CMPs), cores
are not totally independent processors but rather share particular
on/off chip resources. These resources are the last level cash L2-L3,
interconnects (memory bus), pre-fetchers and the Dynamic random-
access memory (DRAM) controller. The requests coming from different
threads and different cores are treated as if they were all requested
from one single source, as can be seen in Figure 2.7 [132].

Workload scheduling or mapping means how the running applica-
tions will be distributed on the cores in a particular period of time to
minimize power consumption [126].

2.4 literature review 14

Figure 2.7: Examples of thread-to-core mapping in CMP configurations [132]

2.4 literature review

Contemporary computing systems, including embedded and high
performance systems, are exhibiting increased complexities in two
dimensions. In one dimension, the number and type of computing
resources (cores) are increasing in hardware platforms, and in the
other, an increasing diversity of applications are being executed con-
currently on these platforms [81], [79]. Managing hardware resources,
to achieve energy efficiency, under different application scenarios
(single or concurrent) is proving highly challenging due to runtime
state-space expansion [36].

This section discusses a set of power management techniques carried
out by different academic and industrial groups. This literature is
by no means implies a total survey of power management research.
Comprehensive survey studies have been presented in many papers
for example, Mittal [71], Singh et al.[100], and Kallimani [49]. Specific
work reviews related to the contributions of the thesis are presented
in the appropriate chapters.

2.4.1 Power Management Techniques During Design

As power and energy consumption has become a limiting factor to
continued technology scaling and performance improvements [14],
techniques for improving power and energy efficiency have emerged.

In the past few years, there have been various studies in power
management of embedded systems during design or offline time.

Some of these techniques have been presented in Section 2.3. Mit-
tal [71] and Kallimani et al. [49] classify power management techniques
during design into four categories :

1. Dynamic voltage scaling (DVS), dynamic frequency scaling (DFS),
and dynamic voltage frequency scaling DVFS techniques which

2.4 literature review 15

have been explained in Section 2.3 [16, 77, 54, 90, 29, 42, 22, 21,
130]

2. Dynamic power management or sometimes called low power
mode management [40] .

3. Micro-architectural design techniques for specific components.
For example, memory (cache, main, scratchpad) [72, 69, 104]

4. Digital signal processing (DSP) or GPUs or FPGAs have been
used as unconventional-cores [109, 120, 12, 65]

In terms of using DVFS technique, Ma et al. [68] proposed a low
power control approach for many-core processors executing single
applications. This approach has three layers of design features as
shown in Figure 2.8: firstly, adjusting the clock frequency of the chip
depending on the power budget; secondly, dynamically group cores to
run-the same applications (as also shown in [127]), and finally, modify
the frequency of each core group (as also shown in [123]).

Beh et al. [7] suggested a new design for DVS for a complex system-
on-chip SoC by dividing it into many blocks depending on suitable
supply voltage levels and corresponding clock frequency to each
processing element. These elements are CPU cores, IO, memory and
DSP, which are called function blocks as can be seen in Figure 2.9.

Here the VRM represents a voltage regulator module, which is an
electronic circuit designed to supply fixed voltage levels.

Per-core dynamic voltage frequency scaling DVFS is an effective
power management technique to save power consumption. Kim et
al. [54] designed a new power supply paradigm with an on/off regu-
lator to implement DVFS per-core, as shown in Figure 2.10.

In this paradigm, many algorithms with different benchmarks have
been adopted to implement per-core DVFS in an offline manner taking
into account transition time and overheads effects.

The hardware designers of the embedded systems typically provide
many operating modes to lower the power consumption. For example,
a low power mode has been used to reduce the power consump-
tion of the multi/many-core system when cores are idle. Hoeller et
al. [40] presented a new paradigm for interfacing hardware and soft-
ware components to manage the power consumption. Fundamental
of this approach is that allowing applications to precise when some
components are not being utilized and based on this data, particular
components, cores or the entire system can be moved to low power
mode.

In terms of using micro-architecture design techniques, Mittal and
Zhang [72] presented a new cache memory design to save cache
leakage power. This approach is based on software to predict the
power efficiency and cache usage for multiple cache configuration and
change cache configurations for reducing the cache power.

2.4 literature review 16

Fi
gu

re
2
.8

:T
hr

ee
-l

ay
er

po
w

er
co

nt
ro

la
rc

hi
te

ct
ur

e
fo

r
a

1
6

-c
or

e
ch

ip
m

ul
ti

pr
oc

es
so

r
[6

8
]

2.4 literature review 17

DSP1

{200 mA@1.3V,

100 mA@1.0V,

50 mA@0.8V}

DSP2 Memory
RF

{90

{100 mA@1.5V}

VRM 1

Vout=1.3V

IO

VRM 2

Vout=1.0V

VRM 3

Vout=0.8V

VRM 4

Vout=1.5V

Power Switch Network

P

{200 mA@1.3V,

100 mA@1.0V,

50 mA@0.8V} 20 mA@0.8V}

{100 mA@1.3V, {60 mA@1.3V,,

20 mA@0.8V}

Figure 2.9: Proposed architecture of PDN to support dynamic voltage scaling.
The output voltage of each VRM is fixed [7]

2.4.2 Runtime Power Management Techniques

Modern embedded systems execute multiple applications, both se-
quentially and concurrently, on heterogeneous and homogeneous
platforms. Determining the most energy-efficient system configuration
(i.e. the number of parallel threads, their core allocations and operat-
ing frequencies) tailored for each kind of workload during execution
is extremely challenging because the state space is very large and each
application requires different optimization.

Recent years have witnessed various studies in power and energy
optimization in embedded systems during execution time (i.e. run-
time). These studies provide various methods of the ability to learn
information without being clearly programmed, with regard to im-
prove power and energy efficiency. The learned information during
the operation is used to predict the appropriate task mapping and
DVFS for future execution. In general, runtime power management
techniques policies have three objectives [9];

1. The total power saving ought to be maximized.

2. The latency penalty is reduced.

3. The runtime overhead ought to be reduced to prevent prolonging
of the kernel time.

Based on the principles they employ, existing studies can be largely
categorised into two approaches: learning based and reinforcement
learning, as can be seen in Figure 2.11.

2.4 literature review 18

Po
w

er
Su

p
p

ly

Po
w

er
Su

p
p

ly
O

ff
-C

h
ip

R
eg

u
la

to
r

Po
w

er
Su

p
p

ly

Po
w

er
Su

p
p

ly

O
ff

-C
h

ip
R

eg
u

la
to

r

O
ff

-C
h

ip
R

eg
u

la
to

r

C
o

re
 0

C
o

re
 1

C
o

re
 0

C
o

re
 0

C
o

re
 2

C
o

re
 2

C
o

re
 1

C
o

re
 1

C
o

re
 3

C
o

re
 3

C
o

re
 2

C
o

re
 3

On-Chip Regulator

3
.7

 V

1
.8

 V
3

.7
 V

(0
.6

-1
)

V

3
.7

 V
3

.7
 V

(0.6-1) V

V
0

V
1

V
2

On-Chip Regulator

V
3

Fi
gu

re
2

.1
0
:T

hr
ee

po
w

er
-s

up
pl

y
co

nfi
gu

ra
ti

on
s

fo
r

a
4
-c

or
e

C
M

P
[5

4
]

.

2.4 literature review 19

RTM

Model-based
RL

Reinforcement
Learning (RL)

Regression
methods

Classifications
methods

Learning-based

Model-free RL

Figure 2.11: A taxonomy of runtime power management techniques.

2.4.2.1 Learning based runtime management

Many strategies have been adopted in this approach, which can be
classified based on learning principle into two taxonomies i.e. clas-
sifications techniques and regression techniques. The first one has
been used for predicting application response based on the applica-
tions type such us email, medical imaging, and games or based on
application behaviour (CPU-intensive, memory-intensive, or both).

On the other hand, learning based regression techniques have been
used for predicting continuous response for instance, changing in
temperature or fluctuating in voltage or frequency. Regression tech-
niques are used to learn model parameters from data collected at
runtime, and the resulting models are used to derive next step con-
trol decisions. Existing work that proposed the use of regression in
the runtime management are those by Sheng et al. [128], Shafik et
al. [93], and [18, 41, 44, 62] . Sheng et al. presented an adaptive power
minimization approach using practical implementation on heteroge-
neous platforms. Fundamental to this approach is the use of runtime
linear regression (LR)-based modelling of the power and performance
tradeoffs as can be seen in Figure 2.12. Using the model, the task map-
ping and DVFS are suitably chosen to meet the specified performance
requirements.

Shafik et al.[93] proposed a new runtime adaptation approach for
modern many core systems to reduce the power consumption based
on parallel application. This approach depend on workload predic-
tion with DVFS technique in runtime as can be seen in Figure 2.13.
This adaptation is easy to adjust through performance annotations in
sequential and parallel parts of workloads. This approach has been
validated on Intel Xeon E5-2630 platform , which consist of 24 cores.
NAS benchmark has been demonstrated on this platform based on
OpenMP library. Furthermore, this approach shows that the energy

2.4 literature review 20

………

Application

Runtime

tasks

2 Runtime Manager
2a Task mapping
2b DVFS

Hardware

1 Runtime Energy/
Performance Model

Mapping/VFS controls Energy/Perf. statistics

Performance req.

t1 t2 t3 t4 t5 ………….. tn

Perf. Counters & sensors Perf. counter

Computing
resource1

Computing
resource2

Computing
resource N

Figure 2.12: Block diagram of the proposed energy minimization approach
[128].

consumption can be minimized significantly compared to existing
approaches.

Figure 2.13: Proposed energy minimization approach [93]

Another runtime approach for homogeneous many core systems has
been adopted by Leech et al. [59], realizing power-aware performance

2.4 literature review 21

adaptation for homogeneous many cores systems. This approach is
based on power and performance models that can be determined
during runtime by linear regression learning based on low complexity
hypotheses of power and performance for a given operating frequency.
The approach is extensively demonstrated using stereo vision applica-
tions running on a 61-core Intel Xeon Phi platform. DVFS with multi
thread techniques have been used in runtime to achieve significant
improvement in energy efficiency compared to existing approaches.

Juan et al. [48] proposed a new runtime approach based on us-
ing a model selection from machine learning. Using the adaptation
model to determine the optimal dynamic voltage frequency operating
points under-extend threshold, nominal, or turbo-mode conditions.
The approach is demonstrated by Sniper and McPAT simulations
running PARSEC and SPLASH-2 benchmarks at different operating
frequencies. In this approach two types of experiments are carried
out. Firstly: investigation of energy minimization under frequency re-
quirements; secondly, investigation of performance maximizing under
power budget. The experimental results show that the improvements
in performance under power budget is less than the reduction in
energy consumption under the performance condition.

The method of combining DVFS with dynamic concurrency throttling
at runtime have been investigated recently. For instance, Jian Li and
Jose F. Martinez [62] proposed a new runtime optimization approach
for heterogeneous many core systems, fundamental to this study is
that runtime optimization of concurrency with DVFS for parallel appli-
cations can achieve energy-efficient execution and high performance.
This runtime optimization occurs in two-dimensional scenario, firstly;
task mapping of active cores, secondly; the various frequency/voltage
levels available.

Another prediction model for power/performance optimization
in runtime for homogeneous systems has been proposed by Curtis
et al. [26]. In this approach two knobs DVFS and dynamic concur-
rency throttling (DCT) have been used to reduce the dynamic power
consumption. Using experimental measurements on two Intel Xeon
E5320 quad-core processors platform with seven benchmarks from
the OpenMP version of the NAS Parallel Benchmark suite to vali-
date this approach. Multivariate linear regression is used to establish
multi-dimensional empirical prediction model coefficients offline.

2.4 literature review 22

Ta
bl

e
2

.1
:F

ea
tu

re
s

an
d

lim
it

at
io

ns
of

th
e

su
pe

rv
is

ed
m

od
el

-b
as

ed
le

ar
ni

ng
te

ch
ni

qu
es

ap
pr

oa
ch

es
.

A
pp

ro
ac

h
A

pp
li

ca
ti

on
Pl

at
fo

rm
V

al
id

at
io

n
R

un
ti

m
e

ty
pe

W
LC

C
on

tr
ol

K
no

bs
O

pt
im

iz
at

io
n

Ju
an

et
al

.[
4
8
]

Si
ng

le
H

om
og

en
eo

us
Si

m
ul

at
io

n
M

od
el

-b
as

ed
le

ar
ni

ng
N

o
D

V
FS

En
er

gy
sa

vi
ng

+
Pe

rf
or

m
ac

e
im

pr
ov

em
en

t

Sr
id

ha
ra

n
et

al
.[

1
0
3

]
Si

ng
le

H
om

eg
en

ou
s

Si
m

ul
at

io
n

M
od

el
-b

as
ed

le
ar

ni
ng

N
o

Ta
sk

m
ap

pi
ng

En
er

gy
sa

vi
ng

+
En

er
gy

ef
fic

in
cy

im
pr

ov
em

en
t

M
a

et
al

.[6
7
]

Si
ng

le
H

et
er

og
en

ou
s

Si
m

ul
at

io
n

M
od

el
-b

as
ed

le
ar

ni
ng

(o
ffl

in
e

re
gr

es
si

on
)

N
o

D
V

FS
+T

as
k

m
ap

pi
ng

Po
w

er
sa

vi
ng

+P
er

fo
rm

ac
e

im
pr

ov
em

en
t

C
u

rt
is

et
al

.[
2
5
]

C
on

cu
rr

en
t

H
om

eg
en

ou
s

Pr
ac

ti
ca

l
M

od
el

-b
as

ed
le

ar
ni

ng
(o

ffl
in

e
re

gr
es

si
on

)
N

o
D

V
FS

+D
C

T
Po

w
er

sa
vi

ng
+P

er
fo

rm
ac

e
im

pr
ov

em
en

t

Sa
sa

ki
et

al
.[

8
9
]

Si
ng

le
H

om
eg

en
ou

s
Pr

ac
ti

ca
l

M
od

el
-b

as
ed

le
ar

ni
ng

(M
ul

ti
va

ra
te

lin
ea

r
re

gr
es

si
on

)

N
o

D
V

FS
+N

um
be

r
of

ac
ti

ve
co

re
s

Pe
rf

or
m

ac
e

im
pr

ov
em

en
t

W
u

et
al

.[
1
2
4
]

Si
ng

le
H

et
er

og
en

ou
s

Pr
ac

ti
ca

l
M

od
el

-b
as

ed
le

ar
ni

ng
(l

in
ea

r
re

gr
es

si
on

)
N

o
D

V
FS

Pe
rf

or
m

ac
e

im
pr

ov
em

en
t

2.4 literature review 23

Recently, numerous studies have focused on workload type with
using mixture of two technique to optimize the power/performance
for many core embedded systems [24, 102, 27, 28, 131]. For instant,
the technique proposed in [27] first derives energy and cycles-per-
instruction models. Then, these models have been used to characterize
the workload at runtime by selecting the best dynamic power manage-
ment (DPM) scenario together with DVFS setting for each core.

Sozzo et al. [102] proposed a new runtime Linux scheduler us-
ing practical implementation of their approaches on heterogeneous
platforms. Fundamental of this approach is that optimize voltage/fre-
quency under performance constraint, manages the task mapping of
application threads among heterogeneous cores, and uses performance
counters to monitor the varying in workload characteristics. The ap-
proach is demonstrated by Odroid XU3 running the Black and Scholes
parallel model application of OpenMP. Moreover, The experimental
results of this approach show a significant improvements in power
consumption and performance compared to current Linux governors.
Similarly, the work in [131] proposed a practical implementation
approach on a set of web-browsing applications running on ARM
big.LITTLE heterogeneous many core systems. In this approach linear
regression technique is used to build power/performance models, and
then use these models to determine the optimal core allocation for
minimum power consumption.

Table 2.1 shows the most features and limitations of the existing ap-
proaches which employ supervised model-based learning techniques.
It is clear that the researchers did not include the workload classifica-
tion in these approaches.

In terms of using classification-based techniques, numerous studies
have focused on using these techniques in dynamic power manage-
ment with DVFS together at runtime [36, 56, 87, 24, 13, 113, 122]. For
instance, Gupta et al.[36] proposed a new runtime approach based
on workload classification. To build this classifier extensive offline
experiments are made on heterogeneous many core platforms and
Matlab is used to determine the classifier parameters offline. Pareto
function is used to determine the optimal configuration. However, this
classification is heavily based on offline analysis results, and assigns
an application a fixed type, regardless of its operating context. It also
requires the annotation of applications by application programmers
through using a special API.

Another runtime workload classification approach for heteroge-
neous multi-core systems is proposed by Reddy et al. [87]. Memory
Reads Per Instruction (MRPI) metric has been used to perform work-
load classification. This metric uses performance counters to determine
the performance in terms of instruction per second (IPS) during appli-
cation execution. The workload classification aims to determine the
optimal voltage/frequency without any loss of performance. Using

2.4 literature review 24

experimental measurements on ARM big.LITTLE Odroid-XU3 plat-
form with five applications from SPEC CPU2006 benchmarks and two
applications from PARSEC to validate this approach. However, this
work does not merge DVFS with task mapping techniques for workload
on heterogeneous platform.

Table 2.2 shows the most features and limitations of the existing
approaches based on supervised classification-based and model-based
learning techniques.

2.4 literature review 25

Ta
bl

e
2

.2
:F

ea
tu

re
s

an
d

lim
it

at
io

ns
of

th
e

su
pe

rv
is

ed
cl

as
si

fic
at

io
n-

ba
se

d
an

d
m

od
el

-b
as

ed
le

ar
ni

ng
te

ch
ni

qu
es

ap
pr

oa
ch

es
.

A
pp

ro
ac

h
A

pp
li

ca
ti

on
Pl

at
fo

rm
V

al
id

at
io

n
R

un
ti

m
e

ty
pe

W
or

kl
oa

d
C

la
ss

ifi
ca

ti
on

C
on

tr
ol

K
no

bs
O

pt
im

iz
at

io
n

B
it

ir
ge

n
et

al
.[

1
3
]

Si
ng

le
H

om
eg

en
ou

s
Pr

ac
ti

ca
l

M
od

el
-b

as
ed

le
ar

ni
ng

(m
ac

hi
ne

le
ar

ni
ng

to
pr

ed
ic

t
pe

rf
or

m
an

ce
m

od
el

)

O
ffl

in
e

cl
as

si
fic

at
io

n
ba

se
d

on
m

em
or

y
bo

un
d

Ta
sk

m
ap

pi
ng

Pe
rf

or
m

an
c

op
ti

m
iz

at
io

n

V
an

et
al

.[
1
1
3
]

Si
ng

le
H

et
er

og
en

ou
s

Si
m

ul
at

io
n

cl
as

si
fic

at
io

n+
pe

rf
or

m
an

ce
m

od
el

lin
g

Pa
rt

ia
lW

LC
to

bi
g

or
sm

al
lc

or
es

Ta
sk

m
ap

pi
ng

Pe
rf

or
m

ac
e

im
pr

ov
em

en
t

W
en

et
al

.[
1
2
2
]

C
on

cu
rr

en
t

H
et

er
og

en
ou

s
C

PU
/G

PU
Pr

ac
ti

ca
l

M
od

el
-b

as
ed

le
ar

ni
ng

O
ffl

in
e

cl
as

si
fic

at
io

n
fo

r
O

pe
nC

L
ap

pl
ic

at
io

ns
Ta

sk
m

ap
pi

ng
Pe

rf
or

m
ac

e
im

pr
ov

em
en

t

C
oc

hr
an

et
al

.[2
4
]

Si
ng

le
H

om
eg

en
ou

s
Pr

ac
ti

ca
l

M
od

el
-b

as
ed

le
ar

ni
ng

O
ffl

in
e

cl
as

si
fic

at
io

n
D

V
FS

+T
as

k
m

ap
pi

ng
Po

w
er

/P
er

fo
rm

an
ce

tr
ad

eo
ff

G
u

p
ta

et
al

.[
3
6

,3
4

]
Si

ng
le

H
et

er
og

en
ou

s
Pr

ac
ti

ca
l

M
od

el
-b

as
ed

le
ar

ni
ng

(P
ar

et
o)

Pa
rt

ia
lc

la
ss

ifi
ca

ti
on

(o
ffl

in
e

de
te

rm
in

in
g

th
e

cl
as

si
fie

r
pa

ra
m

et
er

s

D
V

FS
+

N
um

be
r

of
ac

ti
ve

co
re

s

En
er

gy
ef

fic
in

cy
im

pr
ov

em
en

t

2.4 literature review 26

2.4.2.2 Reinforcement learning (RL)

Reinforcement learning RL methods are a set of arrangements for ideal
long-term activity choice such that activities take under consideration
both immediate and delayed results [43]. Figure 2.14 shows the general
description of the RL model which comprises of a finite state space
S, an agent, a set of available actions A, and a reward function R
[118]. Mathematically, RL [105] describes some kind of solution to
the problems of the Markov Decision Process (MDP) identified by the
group S, A, T , R, and π where:

1. S: a set of states s ∈ S

2. A: a set of actions a ∈ A

3. T: the transition function maps each state-action combine to a
dissemination over successor states

4. R : the reinforcement function set three times the state-action-
successor state to a stander return r maximizing the overall
predicted future

State

Action

Reward Rate
Environment Agent

Figure 2.14: Agent-environment interaction Model.

The objective is to specify a→ π(x) policy that sets each state to the
action maximizing the entire anticipated future return of activities a
in state s. RL methods can be classified into two types model-based
and model-free. Model-based techniques evaluate a clear model of the
environment and the agent which mean that the applies descriptions
based on model decision, in options that reflect current preferences
regarding results. While, Model-free approaches do without any ex-
plicit information of the elements of the environment or the results of
actions and assess how good actions are implemented through trial
and error learning [43].

In other words, model-based RL assume knowledge of the transition
matrix T , the reward function R, the state S, and action spaces A
which define the model. And, model-free RL strategies are used in

2.4 literature review 27

circumstances where agents do not know T and R where the choice
trees are too complicated to assess.

2.4.2.3 Model-Based RL

Over the years substantial research has been carried out addressing
runtime energy minimization and/or performance improvement ap-
proaches. The technique of learning reinforcement has been used for
many core systems by Tan et al. [107] and Ye et al. [129]. There are
a few solid similarities between dynamic power management and
reinforcement learning: the next decision in DPM based on the cur-
rent status and the previous statistics, while in the RL technique the
agent monitors the state environment st at t time, tacking action at,
and therefore gets a rt reward. Because of the similarities in the trial
and error operation, power management can be performed using
reinforcement learning techniques [76].

In the past few years, there have been many studies in model-
based RL. For instants, Figure 2.15 shows the general block diagram of
reinforcement learning power management approach at runtime [76],
where the agent represents the power manger which decides the action
depend on Q-values. In This approach the multilevel framework has
been investigated to reduce the state-space learning-based runtime for
homogeneous systems. A set of experiments on real benchmarks is
carried out on the cycle-accurate simulator to validate this approach.
Furthermore, this approach shows a significant improvement in speed
comparing with state-of-the-art work.

Update

Cores

Decide

Value Q

AGENT

ENVIRONMENT

Action at

Reward rt

St-1, at-1

State st

Reward rt-1

Figure 2.15: Overall flow of power management based on multilevel rein-
forcement based learning [76]

2.4 literature review 28

Ta
bl

e
2

.3
:F

ea
tu

re
s

an
d

lim
it

at
io

ns
of

th
e

ex
is

ti
ng

ap
pr

oa
ch

es
of

th
e

m
od

el
ba

se
d

R
L.

A
pp

ro
ac

h
A

pp
li

ca
ti

on
Pl

at
fo

rm
V

al
id

at
io

n
R

L

Ty
pe

W
LC

C
on

tr
ol

K
no

bs
O

pt
im

iz
at

io
n

Sh
en

et
al

.[9
7
]

Si
ng

le
H

om
eg

en
ou

s
Pr

ac
ti

ca
l

M
od

el
-

ba
se

d
N

o
D

V
FS

Te
m

pe
rt

ur
e,

pe
rf

or
m

an
c,

an
d

en
er

gy

Ju
an

-2
0
1
2

et
al

.[4
7

]
Si

ng
le

H
om

eg
en

ou
s

Pr
ac

ti
ca

l
M

od
el

-
ba

se
d

N
o

D
V

FS
Pe

rf
or

m
an

ce
un

de
r

po
w

er
co

ns
tr

ai
nt

s

Sh
afi

k-
2
0
1
6

et
al

.[9
6
]

Si
ng

le
H

om
eg

en
ou

s
Pr

ac
ti

ca
l

M
od

el
-

ba
se

d
N

o
V

FS
En

er
gy

m
in

im
iz

at
io

n

W
an

g-
2
0
1
0

et
al

.[1
1
6
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
M

od
el

-
ba

se
d

N
o

D
V

FS
En

er
gy

ef
fic

ie
nc

y
im

pr
ov

em
en

ts

Pa
n

et
al

.[7
6
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
M

od
el

-
ba

se
d

N
o

D
PM

En
er

gy
sa

vi
ng

Pr
ab

ha
et

al
.[8

0
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n+
Pr

ac
ti

ca
l

M
od

el
-

ba
se

d
N

o
D

PM
En

er
gy

sa
vi

ng

C
he

n
et

al
.[2

0
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
M

od
el

-
ba

se
d

N
o

D
V

FS
Pe

rf
or

m
an

ce
im

pr
ov

em
en

ts

Ye
et

al
.[1

2
9
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
M

od
el

-
ba

se
d

N
o

Ta
sk

m
ap

pi
ng

Po
w

er
-p

er
fo

rm
an

ce
tr

ad
eo

ff

Te
sa

ur
o

et
al

.[1
0
8
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
M

od
el

-
ba

se
d

N
o

Ta
sk

m
ap

pi
ng

Pe
rf

or
m

an
ce

op
ti

m
iz

at
io

n
fo

r
da

ta
ce

nt
er

2.4 literature review 29

Prabha and Monie [76] used model-based RL to save the power
consumption of many core systems. Fundamental to their approach is
using the RL techniques to turn off the idle components. The approach
is extensively demonstrated using the SPLASH-2 benchmarks running
on the multiprocessor performance simulator Multi2Sim and McPAT.

These approaches have considered a single-metric based optimiza-
tion: primarily performance constrained power minimization, or per-
formance improvement within a power budget. Furthermore, these
approaches are primarily focused on single application workloads
running on homogeneous many core systems.

2.4.2.4 Model-Free RL

A model-free runtime (RT) workload classification (WLC) approach
with corresponding DVFS controls for dynamic power management
DPM is proposed by Wang and Pedram [117]. This approach employs
reinforcement learning, with the action space size a big concern for
the authors. In this approach the semi-Markov decision process (SMDP)
based on the temporal difference (TD) learning technique, but for only
homogeneous systems at much higher granularities than CPU cores. In
another work [119], a new architecture for hierarchical dynamic power
managements based on model free reinforcement learning is proposed.
In this approach, the reinforcement learning architecture consists
of two layers: a component-Ievel local power manager (LPM) and a
system-level global power manager (GPM). The latency and component
power optimization is achieved by the first layer. The second layer
interacts with the CPU scheduler to implement application scheduling.
Furthermore, experimental results show that this approach can save
the average power up to 31.1% compared to existing methods.

A recurring scheme in these approaches is that the energy efficiency
is primarily focused on single-application workloads without con-
sidering its variations among concurrent applications. However, the
same application can exhibit different energy/performance tradeoffs
depending on whether it is running alone or concurrently with other
different workloads. This is because:

1. the workload context switches within the application between
memory- and CPU-intensive routines, and

2. architectural sharing between applications affects the energy/per-
formance tradeoffs

2.4 literature review 30

Ta
bl

e
2

.4
:F

ea
tu

re
s

an
d

lim
it

at
io

ns
of

th
e

ex
is

ti
ng

m
od

el
-f

re
e

re
in

fo
rc

em
en

t
ap

pr
oa

ch
es

.

A
pp

ro
ac

h
A

pp
li

ca
ti

on
Pl

at
fo

rm
V

al
id

at
io

n
W

or
kl

oa
d

C
la

ss
ifi

ca
ti

on
C

on
tr

ol
K

no
bs

O
pt

im
iz

at
io

n

Li
u

et
al

.[
6
4
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
N

o
D

V
FS

Po
w

er
/

Pe
rf

or
m

an
c

tr
ad

eo
ff

W
an

g
et

al
.[

1
1
7
]

Si
ng

le
H

om
eg

en
ou

s
Pr

ac
ti

ca
l

Pa
rt

ia
lw

or
kl

oa
d

cl
as

si
fic

at
io

n
D

PM
En

er
gy

sa
vi

ng

Sh
en

et
al

.[
9
8
]

Si
ng

le
H

om
eg

en
ou

s
Si

m
ul

at
io

n
N

o
D

V
FS

Po
w

er
/

Pe
rf

or
m

an
c

tr
ad

eo
ff

W
an

g
et

al
.[

1
1
9
]

Si
ng

le
H

et
er

og
en

ou
s

Si
m

ul
at

io
n

Pa
rt

ia
lw

or
kl

oa
d

cl
as

si
fic

at
io

n
Ta

sk
m

ap
pi

ng
Po

w
er

an
d

la
te

nc
y

tr
ad

eo
ff

3
P L AT F O R M E X P L O R AT I O N E X P E R I M E N T S

This chapter describes various experiments carried out in order to
find the correlation between frequency, power consumption and per-
formance in a multi-threaded, multi-core heterogeneous system. The
results of these experiments will provide ideas on how to reduce power
and energy consumption without significant performance deteriora-
tions. In addition, these experiments introduce new characteristics
that must be considered in power/performance models. Furthermore,
these results provide support for the initial validation of the parametric
significance-driven modelling approach [83].

This chapter is organized as follows. Section 3.2 shows the exper-
imental environment, the configuration of the system used in the
experiments and the applications. The characterization experiments
are described in Section 3.3, which includes DVFS, CPU-power and
number of active cores, and duty cycling with idle-wait state. Sec-
tion 3.4 concludes the work in this chapter.

3.1 introduction

Over the past decades, advances in chip fabrication has continued at a
steady stride and have yielded substantial improvements in the power
efficiency of CMOS chips. Power and energy have always had a signif-
icant impact on processor design. A number of power management
techniques for many-and multiple-core processors have been proposed
that take advantage of the fact that an increase in the number of cores
for the CPU processor architecture may be more energy efficient than
increasing clock frequency. The popularity of heterogeneous architec-
tures, containing two or more types of different CPUs is growing [15].
These systems offer better performance and concurrency, however it is
necessary to improve the modelling in order to ensure optimal power
and energy consumption.

This has led to techniques for mitigating power consumption and
performance degradation concerns. Power-aware platform design in-
cluding many-core architectures with the provision for dynamic task
mapping and voltage frequency scaling DVFS have been the preferred
tools for system designers over the years [15, 68].

The Odroid-XU3 board [2] provides facilities that support studies
to better understand the nature of multi-core heterogeneous systems.
The board provides the possibilities to apply techniques like voltage
frequency scaling, affinity, and core disabling, which are used to

31

3.2 system architecture and platform description 32

optimize the system operation in terms of performance and energy
consumption.

For the first time, our study reveals the impact of parallelism in
different types of heterogeneous cores on performance, power con-
sumption and idle power efficiency [5]. The major contributions of
this chapter are as follows:

• Investigate the CPU performance and power tradeoffs using
directly measured values from the performance counters.

• Analysis of DVFS for many cores heterogeneous microprocessors
A7 and A15.

• Investigate the CPU duty cycle with idle-wait state power, and
controlling the number of active cores.

3.2 system architecture and platform description

The popularity of heterogeneous architectures, containing two or more
types of different CPUs is growing. These systems offer better per-
formance and concurrency, however it is necessary to ensure optimal
power and energy consumption. The Odroid-XU3 board supports
techniques such as DVFS, affinity and core disabling, commonly used
to optimize system operation in terms of performance and energy
consumption [2] [101].

The Odroid-XU3 board [2] is a small eight-core computing device
implemented on energy-efficient hardware. The board can run Ubuntu
14.04 and Android 4.4 operating systems. The main component of
Odroid-XU3 is the 28nm Application Processor Exynos 5422. The
architecture of the processor is shown in Figure 3.1. This System-on-
Chip is based on the ARM big.LITTLE [1] heterogeneous architecture
and consists of a high performance Cortext-A15 quad core processor
block, a low power Cortex-A7 quad core block, a Mali-T628 GPU and
2GB DRAM LPDDR3.

The board contains four real time current sensors that give the
possibility of the runtime measurement of power consumption on the
four separate power domains: big (A15) CPUs, LITTLE (A7) CPUs,
GPU and DRAM. In addition, there are also four temperature sensors
for the each of the A15 CPUs and one temperature sensor for the GPU.

On the Odroid-XU3, for each power domain, the supply voltage
(Vdd) and clock frequency can be tuned through a number of pre-set
pairs of values. The performance-oriented Cortex-A15 block has a
range of frequencies between 200MHz and 2000MHz with a 100MHz
step, whilst the low-power Cortex-A7 quad core block can scale its
frequencies between 200MHz and 1400MHz with a 100MHz step. DFS

is applied for A15 when its frequency ranges between 200MHz and
700MHz (the Vdd stays constant in this region) or for A7 when its

3.2 system architecture and platform description 33

A7
Core 0

A7
Core 3

A7
Core 2

A7
Core 1

A15
Core 4

A15
Core 7

A15
Core 6

A15
Core 5

512K L2 -Cache 2M L2-Cache with ECC

128-bit AMBAACE Coherent Bus Interface

DRAM LPDDR3(933MHZ)14.9 Gbytes/s

Figure 3.1: Exynos 5422 block diagram [2].

frequency ranges between 200MHz and 500MHz. DVFS is used when
the frequency is 800MHz and above for A15 or 600MHz and above for
A7.

The Cortex-A15 block is a high performance 32-bit quad core mobile
processor using ARMv7-A instruction set. It has 32 KB instruction and
32 KB data caches. In addition, 2 MB of Level 2 Cache is provided.
Each A15 core has integrated floating point unit VFPv4.

Cortex-A7 has the same architecture and feature set as Cortex-A15,
however Cortex-A7 microarchitecture provides optimum energy effi-
ciency. It has 512 KB Level 2 Cache. The LITTLE Cortex-A7 processor is
more suitable for performing low power tasks like texting, background
processes and audio.

3.2.1 Applications Workload

The PARSEC [10] benchmark suite attempts to represent both current
and emerging workloads for multiprocessing hardware. It is a com-
monly used benchmark suite for evaluating concurrency and parallel
processing. We experiment by using PARSEC on the Odroid-XU3 plat-
form, whose heterogeneity can be representative of different design
choices that can greatly affect workloads. PARSEC applications exhibit
different memory behaviours, different data sharing patterns, and
different workload partitions from most other benchmark suites in
common use. The characteristics of applications, according to [10] ,
which are used in this work can be seen in Table 3.1.

Concurrency of processing applications: Modern embedded systems
have facilitated placing multi/many core processor architectures on a
single chip to improve performance. These embedded systems execute
multiple applications, both sequentially and concurrently.

3.2 system architecture and platform description 34

O
D

R
O

ID
dS

m
ar

td
Po

w
er

d

D
C

dJ
ac

kd
5

V
/4

A

Ex
yn

o
s

5
4

2
2

hu
n

d
er

df
an

p

M
ic

ro
d

H
D

M
I

1
0

/1
0

0
Et

h
er

n
et

dp
o

rt

4
d×

U
SB

d2
l0

dH
o

st

eM
M

C
M

o
d

u
le

Fi
gu

re
3

.2
:E

xy
no

s
5

4
2

2
sy

st
em

se
t.

3.2 system architecture and platform description 35

Concurrency can be characterized at different levels, from high level
programming languages through to task definition at the operating
system level [51]. Parallelism can be given by the processor architecture
design to permit concurrency exploitation.

3.2 system architecture and platform description 36

Ta
bl

e
3

.1
:Q

ua
lit

at
iv

e
su

m
m

ar
y

of
th

e
in

he
re

nt
ke

y
ch

ar
ac

te
ri

st
ic

s
of

PA
R

SE
C

be
nc

hm
ar

ks
[1

0
].

Pr
og

ra
m

A
pp

li
ca

ti
on

D
om

ia
n

A
pp

li
ca

ti
on

Ty
pe

Pa
ra

ll
el

iz
at

io
n

M
od

el
G

ra
nu

la
ri

ty
W

or
ki

ng
Se

t
D

at
a

U
sa

ge
Sh

ar
in

g
Ex

ch
an

ge

bo
dy

tr
ac

k
C

om
pu

te
r

V
is

io
n

C
PU

an
d

m
em

or
y

in
te

ns
iv

e
da

ta
-p

ar
al

le
l

m
ed

iu
m

m
ed

iu
m

hi
gh

m
ed

iu
m

fe
rr

et
Si

m
ila

ri
ty

Se
ar

ch
C

PU
in

te
ns

iv
e

pi
pe

lin
e

m
ed

iu
m

un
bo

un
de

d
hi

gh
hi

gh

flu
id

an
im

at
e

A
ni

m
at

io
n

m
em

or
y

in
te

ns
iv

e
da

ta
-p

ar
al

le
l

fin
e

la
rg

e
lo

w
m

ed
iu

m

ca
nn

ea
l

En
gi

ne
er

in
g

C
PU

in
te

ns
iv

e
un

st
ru

ct
ur

ed
m

ed
iu

m
un

bo
un

de
d

hi
gh

hi
gh

fr
eq

m
in

e
D

at
a

M
in

in
g

C
PU

in
te

ns
iv

e
da

ta
-p

ar
al

le
l

fin
e

un
bo

un
de

d
hi

gh
m

ed
iu

m

st
re

am
cl

us
te

r
D

at
a

M
in

in
g

m
em

or
y

in
te

ns
iv

e
da

ta
-p

ar
al

le
l

m
ed

iu
m

m
ed

iu
m

lo
w

m
ed

iu
m

3.3 characterization experiments 37

Table 3.2: Performance Counter Events.

perf_eventt_name Description

INST_RETIRED Instruction architecturally executed.

BUS_CYCLE Bus cycle

MEM_ACCESS Data memory access.

L1I_CACHE Instruction Cache access.

L1D_CACHE_WB Data cache eviction.

L2D_CACHE Level 2 data cache access

L2D_CACHE_WB Level 2 data cache refill

L2D_CACHE_REFILL Level 2 data cache write-back.

3.2.2 Performance Counters

In this work, we make use of performance counters to monitor system
performance events (e.g. cache misses, cycles, instruction retired) and
at the same time capture the voltage, current, power, and temperature
directly from the sensors of Odroid-XU3. The performance counter
consists of two modules: kernel module and a user space module.

In this chapter, we use performance counter readings to monitor
system performance events (e.g. cache misses, cycles, instructions
retired) and use readings from the built-in sensors of the Odroid-XU3

to monitor physical parameters including voltage, current, power and
temperature.

The hardware performance counter readings are obtained using the
method presented by Walker et al. [114]. In the user space module the
event specification is the means to provide details of how each hard-
ware performance counter should be set up. Table 3.2 lists examples
of performance events, some of which are explained as follows:

1. INST_RETIRED is the retired instruction executed, and is part
of the highly reported instruction per cycles (IPC) metric.

2. Cycles is the number of core clock cycles.

3. MEM_ACCESS is Memory Read or Write operation that causes
a cache access to at least the level of data.

4. L1I_CACHE is level 1 instruction cache access.

3.3 characterization experiments

Experiments with the Odroid-XU3 platform were carried out in or-
der to examine the power consumption under different operation
frequencies and voltages. The frequency of each block can be changed
independently using special utility programs and the system scales

3.3 characterization experiments 38

the operating voltage of the block to fit the chosen frequency. Eight
cores in the board are numerated as follows: core 0, core 1, core 2 and
core 3 belong to the A7 processor block, core 4, core 5, core 6 and core
7 belong to the A15 processor block. Three types of experiments were
carried out:

• Dynamic voltage frequency scaling.

• Controlling the number of active cores.

• Duty cycle with idle-wait state.

• Performance evaluation.

3.3.1 Dynamic voltage frequency scaling

Many studies have recently been conducted aiming to reduce the
power consumption of many-core processors based on various tech-
niques. These techniques include varying the clock frequency, and
supply voltage correspondingly while a task is being processed called
DVFS.

In the first part of this experiment, voltage, current and power were
measured on A7 and A15 power domains without any additional
workload, with only Ubuntu 14.04 OS running.

Figure 3.3 and Figure 3.4 represent the voltage-frequency charac-
teristics of A7 and A15 power domains in this experiment. It should
be noted that below some frequency, voltage remains the same, but
above this point, the voltage linearly increases. As an example, A7

has a voltage of 0.913V at frequencies 200MHz - 500MHz, meanwhile
A15 has a voltage of 0.9125V at frequencies 200MHz - 700MHz. This
experiment clarifies the voltage-frequency dependencies for A7 and
A15 cores in Odroid-XU3 board.

Figure 3.3: Cortex-A7 voltage-frequency characteristic.

cpufreq Linux governor provides the utility cpufrec-set, which was
used to change the frequency of all four cores in the domains of either
A7 or A15.

3.3 characterization experiments 39

Figure 3.4: Cortex-A15 voltage-frequency characteristic.

Figure 3.5: Cortex-A7 and Cortex-A15 voltage-frequency characteristic under
100% workload

For example, cpufrec-set -u 1200MHz -c 7 sets maximum frequency
1200MHz for CPU core 7. Since it is possible to change the frequency
only for all cores of the processor block at the same time, all four cores
of A15 (4, 5, 6 and 7) will get the same frequency 1200MHz.

In the second part of the experiment, the same parameters were
measured for each core with 100% loading. The workload was created
by a custom stress test program, which has been written in C language.
The program executes 50 million square-root operations. Without
artificial delays in the code (like usleep function), this program creates
100% workload for a CPU core. Thread affinity was applied in order
to execute the program on the specified CPU core. To bind the task to
the CPU core taskset Linux command was used.

taskset SqrtStress -c 0 SqrtStress program will be executed on CPU
core 0 (the first core of Cortex-A7 processor).

Experiments with the execution time of logarithm, addition, sub-
traction, multiplication and division operations gave the anticipated
result. A15 was more than twice faster than A7 at the same frequency
and almost three times faster at the maximum frequency. Unexpected
results were received during experiments with the execution time of
square-root operation. At the maximum frequency (2.0GHz) Cortex-
A15 was just 1.2 times more productive than Cortex-A7 at the maxi-

3.3 characterization experiments 40

Figure 3.6: Cortex-A7 and Cortex-A15 voltage–power characteristic under
100% workload

Figure 3.7: Cortex-A7 and Cortex-A15 power-frequency characteristic under
100% workload

mum frequency (1.4GHz), 10.9 seconds and 13.2 seconds for 50 million
operations correspondingly. However, when the execution time was
calculated at the same frequencies, A7 was faster than A15, for exam-
ple at 1.0GHz frequency A15 core finished the task at 21.9 seconds,
whereas A7 core required only 18.5 seconds and consumes a quarter
of the power. The same trend was observed with sine and cosine
functions.

In these experiments, it was observed that an A15 consumes four
times or more power than an A7 when both are running at the same
frequency, and up to an order of magnitude more power when both
are running at the same voltage. Figure 3.8 shows the relationship
between power consumption and the execution time for the two types
of cores on the average running a range of different types of tasks.

Diagrams on Figure 3.5, Figure 3.6 and Figure 3.7 represent common
trends for A7 and A15 processors independently of the calculation
task. Diagrams on Figure 3.8 and Figure 3.9 depend on type of the
operation. The line on diagram, which relates to the processor with
better performance (for the predefined operation) will be situated be-
low. In case of square-root calculations, A15 shows worse performance

3.3 characterization experiments 41

Figure 3.8: Cortex-A7 and Cortex-A15 power-execution time characteristic
under 100% workload.

Figure 3.9: Cortex-A7 and Cortex-A15 frequency-execution time characteris-
tic under 100% workload.

than A7 running at the same frequency, that is why A15 line is above
the A7 line.

3.3.2 CPU-power and number of active cores

Recently reducing energy consumption has become a major concern
for most computing systems. The connection between cores-power
and number of active cores has been studied to calculate the power
dissipation in many-cores systems. This experiment measures the
same parameters while some of the cores in each block are disabled.
It was carried out in order to investigate possible power and energy
savings when the workload is not very high. Up to four A15 cores and
up to three A7 cores can be disabled on Odroid-XU3. At least one A7

core must be running for the OS to be alive.
The following Linux command is used to disable a core:
echo 0 | sudo tee /sys/devices/system/cpu/cpu1/online
and to re-enable it again:
echo 1 | sudo tee /sys/devices/system/cpu/cpu1/online

3.3 characterization experiments 42

4 3 2 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

No. of idle core
(b)

Po
w

er
 (w

at
t)

4 3 2 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

No. of idle core
(a)

Po
w

er
 (w

at
t)

Big core Big coreLittle core Little core

Figure 3.10: Experimental measurements of idle power by adopting Odroid-
XU3 big.LITTLE platform (a) 1400MHz big.LITTLE; (b) 2000MHz
big, 1400MHz LITTLE at 1400 MHz to 1 Watt at 2000 MHz.

Figure 3.11: Power consumption of A7 domain with different number of
active cores.

Figure 3.12: Power consumption of A15 domain with different number of
active cores.

Figure 3.10 depicts the idle power measurements on Odroid-XU3

big.LITTLE platform for different core allocations and frequencies.
The following two observations can be made. Firstly, with increasing
number of inactive cores (big or LITTLE) the idle power consumption
increases. As an example, when there is no additional workload and
only OS is running and all four A15 cores are enabled, the idle power

3.3 characterization experiments 43

of 4 big A15 inactive cores at 2000 MHz is 0.921 Watt, which drops to
0.888 Watt if one A15 core is disabled. If three A15 cores are disabled,
A15 domain consumes 0.833W. However, when all four cores of A15

are disabled, the power consumption plummeted to 0.119W.
Secondly, the idle power is also dependant on the operating fre-

quency. For instance, when parallel threads are allocated to LITTLE
cores only, the idle power dissipation of 4 big inactive cores rises
from 0.39 Watt at 1400 MHz to 1 Watt at 2000 MHz. Figure 3.11 and
Figure 3.12 show the relation of power consumption of A7 domain
and A15 domain with different number of active cores respectively.

Idle power contributes to unuseful energy consumption, essentially
reducing the battery operational life time. To reduce the idle power,
the traditional approach is to use power gating [5].

3.3.3 Duty cycling with idle-wait state

Figure 3.13 and Figure 3.14 show the experimental results for different
CPU loadings. These results represent the power consumption and ex-
ecution time of 50 million square root operations. The usleep function
(C language) was used after every 100000 operations to put the thread
into sleep state. We can create necessary CPU loading from about 0%
to 100% by passing different arguments in the usleep function. As
seen from the results duty cycling with idle-wait state is highly energy
inefficient. The energy consumption required for calculations remains
roughly the same, whereas total energy consumption increases when
CPU loading is decreased. It is more efficient to execute the task as
fast as possible than using this method of duty cycling.

Figure 3.13: Dependence of total energy and calculation energy on A7 CPU
loading

3.4 summary and conclusion 44

Figure 3.14: Dependence of total energy and calculation energy on A15 CPU
loading

3.3.4 Performance Evaluation

In this section, the experiments present the application behaviour
on a heterogeneous architecture and provides realistic values of the
performance for the ARM big.LITTLE processors. This processor has 4

LITTLE cores and 4 big that can run at 13 and 19 different frequencies
as described in Section 3.2 which lead to more than 4004 possible
frequency and core allocation for each application. To collect perfor-
mance characterization data, Ubuntu 14.04 kernel with performance
counter tool has been used.

Figure 3.15 shows the real performance measurements (in terms
of instruction per cycle IPC) for various thread-to-core frequency
allocations. Two observations can be made. Firstly; memory-intensive
applications typically have lower IPC than applications CPU heavy, as
expected. Secondly, IPC is approximately a constant level in case of
running big cores across the frequency range.

3.4 summary and conclusion

Several experiments were carried out in order to find out power, fre-
quency and performance interplays on Odroid-XU3 board. Dynamic-
frequency scaling is a very useful technique that can be applied for the
adjustment to the system loading. The idle-wait state is very inefficient
and it should be avoided whenever possible and not used to duty
cycle operations in order to save power. Core disabling provides the
possibility for substantial power and energy savings when the loading
is low. These experiments give a deeper understanding of the benefits
of heterogeneous architectures. The tradeoffs between performance
and energy-consumption obtained during the experiments are very
useful for the runtime modelling in order to achieve optimal system
operation. Some of the results of these experiments, and further char-

3.4 summary and conclusion 45

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

2345
T

h
re

e

B

ig
 o

n
e
 L

it
te

F
re

q
u

e
n

c
y

 (
M

h
z
)

IPC

M
e
m

o
ry

 I
n

te
n

s
iv

e

C
P

U
 I
n

te
n

s
iv

e

M
ix

 o
f

C
P

U
 &

 M
e
m

o
ry

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1

1
.52

2
.5

O
n

e
 B

ig
 o

n
e
 L

it
te

IPC

F
re

q
u

e
n

c
y

 (
M

h
z
)

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1

1
.52

2
.53

3
.5

O
n

e
 B

ig
 t

h
re

e
 L

it
te F
re

q
u

e
n

c
y

 (
M

h
z
)

IPC

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

2345678

F
o

u
r

B
ig

 f
o

u
r

L
it

te

F
re

q
u

e
n

c
y

 (
M

h
z
)

IPC

M
e
m

o
ry

 I
n

te
n

s
iv

e

C
P

U
 I
n

te
n

s
iv

e

M
ix

 o
f

C
P

U
 &

 M
e
m

o
ry

M
e
m

o
ry

 I
n

te
n

s
iv

e

C
P

U
 I
n

te
n

s
iv

e

M
ix

 o
f

C
P

U
 &

 M
e
m

o
ry

M
e
m

o
ry

 I
n

te
n

s
iv

e

C
P

U
 I
n

te
n

s
iv

e

M
ix

 o
f

C
P

U
 &

 M
e
m

o
ry

Fi
gu

re
3

.1
5

:T
ot

al
IP

C
fo

r
di

ff
er

en
t

w
or

kl
oa

ds
ty

pe
s

3.4 summary and conclusion 46

acterization experiments based on the same methods will be used
in subsequent sections to help derive system models and workload
classification schemes.

4
M O D E L - B A S E D R U N T I M E M A N A G E M E N T O F
C O N C U R R E N T W O R K L O A D S

As stated in Chapter 1, finding energy efficient system configurations
can be a challenging problem because of the heterogeneity found in
both hardware and software in modern embedded systems.

In this chapter, a novel model-based runtime optimization approach
to maximize power normalized performance considering dynamic
variation of workload and application scenarios is presented. Using
real experimental measurements on an Odroid XU-3 heterogeneous
platform with a number of PARSEC benchmark applications, we
model power normalized performance (in terms of IPS/Watt) under-
pinning analytical power and performance models, derived through
(Multivariate linear regression (MLR)).

The rest of this chapter is organized as follows. Section 4.2 shows
the experimental environment, the configuration of system used in
the experiment and the applications. The model-based approach is
described in Section 4.3, which is the first step to produce power,
performance and power normalized performance models for ARM
heterogeneous processors using MLR. Section 4.4 presents experimental
results. Section 4.5 concludes the work in this chapter.
4.1 introduction

Running multiple software applications concurrently on the same
platform is rapidly becoming the norm of modern computing, as are
system platforms with higher complexity that cater to such uses. This
increasing system complexity in both hardware and software empha-
sizes a major challenge for computing systems, especially mobile and
embedded systems, namely the performance-energy tradeoff [55]. This
has led to techniques for mitigating power consumption and perfor-
mance degradation concerns. Power-aware platform design including
many-core architectures with the provision for dynamic task mapping
and DVFS have been the preferred tools for system designers over the
years [15, 68].

In the past few years, there have been various studies in energy
efficiency in embedded systems, as shown in Table 4.1. A power con-
trol approach for many-cores processors executing single application
has been proposed in [68]. This approach has three layers of design
features also shown by other researchers: firstly, adjusting the clock
frequency of the chip depending on the power budget; secondly, dy-
namically group cores to run the same applications (as also shown
in [127, 82]), and finally, modify the frequency of each core group (as
also shown in [123, 95]).

47

4.1 introduction 48

Ta
bl

e
4

.1
:F

ea
tu

re
s

an
d

lim
it

at
io

ns
of

th
e

ex
is

ti
ng

ap
pr

oa
ch

es
.

A
pp

ro
ac

h
A

pp
li

ca
ti

on
V

al
id

at
io

n
K

ey
m

et
ho

d

[6
8
]-

[9
5
]

Si
ng

le
ap

p
Si

m
ul

at
io

n
O

ffl
in

e
op

ti
m

iz
at

io
n,

D
V

FS

[3
3
]

Si
ng

le
ap

p
Si

m
ul

at
io

n
R

un
ti

m
e

op
ti

m
iz

at
io

n,
ta

sk
m

ap
pi

ng
,D

V
FS

[6
6
]

Si
ng

le
ap

p
Si

m
ul

at
io

n
O

ffl
in

e
op

ti
m

iz
at

io
n,

C
PU

on
ly

sc
he

d,
D

V
FS

[3
2
]

Si
ng

le
ap

p
Si

m
ul

at
io

n
O

ffl
in

e
op

ti
m

iz
at

io
n,

ta
sk

m
ap

pi
ng

,D
V

FS

[1
2
8
]

Si
ng

le
ap

p
Im

pl
em

en
ta

ti
on

O
ffl

in
e

op
ti

m
iz

at
io

n,
ta

sk
m

ap
pi

ng
,D

V
FS

[7
4
]

Si
ng

le
ap

p
Im

pl
em

en
ta

ti
on

R
un

ti
m

e
op

ti
m

iz
at

io
n,

FP
G

A
on

ly
,D

V
FS

Pr
op

os
ed

C
on

cu
rr

en
t

Im
pl

em
en

ta
ti

on
R

un
ti

m
e

op
ti

m
iz

at
io

n,
ta

sk
m

ap
pi

ng
,D

V
FS

4.1 introduction 49

Among others, Goraczko et al. [33] and Luo et al. [66] proposed DVFS

approaches with software task partitioning and mapping of single
applications using a linear programming (LP) based optimization
during runtime to minimize the power consumption. Goh et al. [32]
proposed a similar approach of task mapping and scheduling for
single applications described by synthetic task graphs.

Several other works have also shown power minimization approaches
using practical implementation of their approaches on heterogeneous
platforms. For example, Yang et al. [128] presented an adaptive power
minimization approach using runtime linear regression-based mod-
eling of the power and performance tradeoffs. Using the model, the
task mapping and DVFS are suitably chosen to meet the specified per-
formance requirements. Nabina and Nunez-Yanez [74] presented a
similar DVFS approach for field-programmable gate array (FPGA)-based
video motion compensation engines using runtime measurements of
the underlying hardware.

A number of research have also shown analytical studies using
simulation tools like gem5, together with McPAT [78, 8] for single
applications. These works have used DVFS, task mapping, and offline
optimization approaches to minimize the power consumption for
varying workloads.

When these applications run concurrently the workloads generated
by the hardware may vary significantly compare to that of a single
application. Hence, energy efficiency cannot be automatically guar-
anteed using the existing approaches that are agnostic of concurrent
application workloads and behaviors (Table 4.1).

In this work, we address the limitations of the above works and
propose an adaptive approach, which monitors application scenarios
at runtime. The aim is to determine the optimal system configuration
such that power normalized performance can be maximized at all
times. We adopt an experimental approach depending on profiling
real power consumption and performance measurement for single
and concurrent applications. For the first time, our study reveals the
impact of parallelism in different types of heterogeneous cores on
performance, power consumption and power efficiency in terms of
IPS/Watt, which is the same as the number of instructions per unit of
energy [115]. The major contributions of this chapter are as follows:

• Investigate the CPU performance in terms of instructions per
cycle (IPC) and power tradeoffs using directly measured values
from the performance counters.

• Use real application benchmarks, suitably chosen from a pool of
available applications, including CPU intensive, memory inten-
sive, and other combinations.

• Use MLR to model power and performance tradeoffs expressed
as IPS/Watt.

4.2 system architecture and applications 50

• Maximize IPS/Watt for single and concurrent application sce-
narios using low-cost runtime adaptation algorithm.

To the best of our knowledge, this is the first runtime optimization
approach for concurrent applications, practically implemented and
demonstrated on a heterogeneous many-core system.

4.2 system architecture and applications

In this section, we describe the platforms, workload applications and
performance counters used in this investigation. We studied heteroge-
neous parallel processing platform, which provide all the performance
counters and power monitors we need for the methodology described
in the previous section. We chose standard benchmark application
workloads which provide a variety of degrees of concurrency and
memory access and CPU usage scenarios. The hardware platform,
PARSEC workloads applications and performance counters are further
detailed below.

4.2.1 Heterogeneous System

The popularity of heterogeneous architectures, containing two or more
types of different CPUs is growing [55]. These systems offer better
performance and concurrency, however it is necessary to ensure opti-
mal power and energy consumption. The Odroid-XU3 board supports
techniques such as DVFS, affinity and core disabling, commonly used
to optimize system operation in terms of performance and energy
consumption [2] [101].

The Odroid-XU3 board is a small eight-core computing device
implemented on energy-efficient hardware. The board can run Ubuntu
14.04 or Android 4.4 operating systems. The CPU of Odroid-XU3

platform is described in Chapter 3.

4.2.2 Applications Workload

The PARSEC benchmark suite attempts to represent both current and
emerging workloads for multiprocessing hardware. It is a commonly
used benchmark suite for evaluating concurrency and parallel process-
ing. We therefore use PARSEC on the Odroid-XU3 platform, whose
heterogeneity can be representative of different design choices that
can greatly affect workloads. PARSEC applications exhibit different
memory behaviours, different data sharing patterns, and different
workload partitions from most other benchmark suites in common
use [10].

Three applications (ferret, bodytrack and fluidanimate) are selected to
represent CPU intensive, memory intensive, and CPU with memory

4.3 proposed approach 51

intensive respectively. Such a classification reduces the effort of model
characterisation for combinations of concurrently running applica-
tions.

4.3 proposed approach

Our method studies single and concurrent application workloads
being executed on heterogeneous hardware platform with parallel pro-
cessing facilities, and derive optimal runtime management decisions
from the results of power/performance models. Based on these models
a runtime adaptation is derived to determine the most energy-efficient
system configurations for different application scenarios.

4.3.1 Modeling Power/Performance Tradeoffs

Systems with large scale concurrency and complexity, e.g. computation
systems built upon architectures with multiple and increasingly many
processing cores with heterogeneity among the components, are be-
coming more popular and common-place . The hardware motivations
are clear, as concurrency scaling can help delay the potential saturation
of Moore’s Law with current and future CMOS technology and better
use the opportunities provided by the technology scaling. In this envi-
ronment, software designs are increasingly focused towards greater
concurrency and mapping to such many-core hardware [61, 84].

In this section, we develop runtime power and performance models
using MLR. These models and their hypotheses are further detailed
below.

4.3.1.1 Power Model

Many studies have recently been conducted aiming to reduce the
power consumption of many-core processors based on various tech-
niques. These techniques include varying the clock frequency and
supply voltage correspondingly, while a task is being processed.

Power consumption can be divided into two parts: dynamic power
and static power. Dynamic power is the switching overhead in tran-
sistors, so it is determined by runtime events. Static power is mainly
determined by circuit technology, chip layout and operating tempera-
ture [78].

Experiments with the Odroid-XU3 platform were carried out in
order to examine its power consumption under different operation
frequencies and voltages. Using the same methods presented in Chap-
ter 3, the frequency of each block can be changed independently using
utility programs and the system scales the operating voltage of the
block to fit the chosen frequency. The eight cores in the board are
numbered as follows: core 0, core 1, core 2 and core 3 belong to the A7

4.3 proposed approach 52

(LITTLE) processor block, core 4, core 5, core 6 and core 7 belong to the
A15 (big) processor block. Which means, Odroid-XU3 architectures
have 20 different core configurations for each frequency.

Figure 4.1 presents the power consumption of ferret and bodytrack
applications for different thread-to-core allocations. As expected the
following two observations can be made. Firstly, the power consump-
tion increases as more cores are allocated for the given application.
Secondly, the power is also dependant on the operating frequency
which shows the impact of DVFS. For instance, when parallel threads
are allocated to big cores only, the total power dissipation of 4 big
cores rises from 0.52 Watt at 200 MHz to 3.815 Watt at 1400 MHz for
the ferret application.

4.3 proposed approach 53

(a
)

fe
rr

et
at

2
0

0
M

H
z

fr
eq

ue
nc

y
(b

)
fe

rr
et

at
1

4
0

0
M

H
z

fr
eq

ue
nc

y

(c
)

bo
dy

tr
ac

k
at

2
0

0
M

H
z

fr
eq

ue
nc

y
(d

)
bo

dy
tr

ac
k

at
1

4
0

0
M

H
z

fr
eq

ue
nc

y

Fi
gu

re
4
.1

:T
ot

al
po

w
er

fo
r

fe
rr

et
an

d
bo

dy
tr

ac
k

ap
pl

ic
at

io
ns

at
2

0
0

M
H

z
an

d
1

4
0

0
M

H
z

fr
eq

ue
nc

ie
s.

4.3 proposed approach 54

-0.1

0.4

0.9

1.4

One Little

power_A7 power_A15 power_memory

-0.2

0.3

0.8

1.3

1.8

One Little one Big

0

0.5

1

1.5

2

Three Little one Big

0
0.5

1
1.5

2
2.5

3
3.5

4

One Little three Big

0
0.5

1
1.5

2
2.5

3
3.5

4

Four Little four Big

-0.1

0.4

0.9

1.4

One Big

power_A7 power_A15 power_memory

Figure 4.2: Total power for single and concurrent applications in different
configuration running at 1400 MHz.

4.3 proposed approach 55

Ta
bl

e
4

.2
:S

in
gl

e
A

pp
lic

at
io

n
Po

w
er

M
od

el
s.

Fr
eq

.
(M

H
z)

fe
rr

et
bo

dy
tr

ac
k

flu
id

an
im

at
e

V
ol

t.
A

7
V

ol
t.

A
15

α
A
7

α
A
1
5

ε
1

R
S

α
A
7

α
A
1
5

ε
1

R
S

α
A
7

α
A
1
5

ε
1

R
S

2
0
0

1
0
.0

e-
1
1

5
.2

e-
1
0

0
.1

1
2

0
.9

7
1
2
.6

e-
1
1

3
.6

e-
1
0

0
.0

8
0

.9
8

2
.5

e-
1
1

3
.8

e-
1
0

0
.1

4
0
.9

4
0
.9

1
0
.9

1

8
0
0

8
.1

e-
1
1

4
.7

e-
1
0

0
.1

8
2

0
.9

8
3

.2
e-

1
1

2
.9

e-
1
0

0
.2

2
0

.9
4

2
.2

e-
1
1

3
.4

e-
1
0

0
.2

0
0
.9

3
1
.0

0
0
.9

1

1
0
0
0

7
.6

e-
1
1

4
.7

e-
1
0

0
.2

4
5

0
.9

8
3

.2
e-

1
1

2
.6

e-
1
0

0
.3

3
0

.9
3

2
.5

e-
1
1

2
.7

e-
1
0

0
.3

1
0
.9

3
1
.0

5
0
.9

4

1
2
0
0

7
.9

e-
1
1

4
.8

e-
1
0

0
.2

7
0

.9
8

3
.0

e-
1
1

2
.5

e-
1
0

0
.4

3
0

.9
2

1
.8

e-
1
1

2
.9

e-
1
0

0
.4

8
0
.9

1
1
.1

3
0
.9

9

1
4
0
0

8
.1

e-
1
1

4
.5

e-
1
0

0
.3

0
.9

7
3

.5
e-

1
1

2
.5

e-
1
0

0
.5

2
0

.9
3

2
.9

e-
1
1

2
.6

e-
1
0

0
.6

1
0
.9

2
1
.2

3
1
.0

4

Ta
bl

e
4

.3
:C

on
cu

rr
en

t
A

pp
lic

at
io

n
Po

w
er

M
od

el
s.

Fr
eq

.
(M

H
z)

Fe
rr

et
+B

od
yt

ra
ck

Fe
rr

et
+F

lu
id

an
im

at
e

V
ol

t.
A

7
V

ol
t.

A
15

α
A
7

α
A
1
5

ε
1

R
S

α
A
7

α
A
1
5

ε
1

R
S

2
0
0

1
.3

e-
1
0

5
.5

e-
1
0

0
.0

8
0

.9
9

7
.0

e-
1
1

4
.7

e-
1
0

0
.1

3
0
.9

9
0

.9
1

0
.9

1

8
0
0

3
.6

e-
1
0

1
.9

e-
0
9

0
.1

5
0

.9
9

5
.0

e-
1
1

4
.7

e-
1
0

0
.2

5
0
.9

8
1

.0
0

0
.9

1

1
0
0
0

4
.7

3
e-

1
0

2
.4

7
5
e-

0
9

0
.1

1
7
6

0
.9

5
7
.3

e-
1
1

4
.6

e-
1
0

0
.7

9
0
.9

8
1

.0
5

0
.9

4

1
2
0
0

4
.5

8
7
e-

1
0

2
.6

7
5
e-

0
9

0
.1

2
0

.9
6

7
.6

e-
1
1

4
.6

e-
1
0

0
.8

0
0
.9

9
1

.1
3

0
.9

9

1
4
0
0

7
.6

e-
1
0

3
.8

e-
0
9

0
.1

9
0

.9
8

3
.3

e-
1
2

4
.6

e-
1
0

0
.8

0
0
.9

5
1

.2
3

1
.0

4

4.3 proposed approach 56

Figure 4.2 depicts the power distribution between the cores and
the memory for different application scenarios. The following three
observations can be made from the figure.

• Firstly, it is clearly seen that the total power consumption for
A15 and A7 for a CPU intensive application (ferret) is higher
than for a memory intensive application (fluidanimate).

• Secondly, in cases where threads are allocated to LITTLE cores
only, the power of A15 cores is idle power and the total power
dissipation for the big cores rise up from 0.39 Watt at 200 MHz
to 2.22 Watt at 1400 MHz which shows the impact of DVFS on
idle power.

• Finally as can be seen in Figure 4.2 the memory power is much
smaller than the combined A7 and A15 processors power. The
variation of memory power depends on applications and the
execution scenarios.

Multivariate linear regression is used to determine the relation be-
tween power and the number of cores, types of cores (big, LITTLE),
and frequency. This relation is hypothesized to fit the following ex-
pression based on theory [78]:

P =

K∑
i=1

αixiV
2
i
fi + ε1(x), (4.1)

where the first term(
∑K

i=1 αixiV
2
i
fi) of (4.1) represents the dynamic

power, K is the number of group of cores, and the second term (ε(x))
represents static and dynamic power of memory, leakage, and inter-
connect power. Coefficient αi includes activity factor. In the case of
Exynos 5422 (i.e. Odroid big.LITTLE) (4.1) can be approximated as:

P = αA7xA7V
2
A7fA7 +αA15xA15V

2
A15fA15 + ε1, (4.2)

where xA7 is the number of LITTLE cores, xA15 is the number of big
cores, VA7 and VA15 are the voltages of A7 and A15 cores respectively,
fA7 and fA15 represent the frequencies for A7 and A15 respectively;
αA7,αA15 are MLR coefficients. Tables 4.2 and 4.3 show the result of
MLR.

All MLR procedures for these coefficients have returned root-squared
(or RS) coefficient of determination values of 0.92 or better, confirming
the applicability of this hypothesis.

4.3.1.2 Performance Model

Existing studies of performance in the many-core era based on Am-
dahl’s law or Gustafson’s law do not perfectly handle the behaviour

4.3 proposed approach 57

of a multi-threaded applications on heterogeneous multi-core plat-
forms like Odroid-XU3. On the other hand, performance modeling of
many-core heterogeneous systems by simulation techniques tend to
be computationally intensive.

4.3 proposed approach 58

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

2,
00

0

6,
00

0

8,
00

0

F
re

q
u

en
cy

(M
H

z)

IPS

O
n

e
L

it
tl

e
o

n
e

B
ig

 c
o

re
s

B
o

d
yt

ra
ck

+
F

er
re

t
F

er
re

t
F

lu
id

an
im

at
e

B
o

d
yt

ra
ck

F
er

re
t+

F
lu

id
an

im
at

e

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

20
00

40
00

60
00

80
00

T
h

re
e

L
it

tl
e

o
n

e
B

ig
 c

o
re

s

F
re

q
u

en
cy

(M
H

z)

IPS

B
o

d
yt

ra
ck

+
F

er
re

t
F

er
re

t
F

lu
id

an
im

at
e

B
o

d
yt

ra
ck

F
lu

id
an

im
at

e+
F

er
re

t

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

2,
00

0

6,
00

0

8,
00

0

O
n

e
L

it
tl

e
th

re
e

B
ig

 c
o

re
s

F
re

q
u

en
cy

(M
H

z)

IPS

B
o

d
yt

ra
ck

+
F

er
re

t
F

er
re

t
F

lu
id

an
im

at
e

B
o

d
yt

ra
ck

F
lu

id
an

im
at

e+
F

er
re

t

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

20
00

40
00

60
00

80
00

F
o

u
r

L
it

tl
e

fo
u

r
B

ig
 c

o
re

s

F
re

q
u

en
cy

(M
H

z)

IPS

B
o

d
yt

ra
ck

+
F

er
re

t
F

er
re

t
F

lu
id

an
im

at
e

B
o

d
yt

ra
ck

F
lu

id
an

im
at

e+
F

er
re

t

Fi
gu

re
4
.3

:T
ot

al
IP

S
fo

r
si

ng
le

an
d

co
nc

ur
re

nt
ap

pl
ic

at
io

ns
ob

ta
in

ed
fr

om
pe

rf
or

m
an

ce
co

un
te

rs
.

4.3 proposed approach 59

Ta
bl

e
4

.4
:S

in
gl

e
A

pp
lic

at
io

n
Pe

rf
or

m
an

ce
M

od
el

s.

Fr
eq

.
(M

H
z)

fe
rr

et
bo

dy
tr

ac
k

flu
id

an
im

at
e

α
A
7

α
A
1
5

ε
2

R
S

α
A
7

α
A
1
5

ε
2

R
S

α
A
7

α
A
1
5

ε
2

R
S

2
0
0

0
.4

3
0
.8

7
0
.1

5
0

.9
9

0
.2

3
0
.9

7
0

.1
4

0
.9

9
0

.2
0

3
.8

7
0

.6
0

.8
8

8
0
0

0
.4

6
0
.9

4
0
.1

4
0

.9
9

0
.2

3
0
.9

7
0

.1
4

0
.9

9
0

.2
1

3
.4

3
0
.5

2
0

.9
1

1
0
0
0

0
.3

7
0
.8

7
0
.3

7
0

.9
6

0
.2

3
0
.9

7
0

.1
2

0
.9

9
0

.2
1

2
.7

4
0
.5

4
0

.8
9

1
2
0
0

0
.4

3
0
.9

1
0
.1

6
0

.9
9

0
.2

5
0
.9

8
0

.1
5

0
.9

9
0

.2
1

2
.9

2
0
.5

2
0

.8
9

1
4
0
0

0
.4

0
0
.9

6
0

.0
0
4

0
.9

9
0
.2

4
0
.9

1
0

.2
1

0
.9

9
0

.1
7

2
.6

9
0
.5

2
0

.9
0

Ta
bl

e
4

.5
:C

on
cu

rr
en

t
A

pp
lic

at
io

n
Pe

rf
or

m
an

ce
M

od
el

s.

Fr
eq

.
(M

H
z)

Fe
rr

et
+B

od
yt

ra
ck

Fe
rr

et
+F

lu
id

an
im

at
e

α
A
7

α
A
1
5

ε
2

R
S

α
A
7

α
A
1
5

ε
2

R
S

2
0
0

0
.3

5
0
.8

6
0

.2
6

0
.9

9
0
.4

5
0

.8
0

0
.0

6
0

.9
8

8
0
0

0
.4

0
0
.9

3
0

.1
6

0
.9

9
0
.4

9
0

.8
9

0
.0

1
0

.9
9

1
0
0
0

0
.3

8
0
.9

3
0

.1
3

0
.9

8
0
.4

3
0

.8
6

0
.1

3
0

.9
9

1
2
0
0

0
.3

8
0
.9

3
0

.1
3

0
.9

9
0
.4

5
0

.8
7

0
.0

7
0

.9
9

1
4
0
0

0
.3

4
0
.9

3
0

.1
1

0
.9

9
0
.4

1
0

.8
4

0
.1

0
0

.9
9

4.3 proposed approach 60

In this work, the experiments present the application behaviour on
a given architecture and provides realistic values of the performance
for the ARM processors. We use Ubuntu 14.04 kernel with our perfor-
mance counter tool designed to gather processor performance events,
namely, instructions retired (retired branches, loads, stores, etc.) in or-
der to depict the behaviour of a thread execution in the heterogeneous
system.

Figure 4.3 shows the real performance measurements in terms of
(IPS) for various thread-to-core allocations and frequencies. It can be
observed that a memory intensive operation on its own has lower
IPS than CPU-heavy operation, as expected. However, when running
these types together, the overall IPS is high. The clock-independent
performance metric is instructions per cycle (IPC) that can be derived
from IPS by knowing the clock frequency. The performance counters
provide the number of total instructions retired (retired branches,
loads, stores, etc.).

IPC is approximately a constant level in case of running more big
cores than LITTLE cores when increasing the frequency for the mem-
ory intensive applications. However, the experimental results of CPU
intensive applications show that performance slightly decreases at
1400 MHz when we use more LITTLE cores. This shows that expected
trends from theory may not be confirmed with experimental data in
every case. The importance of the experimental approach must be
recognized.

From the data in the above figures, it is apparent that the perfor-
mance increases linearly with the number of big and LITTLE cores.
Considering that models for runtime use should in principle be as
simple as possible, we hypothesize that the relation between IPC
and the numbers of group of cores in heterogeneous systems can be
approximated by the following expression:

IPC =

K∑
i=1

αixi + ε2(x), (4.3)

where the first term (
∑K

i=1 αixi) represents the frequency-independent
performance components that depend on architectural configuration,
K is the total number of voltage islands (i.e. group of cores), and ε2(x)
is the error term. In the case of Exynos 5422 (i.e. Odroid big.LITTLE)
(3) can be expressed as:

IPC = α1x1 +α2x2 + ε2, (4.4)

where α1, α2, and ε2 are coefficients which need to be determined
for each operating frequency. Using MLR, their values have been ob-
tained as shown in Table 4.4 and 4.5, and x1, x2 are the numbers of

4.3 proposed approach 61

LITTLE and big cores respectively. All models have R-squared values
greater than 0.95 showing the applicability of this model hypothesis.

4.3.1.3 Power Normalized Performance Model

Based on the power and performance outcomes, power normalized per-
formance experiments indicate that the optimal system configuration
corresponds to the highest IPS/Watt value for ARM heterogeneous
processors. Figure 4.4 presents the experimental data of IPS/Watt for
different application scenarios and architectural configurations. In the
case of a single application, bodytrack (CPU and memory intensive)
exhibited the highest IPS/Watt. This can be explained by its high
IPS (Figure 4.3) and the lowest power (Figure 4.1). The IPS/Watt of
bodytrack shows an increasing trend with higher number of cores allo-
cated; in the case of four LITTLE four big it has the maximum value
of 3.8× 109 IPS/Watt, when operating at 800 MHz. However, with
higher frequencies the power consumption increases, which reduces
its IPS/Watt. Similar observations can be made for the other single
application scenarios.

To investigate performance, power and power normalized perfor-
mance for different CPU- and memory-intensive applications when
running concurrently, another set of experiments were carried out
using fluidanimate, ferret and bodytrack workloads. For example, in the
case of concurrent applications the bodytrack+ferret (which is domi-
nated by CPU intensive routines) shows higher IPS/Watt when com-
pared with fluidanimate+ferret (which is a combination of CPU and
memory intensive routines). To explain this further, Figure 4.4 depicts
the individual and concurrent application scenarios of bodytrack and
ferret. As can be seen, when these two similar workloads are combined
as a concurrent application it shows higher IPS/Watt with increasing
number of cores.

Figure 4.5 and Figure 4.4 present the experimental data on IPS/Watt.
Maximum IPS/Watt can be found by searching through the range of
operating frequencies and core configurations. Figure 4.4 shows that
CPU-intensive applications behave similarly in single and concurrent
situations. A memory-intensive operation on its own has lower IPS
and power than CPU-heavy, as expected.

The above models have been derived from the offline character-
ization data. In order to achieve the optimal mode during normal
device operation, runtime adaptation has to be used instead. To sim-
plify runtime adaptation MLR is used, which exploits the same set
of runtime observations to derive/predict power and performances
with reasonable accuracy. The power and performance expressions in

4.3 proposed approach 62

20
0

40
0

60
0

80
0

10
00

12
00

14
00

01234

x
10

9

O
n

e
L

it
tl

e
o

n
e

B
ig

F
re

q
u

en
cy

(M
H

z)

IPS/Watt

F
lu

id
an

im
at

e
F

er
re

t
B

o
d

yt
ra

ck
F

er
re

t+
B

o
d

yt
ra

ck
F

er
re

t+
F

lu
id

an
im

at
e

20
0

40
0

60
0

80
0

10
00

12
00

14
00

01234

x
10

9

T
h

re
e

L
it

tl
e

 o
n

e
B

ig

F
re

q
u

en
cy

(M
H

z)

IPS/Watt

F
lu

id
an

im
at

e
F

er
re

t
B

o
d

yt
ra

ck
B

o
d

yt
ra

ck
+

F
er

re
t

F
lu

id
an

o
m

at
e+

F
er

re
t

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0123456
x

10
9

O
n

e
L

it
tl

e
 t

h
re

e
B

ig

F
re

q
u

en
cy

(M
H

z)

IPS/Watt

F
lu

id
an

im
at

e
F

er
re

t
B

o
d

yt
ra

ck
B

o
d

yt
ra

ck
+

F
er

re
t

F
lu

id
an

im
at

e+
F

er
re

t

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0123456
x

10
9

F
o

u
r

L
it

tl
e

 f
o

u
r

B
ig

F
re

q
u

en
cy

(M
H

z)

IPS/Watt

F
lu

id
an

im
at

e
F

er
re

t
B

o
d

yt
ra

ck
B

o
d

yt
ra

ck
+

F
er

re
t

F
lu

id
an

o
m

at
e+

F
er

re
t

Fi
gu

re
4
.4

:T
ot

al
IP

S/
W

at
t

fo
r

si
ng

le
an

d
co

nc
ur

re
nt

ap
pl

ic
at

io
ns

in
di

ff
er

en
t

fr
eq

ue
nc

ie
s.

4.3 proposed approach 63

1 2 3 4 3
4

0
1

2
3

4
1

2

3

x 10
9

Number of Little Cores
Number of Big Cores

IP
S

/W
at

t
1

2
3

4

0
1

2
3

4
1

2

3

4

x 10
9

Number of Little CoresNumber of Big Cores
IP

S
/W

at
t

1
2

3
4

1
2

3
4

1.5

2

x 10
9

Number of Little CoresNumber of Big Cores

IP
S

/W
at

t

Figure 4.5: Total power normalized performance for different core-allocations
at 1400 MHz for bodytrack, ferret and bodytrack+ferret applications.

(4.2) and (4.4) can be combined into a MLR expression as shown in the
following:

DT = XTA + ET , (4.5)

where D is the determinant vector formed of power and perfor-
mance as shown in (4.2) and (4.4); X is a predictor vector for the given
determinant; A is the MLR coefficient vector for the given determi-
nant (ai ∈ A where ai is a coefficient expression in (4.2) including
V2
i fi terms, i.e. ai = αiV

2
i fi) and finally E is the error terms vector.

Tables 4.2-4.5 show the MLR determinant values for different operat-
ing configurations (including both single and concurrent applications
scenarios).

Other set of experiments are designed to show how the proposed
runtime behaves when controlling different workload types and to
validate our models by using another applications (canneal, freqmine,
and streamcluster) from PARSEC benchmarks. Figure 4.6 shows the
experimental results of power normalized performance which is ex-
pressed in terms of IPS/Watt compared to the results obtained by the
proposed models.

4.3 proposed approach 64

Fi
gu

re
4

.6
:T

ot
al

IP
S/

W
at

t
fo

r
di

ff
er

en
t

w
or

kl
oa

ds
ty

pe
s.

4.3 proposed approach 65

In the rest of the chapter the models are used in the proposed
governor to derive the optimal DVFS and core allocation decisions.

Algorithm 4.1 Runtime system adaptation algorithm to generate max-
imum IPS/Watt.

1: procedure Maximize IPS/Watt

2: input: Application scenario

3: output: System configuration {number of A15 cores, number of

A7 cores, operating frequencies}

4: initialize: (ρmax ← 0)

5: for f ∈ [fmin, fmax] do

6: Collect power/perf. readings for 200 ms

7: Use MLR and (4.1) to find power model for f

8: Use MLR and (4.2) to find IPC model for f

9: IPS← IPC · f
10: ρ← IPS/P

11: if ρ > ρmax then

12: ρmax ← ρ

13: end if

14: end for

15: return system config. corresponding to ρmax

16: end procedure

4.3.2 Modelling offline and online

These modelling methods can be applied either offline during design-
time or online during runtime. For design-time, a number of appli-
cations belonging to different workload types can be pre-modelled
establishing a model library which could help save time during run-
time optimization. And if necessary, during runtime, more accurate
models can be derived for unknown application workloads using the
same methods presented in this section. Algorithm 4.1 describes how
MLR may be used to derive power normalized performance models
during runtime.

4.3.3 Runtime Adaptation

The runtime adaptation is aimed at finding optimal task mapping and
DVFS control in the presence of various types of concurrent applications
(CPU or memory intensive). It is based on gradually building a library
of the power and performance models, obtained during a normal

4.3 proposed approach 66

Figure 4.7: Flowchart of the proposed runtime adaptation cycle.

device operation. The flowchart of the proposed approach is shown in
Figure 4.7.

The algorithm detects the arrival of a new application process and
looks up its model in the library. If the model already exists in the
library, it can be immediately used to compute the optimal point of
operation, otherwise the learning process activates. As shown in Al-
gorithm 4.1, the procedure collects power readings and performance
counters for a number of 200 ms time intervals sweeping across the
entire range of frequencies and uses MLR to derive the power and
performance models according to Section 4.3.1. Once the models are
obtained for all DVFS points, we can find an optimal system configura-
tion by maximizing the IPS/Watt metric.

In the current version of the runtime control, the combined be-
haviour of concurrently running applications is captured by separate
models. We are aware of the exponential growth when all combina-
tions of applications are eventually stored in the library. This problem
is addressed by compacting the models by similarity. The applications
of the similar type tend to have similar values of α1,α2, ε1, ε2 , hence
these coefficients can be checked against a given threshold ε. The
models within the threshold are combined and stored as a single
model.

4.4 experiment results 67

4.4 experiment results

The proposed runtime adaptation algorithm has been used in a num-
ber of examples with PARSEC benchmark programs running on the
Odroid-XU3 platform, and the resulting IPS/Watt metric has been
compared with common scheduling approaches such as those used
by the Linux ondemand governor [75]. The example execution cases
include running the three benchmark programs on their own in a
sequential way and running ferret with either bodytrack and fluidan-
imate in two-app concurrent situations. In all these cases, using the
proposed algorithm resulted in IPS/Watt improvements (up to 125%
in the case of ferret application) as shown in Figure 4.8. From Figure 4.8
the following observations can be made. Firstly, it is clearly seen that
the improvements in IPS/Watt for CPU and memory intensive appli-
cations are approximately the same in the case of single applications.
Secondly, in the case of concurrent applications the improvement in
IPS/Watt is less than for single applications. Finally, the lowest im-
provement is recorded in the bodytrack-only case, where, compared to
ondemand, an improvement of 26% can be observed.

The proposed runtime adaptation approach outperforms the onde-
mand governor with default Linux scheduler for the given applications.
This can be explained as follows. The default Linux scheduler sets the
number of parallel threads of these applications equal to the number
of available cores. With the allocated cores the ondemand governor
downscales the operating frequency when the CPU usage is lower
than pre-defined thresholds points. However, when the CPU usage
starts to increase it sets the operating frequency to the maximum
points. Our approach allocates the number of parallel cores and their
DVFS points based on the application workload types to ensure energy
efficiency for all application scenarios.

The IPS/Watt improvements are recorded when the optimal run-
time configuration obtained with our adaptation approach is running.
However, the adaptation process itself may cause overheads in two
ways. Firstly, the frequency needs to be swept through a number of
different values. During the sweep each frequency value is held 200 ms
(see Algorithm 4.1) so that our performance counters can be used to
collect the relevant data and different thread-to-core allocations tested.
Whilst the application is not idle during this time, it is not always
running at the optimal frequency and/or core allocation. Secondly, the
application needs to be truly paused during the following operations:

• when performance counters are extracted - this cost is very
low, around 210 ns for each round of extraction (30 ns per
performance counter and seven performance counters);

• when the model is established - using floating point calculations,
modeling should complete within 2 ms and using fixed-point,

4.4 experiment results 68

Figure 4.8: Comparative IPS/Watt between the proposed approach and onde-
mand governor [75] with all 8 cores allocated to the applications.

which we have not tried, should in principle reduce this cost
further;

• when the operating frequency is tuned - each frequency change
costs 300 ns for the ARM platform experimented here;

• when changing thread to core allocations - this is the highest
application-pausing delay with experiments showing an average
latency of 6.7 ms per change.

Considering all this, the true application pausing intervals add up to
very little time during each round of runtime adaptation and the main
issue is the total time needed to sweep through enough frequencies
and core allocations during which the application is mostly not run
optimally. This adaptation, however, is only carried out once per new
application execution state, i.e. when an application starts or ends.
In most real-world situations such events happen relatively sparsely.
For instance, if these events happen every 100 seconds and we sweep
through five frequencies, only during 1% of the time the system may
not be optimal. The total true application pause time (in the tens of
milliseconds at most) is negligible. The presented approach focuses
on power-aware performance optimization, the absolute value for
performance is not a major concern.

Although the main focus of this work is on combined power/per-
formance metrics such as IPS/Watt, data on pure performance is also
collected. This is presented in Figure 4.9. This data shows the effects on
performance of the model-based control algorithm (see Algorithm 4.1
and Figure 4.7). Figure 4.9 presents the execution time of ferret applica-
tion at 600 MHz and 1400 MHz for different thread-to-core allocations.
As expected the following two observation can be made. Firstly, the

4.4 experiment results 69

1
2

3
4

1

2

3

4
0

20

40

60

80

100

Number of Little cores
Number of Big cores

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

1
2

3
4

1

2

3

4
0

20

60

80

100

Number of Little core
Number of Big cores

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Figure 4.9: The execution time for different core allocation at 600 MHz and
1400 MHz respectively for ferret application.

4.5 summary and conclusion 70

execution time is dependant on the operating frequency. Secondly, the
execution time decreases as more cores are allocated for the given
application.

4.5 summary and conclusion

This chapter aims to propose and discuss power and performance
for many core heterogeneous systems. We demonstrated a novel run-
time approach, capable of power-aware performance adaptation under
sequential and concurrent application scenarios in heterogeneous
many-core systems. The approach is based on power and performance
models that can be obtained during runtime by multivariate linear
regression based on low-complexity hypotheses of power and perfor-
mance for a given operating frequency. The approach is extensively
evaluated using the PARSEC-3.0 benchmark suite running on the
Odroid-XU3 heterogeneous platform. A selection of experimental re-
sults was presented to illustrate the kinds of tradeoffs in a variety of
concurrent application scenarios, core allocations, and DVFS points,
highlighting an improvement of power normalized performance which
produced IPS/Watt improvements between 26% and 125% for a range
of applications as can be seen in Figure 4.8. It is expected that mod-
ern embedded and high-performance system designers will benefit
from the proposed approach in terms of a systematic power-aware
performance optimization under variable workload and application
scenarios.

5
M O D E L - F R E E R U N T I M E M A N A G E M E N T O F
C O N C U R R E N T W O R K L O A D S

In order to achieve lower complexity than the model-based runtime
optimization, a model-free approach to runtime adaptation based on
workload classification is presented in this chapter. This classification
is supported by analysis of data collected from a comprehensive study
investigating the tradeoffs between inter-application concurrency with
performance and power under different system configurations. Exten-
sive experiments are carried out on Odroid XU3 heterogeneous and
Intel Core i7 Sandybridge homogeneous platforms with synthetic and
standard benchmark applications to develop the control policies and
validate this approach.

The rest of this chapter is organized as follows. Section 5.1 shows the
introduction and motivation of the model-free approach. Section 5.2
shows the experimental environment, the configuration of system
used in the experiment and the applications. The system approach is
described in Section 5.4, which include the workload classification and
control decision making. Section 5.5 presents a case study of concur-
rent application with runtime management (RTM) stability, robustness
and complexity. Moreover a comparative evaluation of the runtime
management is presented in this section. Section 5.6 concludes the
work in this chapter.

5.1 introduction and motivation

Contemporary computing systems, including embedded and high
performance systems, are exhibiting increased complexities in two
dimensions. In one dimension, the number and type of computing
resources (cores) are growing in hardware platforms, and in the other,
an increasing diversity of applications are being executed concurrently
on these platforms [81] [79] [125]. Managing hardware resources to
achieve energy efficiency, under different application scenarios (single
or concurrent), is proving highly challenging due to runtime state-
space expansion [36].

As energy consumption becomes a limiting factor to continued tech-
nology scaling and performance improvements [14], techniques for
increasing energy efficiency have emerged. To provide control over
power/performance tradeoffs, (DVFS) is integrated into contemporary
devices, e.g. current Intel and ARM processors [71]. DVFS suitably
scales voltage/frequency across a number of pre-determined operat-
ing points. These have different impacts on performance and power

71

5.1 introduction and motivation 72

consumption and hence their choices need to be made based on the
application workload. Another technique for improving energy ef-
ficiency is the parallelization of workloads [125], including suitable
(task mapping (TM)) to cores.

DVFS and TM may be synergistically controlled at the system soft-
ware level for effective energy optimization. For instance, DVFS is
controlled in Linux with power governors [75], such as ondemand,
performance, conservative, userspace and powersave. These governors use
pre-set voltage/frequency points to manage system power according
to the knowledge and prediction of workload and user preference.
Current Linux governors are, however, not able to optimize energy
consumption efficiently, primarily because they are unable to couple
DVFS and dynamic TM [75]. Further, these approaches, although ser-
viceable, are not capable of taking advantage of the different degrees
of parallelizability of individual applications that are typically seen in
modern computing systems.

Mapping threads to cores (TM) is usually handled by a separate
routine in the system software, for example the Linux scheduler [110].
The scheduler seeks to spread the thread workload of all applications
across multiple available cores to achieve maximum utilization. This
approach is functional but leaves rooms for improvement. For instance,
there is no discrimination about the thread workload type when
being scheduled [110], such as CPU-intensive or memory-intensive.
Not taking the workload type into account results in indiscriminate
sub-optimization in power and performance, leading to poor energy
efficiency [4][86].

A number of approaches have been proposed over the years that
consider energy optimization using offline (OL), runtime or a combi-
nation of both (see Table 5.1). A recurring scheme in these approaches
is that the energy efficiency is primarily focused on single-application
workloads without considering its variations among concurrent ap-
plications. However, the same application can exhibit different ener-
gy/performance trade-offs depending on whether it is running alone
or concurrently with other different workloads. This is because:

• the workload context switches within the application between
memory- and CPU-intensive routines, and

• architectural sharing between applications affect the energy/per-
formance tradeoffs (see Section 5.5).

5.1 introduction and motivation 73

Ta
bl

e
5

.1
:F

ea
tu

re
s

of
ex

is
ti

ng
ap

pr
oa

ch
s

an
d

th
is

w
or

k.

A
pp

ro
ac

h
Pl

at
fo

rm
s

W
or

kl
oa

d
C

la
ss

ifi
ca

ti
on

V
al

id
at

io
n

A
pp

s
C

on
tr

ol
s

Si
ze

[3
3
]

[6
6
]

ho
m

og
en

eo
us

N
o

si
m

ul
at

io
n

si
ng

le
TM

+D
V

FS
P

[1
2
8
]

he
te

ro
ge

ne
ou

s
N

o
si

m
ul

at
io

n
si

ng
le

R
T

,T
M

+D
V

FS
P

[7
4
]

ho
m

og
en

eo
us

N
o

pr
ac

ti
ca

l
si

ng
le

R
T,

D
V

FS
L

[7
8
]

he
te

ro
ge

ne
ou

s
N

o
si

m
ul

at
io

n
si

ng
le

O
L,

TM
+D

V
FS

P
[4

]
he

te
ro

ge
ne

ou
s

of
fli

ne
pr

ac
ti

ca
l

co
nc

ur
re

nt
R

T
,T

M
+D

V
FS

N
P

[8
6
]

he
te

ro
ge

ne
ou

s
of

fli
ne

pr
ac

ti
ca

l
co

nc
ur

re
nt

R
T,

D
V

FS
N

P
[1

1
7
]

no
t

C
PU

s
ru

nt
im

e
pr

ac
ti

ca
l

co
nc

ur
re

nt
R

T,
D

V
FS

N
P

T
hi

s
w

or
k

he
te

ro
ge

ne
ou

s
ru

nt
im

e
pr

ac
ti

ca
l

co
nc

ur
re

nt
R

T
,T

M
+D

V
FS

L

5.2 experimental platform and applications 74

In this chapter, a runtime adaptation approach is developed to im-
prove the energy efficiency of a heterogeneous many-core system with
concurrent workloads. Core to this approach is an empirical and data-
driven method, which classifies applications based on their memory
and CPU requirements. The aim is to derive DVFS and TM policies,
tailored to the classified workloads. Due to simplified runtime clas-
sification, the approach can significantly reduce overheads. Further,
our model-free classification based RT enhances scalability for any
concurrent application mix, platform, and metric having linear com-
plexity (L) which is not affected by system heterogeneity, the number
of concurrent applications, and using both DVFS and TM. In compar-
ison, linear complexity was only achieved in existing work when
dealing with single applications running on homogeneous systems
with one of TM or DVFS, but not both (see Table 5.1 and Section 5.4
for details). Otherwise they display combinatorial polynomial (P) or
non-polynomial (NP) complexities. This work makes the following
specific contributions:

• using empirical observations and CPU performance counters,
derive RT workload classification thresholds, expressed in terms
of instructions per cycle (IPC);

• underpinned by the workload classification, propose a low-
complexity and low-cost RT approach for synergistic controls of
DVFS and TM;

• using synthetic and real-world benchmark applications with
different concurrent combinations, investigate the approach’s
energy efficiency, measured by power-normalized performance
in instructions per second (IPS) per Watt (IPS/Watt), i.e. instruc-
tions per Joule;

• implement the approach as a Linux power governor and validate
through extensive experimentation with significant IPS/Watt
improvements.

To the best of our knowledge, this is the first work that uses work-
load classification (WLC) during runtime to optimize both DVFS and
TM for concurrent workloads on many-core heterogeneous platform
(see Table5.1).

5.2 experimental platform and applications

Our experimental investigations use a many-core platform to illustrate
the suitability of the proposed approach, when executing workloads
on a number of heterogeneous cores. Further, we study scalability
by executing a number of concurrent applications on this example
platform.

5.2 experimental platform and applications 75

The homegenous platform of choice is the Intel Core i7 Sandybridge
CPU. It has (4) hard cores and (8) soft cores. Core i7 has a wide range
of operating frequencies and voltages. To measure the CPU power a
shunt resistor is inserted into the earth of the power coneection to the
CPU [60, 111].

Likwid performance counters are used to record the performance
events, such us instruction retired, memory access, unhalted cycles,
and clock refrence [121].

The heterogenous platform of choice is the Odroid XU3 [2], which
includes an SoC based on the ARM big.LITTLE architecture. Exten-
sively described in Section 3.2, it has eight general processing ARM
Cortex cores. Four of these are low-power A7 cores and the other four
high-performance A15 cores. Each group of four cores of the same
type constitutes a power domain, which is supplied with the same
frequency and voltage, and the XU3 provides RT power monitoring
per power domain, and per-domain operating points.

The A7 and A15 processor architectures also provide performance
counters that record, per-core, instructions executed and clock active
and idle cycles. This work uses the set of performance counters listed
in Table 5.2.

Table 5.2: Performance counter events

Performance counter Description

InstRet Instructions executed

Cycles Unhalted cycles on a core

Mem Data memory access

In our investigation, we chose a number of different applications. A
synthetic benchmark, called mthreads is developed, based on purely
CPU-intensive stress enhanced with tunable memory access M, that
is in linear relation to the real memory to computation ratio, to in-
vestigate the general CPU vs memory effects. In addition, a group
of realistic application benchmarks from the PARSEC suite [3] in-
cluded to span the range of CPU, memory, and mixed execution
characteristics. Specifically, we chose the application ferret to represent
CPU-intensive, fluidanimate to represent memory-intensive, and body-
track to represent both CPU- and memory-intensive applications. It
will be demonstrated later that mthreads is needed to represent pure
CPU-only and memory-only tests because realistic applications, such
as PARSEC benchmarks, have CPU- and memory-intensive contexts
during their execution traces. This sets up one of the major motivations
for classifying during runtime.

5.3 workload classification taxonomy 76

5.3 workload classification taxonomy

The taxonomy of workload classes chosen for this work reflects
the desire of differentiating CPU-intensive workloads from memory-
intensive ones and differentiating high-activity workloads from low-
activity ones. The former concern follows previous findings that CPU-
intensive workloads demand different core-allocation and DVFS deci-
sions from memory-intensive ones [38], [86]. The latter is based on
reasoning it is senseless to run a low-activity workload on a large
number of cores at high clock frequencies. Workloads are classified
into four classes:

• Class 0: low-activity workloads.

• Class 1: CPU-intensive workloads.

• Class 2: CPU- and memory-intensive workloads.

• Class 3: memory-intensive workloads.

Extensive explorative experiments are run in this work to investigate
the validity of these general concepts. The experiments are based on
a synthetic benchmark, called mthreads, which attempts to re-create
in a controlled manner the effect of memory bottleneck on parallel
threads. The program is based on repeated mix of CPU-intensive
and memory-intensive operations, the ratio of each type is controlled
by the parameter M. CPU operation is a simple integer calculation.
Memory operation is implemented by randomly writing to a large
(64MB) pre-allocated array. This is done to reduce the effect of caching.
Parameter M = 0 gives CPU-intensive execution, M = 1 creates
memory-intensive execution; the values in between provide a linear
relation to the number of memory accesses per instruction. The execu-
tion is split into N identical parallel threads, each pinned to a specific
core. Figure 5.1 presents the flowchart of the application.

Figure 5.2 shows the energy efficiency of mthreads running on 2-4
A7 cores (one of the A7 cores was reserved for the operating system
in these experiments, hence the data does not cover the single core
case) with M values ranging from 0 to 1. It can be seen that with
memory-intensive tasks (larger M), it is better to use fewer cores, but
with CPU-intensive tasks (smaller M), it is better to run more cores
in parallel. This and other results sweeping through the frequency
ranges and core combinations with mthreads confirm the validity of
the classification taxonomy and establish a TM and DVFS strategy
based on relative CPU and memory use rates. The full set of mthreads
experimental data, supported by experiments with applications other
than mthreads, is used to generate our runtime management (RTM)
presented in subsequent sections.

The explorative experiments cover a much larger range of applica-
tion and core combinations and frequency ranges than reported in

5.4 runtime management method and governor design 77

START

END

...

Create N threads

Join threads

Pin to Core C1

Loop work_size times

Loop 1000·M times

Write to a random memory location

Loop 1000·(1 – M) times

Do a simple integer calculation

T
h
re

a
d
 1

 o
n
 C

o
re

 C
1

T
h
re

a
d
 2

 o
n
 C

o
re

 C
2

T
h
re

a
d
 N

 o
n
 C

o
re

 C
N

Figure 5.1: Flowchart of mthreads synthetic benchmark. M and N are con-
trolled parameters.

these figures, and the results lead to the core allocation and frequency
decision preferences presented in the next section, which form the
foundation of the governor decision-making.

5.4 runtime management method and governor design

This work proposes a runtime management approach leading to a
governor based on workload classification. The general architecture
of the RTM inside a system is given in Figure 5.3. In this section we
explain the central RTM functions classification and control action
based on monitors (e.g. performance counters) and actuators (e.g.
core-allocation and DVFS).

Figure 5.3 presents the general architecture of RTM inside a system.
In this section we explain the central RTM functions-classification and
control action based on monitors (e.g. performance counters) and
actuators (e.g. TM and DVFS).

5.4 runtime management method and governor design 78

Figure 5.2: IPS/Watt for different memory use rates (0 6M 6 1).

Figure 5.3: RTM architecture showing two-way interactions between concur-
rent applications and hardware cores.

5.4 runtime management method and governor design 79

The general approach does not specify the exact form of the taxon-
omy into which workloads are classified, the monitors and actuators
the system need to have, or the design figure of merit. Our exam-
ples classify based on differentiating CPU and memory usages and
the execution intensiveness, try to maximize IPS/Watt through core-
allocation and DVFS, and get information from system performance
counters.

5.4.1 Workload classification

Real applications do not have tunable memory use rates. As a result,
information from performance counters (monitors) is used to derive
the classes of all applications running on the system for each control
decision cycle. This is based on calculating a number of metrics from
performance counter values recorded at set time intervals, and then
deriving the classes based on whether these metrics have crossed
certain thresholds. The metrics and how they are calculated are given
in Table 5.3 . These metrics are explained as follows.

Table 5.3: Metrics used to derive classification.

Metrics Definitions

nipc (InstRet/Cycles)(1/IPCmax)

iprc InstRet/ClockRef

nnmipc [(InstRet/Cycles)-(Mem/Cycles)](1/IPCmax)

cmr (InstRet-Mem)/InstRet

uur Cycles/ClockRef

Normalized instructions per clock (nipc): This metric measures
how intensive the computation is for an application. IPCmax is the
maximum IPC for the core type, obtainable from manufacturer litera-
ture or running highest IPC instructions such as nop in experiments,
and Cycles is the unhalted cycles counted when execution is happen-
ing. This metric is therefore the IPC of an execution on a core during
execution, normalized by the maximum IPC possible of that core type.

With normalized IPC, the classification threshold values can be
generalized across different types of cores. Normalization allows nipc
to be used independent of core types and architectures.

Instructions per reference clock (iprc): This metric contributes to
determining how active the computation is for an application. Clock-
Ref is the total number of clock cycles of the execution, calculated by
ClockRef = Freq/Time with frequency and execution time from the
operating system.

Normalized non-memory IPC (nnmipc): This metric measures how
CPU-intensive the computation of an application is. This is pure CPU
IPC normalized by the maximum IPC for the core type.

5.4 runtime management method and governor design 80

CPU to memory ratio (cmr): This metric measures how relatively
CPU- and memory-intensive an application is

Unhalted clock to reference clock ratio (urr): This metric con-
tributes to determining how active an application is.

The general relationship between these metrics and the application
classes are clear, e.g. the higher cmr and nnmipc are, the more CPU-
intensive a computation is.

Figure 5.4: mthreads and their Performance Counter Metrics on Hetrogenous
Many-core Systems.

A workload can be classified by comparing the values of metrics to
thresholds. Decision-making may not require all metrics. The choice
of metrics and thresholds and be made by analysing characterization
experiment results.

From analysing the relationship between M and the list of met-
rics from mthreads experiments, we find that nnmpic shows the best
spread of values with regard to corresponding to different values of
M (See Figure 5.4). This leads to more straightforward arrangements
of threshold values between different application classes.

Referring to the declared classes in PARSEC applications (ferret
is claimed to be CPU-intensive, for instance [3] , this hypothesis is
confirmed.

As a result, we choose nnmipc to differentiate CPU and memory
usage rates and urr for differentiating low and high activity. Then
thresholds (Table 5.6) are determined based on our mthreads char-
acterization database. The other metrics may work better on other
platforms and are included here as examples of potential candidates
depending on how a mthreads-like characterization program behaves
on a platform with regard to the relationships between M values and
the metrics.

We list the relationships between these metrics and PARSEC bench-
marks on heterogenous and homegenous (complete programs running
in isolation) in Table 5.4 and Table 5.5 respectively. Figure 5.4 shows

5.4 runtime management method and governor design 81

the relation between mthreads and their performance counter metrics.
It can be seen that nnmipc provides a better differentiation between
the different types of applications, which is supported by observations
of mthreads studies.

5.4 runtime management method and governor design 82

Ta
bl

e
5

.4
:P

A
R

SE
C

ap
pl

ic
at

io
ns

an
d

th
ei

r
pe

rf
or

m
an

ce
co

un
te

r
m

et
ri

cs
on

he
tr

og
en

ou
s

m
an

y-
co

re
sy

st
em

s

A
pp

li
ca

ti
on

s
In

st
ru

ct
io

n
re

ti
re

d
M

em
or

y
A

cc
es

s
U

nh
al

te
d

C
yc

le
s

C
lo

ck
R

ef
nn

m
ip

c
ni

pc
ip

rc
cm

r
uu

r

B
od

yt
ra

ck
3
5
2
1
5
7
5
3
0

9
3
1
9
5
4
0
6

4
.2

2
E+

0
8

7
0
0
0
0
0
0
0
0

0
.3

0
6

0
.4

1
7

0
.5

0
3

0
.7

5
4

0
.6

0
3

Fe
rr

et
7
9
9
1
1
0
4
3
6

2
4
9
9
2
9
3
1
3

7
.1

3
E+

0
8

7
0
1
4
0
0
0
0
0

0
.3

8
4

0
.5

6
0

0
.9

7
8

0
.7

3
9

1
.0

1
7

Fl
ui

da
ni

m
at

e
4
9
8
3
4
9
4
9
3

1
7
4
5
2
7
9
2
5

7
.8

6
E+

0
8

7
2
1
4
0
0
0
0
0

0
.2

0
6

0
.3

1
7

0
.6

9
0

0
.7

2
3

1
.0

8
8

st
re

am
cl

us
te

r
3
9
9
0
3
1
4
8
6

1
6
7
2
5
1
6
2
5

6
.9

7
E+

0
8

7
0
0
0
0
0
0
0
0

0
.1

6
6

0
.2

8
6

0
.5

7
0

0
.4

6
5

0
.9

9
5

Ta
bl

e
5

.5
:P

A
R

SE
C

ap
pl

ic
at

io
ns

an
d

th
ei

r
pe

rf
or

m
an

ce
co

un
te

r
m

et
ri

cs
on

In
te

lC
or

e
i7

Sa
nd

yb
ri

dg
e

C
PU

A
pp

li
ca

ti
on

s
IN

ST
R

R
ET

IR
ED

M
EM

L1
H

IT
M

EM
L1

M
IS

S
M

em
or

y
A

cc
es

s
C

PU
_C

LK
_U

N
H

A
LT

ED
ip

rc
nn

m
ip

c
cm

r

B
od

yt
ra

ck
4
8
7
8
6
0
3
7
8

9
9
4
8
2
8
0
1

3
7
8
1
0
7
1

1
0
3
2
6
3
8
7
2

1
6
7
6
6
1
1
5
8

0
.7

2
7

0
.5

7
3

0
.7

8
8

C
an

ea
l

1
1
7
6
7
1
8
1
6

2
7
8
3
1
6
0
4

1
5
7
0
0
8
7

2
9
4
0
1
6
9
1

1
8
0
2
3
8
1
9
6

0
.7

1
4

0
.5

8
6

0
.7

5
0

Fl
ui

da
ni

m
at

e
1
8
9
0
3
1
1
4
9
6

5
1
4
1
8
2
1
8
7

1
8
7
1
7
9
8

5
1
6
0
5
3
9
8
5

6
7
9
9
7
4
2
2
9

0
.6

9
4
9

0
.5

0
5

0
.7

2
7

Fr
eq

m
in

e
1
9
8
5
1
4
2
2
3
6

5
4
1
9
8
6
4
5
5

1
8
3
0
5
5
9

5
4
3
8
1
7
0
1
3

5
7
2
3
6
0
2
1
4

0
.8

6
7

0
.6

2
9

0
.7

2
6

St
re

am
cl

us
te

r
1
0
2
3
8
6
2
2
9
4

3
3
4
6
0
8
2
9
1

2
8
0
5
4
0
9

3
3
7
4
1
3
7
0
0

6
9
1
6
0
7
9
1
9

0
.3

7
0

0
.2

4
8

0
.6

7
0

5.4 runtime management method and governor design 83

A workload can be classified by comparing the values of relevant
metrics to thresholds. Thresholds may be determined through ex-
tensive characterization experiments, which is the case in this work
because we have accumulated enough experimental data for this. The
threshold values used and how they determine application classes are
listed in Table 5.6.

Table 5.6: Classification details.

Metric ranges Class

urr of all cores [0, 0.11] 0: low-activity

nnmipc per-core [0.3, 1) 1: CPU-intensive

nnmipc per-core [0.25, 0.3) 2: CPU+memory

nnmipc per-core [0, 0.25) 3: memory-intensive

5.4.2 Control decision making

This section presents an RTM control algorithm that uses application
classes to derive its decisions. The behaviour is specified in the form
of two tables: a threshold table (Table 5.6), used for determining
application classes, and a decision table (Table 5.3), providing a
preferred action model for each application class.

Algorithm 5.1 Inside the RTM cycle.

1: Collect monitor data

2: for each application do

3: Compute classification metrics {Section 5.4.1}

4: Use metric and threshold table to determine application class

{Table 5.3}

5: Use decision table to find core allocation and frequency prefer-

ences {Table 5.6}

6: Distribute the resources between the applications according to

the preferences

7: Wait for Tcontrol {Section 5.4.2}

8: end for

9: return

The introduction of new concurrent applications or any other change
in the system may cause an application to change its behaviour dur-
ing its execution. It is therefore important to classify and re-classify
regularly. The RTM works in a dedicated thread, which performs clas-

5.4 runtime management method and governor design 84

sification and decision making action every given timeframe. The list
of actions performed every RTM cycle is shown in Algorithm 5.1.

Table 5.7: RTM control decisions.

Class frequency A7 A15

0 min single none

1 max none max

2 min max none

3 max single none

unclassified min single none

In Algorithm 5.1 Tcontrol is the time between two RTM control cycles.
The RTM determines the TM and DVFS of power domains once each
control cycle, and these decisions keep constant before the next control
cycle. The data from the system monitors (performance counters and
power meters) is collected asynchronously. Every core has a dedicated
monitor thread, which spends most of its time in a sleep state and
wakes every Tcontrol to read the performance counter registers. The
readings are saved in the RTM memory. This means that the RTM always
has the latest data, which is at most Tcontrol old. This is mainly done
because ARM performance counter registers can be accessed only
from code on the same CPU core. In this case, periodic monitoring
has been empirically shown to be more efficient. In our experiments
we have chosen Tcontrol = 500ms, which has shown a good balance
between RT overhead and energy minimization. The time the RTM takes
(i.e. RT overhead) is negligible compared to 500ms for the size of our
system. This interval can be reduced with slightly higher overheads,
or increased with less energy efficiency tradeoffs.

The RTM uses monitor data to calculate the classification metrics
discussed in Section 5.4. These metrics form a profile for each applica-
tion, which is compared against the thresholds (Table 5.6). Each row of
the table represents a class of applications and contains a pre-defined
value range for each classification metric. An application is considered
to belong to a class, if its profile satisfies every range in a row. If an
application does not satisfy any class, it is marked as "unclassified"
and gets a special action from the decision table. An application is
also unclassified when it first joins the execution. In that case it goes
to an A15 core for classification.

The decision table (Table 5.7) contains the following preferences for
each application class, related to system actuators (DVFS and core allo-
cation decisions): number of A7 cores, number of A15 cores, and clock
frequencies. Number of cores can take one of the following values:
none, single, or maximum. Frequency preference can be minimum or
maximum. The CPU-intensive application class (Class 1) runs on the
maximum number of available A15 cores at the maximum frequency

5.4 runtime management method and governor design 85

const int class_decision_freq[NUM_CLASSES+1] = {
DECISION_MIN, DECISION_MAX, DECISION_MIN, DECISION_MIN, DECISION_MIN

};
const int class_decision_a7cores[NUM_CLASSES+1] = {

DECISION_MIN, DECISION_NONE, DECISION_MAX, DECISION_MIN, DECISION_MIN
};
const int class_decision_a15cores[NUM_CLASSES+1] = {

DECISION_NONE, DECISION_MAX, DECISION_MAX, DECISION_NONE, DECISION_NONE
};

Figure 5.5: Code implementing Table 4

as this has shown to give the best energy efficiency (in terms of power
normalized performance) in our previous observations [75]. Figure 5.5
is the portion of code that implements the decision table . This can be
found in the RTM model free program in Appendix ??.

Table 5.6 and Table 5.7 are constructed offline in this work based
on large amounts of experimental data, with those involving PARSEC
playing only a supporting role. For instance, although ferret is regarded
as CPU-intensive, it is so only on average and has non CPU-intensive
phases (see Section 5.5). Therefore Table 5.7 is obtained mainly from
analysing experimental results from our synthetic benchmark mthreads
(which has no phases), with PARSEC only used for checking if there
are gross disagreements (none was found). Because of the empirical
nature of the process, true optimality is not claimed.

In this work, we assume that there are always more cores than
running applications, without losing generality. The RTM attempts
to satisfy the preferences of all running applications. In the case of
conflicts between frequency preferences, the priority is given to the
maximum frequency. When multiple applications request cores of the
same type, the RTM distributes all available cores of that type. When
these conflicting applications are of different classes, each application
is guaranteed at least a single core. Core allocation (TM) is done
through the following algorithm.

Algotirhm 5.2 shows the procedure ApplyDecision for mapping
the RTM decisions to the core affinity masks. RTM provides a deci-
sion for each app and for each core type dj,i ∈ {NONE, MIN, MAX},
where j ∈ {A7, A15} is the core type and 1 6 i 6 m is the app in-
dex, given the total number of apps m. The decisions are arranged
in arrays DA7 =

(
dA7,1, . . . ,dA7,m

)
and DA15 =

(
dA15,1, . . . ,dA15,m

)
.

Additional constants used by the algorithm are: nA7,nA15 are the total
number of little and big cores respectively, and the IDs of cores by
type are listed in the pre-defined CA7 =

(
cA7,1, . . . , cA7,nA7

)
,CA15 =(

cA15,1, . . . , cA15,nA15

)
. The complexity of the algorithm is linear to m.

The result of the algorithm is the set of core IDs Ci, which can be used
to call the sched_setaffinity function for the respective app i.

5.4 runtime management method and governor design 86

Algorithm 5.2 Mapping the RTM decisions to the core affinites

1: procedure ApplyDecision(DA7,DA15)
2:

(
rA7,1, . . . , rA7,m

)
← ReqCores

(
DA7,nA7

)
{Get per-app number

of little cores}
3:

(
rA15,1 . . . , rA15,m

)
← ReqCores

(
DA15,nA15

)
{Get per-app num-

ber of big cores}
4: for 1 6 i 6 m do
5: Ci,A7 ←

(
next rA7,i elements from CA7

)
6: Ci,A15 ←

(
next rA15,i elements from CA15

)
7: Ci ← Ci,A7 ∪Ci,A15 {Use Ci to set core affinity mask for the app

i.}
8: end for
9: end procedure

10: function REQCORES(d1, . . . ,dm) ,n
11: kMIN ← count (di = MIN) for 1 6 i 6 m
12: kMAX ← count (di = MAX) for 1 6 i 6 m
13: if kMAX > 0 then
14: v← b(n− kMIN) /kMAXc {v is the MAX number of cores}
15: w← (n− kMIN) mod kMAX {w is the remainder}
16: end if
17: for 1 6 i 6 m do
18: if di = MAX then
19: if w > 0 then
20: ri ← v+ 1
21: w← w− 1 {Distribute the remainder}
22: else
23: ri ← v

24: end if
25: else if di = MIN then
26: ri ← 1

27: else
28: ri ← 0

29: end if
30: end for
31: return (r1, . . . , rm)

32: end function

5.5 experimental results 87

Figure 5.6: Governor implementation based on RTM.

5.4.3 RTM govenor design

The governor implementation is described in Figure 5.6, which refines
Figure 5.3. At time ti application i is added to the execution via the sys-
tem function execvp(). The RTM makes TM and DVFS decisions based on
metric classification results, which depends on hardware performance
counters and power monitors to directly and indirectly collect all the
information needed, making it possible for the RTM to avoid instru-
menting applications. The TM actuation is done indirectly via system
functions, for instance, core pinning is done using sched_affinity(pid),
where pid is the process ID of an application. DVFS is actuated through
the userspace governor as part of cpufreq utilities.

5.5 experimental results

Extensive experiments have been carried out with a large number of
application scenarios running on the XU3 platform. These experiments
include running single applications on their own and a number of
concurrent applications. In the concurrent scenarios, multiple copies
of the same application and single copies of different applications of
the same class and different classes have all been tested.

5.5.1 A Case Study of Concurrent Applications

An example execution trace with three applications is shown in Fig-
ure 5.7. Parts at the beginning and end of the run contain single and
dual application scenarios. The horizontal axis is time, and the vertical
axis denotes TM and DVFS decisions. Cores C0-C3 are A7 cores and
C4-C7 are A15 cores. The figure shows application classes and the

5.5 experimental results 88

core(s) on which they run at any time. This is described by numbers,
for instance, 2(3) on core C1 means that App 2 is classified as of Class
3 and runs on C1 for a particular time window. "1/u" means that App
1 is being unclassified. In this example trace, App 1 is ferret, App 2 is
fluidanimate, and App 3 is square root calculation. As can be seen in
this concurrent execution scenario, all three workloads, including the
conventional Linux CPU-stress application, square root calculation,
exhibit multi-class phase behaviour.

5.5 experimental results 89

Ta
bl

e
5

.8
:T

he
Po

w
er

,F
re

qu
en

cy
,N

um
be

r
of

C
or

es
,C

la
ss

ifi
ca

ti
on

re
su

lt
s

fo
r

fe
rr

et
A

pp
lic

at
io

n.

Ti
m

e
pi

d
cl

as
s

nc
or

es
N

um
be

r
A

7_
co

re
s

N
um

be
r

A
15

_c
or

es
Fr

eq
ue

nc
y(

K
H

z)
A

7
Fr

eq
ue

nc
y(

K
H

z)
A

15
Po

w
er

(W
at

t)
A

7
Po

w
er

(W
at

t)
A

15

0
3
3
8
6

3
0

0
0

2
0
0
0
0
0

2
0
0
0
0
0

0
.0

1
4

0
.0

9
7

5
4
0

3
3
8
6

3
1

0
1

2
0
0
0
0
0

2
0
0
0
0
0

0
.0

1
4

0
.0

9
6

1
0
9
4

3
3
8
6

1
1

0
1

2
0
0
0
0
0

2
0
0
0
0
0

0
.0

1
8

0
.1

8
9

1
7
1
8

3
3
8
6

1
1

1
0

2
0
0
0
0
0

2
0
0
0
0
0

0
.0

3
2

0
.1

2
8

2
2
7
4

3
3
8
6

1
1

1
0

2
0
0
0
0
0

2
0
0
0
0
0

0
.0

3
2

0
.1

1
8

2
8
8
8

3
3
8
6

1
1

1
0

2
0
0
0
0
0

2
0
0
0
0
0

0
.0

2
7

0
.0

8
0

3
4
8
8

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

3
5

2
.8

0
8

4
0
1
4

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

2
6

4
.4

8
9

4
5
8
7

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

3
3

4
.3

5
1

5
1
4
5

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

3
6

4
.3

6
2

5
7
2
0

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

3
6

4
.4

7
8

6
3
3
0

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

2
7

4
.5

0
2

6
9
2
1

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

5
1

4
.7

6
1

7
4
8
4

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

3
8

4
.4

5
0

8
1
0
4

3
3
8
6

1
3

0
3

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

5
0

4
.5

5
4

8
6
6
9

3
3
8
6

0
0

0
0

2
0
0
0
0
0

1
9
0
0
0
0
0

0
.0

3
9

4
.4

0
0

5.5 experimental results 90

The lower part of the figure shows the corresponding power and
IPS traces. Both parameters are dominated by the A15 cores.

As can be seen in Figure 5.7, initial classifications are carried out
on C4, but according to Algorithm 5.2, when C4-C6 are in application
execution, C7 is reserved for this purpose, which is not needed in this
trace. The reservation of dedicated cores for initial classification fits
well for architectures where the number of cores is so large that we
can assume that the number of applications is always smaller than
the number of cores. This is not an overly restrictive assumption for
modern (e.g. the Odroid XU3) and future systems with continuously
increasing numbers of cores.

5.5.2 Per-interval Re-classification

The method does not employ per-application classfication. In other
word, an application is not classified once and keep its class. Instead,
a scheme of RT per-interval classification is adopted.

RT re-classification happens for all running applications at every
Tcontrol = 500ms control cycle on their running core(s), according
to Algorithms 5.1 and 5.2. Figure 5.7 shows the motivation for this
re-classification. The same application can have memory usage phases
and belong to different classes at different times. This means that of-
fline classification methods, which give each application an invariable
class, is unsuitable for efficient energy minimization.

Figure 5.8 shows core allocation during workload classifications
for single memory intensive application , two concurrent memory
applications, and three concurrent memory applications. On the other
hand, Figure 5.9 shows core allocation of CPU intensive application,
and two CPU concurrent applications. Table 5.8 gives power, frequency,
classfication with number of cores for the CPU application.

Figure 5.10 shows example traces of the PARSEC apps ferret and
fluidanimate being classified whilst running as single applications. It
can be seen that the same application can have different CPU/mem-
ory behaviours and get classified into different classes. This is not
surprising as the same application can have CPU-intensive phases
when it does not access memory and memory-intensive phases where
there is a lot of memory access. In addition, it is also possible for an
application to behave as belonging to different classes when mapped
to different numbers of cores. The classification can also be influenced
by whether an application is running alone or running in parallel
with other applications, if we compare Figure 5.7 and Figure 5.10.
These are all strong motivations for RT re-classification. The result of
classification affects an application’s IPS (see Figure 5.7) and power
(see Figure 5.10).

5.5 experimental results 91

Fi
gu

re
5

.7
:E

xe
cu

ti
on

tr
ac

e
w

it
h

TM
an

d
D

V
FS

de
ci

si
on

s.

5.5 experimental results 92

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

Time (mSec)

N
u

m
b

er
 o

f
C

o
re

s

Number of A7 Cores
Number of A15 Cores

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

Time (mSec)

N
u

m
b

er
 o

f
C

o
re

s

Number of A7 Cores
Number of A15 Cores

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

Time (mSec)

N
u

m
b

er
 o

f
C

o
re

s

Number of A15 Cores
Number of A7 Cores

Figure 5.8: Core allocation for Fluidanimate application, Two Memory con-
current applications , Three Memory concurrent applications.

5.5 experimental results 93

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

Time (mSec)

N
u

m
b

er
 o

f
C

o
re

s

Number of A7 Cores
Number of A15 Cores

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

Time (mSec)

N
u

m
b

er
 o

f
C

o
re

s

Number of A7 Cores	

Number of A15 Cores	

Figure 5.9: Core allocation for Ferret application, Two CPU concurrent appli-
cations.

5.5 experimental results 94

Figure 5.10: Fluidanimate (left) and ferret (right) classification and power
traces .

5.5 experimental results 95

5.5.3 RTM stability, tobustness and complexity

Algorithm 5.1 can oscillate between two different sets of classification
and control decisions in alternating cycles. This may indicate a loss of
stability. The reasons for such oscillations have been isolated into the
following cases:

• The control cycle length coincides with an application’s CPU
and memory phase changes.

• An application’s behaviour takes it close to particular threshold
values, and different instances of evaluation put it on different
sides of the thresholds.

• An application is not very parallelizable. When it is classified on
a single core, it behaves as CPU-intensive, but when it is classi-
fied on multiple cores, it behaves as low-activity. This causes it
to oscillate between Class 0 and Class 1 in alternating cycles.

We address these issues as follows. Case 1 rarely happens and when
it happens it disappears quickly, because of the very low probability
of an application’s phase cycles holding constant and coinciding with
the control cycle length. This can be addressed, in the rare case when
it is necessary, by tuning the control cycle length slightly if oscillations
persist.

Case 2 also happens rarely. In general, increasing the number of
classes and reducing the distances between control decisions of adja-
cent classes reduce the RTM’s sensitivity to threshold accuracy, hence
Case 2 robustness does not have to be a problem, and thresholds (Table
5.7) and decisions (Table 5.9) can be tuned both offline and during
runtime.

Case 3 is by far the most common. It is dealt with through adap-
tation. We put in an extra class, "low-parallelizability", and give it a
single big core. This class can only be found after two control cycles,
different from the other classes, but this effectively eliminates Case 3

oscillations.

5.5.4 Comparative evaluation of the RTM

Complexity: Our RTM has a complexity of O (Napp ·Nclass +Ncore),
where Napp is the number of applications running, Nclass is the
number of classes in the taxonomy, and Ncore is the number of cores.
Nclass is usually a constant of small value, which can be used to trade
robustness and quality with cost. The RTM’s computation complexity
is therefore linear to the number of applications running and the
number of cores. In addition, the basic algorithm itself is a low-cost
lookup-table approach with the table sizes linear to Nclass.

5.5 experimental results 96

Schemes found in existing work, with e.g. model-based which is
presented in Chapter 4 [4], machine-learning [100], linear program-
ming [66], or regression techniques [128] [4], have a decision state
space size of (NA7DVFS ·NA15DVFS) · (NA7 ·NA15)

Napp , where NA7

and NA15 are the numbers of A7 and A15 cores and NA7DVFS and
NA15DVFS are the numbers of DVFS points of the A7 and A15 power
domains, for this type of platform. This NP complexity is sensitive to
system heterogeneity, unlike our approach.

Overheads: We compared the time overheads (OH) of our method
with the linear-regression (LR) method found in e.g. [128] and [4]. For
each 500ms control cycle, our RTM, running at 200MHz, requires 10ms
to complete for the trace in Figure 5.7. Over 90% of this time is spent
on monitor information gathering. In comparison, LR requires 100ms
to complete the same actions. It needs a much larger set of monitors.
The computation, also much more complex, evenly divides its time
in model building and decision making. In addition, a modelling
control such as LR requires multiple control intervals to settle and the
number of control intervals needed is combinatorial with NA7, NA15,
NA7DVFS and NA15DVFS.

Scalability: Our RTM is scalable to any platform as it is

• agnostic to the number and type of application running concur-
rently, and

• independent of the number or type of cores in the platform, and
their power domains.

This is because the complexity of the RTM only grows linearly with
increased number of concurrent applications and cores.

Performance: Direct comparison is possible only with Chapter 4 [4],
which studies the same set of benchmarks running on the same plat-
form. As shown in Table 5.9, which does not take the OH into account
for [4], this RTM compares favourably in terms of overall advantages
over the Linux ondemand governor. These selected experiments cover
single applications and various combinations of applications of differ-
ent classes running concurrently.

Data collected from our large number of validation runs shows the
RTM out-performing the Linux ondemand governor by considerable
margins on IPS/Watt, as shown in Table 5.9. The method can be
generalized to other optimization targets, such as performance and
energy-delay product. It is also possible to switch targets at runtime.
Table /reftab77 shows the actual performance of the system in IPS has
been affected by the proposed algorithms.

5.6 summary and conclusion 97

Table 5.9: Percentage IPS/WATT improvements of the RTM ovber the LINUX
ONDEMAND Governor.

Application scenarios WLC (w/OH) LR [4] (no OH)

fluidanimate 127.0% 127.0%

ferret + fluidanimate 68.6% 61.7%

ferret + fluidanimate + bodytrack 46.6% 29.3%

fluidanimate ×2 24.5% 19.8%

fluidanimate ×3 44.4% 36.4%

ferret ×2 31.0% 26.5%

Table 5.10: Comparison of performance in terms of IPS of the proposed RTM
with the LINUX ONDEMAND Governor.

Applications
Ondemand
Governor

Proposed RTM

ferret 8117913 5284962

fluidanimate 7120060 1716090

ferret + fluidanimate 7249059 2221383

ferret + fluidanimate + bodytrack 8313643 2181637

fluidanimate ×2 7705368 1964424

fluidanimate ×3 7598735 1834730

ferret ×2 7952582 3728804

5.6 summary and conclusion

A runtime management approach is proposed for multiple concurrent
applications of diverse types running on heterogeneous multi-core
platforms.

Based on workload classification, the approach is demonstrated by
a governor aimed at improving system energy efficiency (IPS/Watt).
This governor classifies workloads according to their CPU and memory
signatures and makes decisions on core allocation and DVFS. Workload
classification leads to very low RTM complexity (linear with the number
of applications and cores) and cost (lookup tables of limited size),
leading to high scalability. Experiments show the governor producing
significant improvements. Detection of low-parallelizability improves
the stability of the governor.

The approach is general in the sense of being agnostic to metrics,
platforms, and workloads. It can be extended to the optimization
of other performance metrics and different taxonomies of workload
classification so long as the metrics in question are related to the
classes of the taxonomies.

6
R E D U C E D - C O M P L E X I T Y R U N T I M E M A N A G E M E N T
O F C O N C U R R E N T W O R K L O A D S

In order to determine the optimal system configuration which in-
cludes the number and type of cores with their frequencies trailered
to workload combinations, workload classification combined are used
with model-based (multivariate linear regression) to maximize the
energy-efficiency in terms of IPS/Watt during runtime. This run-
time optimization approach is based on using workload classification
technique to reduce the complexity and overhead of power and per-
formance models that can be obtained during runtime by multivariate
linear regression. This approach is extensively evaluated using the
PARSEC-3.0 benchmark suite running on the Odroid-XU3 hetero-
geneous platform. In a way this chapter attempts to combine the
techniques presented in the two preceding chapters for further energy
efficiency improvements.

The rest of this chapter is organized as follows. The proposed
methodology is described in Section 6.3. The system approach is
described in Section 6.4. The runtime concurrent workload classifica-
tion is described in Section 6.5. DVFS and core allocation controller is
described in Section 6.6. The experimental results are presented in
section 6.7. Section 6.8 concludes this chapter.

6.1 introduction

The MLR runtime modelling approach presented in Chapter 4 achieves
provable approach for energy efficiency for concurrent applications
running on heterogeneous many-core systems. However it extracts
a computation and time overhead and during the decision-making
process optimality is not guaranteed. It also pertains to each applica-
tion and therefore is blind to application phase changes. Chapter 5

attempts to address this with a low-cost per-control interval approach
which improves overheads both in time and computation cost, and
therefore the energy efficiency of the runtime itself. It also avoids
per-application decision making thereby exposing application phase
behaviour and reacts appropriately to it. However, it does not achieve
any kind of provable optimality other than intuition obtained from
offline characterization. In this chapter, the method used in Chapter 5

is used to create a much smaller space in which the MLR method
presented in Chapter 4 will be used to further optimality.

The motivation is that this should reduce the time, computation and
power cost for the optimization step, and even during unoptimized

98

6.2 state space analysis 99

time periods, e.g. during learning, the WLC approach on its own
would still be effective. Given that this will have a higher overhead
than WLC alone, the obvious question we need to answer is whether
this approach will return overall better results, including overheads,
than Chapter 5.

6.2 state space analysis

The state space of the many-core heterogeneous system in which opti-
mization methods must search includes all possible core allocations
and all possible DVFS combinations. Table 6.1 shows the number of
possible core allocations for Napps applications running on a system
with the number of A7 and A15 cores set as NA7 = 3 and NA15 = 4 re-
spectively. The "brute force" value represents (NA7+ 1)

Napps(NA15+

1)Napps combinations, not all of which are actually allowed consider-
ing the following rules:

• each application must have at least one thread and

• no more than one thread per core is allowed

However, there is no simple algorithm to iterate through only valid
core allocations. The number of possible core allocations is then multi-
plied by the number of DVFS combinations, which is calculated as MA7

MA15, where MA7 is the number of DVFS points in the A7 domain,
and MA15 is the number of DVFS points in the A15 domain. It is clear
that some method of reducing this state space would help reduce the
overhead of the optimization step.

Table 6.1: Nnmber of possible core allocations

Napps brute force valid

1 20 19

2 400 111

3 8000 309

4 1.6*105 471

5 3.2*106 405

6 6.4*107 185

7 1.28*109 35

6.3 proposed methodology

Our method studies concurrent application workloads being executed
on various hardware platforms with parallel processing facilities, and

6.3 proposed methodology 100

Fi
gu

re
6

.1
:B

lo
ck

di
ag

ra
m

fo
r

pr
op

os
ed

ru
nt

im
e

co
nc

ur
re

nt
w

or
kl

oa
ds

po
w

er
co

nt
ro

lle
r.

6.4 power and performance related models 101

Figure 6.2: Simplified overview of proposed methodology.

derive optimal runtime management decisions from the results of this
analysis.

Figure 6.1 gives the architecture of the proposed approach showing
the interactions between the workload (multi-threaded), runtime man-
agements, and hardware architecture and highlights our contributions
in each section. Arrows indicate communications between layers. The
applications are parallelizable workloads. The runtime includes both
WLC and MLR modelling parts. The WLC restricts the space in which
MLR operates. The workloads classification reduces the effort of model
characterisation for combinations of concurrently running applications.
The hardware architecture in this study is the Odroid XU3 described in
Chapter 3, which is heterogeneous many-core supporting the running
of multiple concurrent applications. The interacting functional steps
are described in Figure 6.2.

Information of the workloads executing on platforms is collected
by way of performance counters and power monitors, both available
from the platforms. From this information two different actions are
performed. The first is WLC (described in detail in Chapter 5), which
only needs to use performance counter events to derive the type
of a particular workload. The second is deriving the performance
and power models through such methods as LR and MLR (described
in detail in Section 6.4), which uses both performance counter and
power monitor information. The workload classification result and the
performance and power models from the MLR step are used to derive
the optimal runtime management.

6.4 power and performance related models

We develop runtime power and performance models using MLR. Based
on these models a runtime adaptation is derived to determine the

6.5 rtm workload classifications 102

most energy-efficient system configurations for different application
scenarios. These models and their hypotheses are further detailed
below.

Figure 6.3 shows the power and performance for ferret, fluidan-
imate, and three concurrent applications. We hypothesize that the
relation between IPS and the numbers of group of cores in heteroge-
neous systems can be approximated by the following expression:

IPS =

K∑
i=1

αifixi + ε2(x), (6.1)

where the first term (
∑K

i=1 αixi) represents the frequency-independent
performance components that depend on architectural configuration,
K is the total number of voltage islands (i.e. group of cores), and ε2(x)
is the error term. In the case of Exynos 5422 (i.e. Odroid big.LITTLE)
can be expressed as:

IPS = α1f1x1 +α2f2x2 + ε2, (6.2)

where α1, α2, and ε2 are coefficients which need to be determined
for each operating frequency by using MLR. x1, f1, x2, f2 are the num-
bers and frequencies of LITTLE and big cores respectively. All models
have R-squared values greater than 0.95 showing the applicability of
this model hypothesis.

6.5 rtm workload classifications

The workload classes chosen for this work reflect the desire of differ-
entiating CPU-intensive workloads from memory-intensive ones and
differentiating high-activity workloads from low-activity ones as de-
scribed in Chapter 5. Metrics and threshold values used to determine
the application class are explained in Chapter 5.

6.6 low-complexity runtime

Figure 6.4 shows how to use the workload classification technique to
reduce the complexity of applications and the complexity of systems
hardware to strike the right tradeoff.

The first thing is to update the application queue - during the
preceding period existing interval could have completed and a new in-
terval could have started. If during the previous period, a new interval
have started, Algorithm 5.1 is used to determine the application class
of each application in this new interval, which has been explained
in Chapter 5. Based on application class the state space has been

6.6 low-complexity runtime 103

Fi
gu

re
6
.3

:P
ow

er
/p

er
fo

rm
an

ce
ch

ar
ac

te
ri

st
ic

s
fo

r
fe

rr
et

,fl
ui

da
ni

m
at

e,
an

d
th

re
e

di
ff

er
en

t
co

nc
ur

re
nt

ap
pl

ic
at

io
ns

6.7 proposed runtime results 104

Figure 6.4: Simulation flow to obtain the results.

reduced. For example, in class 0 the search of optimal configuration
for odroid XU-3 has been reduced from 4004 different frequency and
core configurations (4*13*4*19 four A7 and four A15 can run at 13

and 19 different frequencies respectively) to one by using C0 and
frequency=200 MHz as optimal configuration, in class 1 the search for
optimal configuration has been reduced by more than 75% because we
used the big cores and high frequencies for A15 (800-2000) MHz, and
the state space has been reduced by more than 80% in class 3 because
we used the big cores and high frequencies for A7 (800-1400) MHz.
After that, MLR is used to determine the optimal frequency and core
allocations for each class type.

6.7 proposed runtime results

Data collected from our large number of validation runs shows the
RTM out-performing the Linux ondemand governor by considerable
margins on IPS/Watt, as shown in Table 6.2. This table shows the
comparison between three runtime optimization techniques model-
based by using MLR, model-free by using workload classification, and
low-complexity by combining workload classifications with MLR. Two
observations can be made from these results. Firstly; the improvements

6.8 summary and conclusion 105

in IPS/Watt of the model-free technique is higher than model-based
technique because the model-based optimization is per application
while WLC optimization is per interval. Secondly, the improvements
in IPS/Watt of the low-complexity technique is higher than model-
free technique because of using workload classification with MLR

determine optimal number of cores and a finer-grain control of their
frequencies.

Table 6.2: Percentage IPS/WATT Improvements of the RTM over the LINUX
Ondemand Governor

Application Scenarios WLC MLR MLR+WLC

Fluidanimate alone 127.0% 127.0% 139.0%

Two different class applications 68.6% 61.7% 128.4%

Three different class applications 46.6% 29.3% 61.2%

Two Class 3 applications 24.5% 19.8% 40.3%

Three Class 3 applications 44.4% 36.4% 58.2%

Two Class 1 applications 31.0% 26.5% 41.7%

6.8 summary and conclusion

This chapter presents a novel runtime optimization approach demon-
strated on heterogeneous systems, capable of workload classification
and power-aware performance adaptation under sequential and con-
current application scenarios in heterogeneous many-core systems.

This approach is based on workload classification with performance
model that can be obtained during runtime by multivariate linear
regression based on low-complexity hypotheses of power and perfor-
mance for a given operating frequency. The approach is extensively
evaluated using PARSEC-3.0 benchmark suite running on the Odroid-
XU3 heterogeneous platform.

A selection of experimental results was presented to illustrate the
kinds of tradeoffs in a variety of concurrent application scenarios, core
allocations, and DVFS points, highlighting an improvement of power
normalized performance which produced IPS/Watt improvements
between 42% and 139% for a range of applications. It is expected that
modern embedded and high-performance system designers will bene-
fit from the proposed approach in terms of a systematic power-aware
performance optimization under variable workload and application
scenarios.

7
C O N C L U S I O N S A N D F U T U R E W O R K

The overall objective of this research is to develop methods for im-
proving energy efficiency (in terms of IPS/Watt) for multi/many core
heterogeneous systems running heterogeneous concurrent workloads.
To meet this objectives, a novel runtime optimization approach is
proposed for multiple concurrent applications of diverse workloads
considering dynamic variation of workload and application scenarios
running on heterogeneous multi-core platforms. Core to this approach
is an empirical and data-driven method, which classifies applications
based on their memory and CPU requirements. A low-complexity
Linux power governor is implemented for the runtime control of DVFS

and task mapping using information from system performance coun-
ters . A number of synthetic and real-world benchmark applications
with different concurrent combinations are used to validate the ap-
proaches developed in this thesis. The remainder of this chapter is
organised as follows. Section 7.1 gives a summary of thesis contri-
bution and Section 7.2 presents a number of future related research
opportunities opened up by this work.

7.1 summary and conclusion

Modern embedded systems execute multiple applications, both se-
quentially and concurrently. These applications may be executed on
heterogeneous platforms generating varying power consumption and
system workloads (CPU or memory intensive or both). This increas-
ing system complexity in both hardware and software emphasizes a
major challenge for computing systems, especially mobile and embed-
ded systems, namely the performance-energy tradeoff. As a result,
determining the most energy-efficient system configuration (i.e. the
number of parallel threads, their core allocations and operating fre-
quencies) tailored for each kind of workload and application scenario
is extremely challenging. Underpinning these many core heteroge-
neous power/performance tradeoff design issues and challenges, the
following contributions have been made in this thesis:

Platform exploration experiments: Chapter 3 present a comprehen-
sive study that profiles the power consumption and performance char-
acteristics of a multi-threaded many-core system, associating power
consumption and performance with multiple applications. These ap-
plications are executed on an Odroid XU3 heterogeneous platform
generating varying power consumption and system workloads (CPU
or memory intensive or both). Core to this study is an investigation of

106

7.1 summary and conclusion 107

the tradeoffs between inter-application concurrency with performance
and power consumption under different system configurations. These
experiments present the basic method of characterization experimenta-
tion which is consistently used throughout the thesis in Chapters 4, 5,
and 6.

Model-based runtime management of concurrent workloads A
novel runtime optimization approach for single and concurrent appli-
cations is presented in Chapter 4. Real experimental measurements
on an Odroid XU-3 heterogeneous platform with a number of PAR-
SEC benchmark applications to profile real power consumption and
performance measurement for single and concurrent applications. For
the first time, this work reveals the impact of parallelism in different
types of heterogeneous cores on performance, power consumption
and power efficiency in terms of IPS/Watt. This approach is based on
power and performance models that can be obtained during runtime
by multivariate linear regression based on low-complexity hypotheses
of power and performance for a given operating frequency. Using
these models, this approach shows that CPU intensive applications
show different gains in IPS/Watt compared to memory intensive
applications in both sequential and concurrent application scenarios.
Furthermore, this work demonstrates that it is possible to continuously
adapt system configuration through a low-cost and linear-complexity
runtime algorithm, which can improve the IPS/Watt by up to 125%
compared to the existing approach.

Model-free runtime management of concurrent workloads: A run-
time adaptation approach to improve the energy efficiency of a hetero-
geneous many-core system with concurrent workloads is presented
in Chapter 5. Core to this approach is an empirical and data-driven
method, which classifies applications based on their memory and CPU
requirements. The aim is to derive DVFS and task mapping policies,
tailored to the classified workloads without requiring any explicit
modelling at runtime. Due to simplified runtime classification, this
approach can significantly reduce overheads. Furthermore, the model-
free classification based runtime enhances the scalability for any con-
current application mix, platform, and metric. It has linear complexity
which is not affected by the system heterogeneity and the number
of concurrent applications. Extensive experiments on an Odroid XU3

heterogeneous and i7 homogeneous platforms with synthetic and stan-
dard benchmark applications are used to develop the control policies
and validate this approach. These experiments show that workload
classification into CPU-intensive and memory-intensive types provides
the foundation for scalable energy minimization with low complex-
ity. Furthermore, the expermental results show that IPS/Watt can be
improved by over 120% compared to existing approaches.

Reduced-complexity runtime management of concurrent work-
loads: Chapter 6 presents reduced-complexity runtime approach for

7.2 future work 108

energy minimization of single and concurrent applications. This ap-
proach is demonstrated by a governor aimed at improving system
energy efficiency (IPS/Watt). This governor combines the methods
presented in Chapter 4 and Chapter 5, classifies applications according
to their CPU and memory signatures, uses the classifier decision to
reduce the complexity of state-space learning-based runtime from
Chapter 4, and make decisions on core allocation and DVFS. More-
over, the experimental results of this approach show that it is possible
to continuously adapt system configuration through a low-cost and
linear-complexity runtime algorithm, which can improve the IPS/Watt
by up to 136% compared to the existing approach.

7.2 future work

Runtime workload classification and management for energy-efficient
many-core systems has many opportunities for future work.

Two worthy and interesting research recommendations for expand-
ing and exploring the proposed work in this thesis are presented in
this section.

The proposed model-based power-aware performance adaptation
of concurrent applications in heterogeneous many-core systems can
be expanded by taking into account the effect of idle power on the
energy-efficiency by using additional effective runtime power manage-
ment techniques such as CMOS power gating in addition to DVFS and
task mapping for reducing the overall power consumption. Further
exploration of other types of heterogeneity such as using GPU with
CPU, and memory hierarchies is an interesting area of future research.

In terms of using model-free runtime Management of Concurrent
Workloads for Energy-Efficient Many-Core Heterogeneous Systems,
This work opens up opportunities for future runtime management
research including the runtime tuning of such parameters as classifica-
tion thresholds, control decisions, and RTM control cycles. Another
promising direction is including investigation of the scalability of
these approaches to more complex platforms and higher levels of
concurrency.

Part II

Thesis Appendices

109

RUNTIME MANGEMENT PROGRAMM A

The source code of the runtime program is included below. It may be downloaded from
http://async.org.uk/data/runtime-2019/.

--

#define DEBUG_INFO 1

#include "timeutils.h"

#include "affinity.h"

#include "monitors.h"

#include "exec.h"

// RTM ---------------------------------

pthread_t rtm_thread_id = -1;

int req_stop_rtm = 0;

static void* rtm_proc(void *arg)

{

 int i, tnum, max, tmax;

 start_core_monitors();

 printf("rtm: started\n");

 #if READ_XU3POWER

 float mon_xu3power[NUM_XU3POWER_PARAMS];

 for(i=0; i<NUM_XU3POWER_PARAMS; i++)

 mon_xu3power[i] = 0.0;

 #endif

 for(i=0; req_stop_rtm==0; i++) {

 sleep_ms(MON_PERIOD);

 // collect monitor readings

 #if READ_XU3POWER

 if(read_xu3power_all(mon_xu3power)) {

 printf("XU3 power mon:

%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n",

 mon_xu3power[0], mon_xu3power[1], mon_xu3power[2],

mon_xu3power[3],

 mon_xu3power[4], mon_xu3power[5], mon_xu3power[6],

mon_xu3power[7]);

 }

 else {

 printf("*error: read_xu3power_all\n");

 }

 #endif

 max = 0;

 for(tnum = 0; tnum < NUM_CORES; tnum++) {

 if(monitors_tinfo[tnum].mon_inst_retired>max) {

 max = monitors_tinfo[tnum].mon_inst_retired;

 tmax = tnum;

 }

 }

 // TODO: control

 printf("rtm[%d]: max %d @ C%d\n", i, max, tmax);

 next_unused_core = get_unused_core();

 }

 stop_core_monitors();

 printf("rtm: stopped\n");

}

void start_rtm()

{

 int err;

 pthread_attr_t attr;

 cpu_set_t cpus;

 // set affinity

 pthread_attr_init(&attr);

 CPU_ZERO(&cpus);

 CPU_SET(0, &cpus);

 err = pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_t), &cpus);

 if(err)

 printf("*error(%d): pthread_attr_setaffinity_np, %d\n", __LINE__, err);

 // create_thread

 req_stop_rtm = 0;

 err = pthread_create(&rtm_thread_id, &attr, rtm_proc, NULL);

 if(err)

 printf("*error(%d): pthread_create, %d\n", __LINE__, err);

}

void stop_rtm()

{

 req_stop_rtm = 1;

 pthread_join(rtm_thread_id, NULL);

}

// MAIN ---------------------------------

int main()

{

 #if READ_XU3POWER

 init_xu3power();

 #endif

 init_affinity();

 start_rtm();

 run_exec();

 stop_rtm();

}

#include "affinity.h"

const int core_names[NUM_CORES] = {4, 5, 6, 7, 0, 1, 2, 3};

app_info apps_info[MAX_TASKS];

app_info* core_app_map[NUM_CORES];

int next_app_index = 0;

int next_unused_core = 0;

void init_affinity()

{

 int i;

 for(i=0; i<NUM_CORES; i++)

 core_app_map[i] = NULL;

 for(i=0; i<MAX_TASKS; i++)

 apps_info[i].pid = 0;

}

int get_unused_core()

{

 int i;

 for(i=0; i<NUM_CORES; i++) {

 if(core_app_map[i]==NULL)

 return i;

 }

 printf("*error: no available cores\n");

 return 0;

}

void set_app_affinity(app_info* app, int ncores, int cores[])

{

 int i, err;

 cpu_set_t cpus;

 CPU_ZERO(&cpus);

 app->ncores = ncores;

 #if DEBUG_INFO

 printf("app <%d> affinity: ", app->pid);

 #endif

 for(i=0; i<ncores; i++) {

 CPU_SET(core_names[cores[i]], &cpus);

 #if DEBUG_INFO

 printf("%d ", core_names[cores[i]]);

 #endif

 app->cores[i] = cores[i];

 core_app_map[cores[i]] = app;

 }

 #if DEBUG_INFO

 printf("\n");

 #endif

 err = sched_setaffinity(app->pid, sizeof(cpu_set_t), &cpus);

 if(err)

 printf("*error(%d): sched_setaffinity, %d\n", __LINE__, err);

}

void create_app_info(int task_id, pid_t pid)

{

 #if DEBUG_INFO

 printf("New app <%d> for task %d\n", pid, task_id);

 #endif

 int i = next_app_index++;

 apps_info[i].task_id = task_id;

 apps_info[i].pid = pid;

 apps_info[i].start_time = timestamp();

 int cores[] = {next_unused_core};

 set_app_affinity(&apps_info[i], 1, cores);

}

#include "exec.h"

char* tasks[][MAX_ARGS] = {

 {"./sqrt", "100000", NULL},

 {"ls", NULL},

 {"/root/work/parsec-3.0/pkgs/apps/fluidanimate/inst/arm-linux.gcc-

pthreads/bin/fluidanimate",

 "1", "5",

 "/root/work/parsec-3.0/pkgs/apps/fluidanimate/inputs/in_300K.fluid",

 "/root/work/parsec-3.0/out.fluid", NULL}

};

int n_pid = 0;

pid_t pid_list[MAX_TASKS];

int start_task(int id)

{

 printf("Start task %d (%s)\n", id, tasks[id][0]);

 pid_t pid = fork();

 if(pid!=0) {

 pid_list[n_pid++] = pid;

 create_app_info(id, pid);

 return pid;

 }

 else {

 execvp(tasks[id][0], tasks[id]);

 perror("*error");

 exit(1);

 return 0;

 }

}

void wait_all()

{

 int status;

 while(n_pid>0) {

 waitpid(pid_list[--n_pid], &status, 0);

 }

}

void run_exec()

{

 int sleep, id;

 unsigned long tstart = timestamp();

 while(scanf("%d %d", &sleep, &id)==2) {

 sleep_ms(sleep);

 if(start_task(id)==0)

 return;

 }

 wait_all();

 printf("Done exec, total time: %ld\n", timestamp()-tstart);

}

#include "monitors.h"

#if READ_XU3POWER

#define NUM_XU3POWER_FLAGS 4

const char* xu3power_flag_paths[NUM_XU3POWER_FLAGS] = {

 "/sys/bus/i2c/drivers/INA231/3-0045/enable",

 "/sys/bus/i2c/drivers/INA231/3-0040/enable",

 "/sys/bus/i2c/drivers/INA231/3-0041/enable",

 "/sys/bus/i2c/drivers/INA231/3-0044/enable",

};

const char* xu3power_param_paths[NUM_XU3POWER_PARAMS] = {

 "/sys/bus/i2c/drivers/INA231/3-0045/sensor_V", // A7 V

 "/sys/bus/i2c/drivers/INA231/3-0045/sensor_A",

 "/sys/bus/i2c/drivers/INA231/3-0045/sensor_W",

 "/sys/bus/i2c/drivers/INA231/3-0040/sensor_V", // A15 V

 "/sys/bus/i2c/drivers/INA231/3-0040/sensor_A",

 "/sys/bus/i2c/drivers/INA231/3-0040/sensor_W",

 "/sys/devices/system/cpu/cpu3/cpufreq/scaling_cur_freq",

 "/sys/devices/system/cpu/cpu7/cpufreq/scaling_cur_freq",

};

#endif

struct monitor_info monitors_tinfo[NUM_CORES];

// XU3 POWER ------------------------------

#if READ_XU3POWER

int read_xu3power(int param, const char* fmt, void* ptr)

{

 FILE* fp;

 fp = fopen(xu3power_param_paths[param], "r");

 if(fp==NULL) {

 return 0;

 }

 if(fscanf(fp, fmt, ptr)!=1) {

 fclose(fp);

 return 0;

 }

 else {

 fclose(fp);

 return 1;

 }

}

int read_xu3power_all(float* ptr)

{

 int i, res = 1;

 for(i=0; i<NUM_XU3POWER_PARAMS; i++) {

 res &= read_xu3power(i, "%f", &ptr[i]);

 }

}

void set_xu3power_flag(const char* path, const char* flag)

{

 FILE* fp;

 fp = fopen(path, "w");

 if(fp==NULL)

 return;

 fputs(flag, fp);

 fclose(fp);

}

void init_xu3power()

{

 int i;

 for(i=0; i<NUM_XU3POWER_FLAGS; i++) {

 set_xu3power_flag(xu3power_flag_paths[i], "1");

 }

 sleep_ms(2000);

}

#endif

// ARM PMU -------------------------------

#if READ_ARMPMU

#include "pmu.h"

#endif

// CORE MONITOR THREADS -------------------------------

static void* monitor_proc(void *arg)

{

 int i;

 int num = ((monitor_info*) arg)->num;

 FILE* log = open_log_core("mon", num);

 if(log) fprintf(log, "time\tunhalt_cycles\tinst_retired\tmem_access\n");

 printf("mon%d: started\n", num);

 cpu_set_t cpuset;

 CPU_ZERO(&cpuset);

 CPU_SET(num, &cpuset);

 sched_setaffinity(0, sizeof(cpuset), &cpuset);

 long mon_time, prev_time;

 unsigned int mon_unhalt_cycles, mon_inst_retired, mon_mem_access;

 unsigned int prev_unhalt_cycles, prev_inst_retired, prev_mem_access;

 int first = 1;

 #if READ_ARMPMU

 init_perf_start();

 init_perf(0, 0x08 /* INST_RETIRED */);

 init_perf(1, 0x13 /* MEM_ACCESS */);

 // init_perf(0x08 /* INST_RETIRED */, 0x13 /* MEM_ACCESS */, 2, 3, 0x08 /*

INST_RETIRED */, 0x13 /* MEM_ACCESS */);

 #endif

 for(i=0;; i++) {

 sleep_ms(MON_PERIOD);

 // collect monitor data

 mon_time = (long)timestamp();

 #if READ_ARMPMU

 mon_unhalt_cycles = (int)get_cyclecnt();

 get_evt(0, &mon_inst_retired);

 get_evt(1, &mon_mem_access);

 // get_evt(&mon_inst_retired, &mon_mem_access, &mon_2, &mon_3,

&mon_4, &mon_5);

 #else

 mon_unhalt_cycles = 0;

 mon_inst_retired = 0;

 mon_mem_access = 0;

 #endif

 if(!first) {

 ((monitor_info*) arg)->mon_time = mon_time - prev_time;

 ((monitor_info*) arg)->mon_unhalt_cycles = mon_unhalt_cycles -

prev_unhalt_cycles;

 ((monitor_info*) arg)->mon_inst_retired = mon_inst_retired -

prev_inst_retired;

 ((monitor_info*) arg)->mon_mem_access = mon_mem_access -

prev_mem_access;

 // log data

 if(log) fprintf(log, "%ld\t%d\t%d\t%d\n",

 ((monitor_info*) arg)->mon_time,

 ((monitor_info*) arg)->mon_unhalt_cycles,

 ((monitor_info*) arg)->mon_inst_retired,

 ((monitor_info*) arg)->mon_mem_access

);

 }

 prev_time = mon_time;

 prev_unhalt_cycles = mon_unhalt_cycles;

 prev_inst_retired = mon_inst_retired;

 prev_mem_access = mon_mem_access;

 first = 0;

 }

}

void start_core_monitors()

{

 int tnum, err;

 pthread_attr_t attr;

 cpu_set_t cpus;

 pthread_attr_init(&attr);

 for(tnum = 0; tnum < NUM_CORES; tnum++) {

 monitors_tinfo[tnum].num = tnum;

 // set affinity

 CPU_ZERO(&cpus);

 CPU_SET(tnum, &cpus);

 err = pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_t), &cpus);

 if(err)

 printf("*error(%d): pthread_attr_setaffinity_np, %d\n", __LINE__, err);

 // start thread

 err = pthread_create(&monitors_tinfo[tnum].thread_id, &attr, monitor_proc,

&monitors_tinfo[tnum]);

 if(err)

 printf("*error(%d): pthread_create, %d\n", __LINE__, err);

 }

}

void stop_core_monitors()

{

 int tnum;

 for(tnum = 0; tnum < NUM_CORES; tnum++) {

 pthread_cancel(monitors_tinfo[tnum].thread_id);

 }

}

#include "timeutils.h"

void sleep_ms(int ms)

{

 struct timespec t;

 if(ms>0) {

 t.tv_sec = ms/1000;

 t.tv_nsec = (ms%1000)*1000000L;

 nanosleep(&t, NULL);

 }

}

unsigned long timestamp()

{

 struct timespec t;

 clock_gettime(CLOCK_REALTIME, &t);

 return (t.tv_sec)*1000L + (t.tv_nsec)/1000000L;

}

Part III

Thesis Bibliography

126

B I B L I O G R A P H Y

[1] ARM, big.LITTLE Technology,. http://www.arm.com/products
/processors/technologies/biglittleprocessing.php.

[2] Odroid XU3. http://www.hardkernel.com/main/products, .

[3] Parsec 3.0. http://parsec.cs.princeton.edu/parsec3-doc.htm, .

[4] Ali Aalsaud, Rishad Shafik, Ashur Rafiev, Fie Xia, Sheng Yang,
and Alex Yakovlev. Power–aware performance adaptation of
concurrent applications in heterogeneous many-core systems.
In Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, pages 368–373. ACM, 2016.

[5] Ali Aalsaud, Haider Alrudainv, Rishad Shafik, Fei Xia, and Alex
Yakovlev. MEMS-Based Runtime Idle Energy Minimization for
Bursty Workloads in Heterogeneous Many-Core Systems. In
2018 28th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), pages 198–205. IEEE,
2018.

[6] Ali Aalsaud, Ashur Rafiev, Fei Xia, Rishad Shafik, and Alex
Yakovlev. Model-Free Runtime Management of Concurrent
Workloads for Energy-Efficient Many-Core Heterogeneous Sys-
tems. In 2018 28th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pages 206–213.
IEEE, 2018.

[7] Behnam Amelifard and Massoud Pedram. Design of an efficient
power delivery network in an SoC to enable dynamic power
management. In Proceedings of the 2007 international symposium
on Low power electronics and design, pages 328–333. ACM, 2007.

[8] Rabie Ben Atitallah, Eric Senn, Daniel Chillet, Mickael Lanoe,
and Dominique Blouin. An efficient framework for power-aware
design of heterogeneous MPSoC. IEEE Transactions on Industrial
Informatics, 9(1):487–501, 2013.

[9] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A
survey of design techniques for system-level dynamic power
management. IEEE transactions on very large scale integration
(VLSI) systems, 8(3):299–316, 2000.

[10] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark
suite for chip-multiprocessors. In Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, volume 2011,
2009.

127

bibliography 128

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R
Hower, Tushar Krishna, Somayeh Sardashti, et al. The gem5

simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[12] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Paolo Ienne, and
Laura Pozzi. Performance and energy benefits of instruction
set extensions in an FPGA soft core. In VLSI Design, 2006. Held
jointly with 5th International Conference on Embedded Systems and
Design., 19th International Conference on, pages 6–pp. IEEE, 2006.

[13] Ramazan Bitirgen, Engin Ipek, and Jose F Martinez. Coordinated
management of multiple interacting resources in chip multipro-
cessors: A machine learning approach. In Proceedings of the 41st
annual IEEE/ACM International Symposium on Microarchitecture,
pages 318–329. IEEE Computer Society, 2008.

[14] Shekhar Borkar. Design challenges of technology scaling. IEEE
micro, (4):23–29, 1999.

[15] Shekhar Borkar. Thousand core chips: a technology perspective.
In Proceedings of the 44th annual Design Automation Conference,
DAC ’07, pages 746–749, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-627-1. doi: 10.1145/1278480.1278667. URL http:

//doi.acm.org/10.1145/1278480.1278667.

[16] Bishop Brock and Karthick Rajamani. Dynamic power manage-
ment for embedded systems [soc design]. In SOC Conference,
2003. Proceedings. IEEE International [Systems-on-Chip], pages 416–
419. IEEE, 2003.

[17] Aaron Carroll, Gernot Heiser, et al. An analysis of power con-
sumption in a smartphone. In USENIX annual technical conference,
volume 14, pages 21–21. Boston, MA, 2010.

[18] Koushik Chakraborty, Philip M Wells, and Gurindar S Sohi. A
case for an over-provisioned multicore system: Energy efficient
processing of multithreaded programs. Department of Computer
Sciences, University of Wisconsin-Madiso, Tech. Rep, 2007.

[19] Anantha P Chandrakasan and Robert W Brodersen. Minimizing
power consumption in digital CMOS circuits. Proceedings of the
IEEE, 83(4):498–523, 1995.

[20] Zhuo Chen and Diana Marculescu. Distributed reinforcement
learning for power limited many-core system performance opti-
mization. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pages 1521–1526. EDA Consor-
tium, 2015.

http://doi.acm.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667

bibliography 129

[21] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Dy-
namic voltage and frequency scaling based on workload decom-
position. In Proceedings of the 2004 international symposium on Low
power electronics and design, pages 174–179. ACM, 2004.

[22] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Fine-
grained dynamic voltage and frequency scaling for precise en-
ergy and performance tradeoff based on the ratio of off-chip ac-
cess to on-chip computation times. IEEE transactions on computer-
aided design of integrated circuits and systems, 24(1):18–28, 2005.

[23] Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho. Heteroge-
neous Multi-Processing Solution of Exynos 5 Octa with ARM®
big. LITTLE Technology. Samsung White Paper, 2012.

[24] Ryan Cochran, Can Hankendi, Ayse K Coskun, and Sherief Reda.
Pack & Cap: adaptive DVFS and thread packing under power
caps. In Microarchitecture (MICRO), 2011 44th Annual IEEE/ACM
International Symposium on, pages 175–185. IEEE, 2011.

[25] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dim-
itrios S Nikolopoulos, Bronis R De Supinski, and Martin Schulz.
Prediction models for multi-dimensional power-performance
optimization on many cores. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques,
pages 250–259. ACM, 2008.

[26] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dim-
itrios S Nikolopoulos, Bronis R De Supinski, and Martin Schulz.
Prediction models for multi-dimensional power-performance
optimization on many cores. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques,
pages 250–259. ACM, 2008.

[27] Gaurav Dhiman and Tajana Simunic Rosing. System-level
power management using online learning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(5):
676–689, 2009.

[28] Bryan Donyanavard, Tiago Mück, Santanu Sarma, and Nikil
Dutt. Sparta: Runtime task allocation for energy efficient hetero-
geneous manycores. In Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2016 International Conference on, pages
1–10. IEEE, 2016.

[29] Farshad Firouzi, Mostafa E Salehi, Fan Wang, Sied Mehdi
Fakhraie, and Saeed Safari. Reliability-aware dynamic voltage
and frequency scaling. In VLSI (ISVLSI), 2010 IEEE Computer
Society Annual Symposium on, pages 304–309. IEEE, 2010.

bibliography 130

[30] Rem Gensh, Ali Aalsaud, Ashur Rafiev, Fei Xia, Alexei Iliasov,
Alexander Romanovsky, and Alex Yakovlev. Experiments with
odroid-xu3 board. Newcastle University, Computing Science, 2015.

[31] Marco ET Gerards, Johann L Hurink, Philip KF Hölzenspies,
Jan Kuper, and Gerard JM Smit. Analytic clock frequency selec-
tion for global DVFS. In Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on,
pages 512–519. IEEE, 2014.

[32] Lee Kee Goh, Bharadwaj Veeravalli, and Sivakumar
Viswanathan. Design of fast and efficient energy-aware
gradient-based scheduling algorithms heterogeneous embedded
multiprocessor systems. IEEE Transactions on Parallel and
Distributed Systems, 20(1):1–12, 2009.

[33] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos, Slobodan
Matic, Bodhi Priyantha, and Feng Zhao. Energy-optimal soft-
ware partitioning in heterogeneous multiprocessor embedded
systems. In Proceedings of the 45th annual design automation confer-
ence, pages 191–196. ACM, 2008.

[34] Ujjwal Gupta. Power-Performance Modeling and Adaptive Manage-
ment of Heterogeneous Mobile Platforms. PhD thesis, Arizona State
University, 2018.

[35] Ujjwal Gupta, Spurthi Korrapati, Navyasree Matturu, and
Umit Y Ogras. A generic energy optimization framework for
heterogeneous platforms using scaling models. Microprocessors
and Microsystems, 40:74–87, 2016.

[36] Ujjwal Gupta, Chetan Arvind Patil, Ganapati Bhat, Prabhat
Mishra, and Umit Y Ogras. Dypo: Dynamic pareto-optimal con-
figuration selection for heterogeneous mpsocs. ACM Transactions
on Embedded Computing Systems (TECS), 16(5s):123, 2017.

[37] Mohammad-Hashem Haghbayan, Amir-Mohammad Rahmani,
Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen. Online test-
ing of many-core systems in the dark silicon era. In Design
and Diagnostics of Electronic Circuits & Systems, 17th International
Symposium on, pages 141–146. IEEE, 2014.

[38] Can Hankendi and Ayse K Coskun. Adaptive power and re-
source management techniques for multi-threaded workloads.
In Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013 IEEE 27th International, pages 2302–2305.
IEEE, 2013.

[39] Sebastian Herbert and Diana Marculescu. Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors. In Low Power

bibliography 131

Electronics and Design (ISLPED), 2007 ACM/IEEE International
Symposium on, pages 38–43. IEEE, 2007.

[40] Arliones Stevert Hoeller, Lucas Francisco Wanner, and An-
tônio Augusto Fröhlich. A hierarchical approach for power
management on mobile embedded systems. In From Model-
Driven Design to Resource Management for Distributed Embedded
Systems, pages 265–274. Springer, 2006.

[41] Chung-hsing Hsu and Wu-chun Feng. A power-aware run-
time system for high-performance computing. In Proceedings of
the 2005 ACM/IEEE conference on Supercomputing, page 1. IEEE
Computer Society, 2005.

[42] Shaoxiong Hua and Gang Qu. Approaching the maximum
energy saving on embedded systems with multiple voltages.
In Proceedings of the 2003 IEEE/ACM international conference on
Computer-aided design, page 26. IEEE Computer Society, 2003.

[43] Quentin JM Huys, Anthony Cruickshank, and Peggy Seriès.
Reward-based learning, model-based and model-free. In Ency-
clopedia of Computational Neuroscience, pages 2634–2641. Springer,
2015.

[44] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip
Bose, and Margaret Martonosi. An analysis of efficient multi-
core global power management policies: Maximizing perfor-
mance for a given power budget. In Proceedings of the 39th annual
IEEE/ACM international symposium on microarchitecture, pages
347–358. IEEE Computer Society, 2006.

[45] Jaeseok Jeon. Advanced relay design and technology for energy-
efficient electronics. Technical report, California University
Berkeley department of electrical engineering and computer
science, 2011.

[46] Bojan Jovanović and Milun Jevtić. Static and dynamic power
consumption of arithmetic circuits in modern technologies. In
55th Conference for Electronics, Telecommunications, Computers, Au-
tomation, and Nuclear Engineering, volume 55, pages 1–4, 2011.

[47] Da-Cheng Juan and Diana Marculescu. Power-aware perfor-
mance increase via core/uncore reinforcement control for chip-
multiprocessors. In Proceedings of the 2012 ACM/IEEE interna-
tional symposium on Low power electronics and design, pages 97–102.
ACM, 2012.

[48] Da-Cheng Juan, Siddharth Garg, Jinpyo Park, and Diana Mar-
culescu. Learning the optimal operating point for many-core
systems with extended range voltage/frequency scaling. In

bibliography 132

Proceedings of the Ninth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, page 8. IEEE
Press, 2013.

[49] Rakhee Kallimani and Krupa Rasane. A survey of techniques
for power management in embedded systems. pages 461–462,
Volume=14, Issue = 2, April 2015.

[50] James T Kao, Masayuki Miyazaki, and AR Chandrakasan. A 175-
mv multiply-accumulate unit using an adaptive supply voltage
and body bias architecture. IEEE journal of solid-state circuits, 37

(11):1545–1554, 2002.

[51] Steven P Kerrison. Energy modelling of multi-threaded, multi-core
software for embedded systems. PhD thesis, University of Bristol,
2015.

[52] Nam Sung Kim, Todd Austin, David Baauw, Trevor Mudge,
Krisztián Flautner, Jie S Hu, Mary Jane Irwin, Mahmut Kan-
demir, and Vijaykrishnan Narayanan. Leakage current: Moore’s
law meets static power. computer, 36(12):68–75, 2003.

[53] Shin-gyu Kim, Hyeonsang Eom, Heon Y Yeom, and Sang Lyul
Min. Energy-centric DVFS controlling method for multi-core
platformswonyoung. Computing, 96(12):1163–1177, 2014.

[54] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David
Brooks. System level analysis of fast, per-core DVFS using
on-chip switching regulators. In High Performance Computer Ar-
chitecture, 2008. HPCA 2008. IEEE 14th International Symposium
on, pages 123–134. IEEE, 2008.

[55] Sumeet S Kumar, Mitzi Tjin A Djie, and Rene Van Leuken. Low
overhead message passing for high performance many-core pro-
cessors. In 2013 First International Symposium on Computing and
Networking-Across Practical Development and Theoretical Research
(CANDAR), pages 345–351. IEEE, 2013.

[56] Christos Kyrkou, Christos-Savvas Bouganis, Theocharis
Theocharides, and Marios M Polycarpou. Embedded hardware-
efficient real-time classification with cascade support vector ma-
chines. IEEE transactions on neural networks and learning systems,
27(1):99–112, 2016.

[57] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and fre-
quency scaling: The laws of diminishing returns. In Proceedings
of the 2010 international conference on Power aware computing and
systems, pages 1–8, 2010.

[58] Suk-Bok Lee, Sai-Wang Tam, Ioannis Pefkianakis, Songwu Lu,
M. Frank Chang, Chuanxiong Guo, Glenn Reinman, Chunyi

bibliography 133

Peng, Mishali Naik, Lixia Zhang, and Jason Cong. A Scalable
Micro Wireless Interconnect Structure for CMPs. In Proceedings
of the 15th Annual International Conference on Mobile Computing
and Networking, MobiCom ’09, pages 217–228, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-702-8. doi: 10.1145/1614320.
1614345. URL http://doi.acm.org/10.1145/1614320.1614345.

[59] Charles Leech, Charan Kumar, Amit Acharyya, Sheng Yang,
Geoff V Merrett, and Bashir M Al-Hashimi. Runtime perfor-
mance and power optimization of parallel disparity estimation
on many-core platforms. ACM Transactions on Embedded Comput-
ing Systems (TECS), 17(2):41, 2018.

[60] Oded Lempel. 2nd Generation Intel® Core Processor Family:
Intel® Core i7, i5 and i3. In Hot Chips 23 Symposium (HCS), 2011
IEEE, pages 1–48. IEEE, 2011.

[61] Yves Lhuillier, Maroun Ojail, Alexandre Guerre, Jean-Marc
Philippe, Karim Ben Chehida, Farhat Thabet, Caaliph Andri-
amisaina, Chafic Jaber, and Raphaël David. Hars: A hardware-
assisted runtime software for embedded many-core architec-
tures. ACM Transactions on Embedded Computing Systems (TECS),
13(3s):102, 2014.

[62] Jian Li and Jose F Martinez. Dynamic power-performance adap-
tation of parallel computation on chip multiprocessors. In High-
Performance Computer Architecture, 2006. The Twelfth International
Symposium on, pages 77–87. IEEE, 2006.

[63] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman,
Dean M Tullsen, and Norman P Jouppi. Mcpat: an integrated
power, area, and timing modeling framework for multicore
and manycore architectures. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages
469–480. ACM, 2009.

[64] Wei Liu, Ying Tan, and Qinru Qiu. Enhanced Q-learning al-
gorithm for dynamic power management with performance
constraint. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, pages 602–605. European Design and
Automation Association, 2010.

[65] Daniel Llamocca, Cesar Carranza, and Marios Pattichis. Sep-
arable FIR filtering in FPGA and GPU implementations: En-
ergy, Performance, and Accuracy considerations. In Field Pro-
grammable Logic and Applications (FPL), 2011 International Confer-
ence on, pages 363–368. IEEE, 2011.

[66] Jiong Luo and Niraj K Jha. Power-efficient scheduling for hetero-
geneous distributed real-time embedded systems. IEEE Transac-

http://doi.acm.org/10.1145/1614320.1614345

bibliography 134

tions on Computer-Aided Design of Integrated Circuits and Systems,
26(6):1161–1170, 2007.

[67] Jun Ma, Guihai Yan, Yinhe Han, and Xiaowei Li. An analyt-
ical framework for estimating scale-out and scale-up power
efficiency of heterogeneous manycores. IEEE Transactions on
Computers, (1):1–1, 2016.

[68] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. Scalable power
control for many-core architectures running multi-threaded ap-
plications. In ACM SIGARCH Computer Architecture News, vol-
ume 39, pages 449–460. ACM, 2011.

[69] Mahesh Mamidipaka and Nikil Dutt. On-chip stack based
memory organization for low power embedded architectures.
In Proceedings of the conference on Design, Automation and Test in
Europe-Volume 1, page 11082. IEEE Computer Society, 2003.

[70] Grant Martin. Overview of the mpsoc design challenge. In
Proceedings of the 43rd annual Design Automation Conference, pages
274–279. ACM, 2006.

[71] Sparsh Mittal. A survey of techniques for improving energy
efficiency in embedded computing systems. International Journal
of Computer Aided Engineering and Technology, 6(4):440–459, 2014.

[72] Sparsh Mittal and Zhao Zhang. EnCache: Improving cache
energy efficiency using a software-controlled profiling cache.
IEEE EIT, 2012.

[73] Gordon E Moore. Gramming more components onto integrated
circuits. Electronics, 38:8, 1965.

[74] Atukem Nabina and Jose Luis Nunez-Yanez. Adaptive volt-
age scaling in a dynamically reconfigurable FPGA-based plat-
form. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 5(4):20, 2012.

[75] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand
governor. In Proceedings of the Linux Symposium, volume 2, pages
215–230. sn, 2006.

[76] Gung-Yu Pan, Jing-Yang Jou, and Bo-Cheng Lai. Scalable power
management using multilevel reinforcement learning for multi-
processors. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 19(4):33, 2014.

[77] Jun Cheol Park, Vincent Mooney, and Sudarshan K Srinivasan.
Combining data remapping and voltage/frequency scaling of
second level memory for energy reduction in embedded systems.
Microelectronics journal, 34(11):1019–1024, 2003.

bibliography 135

[78] Vinicius Petrucci, Orlando Loques, and Daniel Mossé. Lucky
scheduling for energy-efficient heterogeneous multi-core sys-
tems. In HotPower, 2012.

[79] Roman Plyaskin, Alejandro Masrur, Martin Geier, Samarjit
Chakraborty, and Andreas Herkersdorf. High-level timing
analysis of concurrent applications on MPSoC platforms us-
ing memory-aware trace-driven simulations. In VLSI System on
Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP, pages 229–234.
IEEE, 2010.

[80] Viswanathan Lakshmi Prabha and Elwin Chandra Monie. Hard-
ware architecture of reinforcement learning scheme for dynamic
power management in embedded systems. EURASIP Journal on
Embedded Systems, 2007(1):065478, 2007.

[81] Alok Prakash, Siqi Wang, Alexandru Eugen Irimiea, and Tulika
Mitra. Energy-efficient execution of data-parallel applications
on heterogeneous mobile platforms. In Computer Design (ICCD),
2015 33rd IEEE International Conference on, pages 208–215. IEEE,
2015.

[82] Ashur Rafiev, Alexei Iliasov, Alexandre Romanovsky, Andrey
Mokhov, Fei Xia, and Alex Yakovlev. Studying the Interplay of
Concurrency, Performance, Energy and Reliability with ArchOn–
An Architecture-Open Resource-Driven Cross-Layer Modelling
Framework. In Application of Concurrency to System Design
(ACSD), 2014 14th International Conference on, pages 122–131.
IEEE, 2014.

[83] Ashur Rafiev, F Xia, A Iliasov, R Gensh, A Aalsaud, A Ro-
manovsky, and A Yakovlev. Power-proportional modelling fidelity.
Computing Science, Newcastle University, 2015.

[84] Ashur Rafiev, F Xia, A Iliasov, R Gensh, A Aalsaud, A Ro-
manovsky, and A Yakovlev. Power-proportional modelling fidelity.
Computing Science, Newcastle University, 2015.

[85] Ashur Rafiev, Andrey Mokhov, Fei Xia, Alexei Iliasov, Rem
Gensh, Ali Aalsaud, Alexander Romanovsky, and Alex Yakovlev.
Resource-driven modelling for managing model fidelity. In
Model-Implementation Fidelity in Cyber Physical System Design,
pages 25–55. Springer, 2017.

[86] Basireddy Karunakar Reddy, Amit Kumar Singh, Dwaipayan
Biswas, Geoff V Merrett, and Bashir M Al-Hashimi. Inter-cluster
Thread-to-core Mapping and DVFS on Heterogeneous Multi-
cores. IEEE Transactions on Multi-Scale Computing Systems, 2017.

bibliography 136

[87] Basireddy Karunakar Reddy, Geoff V Merrett, Bashir M Al-
Hashimi, and Amit Kumar Singh. Online concurrent workload
classification for multi-core energy management. In Design,
Automation Test in Europe Conference Exhibition (DATE), pages
621–624, 2018.

[88] Phil Rogers and AC Fellow. Heterogeneous system architecture
overview. In Hot Chips, volume 25, 2013.

[89] Hiroshi Sasaki, Satoshi Imamura, and Koji Inoue. Coordinated
power-performance optimization in manycores. In Proceedings
of the 22nd international conference on Parallel architectures and
compilation techniques, pages 51–62. IEEE Press, 2013.

[90] Marcus Schmitz, Bashir Al-Hashimi, and Petru Eles. Energy-
efficient mapping and scheduling for DVS enabled distributed
embedded systems. In Proceedings of the conference on Design,
automation and test in Europe, page 514. IEEE Computer Society,
2002.

[91] Semiconductor Industry Association. ITRS: Inter-
national Technology Roadmap for Semiconductors .
http://www.itrs.net/reports.html [online], 2005.

[92] Semiconductor Industry Association. ITRS: Inter-
national Technology Roadmap for Semiconductors .
http://www.itrs.net/reports.html [online], 2006.

[93] Rishad A Shafik, Anup Das, Sheng Yang, Geoff Merrett, and
Bashir M Al-Hashimi. Adaptive energy minimization of openmp
parallel applications on many-core systems. In Proceedings of the
6th Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures, pages 19–24. ACM, 2015.

[94] Rishad Ahmed Shafik. Investigation into low power and reliable
system-on-chip design. 2010.

[95] Rishad Ahmed Shafik, Bashir M Al-Hashimi, Sandip Kundu,
and Alireza Ejlali. Soft error-aware voltage scaling technique
for power minimization in application-specific multiprocessor
system-on-chip. Journal of Low Power Electronics, 5(2):145–156,
2009.

[96] Rishad Ahmed Shafik, Anup K Das, Luis Alfonso Maeda-Nunez,
Sheng Yang, Geoff V Merrett, and Bashir Al-Hashimi. Learning
transfer-based adaptive energy minimization in embedded sys-
tems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(6):877–890, 2016.

bibliography 137

[97] Hao Shen, Jun Lu, and Qinru Qiu. Learning based DVFS for
simultaneous temperature, performance and energy manage-
ment. In Quality Electronic Design (ISQED), 2012 13th International
Symposium on, pages 747–754. IEEE, 2012.

[98] Hao Shen, Ying Tan, Jun Lu, Qing Wu, and Qinru Qiu. Achiev-
ing autonomous power management using reinforcement learn-
ing. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 18(2):24, 2013.

[99] Simon McIntosh-Smith. Trends in heterogeneous systems archi-
tectures. http://www.people.cs.bris.ac.uk [online], 2013.

[100] Amit Kumar Singh, Charles Leech, Basireddy Karunakar Reddy,
Bashir M Al-Hashimi, and Geoff V Merrett. Learning-based
run-time power and energy management of multi/many-core
systems: current and future trends. Journal of Low Power Electron-
ics, 13(3):310–325, 2017.

[101] Sam Skalicky, Sonia Lopez, Marcin Lukowiak, and Andrew G
Schmidt. A parallelizing matlab compiler framework and run
time for heterogeneous systems. In High Performance Computing
and Communications (HPCC), 2015 IEEE 7th International Sym-
posium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th
International Conferen on Embedded Software and Systems (ICESS),
2015 IEEE 17th International Conference on, pages 232–237. IEEE,
2015.

[102] E Del Sozzo, Gianluca C Durelli, EMG Trainiti, Antonio Miele,
Marco D Santambrogio, and Cristiana Bolchini. Workload-aware
power optimization strategy for asymmetric multiprocessors. In
Proceedings of the 2016 Conference on Design, Automation & Test in
Europe, pages 531–534. EDA Consortium, 2016.

[103] Srinath Sridharan, Gagan Gupta, and Gurindar S Sohi. Adaptive,
efficient, parallel execution of parallel programs. ACM SIGPLAN
Notices, 49(6):169–180, 2014.

[104] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Ba-
nakar, Mahesh Balakrishnan, and Peter Marwedel. Reducing
energy consumption by dynamic copying of instructions onto
onchip memory. In System Synthesis, 2002. 15th International
Symposium on, pages 213–218. IEEE, 2002.

[105] Richard S Sutton and Andrew G Barto. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge, 1998.

[106] Ibrahim Takouna, Wesam Dawoud, and Christoph Meinel. Accu-
rate mutlicore processor power models for power-aware resource
management. In Dependable, Autonomic and Secure Computing

bibliography 138

(DASC), 2011 IEEE Ninth International Conference on, pages 419–
426. IEEE, 2011.

[107] Ying Tan, Wei Liu, and Qinru Qiu. Adaptive power manage-
ment using reinforcement learning. In Proceedings of the 2009
International Conference on Computer-Aided Design, pages 461–467.
ACM, 2009.

[108] Gerald Tesauro. Online resource allocation using decomposi-
tional reinforcement learning. In AAAI, volume 5, pages 886–891,
2005.

[109] Constantin Timm, Andrej Gelenberg, F Weichert, and P Mar-
wedel. Reducing the energy consumption of embedded systems
by integrating general purpose GPUs. TU, Dep. of Computer
Science, 2010.

[110] A Torrey, J Cleman, and P Miller. Comparing interactive schedul-
ing in Linux. Software-Practices & Experience, 34(4):347–364, 2007.

[111] Matthew Travers, Rishad Shafik, and Fei Xia. Power-normalized
performance optimization of concurrent many-core applications.
In 2016 16th International Conference on Application of Concurrency
to System Design (ACSD), pages 94–103. IEEE, 2016.

[112] Kunio Uchiyama. Power-efficient heteregoneous parallelism for
digital convergence. In VLSI Circuits, 2008 IEEE Symposium on,
pages 6–9. IEEE, 2008.

[113] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo
Narvaez, and Joel Emer. Scheduling heterogeneous multi-
cores through performance impact estimation (PIE). In ACM
SIGARCH Computer Architecture News, volume 40, pages 213–224.
IEEE Computer Society, 2012.

[114] Matthew J Walker, Stephan Diestelhorst, Andreas Hansson,
Anup K Das, Sheng Yang, Bashir M Al-Hashimi, and Geoff V
Merrett. Accurate and stable run-time power modeling for mo-
bile and embedded CPUs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(1):106–119, 2017.

[115] Alice Wang and Anantha Chandrakasan. A 180-mv subthreshold
fft processor using a minimum energy design methodology.
IEEE JSSC, 40(1):310–319, 2005.

[116] Huaide Wang, Meng-Hsiung Hung, Yu-Ching Yeh, and Jri Lee.
A 60-GHz FSK transceiver with automatically-calibrated demod-
ulator in 90-nm CMOS. In VLSI Circuits (VLSIC), 2010 IEEE
Symposium on, pages 95–96, June 2010. doi: 10.1109/VLSIC.2010.
5560338.

bibliography 139

[117] Yanzhi Wang and Massoud Pedram. Model-free reinforcement
learning and bayesian classification in system-level power man-
agement. IEEE Transactions on Computers, 65(12):3713–3726, 2016.

[118] Yanzhi Wang, Qing Xie, Ahmed Ammari, and Massoud Pe-
dram. Deriving a near-optimal power management policy using
model-free reinforcement learning and bayesian classification.
In Proceedings of the 48th Design Automation Conference, pages
41–46. ACM, 2011.

[119] Yanzhi Wang, Maryam Triki, Xue Lin, Ahmed C Ammari, and
Massoud Pedram. Hierarchical dynamic power management
using model-free reinforcement learning. In Quality Electronic
Design (ISQED), 2013 14th International Symposium on, pages
170–177. IEEE, 2013.

[120] Yi-Chu Wang and Kwang-Ting Cheng. Energy and performance
characterization of mobile heterogeneous computing. In Signal
Processing Systems (SiPS), 2012 IEEE Workshop on, pages 312–317.
IEEE, 2012.

[121] Vincent M Weaver. Linux perf_event features and overhead. In
The 2nd International Workshop on Performance Analysis of Workload
Optimized Systems, FastPath, volume 13, 2013.

[122] Yuan Wen, Zheng Wang, and Michael FP O’boyle. Smart multi-
task scheduling for OpenCL programs on CPU/GPU heteroge-
neous platforms. In High Performance Computing (HiPC), 2014
21st International Conference on, pages 1–10. IEEE, 2014.

[123] Henry Wong and Tor M Aamodt. The performance potential
for single application heterogeneous systems. In 8th Workshop
on Duplicating, Deconstructing, and Debunking, 2009.

[124] Yun Wu, Dimitrios S Nikolopoulos, and Roger Woods. Runtime
support for adaptive power capping on heterogeneous socs. In
Embedded Computer Systems: Architectures, Modeling and Simu-
lation (SAMOS), 2016 International Conference on, pages 71–78.
IEEE, 2016.

[125] Fei Xia, Ashur Rafiev, Ali Aalsaud, Mohammed Al-Hayanni,
James Davis, Joshua Levine, Andrey Mokhov, Alexander Ro-
manovsky, Rishad Shafik, and Alex Yakovlev. Voltage, through-
put, power, reliability, and multicore scaling. Computer, 50(8):
34–45, 2017.

[126] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. Energy-aware
scheduling for real-time multiprocessor systems with uncer-
tain task execution time. In Design Automation Conference, 2007.
DAC’07. 44th ACM/IEEE, pages 664–669. IEEE, 2007.

bibliography 140

[127] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring power-
performance tradeoffs in database systems. In Data Engineering
(ICDE), 2010 IEEE 26th International Conference on, pages 485–496.
IEEE, 2010.

[128] Sheng Yang, Rishad A Shafik, Geoff V Merrett, Edward Stott,
Joshua M Levine, James Davis, and Bashir M Al-Hashimi. Adap-
tive energy minimization of embedded heterogeneous systems
using regression-based learning. In Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2015 25th International
Workshop on, pages 103–110. IEEE, 2015.

[129] Rong Ye and Qiang Xu. Learning-based power management
for multicore processors via idle period manipulation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(7):1043–1055, 2014.

[130] Lin Yuan and Gang Qu. Analysis of energy reduction on dy-
namic voltage scaling-enabled systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(12):
1827–1837, 2005.

[131] Yuhao Zhu and Vijay Janapa Reddi. High-performance and
energy-efficient mobile web browsing on big/little systems. In
High Performance Computer Architecture (HPCA2013), 2013 IEEE
19th International Symposium on, pages 13–24. IEEE, 2013.

[132] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexan-
dra Fedorova, and Manuel Prieto. Survey of scheduling tech-
niques for addressing shared resources in multicore processors.
ACM Computing Surveys (CSUR), 45(1):4, 2012.

	Declaration
	Certification
	Dedication
	Acknowledgements
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	I Thesis Chapters
	1 Introduction
	1.1 Motivation
	1.2 Statement of originality
	1.3 Thesis Organization

	2 Background and Literature Review
	2.1 Introduction
	2.2 Power Consumption of CPU
	2.3 Power management techniques
	2.3.1 Dynamic Voltage and Frequency Scaling
	2.3.2 Many/multi-cores Systems
	2.3.3 Heterogeneous Many-core Systems
	2.3.4 Power-aware dark silicon management
	2.3.5 Workload scheduling and sharing resources

	2.4 Literature Review
	2.4.1 Power Management Techniques During Design
	2.4.2 Runtime Power Management Techniques

	3 Platform Exploration Experiments
	3.1 Introduction
	3.2 System Architecture and Platform description
	3.2.1 Applications Workload
	3.2.2 Performance Counters

	3.3 Characterization Experiments
	3.3.1 Dynamic voltage frequency scaling
	3.3.2 CPU-power and number of active cores
	3.3.3 Duty cycling with idle-wait state
	3.3.4 Performance Evaluation

	3.4 Summary and Conclusion

	4 Model-based Runtime Management of Concurrent Workloads
	4.1 Introduction
	4.2 System Architecture and Applications
	4.2.1 Heterogeneous System
	4.2.2 Applications Workload

	4.3 Proposed Approach
	4.3.1 Modeling Power/Performance Tradeoffs
	4.3.2 Modelling offline and online
	4.3.3 Runtime Adaptation

	4.4 Experiment Results
	4.5 Summary and Conclusion

	5 Model-free Runtime Management of Concurrent Workloads
	5.1 Introduction and Motivation
	5.2 Experimental Platform And Applications
	5.3 Workload Classification Taxonomy
	5.4 Runtime Management Method And Governor Design
	5.4.1 Workload classification
	5.4.2 Control decision making
	5.4.3 RTM govenor design

	5.5 Experimental Results
	5.5.1 A Case Study of Concurrent Applications
	5.5.2 Per-interval Re-classification
	5.5.3 RTM stability, tobustness and complexity
	5.5.4 Comparative evaluation of the RTM

	5.6 Summary and Conclusion

	6 Reduced-Complexity Runtime Management of Concurrent Workloads
	6.1 Introduction
	6.2 State space analysis
	6.3 Proposed Methodology
	6.4 Power and Performance Related Models
	6.5 RTM Workload Classifications
	6.6 Low-Complexity runtime
	6.7 Proposed RunTime results
	6.8 Summary and Conclusion

	7 Conclusions and Future Work
	7.1 Summary and Conclusion
	7.2 Future Work

	II Thesis Appendices
	III Thesis Bibliography
	Bibliography

