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Abstract

Multicellular systems exhibit complex population scale behaviour that
emerge from the interactions between constituent cells. Integrative
modelling (IM) techniques are a valuable tool for studying these sys-
tems capturing processes that occur at many temporal and spatial
scales. The application of IM to multicellular systems is challenging
as it is knowledge and resource intensive, additionally there do not
exist effective frameworks or tools, inhibiting its wider application in
Systems and Synthetic biology.

This thesis presents Simbiotics, a novel IM framework for the mod-
elling of mixed species bacterial consortia. Simbiotics is a spatially
explicit multi-scale modelling platform for the design, simulation and
analysis of bacterial populations. A library of modules simulating
features such as cell geometries, physical force dynamics, genetic cir-
cuits, metabolic pathways, chemical diffusion and cell interactions is
implemented, that the modeller may compose into their own cus-
tom models. Common modelling methods such as Boolean networks,
differential equations, Gillespie models and SBML are implemented.
With the platform in-silico experiments can be conducted with pro-
grammed experiment interactions, data collection and analysis. The
framework is extendable and modular, allowing for the library to be
updated as knowledge progresses. A novel file format for the reuse
and communication of multicellular models and simulation methods
is also implemented. Additionally an intuitive graphical user interface,
Easybiotics, has been developed allowing for multicellular modelling
with minimal programming experience.

Four novel case studies are pursued with Simbiotics studying the emer-
gent behaviours of multicellular systems. The effect of physical cell



interactions are characterised in the first two studies. Investigation
into how chemical signalling and intracellular dynamics influence pop-
ulation dynamics and patterns are studied in the final two case studies.
These studies demonstrate how Simbotics can be integrated into a Sys-
tems/Synthetic biology workflow, facilitating the studying of natural
systems and as a CAD tool for developing novel synthetic systems.
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Chapter 1

Introduction and Motivation

This chapter introduces and motivates the research, outlining the scope, and es-
tablishing a set of aims and objectives. The contributions of this research are then
described, followed by an overview of the thesis structure.

1.1 Studying complex systems

The natural world exhibits complex and vibrant behaviour that emerge from dy-
namics of parts existing at systems at many scales [58, 106, 173, 187]. The design
of natural systems has allowed for the stacking of complexity and evolution of
robust, versatile systems spanning many orders of magnitude [227]. Discernment
of how nature arranges itself can be gained through the measured observation of
phenomena and formalisation of our understanding into models - those models
can then be used to make experimentally testable predictions, validating whether
our understanding of a system is correct or not. Through this process we have
decoded some of the design and regulation principles of nature, and continued
investigation hopes to uncover vital strategies by which we can manage natural
systems and expand our own engineering capabilities.

Many systems in nature fall under the umbrella discipline of complexity the-
ory, which is the study of complex systems (CS). A CS is a network of many
interacting parts, which establishes organisation through the ensemble of interac-
tions between those parts [77]. Multicellular systems such as bacterial colonies are
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an example of a CS, where each cell is a part that can interact with other cells
thereby forming colonies and other multicellular organisations such as biofilms
[53, 104]. Figure 1.1 overviews length and time scales at which processes relating
to multicellular systems occur. CS can exhibit adaptive behaviour, emerging from
feedback loops between large scale population organisation and small scale part

Figure 1.1: An overview of the different scales at play in multicellular systems.
At the most fundamental level they are composed on quantum phemoena, which
gives rise to the atomistic phenomena, and so on. Multiscale systems such as these
exhibit forward and backward causality, depending feedback loops of features at
many scales modulating each others behaviour.

4



1. Introduction and Motivation

dynamics, making it difficult to identify cause-and-effect relationships within a
system [39].

The formal study of CS emerged in the 1970s [219], and has since been applied
to domains such as biology, medicine, politics, and economics [83, 129, 133, 141].
Computational modelling techniques are used to facilitate in the study of CS
across these domains [39, 70, 86, 119], often involving the development of multi-
scale models in order to simulate the feedback between processes at small and
large scales [165]. Despite the wide spread application of multi-scale methods, the
development of novel models is still a technical task which requires programming
expertise. Software frameworks have been developed to ease the construction of
multi-scale models [25, 36], however these still require programming to develop
new models in, restricting the capacity of domain experts who may not have
programming expertise to engage in model building without assistance from an
informatician.

1.2 Multicellular bacterial systems

Understanding how complex systems of bacteria behave is invaluable for devel-
oping solutions to a multitude of problems. Bacteria are involved in a phenom-

Figure 1.2: An example of some of the emergent behaviours and features of
multicellular bacterial systems. Image taken from [64]
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ena ranging from our digestion and immune systems, to ecological processes and
industrial methods such as bioremediation [20, 43, 82, 97, 213]. Biofilms are
a particularly prevalent complex community of bacteria, being one of the most
widely distributed and successful modes of life on Earth [205]. They typically con-
sist of multiple species of bacteria that form synergistic relationships, embedded
in a self-secreted extracellular matrix which helps maintain homeostasis within
the biofilm and regulates interactions with the environment [64]. They exhibit
emergent and self-organising behaviours such as the formation of mushroom-like
structures [40] and colony expansion through mechanisms such as coordinated
twitching-motility [27, 190]. An overview of some biofilm features can be seen in
Figure 1.2.

Research into biofilms has deduced many of processes involved in biofilm for-
mation and development. The systems emerge from interplay between molecular
interactions and the spatial organisation of cells [104, 145]. Short-range phys-
ical interactions such as membrane-mediated adhesion and cell-shoving as well
as long-range chemical interactions such as quorum-sensing [153] help coordinate
cells into a physical structure and cooperative gene regulatory behaviour.

1.3 Systems and Synthetic Biology

Systems Biology is the study of life as it is, and is concerned with the mathe-
matical and computational modelling of biological systems [103, 121]. Systems
Biology considers systems to be structured networks with dynamics between ele-
ments in the network, giving rise to functional behaviour. This approach has lead
to identification of design principles of biological systems, such as the discovery
of recurrent motifs in gene networks [5, 6].

Computational techniques in this domain have been successfully applied to
develop a whole-cell model of Mycoplasma genitalium [41], allowing for pheno-
type prediction from genotype. Characterisation of natural systems through Sys-
tems Biology research has paved the way for understanding biological systems as
mechanistic biochemical systems, and how we can isolate functional components
of cells.

Synthetic Biology on the other hand is concerned with life as it could be, and
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aims to repurpose biological components for novel applications, such as creating
customised cells which carry out targeted functions [118]. Some such systems have
been conceived; such as a genetic toggle switch [13, 67], synthetic gene circuits
that allow either single cells or population of cells produce synchronous oscilla-
tions of gene regulation [45, 56, 66, 206], population control [235], event-triggered
biofilm formation [123], and possibly most interesting - an E. coli mutant that
can count to 3 [65].

Research in Synthetic Biology has shown that integration of large synthetic
circuits into individual cells act unpredictably, and that to solve this problem the
synthetic circuit should be decomposed into smaller more predictable modules,
which are distributed across numerous cellular species that communicate through
chemical signalling [193]. A major challenge in the development of these systems
resides in their scalability and robustness, thus multi-scale models of distributed
cellular devices are essential in their realisation.

1.4 Aims and Objectives

This thesis aims to advance multi-scale modelling techniques for studying mul-
ticellular systems. There exist a wide range of modelling techniques for simu-
lating intracellular processes such as gene regulatory networks and metabolisms
[99, 184]. Despite numerous multicellular modelling tools and frameworks emerg-
ing [127, 130], there is yet a flexible platform that can model a wide range of
multicellular systems and be readily extended as our understanding of biologi-
cal systems advances. With the emergence of bioengineering through disciplines
such as Molecular, Systems, Synthetic Biology and Microbiology, the availability
of easy to use multi-scale modelling tools is invaluable. Such tools can allow for
low-cost in-silico testing of system feasibility and robustness prior to synthesis,
and in the formal design and communication of bioengineered devices.

I aim to develop novel methods for modelling multicellular systems by in-
tegrating state-of-the-art techniques into a toolbox for building, simulating and
analysing models. The toolbox should allow modellers to express a wide range of
systems features in an intuitive manner with minimal programming experience.
The toolbox framework should be implemented flexibly such that new methods

7



1. Introduction and Motivation

can be readily added as scientific knowledge progresses. The developed method
should be applicable to both Systems and Synthetic Biology, allowing for the
study of natural population dynamics, and for aiding in the design of novel dis-
tributed cellular devices.

The platform is then to be used for investigating the emergent dynamics of
bacterial populations. Specifically, we will conduct an investigation into how
physical and biochemical interactions between cells can effect population dynam-
ics, and how we can design these interactions to produce directed synthetic pop-
ulation behaviour.

The goals of this thesis have been formalised into a two overarching aims and
2 specific objectives for each of those aims.

• Aim 1: Develop an easy to use, flexible and extendable workbench for
integrative modelling of multicellular populations.

• Aim 2: Model and analyse multicellular populations patterned by physical
and biochemical interactions.

• Objective 1: Development of an extendable modelling platform and data
format which allows one to express models of interacting multi-species bac-
teria, simulate those systems and perform analysis.

• Objective 2: Development of an easy to use interface to enable those
with minimal programming experience to build models of mixed consortia
of bacteria.

• Objective 3: Study the effect of physical shoving and cell-cell adhesion on
bacterial aggregation and biofilm formation.

• Objective 4: Study the effect of synthetic chemical signalling and gene-
regulation on biophysical patterning in bacterial populations.

1.5 Structure of the thesis

The thesis is divide into two parts. Part I introduces the thesis and describes
the background theory relating to multicellular bacterial systems and state of the

8
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art modelling techniques, followed by the description of how these concepts have
been integrated into a user friendly multi-scale modelling software platform. Part
II includes four case study applications of the software, studying the population
patterning emerging from physical and biochemical interactions. The chapter
structure is described below.

Part I
Chapter 2 - Background
This chapter describes the concepts underpinning this work, and presents the rel-
evant biological theory for modelling bacterial populations, as well as the compu-
tational techniques for modelling these. A literature review of existing modelling
tools is also presented.

Chapter 3 - Simbiotics, an integrative framework for modelling multi-
cellular populations
In this chapter the Simbiotics modelling framework is presented, describing its
implementation and features. The mathematical implementation of simulation
features are described here.

Chapter 4 - Validation of Simbiotics modelling features
This chapter presents the validation tests performed on Simboitics, ensuring the
correctness of the implemented features. Simbiotics is also used to reproduce
literature results from other simulators in this domain, ensuring the modelling
features can generate previously published behave findings.

Chapter 5 - Biomodel and numerical methods representation
This chapter describes the representation of biomodels in Simbiotics, as well as
how these models are mapped to numerical methods to approximate them. The
file formats developed for communicating biomodels and simulation libraries is
also presented.

Chapter 6 - Easybiotics, a graphical environment enabling rapid pop-
ulation modelling and analysis

9
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In this chapter I introduce Easybiotics, which enables the use of Simbiotics from a
graphical user interface. The modelling environment and features for facilitating
in Systems and Synthetic biology contexts are described.

Part II
Chapter 7 - Study 1, Dental plaque: Bacterial coaggregation (Pub-
lished)
In this chapter Ipresent a study conducted with Simbiotics regarding the coag-
gregation of bacterial species mediated by purely physical interactions.

Chapter 8 - Study 2, Synthetic E. coli biofilms
In this chapter I present a study conducted with Simbiotics regarding the influ-
ence of physical interactions on biofilm formation and structure.

Chapter 9 - Study 3, Population Dynamics of Autocatalytic Sets in
a Compartmentalised Spatial World
In this chapter I present a study conducted with Simbiotics on the dynamics of
populations of compartments of autocatalytic sets.

Chapter 10 - Study 4, Pattern formation via synthetic cell signalling
In this chapter I present a study conducted with Simbiotics on pattern formation
based on synthetic biochemical interactions between cells.

Chapter 11 - Discussion and Conclusions
This chapter concludes the thesis, reviewing the contributions in relation to the
aims and objectives. The limitations of the work, use of Simbiotics by other
individuals, and the future outlook of the work are also presented.

10
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Figure 1.3: An overview of the software components contributed in my thesis,
showing the relationships between the developed methods. (A), (B) and (C) are
described in the Contributions - Section 1.6
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1.6 Contributions

The key contributions of this work are highlighted here. The developed software,
as well as the the models developed for case studies were the main deliverable
contributions. Simbiotics (Chapter 3) was published with case study findings
for the coaggregation and biofilm studies (Chapters 7 and 8) in ACS Synthetic
Biology in 2017, and Chapter (9) was published in Life 2018 (Full citations are
shown in Section 1.7).

1.6.1 Simbiotics

A primary deliverable from the research is Simbiotics, a modelling framework
for multi-scale modelling of multicellular systems in a spatial domain (shown in
1.3 (A)). The platform integrates state-of-the-art methods for simulating bacte-
ria with an spatially explicit agent-based model, enabling multi-scale modelling
of physically realistic multicellular and multi-species systems. The platform im-
plementation was motivated by a review of existing model techniques, frontier
questions relating to the studying multicellular systems, and the requirements
of biologists engaging in modelling in both Systems and Synthetic biology. The
platform was therefore developed as a toolbox, providing a library of modelling
techniques which can be compositional structured in a model to represent, simu-
late and analyse a desired multicellular system.

Simbiotics can be found at: https://bitbucket.org/simbiotics/simbiotics/
wiki/Home

1.6.2 Easybiotics

Another deliverable of the project is Easybiotics, a graphical user interface (GUI)
for engaging in multi-scale modelling of multicellular systems with minimal pro-
gramming experience (shown in 1.3 (B)). The GUI provides a user-friendly layer
of abstraction on top of the Simbiotics framework, providing full access to Simbi-
otics modelling and analysis features. Easybiotics allows for model development,
simulation and analysis to be done via click and select commands.

12
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Easybiotics is included as part of the Simbiotics package at:https://bitbucket.
org/simbiotics/simbiotics/wiki/Home

1.6.3 Biomodel and method format

A file format for representing multi-scale population models and modelling meth-
ods was implemented for reuse, communication and formalisation of the developed
methods (shown in 1.3 (C)). The format is general and non-prescriptive, with a
flexible and extendable implementation to allow for it to be maintained as related
knowledge and methods advance. This was developed with consideration to the
growing standardisation of existing formats such as SBML, allowing for popula-
tions of interacting SBML models to be defined. The file format is presented in
Chapter 5.

1.6.4 Case study models

The case studies involved developing models of various multicellular systems.
These models all follow the population biomodel format described above. Each
of the models are briefly described, including where those models can be found.

Coaggregation model

The model developed in the coaggregation study (Chapter 7) simulated how
purely physical forces can influence the aggregation of bacteria in a fluid phase.
The model simulates bacteria is a spheres free-floating a fluid phase which experi-
ence a passive mixing force due to Brownian motion, and can interact with other
cells through specific membrane-mediated interactions and non-specific electro-
static interactions.

The Java version of the model can be found in the Simbiotics source code at:
simbiotics.examples.casestudies.coaggregation.Study_Coaggregation

The JSON encoding of the file (which follows the format described in Chapter
5) can be found in the Simbiotics examples folder: examples/models/casestudies/-
coaggregation.json
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Biofilm model

A model of biofilm formation and development was developed (Chapter 8), simu-
lating how physical forces affect biofilm structure. The model simulates bacteria
as spheres which are free-floating in a fluid phase where the lower boundary of the
domain was modelled as a solid substratum. Cells experience a passive mixing
force due to Brownian motion, and can adhere to others cells and the substra-
tum via membrane-mediated interactions. Cells growth is modelled assuming a
constant nutrient supply. The model also includes that cells which have adhered
to the substratum/biofilm experience a lower mixing force and a higher growth
rate.

The Java version of the model can be found in the Simbiotics source code at:
simbiotics.examples.casestudies.biofilm.Study_Biofilm

The JSON encoding of the file (which follows the format described in Chapter
5) can be found in the Simbiotics examples folder: examples/models/casestud-
ies/biofilm.json

Compartmentalized autocatalytic sets model

A model of compartmenatalized autocatalytics sets in a spatial domain was
developed (Chapter 9), modelling the influence of inter-compartment diffusble
molecules on molecular activity across the population of compartments. Com-
partments are modelled as immotile spheres on a flat plane, embedded in a 2D
grid for simulating fluxes of extracellular chemical concentrations. The model
includes a Gillespie model of a chemical reaction networks embedded in spatial
compartments, where some of the chemicals in that network may diffuse out of a
compartment, through the extracellular space, and into other compartments.

The Java version of the model can be found in the Simbiotics source code at:
simbiotics.examples.casestudies.raf.Study_RAFs

The JSON encoding of the file (which follows the format described in Chapter
5) can be found in the Simbiotics examples folder: examples/models/casestud-
ies/raf_sets.json

14
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Pulse generator model

A model of a synthetic genetic circuit for generating a gene regulation pulse
across a population was developed (Chapter 10). The model represents cells as
static spheres on a flat plane. embedded in a 2D grid for simulating extracellular
chemical diffusion. Two cellular species are modelled, composing a sender and
receiver system, where the sender produces AHL and the receiver responds to
AHL by producing GFP for a limited time. AHL is secreted through the senders
membrane into the extracellular space, diffuses through the extracellular space,
and is transported into the receiver cells via an active transport mechanism. The
emergent dynamics of the system when a population of sender cells are placed in
a population of receiver cells is a pulse of GFP being expressed radiating from
the sender positions.

The Java version of the model can be found in the Simbiotics source code at:
simbiotics.examples.casestudies.pattern.Study_PulseGenerator

The JSON encoding of the file (which follows the format described in Chapter
5) can be found in the Simbiotics examples folder: examples/models/casestud-
ies/pulse_generator.json

Pattern formation model

A model of synthetic multicellular pattern formation was developed (Chapter
10). The model simulations cells and the spatial domain in the same was as
Pulse generator model, but only simulates a single Receiver species. The receiver
species has a synthetic genetic circuit to produce one of two fluorescent proteins,
induced by one of two possible diffusable signal molecules, and also produces and
secretes the signal molecule for the other fluorescent protein. This results in the
formation of stripes (or bands) of gene regulation forming throughout the colony,
radiating from where the system was initially induced.

The Java version of the model can be found in the Simbiotics source code at:
simbiotics.examples.casestudies.pattern.Study_PatternFormation

The JSON encoding of the file (which follows the format described in Chapter
5) can be found in the Simbiotics examples folder: examples/models/casestudies/-
pattern_formation.json
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1.6.5 Use of Simbiotics by the community

Simbiotics has been used by the Newcastle 2017 iGEM team to model a dis-
tributed biosensor. (http://2017.igem.org/Team:Newcastle)

Simbiotics was used by David Nettleship in his Undergraduate dissertation "Inves-
tigating programmable pattern formation in synthetic bacterial colonies", 2017.

Simbiotics and Easybiotics are being used by the Newcastle 2018 iGEM team
to model chemotaxis.

1.7 Publications and presented work

Journal publications

J. Naylor, H. Fellermann, Y. Ding, W.K. Mohammed, N.S. Jakubovics, F. Dafhnis-
Calas , S. Heeb, M. Camara, J. Mukherjee, C.A. Biggs, P.C. Wright, N. Krasnogor
Simbiotics: A Multiscale Integrative Platform for 3D Modeling of Bac-
terial Populations in ACS Synthetic Biology, 6(7):1194-1210, July 2017

W. Hordikj, J. Naylor, H. Fellermann, N. Krasnogor Population Dynamics
of Autocatalytic Sets in a Compartmentalized Spatial World in Life,
8(3):33, August 2018

J. Naylor, H. Fellermann, N. Krasnogor Easybiotics: a GUI for 3D phys-
ical modelling of multi-species bacterial populations in Bioinformatics,
btz131, February 2019

Unpublished

J. Naylor, F. Romero-Campero, H. Fellermann, N. Kransogor Pattern forma-
tion via synthetic cell signalling (2019)
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Conferences/Workshops

ECAL in York, 2015
SSBSS in Volterra, 2016
ABC in Karlsruhe, 2016
SSBSS in Cambridge, 2017

17



1. Introduction and Motivation

18



Chapter 2

Background

This chapter presents an overview of the underpinning concepts of this research,
followed by the background theory of relevant biological theory, and the modelling
techniques used to model these phenomena. It alsos present a review of some
existing software tools in the domain of multi-scale multicellular modelling. From
this literature and software review, we establish a set of requirements the developed
software should achieve in order to advance modelling techniques.

2.1 Overview

Development of a software tool for integrative modelling of multicellular system
requires a thorough understanding of the processes governing these systems and
the techniques used to model them. Multicellular systems cover a wide range
of phenomena, ranging from low-density populations of interacting bacteria to
tightly packed cells in biofilms and tissues, and though the fundamental aspects
of cells remain the same, the most appropriate or efficient techniques for modelling
them can differ. For this reason we must establish the level of model abstraction
we are choosing to implement in the software in order to inform the direction of
the literature review.

As we are interested in feedback between micro-scale biochemical reactions
and macro-scale spatial organisation, it is crucial to represent the system as a
compartmentalised spatial domain, such that reactions may occur at localised
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Figure 2.1: Schematic showing the different scales in bacterial multicellular sys-
tems and exemplifying some of cell processes. The bottom row shows some exam-
ple processes of bacterial cells, illustrating how these mechanisms can be present
across multiple species of bacteria (middle row), and how these lead to emergent
colony organisations (top image).

positions. Cells are considered to be the individual entities in the model (acting
as the parts in a complex system). Cells should be able to move around and collide
with each other. Each cell should also have some internal behaviour describing
chemical processes occurring within it. Cell internal behaviour should then be
coupled to the spatial domain allowing the chemical signalling between cells.

With these constraints in mind, we can determine what the most relevant
features of multicellular systems are for our modelling framework, and what the
most appropriate modelling methods are to simulate them. As we consider cells
to be the interacting entities in the model, we consider the theory underpinning
the single cell (the processes that occur within a cell), and the theory behind the
social cell (the processes by which cells interact).
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This chapter is split into 3 sections. The first section presents a review of
the biological theory underpinning the single cell and the social cell. The second
section then reviews the methods applied to modelling the single cell and the
social cell. The third section presents a software review of existing multicellular
modelling tools, considering the current cutting-edge technologies in this area of
research, and what the current obstacles to development in the field are.

2.2 Biological theory

This section presents the biological theory of multicellular systems with consider-
ation the level of abstraction intended for the modelling framework. We take the
perspective that: the cell is a physical individual that can move around, collide
and adhere to things, it has a intracellular dynamics such as gene regulation and

Figure 2.2: Schematic showing the key features of bacterial cell relevant to the
level of model abstract we will consider in the software tool. The components
and processes depicted are exemplar and not an exhaustive list of the phenomena
that we consider.
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metabolism, and it can communicate with others through physical and chemical
interactions. A schematic depicting a population of cells with some exemplar
processes relevant to the desired level of modelling can be seen in Figure 2.1.

2.2.1 The single cell

Bacteria are microscopic single celled organisms, many species have evolved over
millenia, with estimates of the number of bacterial species between thirty-thousand
and a few million [7, 55]. Species vary in both structure and function, however
their underlying machinery follow the same principles and fundamental mecha-
nisms. All species of bacteria are prokaryotes, meaning they do not have a nucleus
and rather their DNA is stored either as chromosomes in the nucleoid region of
the cell, or as plasmids in the cytoplasm [80]. Expression of this DNA is regulated
by transcription and translation, which are the processes by which the DNA is
interpreted in order to synthesize proteins. These proteins may then be used in
the metabolism of the bacteria, which is essentially a complex chemical reaction
network which allows the cell to maintain itself, grow and divide [1].

The theory presented here is a targeted set of key cellular features relevant to
the level of model abstraction we have chosen. An overview of a single cell seen
at this abstraction level can be seen in Figure 2.2, showing some exemplar cell
features.

2.2.1.1 Gene regulation

The gene regulatory network (GRN) of a cell governs the expression of genes into
proteins. The two major mechanisms involved in this process are transcription
and translation. Transcription is the process of an mRNA polymerase binding to
a coding site on the DNA, and building an mRNA molecule encoding the genetic
information. Translation is the process of this mRNA molecule being used by a
ribosome, instructing it on how to arrange amino acids into proteins.

Transcription factors such as the activity of the promotor region of a gene ef-
fect the rate at which the mRNA of a gene is synthesized, however gene regulation
can also be effected during the translation phase. For example the degradation
rate of the mRNA and concentration of ribosomes in the cytosol influence the
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rate at which the mRNA is translated into a protein [9].
Gene activity may effect other genes activity, by their synthesized protein

effecting the transcription or translation rates of other genes. Some genes may
activate or inhibit the regulation of other genes, through mechanisms such as
producing a protein that can bind to the promotor region of another gene, mod-
ifying its transcription rate. Genes may also be self-regulating, causing positive
(activatory) or negative (inhibitory) feedback to their own synthesis rate.

Gene regulation influences the phenotype of the cell, such as a protein being
used in the development of membrane fimbria such as adhesins and receptors.
This changes how the cell interacts with the outside world. Similarly stresses and
signals from the outside world can effect the gene regulation of a cell, resulting
a dynamic feedback between gene regulation and the immediate environment of
cell [122].

Figure 2.3: Schematic showing cell cycle stages in bacteria, taken from [225]

2.2.1.2 Metabolism, cell cycle and mitosis

Cells require energy and material for many processes, such as motility, building
membranes, enzyme synthesis and mitosis (cell division) [1, 54]. The process by
which a cell acquires and processes energy and materials is called its metabolism.
The metabolism can be considered to be the set of all biochemical reactions
which occur within a cell. Metabolic pathways typically convert one molecular
species into another species, which are then involved in cellular processes. The
metabolism and gene regulation are heavily linked, allowing for dynamic pheno-
typical changes when metabolic stresses occur [38].

The cell-cycle is the process by which a single cell grows and replicates its
genetic information, to propagate to its daughter cells during mitosis (division
into two daughter cells). It requires for the duplication of the DNA, building of a
septum inside the cell to become the new cell wall, and distribution of intracellular
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molecular components and chemicals between child cells. In bacteria the cell
cycle is divided into three stages: the period between cell and the initiation of
chromosome replication, known as the B period. The next stage is the time taken
to complete replication of the genetic information, know as the C period. The
final stage is the time taken between the end of replication and the end of division,
referred to as the D period. A schematic illustrating the cell cycle in bacteria can
be seen in Figure 2.3 [225].

Figure 2.4: Schematic showing some of the different features present on
bacterial membranes. (A) A flagellar - taken from https://openi.nlm.
nih.gov/detailedresult.php?img=PMC2500206_emboj2008155f1&req=4.
(B) Different types of pili - taken from https://phys.org/news/
2016-09-japanese-team-elucidates-bacterial-flagellar.html .
(C) Different types of membrane transport mechanisms - taken from
https://themedicalbiochemistrypage.org/membranes.php (All websites
accessed: 18-09-18)
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Figure 2.5: Examples of bacterial morphologies, taken and modified
from https://en.wikipedia.org/wiki/Bacterial_cellular_morphologies
(Accessed: 16-09-18)

2.2.1.3 Morphology, membranes and motility

Cells have a physical shape, referred to as its morphology. The most common are
cocci (spherical) and bacilli (rod-shaped), however these may then go on to form
complex structures. Various cell morphologies can be seen in Figure 2.5.

Bacteria are classified as either Gram-positive or Gram-negative depending on
the structure of their membrane. Gram-negative bacteria have a thin peptidogly-
can cell wall, surrounded by an outer membrane containing lipopolysaccharide,
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where as Gram-positive bacteria only have a thick peptidoglycan layer [197].
Membrane-embedded structures such as fimbriae, pili, flagellar, transporter pro-
teins and adhesins (surface proteins) may also be present [15, 102, 236]. Figure
2.4 illustrates some of these features.

Bacterial cells can be motile, employing different types of mechanisms to
achieve different types of movement. Flagellar have been associated with bac-
teria swimming in fluid and swarming on surfaces, propelling them toward more
favourable environments [212]. Type IV pili have been found to be involved in
twitching motility [151].

These physical aspects of the cell are inherently connected with the gene
regulation, metabolism and cell-cycle phase of the bacteria. Metabolic chemical
signal pathways have been shown to be responsible for pili and flagellar regulation
[161, 170, 234].

2.2.2 The social cell

Bacteria have many ways to communicate with each other, allowing cells to broad-
cast their state and intentions whilst also listening to others. This section reviews
the types of cell communication, and how these play a part in the coordination
of complex bacterial communities such as biofilms.

2.2.2.1 Physical and biochemical interactions

Bacterial physically interact with each other and the environment. Cells may
shove/collide with each other (shown in Figure 2.6 (A)), they may adhere to sur-
faces and other cells via membrane-mediated interactions, governed by adhesin-
receptor interactions on the cell surface as well as short range Van der Waals and
electrostatic interactions [172, 185] (shown in Figure 2.6 (B)). Directly contacting
cells may also undergo conjugation, which involves the genetic transfer from one
cell to another [76] (shown in Figure 2.6 (C)).

Bacterial can also interact with each other through chemical signalling, where
diffusable molecules are sensed and secreted by cells (shown in Figure 2.6 (D)).
Quorum-sensing (QS) is an example of chemical signal circuits evolved in bacteria;
QS is the regulation of gene expression in response to changes in cell population

26



2. Background

Figure 2.6: Schematic of some bacterial ’social’ interactions. (A) Two cells phys-
icallt shoving each other (colliding). (B) Two cells which have adhered to each
other via membrane structures such as adhesins/receptors. (C) Two cells engag-
ing in conjugation. (D) Two cells communicating via a chemical signal, such as
in the case of quorum-sensing.

density [153]. It has been shown that QS can be involved in interactions between
bacteria and a host they inhabit, as opposed to being exclusively for cell-cell
communication [100].

2.2.2.2 Colonies and biofilms

Biofilms are complex, self-organised communities of bacteria. Exhibiting adaptive
and diverse behaviours, biofilms occur in a multitude of situations, employing
altruistic survival tactics ensuring the longevity of the community as a whole
[126]. They may occur when the collective chemical signals released by bacteria
accumulate to a point that triggers cells to differentiate and form a biofilm [42,
135].

The coordination of biofilm development results from local interactions, which
propagate across the community leading to changes in gene expression [53]. For
example, a change in the local environment may cause an individual bacterium
to move, resulting in a reconfiguration of the surrounding bacteria. In turn this
larger scale spatial reorganisation may cause changes in nutrient level distribu-
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tions within the biofilm. This change in the local environment for bacteria may
then result in them moving again or changing their gene expression. An interplay
emerges between micro-scale and macro-scale processes in the biofilm, leading to
its spatial patterning in structure and sometimes metabolic and gene regulatory
behaviour [26, 81, 132].

A key feature which differentiates biofilms from typical bacterial colonies is
the production of extracellular polymeric substances (EPS). Consisting of mainly
exopolysaccharide, proteins and extracellular DNA, EPS forms a sticky capsule
around bacteria. In large populations this EPS develops into a slime layer, or
extracellular matrix (ECM), embedding the bacterial community. The function of
this ECM is not fully established, however it appears to help protect the biofilm
from changes in the local environment, along with giving structural support to the
biofilm structure. The ECM may also act as a catalyst to intercellular signalling
within the biofilm, potentially increasing metabolic efficiency [40, 63, 101].

The mechanisms through which bacteria coordinate biofilm development vary
greatly between species, thus establishing a typical rule-set to describe their be-
haviour is difficult to determine. To frame biofilms at a level of abstraction which
can be applied to all species (in general), a biofilm life-cycle has been conceptu-
alised (shown in Figure 2.7). This life cycle considers the key stages in a biofilm’s

Figure 2.7: Schematic showing Test 8
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development.

Biofilm life cycle

Attachment
Individual bacteria adhere to some substratum (surface). This adhesion is ini-
tially reversible, and bacteria can relocate if this is not an appropriate location
for a biofilm to develop. This process is mediated by the flagella, cell-surface
appendages and polysaccharides [98].
Adhesion then occurs irreversibly, as bacteria begin to secrete EPS to form a
slime-layer, embedding the bacteria in an extracellular matrix (ECM) [68].

Growth
Early biofilm growth occurs through both the recruitment of planktonic bacteria
which attach to the biofilm, and through mitosis of existing members of the
biofilm.
Maturation often consists of cellular differentiation within the biofilm, along with
spatial organisation which typically results in water channels forming through the
biofilm and mushroom-like structures which extend into the substrate.

Detachment
The detachment of bacteria from the surface of the biofilm can be initiated both
voluntarily and involuntarily. Through this mechanism planktonic bacteria are
freed, which flow downstream and have the potential to develop a new biofilm
colony [40, 110].

2.3 Modelling biological phenomena

There are numerous techniques for modelling biological phenomenom. Specific
processes and systems may be simulated through continuous methods, where as
others may require discrete methods to accurately predict them. The application
of a specific method to modelling a phenomena often depends on the questions
being posed to the model. Research into bacterial dynamics has conceived many
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models of bacterial behaviour. These models can simulate phenomena such as
bacterial motility, growth, division, gene regulation and aggregation. Hybrid
models have also been conceived to couple the simulation of different processes.
This section reviews the main techniques for simulating the single cell and the
social cell.

2.3.1 The single cell

Single cell modelling primarily focusses on approximating gene expression and
metabolic activity. Both of these processes involve the diffusion of molecules
through the cytoplasm and interacting with other molecules. This process can
be represented in numerous forms, each with their strengths and weaknesses.

2.3.1.1 Boolean networks

Boolean networks can be used to model gene regulation [48]. This is achieved by
representing genes as boolean states, which are either ON or OFF (describing
whether they are transcribed of not). The genes are then connected by boolean
relations, which are either activatory or inhibitory interactions between genes.
Gene states are updated simultaneously in discrete time steps, with the new
state of a gene depending on the states of the genes with which it has a relation
[115, 122].

This simplified model of a dynamical interacting system gives a basic approx-
imation of how numbers of genes interact over time. Boolean networks may also
enable the modelling of cell decision making, such as if certain environmental and
intracellular criteria are met, then a differentiation process should occur.

Boolean networks can take on 2N system-wide states, where N is the number
of nodes. The state-space therefore increases exponentially with the number of
nodes. They are however very inexpensive to solve, and tend towards a small
number of attractors.

This method has been successfully applied to the modelling of attractors in
gene networks [226], synthetic biological boolean gates [183], and in the prediction
of the cell cycle sequence of fission yeast [47].
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2.3.1.2 Ordinary differential equations

Ordinary differential equations are effective techniques for modelling how biologi-
cal properties change over time, and have been applied to modelling a wide range
of biochemical reactions [201]. They have been used to model gene expression
[30], defining terms which describe how molecular concentrations change over
time. For example, consider the general equation

dxi
dt

= fi(x1, ..., xn) i = 1, ..., n. (2.1)

Where xi is the concentration of some intracellular moleclular species, such
as mRNA or protein. The function fi is the rate equation as to how the concen-
tration of xi changes with respect to the other molecular species concentrations.
This form allows for the representation and numerical approximation of many
interacting molecular species [122].

A limitation of using ODEs to represent chemical systems is that they assume
variables are continuous values, where as molecular numbers must be discrete.
Another limitation of ODEs is that they are a deterministic method, and do not
consider noise and random fluctuations within the system.

2.3.1.3 Gillespie stochastic simulation

The Gillespie method is a discrete probabilistic method originally developed for
modelling the time evolution of chemical species in a reaction network. The
method represents molecules in discrete integers rather than as continuous val-
ues, and also account for the probabilistic nature of these systems by accounting
for varying concentrations and diffusion times of participants to react. Stochastic
methods such as the Gillespie method are suited to modelling biological phenom-
ena due to the inherent noise associated with these systems [207, 237].

Variants of the Gillespie method have been developed, such as tau-leaping,
aiming to provide better performance, however this is not always the case. It has
been shown that different models of biochemical reactions perform best with dif-
ferent versions of the Gillespie method, for which the most appropriate method for
a given model of biochemical reactions can be determined through a topological
analysis of the reaction networks [184].
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Stochastic methods may also be used in the process of statistical model check-
ing. They can be used to determine the probability an event will occur over a
given amount of time, allowing for the verification that assumptions about certain
system states hold true. Variations of statistical model checking using stochastic
simulations have been shown to be able to estimate reaction rate parameters of
relatively large system sizes [51, 239].

2.3.1.4 SBML

The Systems Biology Markup Language (SBML) [99] is a standard representation
for describing metabolic and genetic activity within a cell. It is an XML dialect
which supported by over 280 software packages. There exist software to easily de-
velop SBML models, and numerous packages for simulating and analysing models
[22, 188]. SBML can be simulated with deterministic or stochastic methods, and
can be defined to have events and model interactions. There are large collections
of SBML models from published work stored in databases such as the BioModels
archive [131].

2.3.2 The social cell

There are numerous techniques which have been developed for modelling pop-
ulations of interacting cells. These methods all involve representing some com-
partmentalised dynamics, where compartments may interact via some defined
rules.

2.3.2.1 Cellular automata and P systems

Common methods used for modelling bacterial populations include P systems
and cellular automata. These two methods represent compartmentalised system
dynamics, and can be used to model how interactions between constituent parts
lead to population dynamics.

Cellular automata (CA) are composed of a grid of cells, where each cell is
in one of a finite number of defined states, and rules are applied to update cell
states based on some local criteria to that cell (the states of its neighbouring cells)
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[231]. This method has been applied to the study of multicellular systems such the
growth patterns of bacterial colonies, and structure of biofilms [21, 194, 198, 222].

P systems are computational modelling technique that are inspired by the way
in which biological systems process information [171]. They are commonly used
in membrane computing, modelling the interactions of two spatially separated
compartments via an interface [37]. Extensions of P systems have been conceived
to allow for multiple interacting compartments with specific spatial interfaces
[179]. P systems have been used to model quorum-sensing in P. aeruginosa [124]
and photosynthesis processes [10].

2.3.2.2 Agent-based modelling

Agent-based models (ABMs) represent systems as interacting agents within an
environment [3]. This bottom-up approach allows for the description of micro-
parts and their interactions, and simulation of how a population of these parts
behave. This technique allows for self-organisation and emergence to be modelled,
observing how communities of independently acting agents result in population
level behaviour which were not pre-programmed. This paradigm lends itself to
modelling bacterial communities, as they are composed on individual cells which
sense and react to their local environment.

ABMs have been used in the modelling of bacterial populations, typically
coupled with a spatial simulation to represent cells as physical individuals with
individual behaviour [74, 108, 127, 130, 181]. This technique of coupling an ABM
with a spatial domain in which to represent chemical gradients has proven to be
a valuable method for multi-scale modelling of multicelluar systems.

2.4 Multicellular modelling software review and

current challenges

Several modelling tools have been developed to understand the dynamics of bac-
terial populations and the multicellular systems they form [24, 125, 183]. Gen-
eral cell population modelling tools include gro [105] and CellModeller4 [181],
intended to simulate the biophysical patterning of multicellular systems in 2D,
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iDynoMiCS[130] BSim[75] gro[105] CellModeller4[181] DiSCUS[74] Infobiotics Workbench[24]
Rod shaped cells X X X
Bacterial growth X X X X X

Rule based internal cell dynamics X X X X X
Differential equation based internal cell dynamics X X X

SBML based internal cell dynamics
Gillespie submodels X
Bacterial motility X X

Chemotaxis X X X
Cell surface interactions
Membrane transport X X
Environmental forces X X
Chemical environment X X X X X

Extracellular polymeric substances X
2D X X X X X
3D X X

Fluid dynamics X
Conjugation X

Computational acceleration X
Programming language Java Java Python Python Python Java

Table 2.1: High-level feature comparison of existing agent-based modelling tools
for bacterial populations. X marks a feature being present.

focusing on physical interactions and chemical signalling. BSim[75] is another
general tool which is used to model cells in 3D, providing a general agent-based
platform in which the user can define custom rules to describe cellular behaviour,
as well as environmental structures via 3D meshes. More specific tools include
iDynoMiCS[130], the successor of BacSim[127], which is a modelling tool for
biofilm formation. It allows for the specification of cellular properties and simu-
lation of a biofilm growing on a surface. Substrate dependence is represented in
the iDynoMiCS model, simulating how the location of cells effects their growth.
DiSCUS [74] is a specific 2D bacterial simulator modelling horizontal gene trans-
fer between neighbouring cells. All of these tools simulate chemical diffusion by
discretising the environment space into subvolumes and calculating the flux be-
tween neighbouring compartments via a finite-element method. An overview of
the modelling features present in the different software can be seen in Table 2.1.

Each of the existing multicellular modelling tools takes a level of abstraction
at which to represent the system, and focuses on simulating relevant features to
the questions for which the models are developed. For example, iDynoMiCS has
been driven by the research into biofilms the influence of individual cell metabolic
behaviour, and thus its implementation and features focus on those aspects. On
the other hand CellModeller4 has been used to model gene regulation and chem-
ical signalling, and does not simulate EPS or other features relevant to biofilms.
The existing platforms have a common underlying theme of an agent-based mod-
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elling framework, representing cells interacting in a spatial environment, coupled
with a grid simulating chemical diffusion. The specific implementation of each
platform however is at some level over-fit to the phenomena they intend to sim-
ulate, which is of course always the case with abstract modelling - however there
is almost certainly a common level of abstraction at which all of the case studies
conducted with these tools can be represented, though such a unification of these
models has not yet been conceived.

An issue presented here is that in order to develop new models of multicellular
systems programmers have to modify an existing framework or build a new one
fit for purpose. None of the existing platforms provide a programming framework
which can be used to build novels models in a dynamic manner, such as exist in
software development domain where development frameworks have dramatically
enhanced programmers capacities to build cross-platform applications without
being concerned with the low lying implementation [137, 211, 233]. Similarly in
traditional engineering disciplines, software frameworks have been used to for-
mally represent knowledge and integrate it into CAD tools which allow for the
relatively non-programmatic design and simulation of devices [46, 157, 221].

The endeavour of developing such frameworks and tools for multicellular mod-
elling is young, and the first steps toward this goal have brought some formal-
isation of numerical methods and biological models into a programmatic envi-
ronment, as seen in these existing multicellular modelling tools. A challenge in
this area is how to find a common level at which to represent these systems, and
how to accurately integrate the modelling techniques into a flexible platform that
a modeller can build novel models with. Additionally, to conceive of a general
tool for this type of modelling, some of the main aspects about the tool from the
end-users perspective (the modeller) are: the modelling capacity of the platform,
the usability of the platform, and the scalability of the platform. Modelling ca-
pacity being the ability of a platform to describe a given multicellular system,
representing its constituent components and processes. Usability being the ease
in which that description can be expressed in the platform, and scalability the
potential for the platform to simulate large industrially relevant systems.

Considering these aspects and reviewing the existing tools show us that some
of the current limitations in this domain are:
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• Lack of unification in multicellular modelling techniques;

• Lack of software framework for programmers to readily compose new mul-
ticellular models without modifying an existing software;

• Lack of higher level tools that allow non-programmers to build and analyse
multicellular models.

2.5 Software requirements

Reviewing literature of bacterial phenomena and state of the art modelling meth-
ods has informed the design of a general simulation platform. It has exposed the
key features of bacteria and the ways in which they coordinate their behaviour
to form complex communities, as well as informing which methods can be used
to model these features. Additionally, challenges and limitations of the existing
software tools for engaging in multicellular modelling have exposed some of the
main aspects we must consider to move forward.

Iteractions with collaborators also set the software requirements, their systems
of interest and the modelling questions they had were used to derive the features
required to be a powerful modelling tool. The details of how each collaboration
infuenced the development of Simbiotics can be found in the case study chapters
(Chapters 7 - 10).

The developed modelling platform should be able to simulate mixed species
populations, where each cell can have a different physical shape, intracellular
dynamics and interactions. The platform should be able to simulate these in dif-
ferent spatial configurations, such as planktonic (free-floating) or sessile (adhered
to a colony or biofilm). Extracellular aspects such as chemical diffusion and EPS
should also be included in the platform. The simulation should be physically,
chemically and biological realistic, integrating all of these processes into a multi-
scale model that can be tailored by the modeller. The techniques used to simulate
specific processes should also be flexible, such as the modeller being able to choose
whether they use continuous ODEs or discrete Gillespie submodels to represent
biochemical processes. The specific features that modelling environment should
be able to represent are:
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• The shape of the bacteria;

• The metabolism of the bacteria;

• The gene regulatory network of the bacteria;

• Many species of bacteria;

• How molecules and chemicals cross the membrane of the bacteria;

• Extracellular chemicals and their diffusion through space;

• Physical interactions between bacteria have (collisions, adhesion);

• Motility of bacteria;

• Bacterial conjugation;

• The environmental physical forces acting on the bacteria;

• Extracellular polymeric substances.

The methods for simulating the biological phenomena should be able to be
achieved via both discrete and continuous methods, thus the following methods
should be integrated into the platform:

• Boolean networks, ODEs and Gillespie models.

Additionally, for the integration of these into a useful tool that empowers
modellers to build and analyse these systems, the following items are added to
the requirements:

• 2D and 3D models;

• A library of modelling methods the user can integrate to build a model;

• Customisable data collection;

• Virtualised lab equipment (such as pipettes, microsensors, chemostats, etc.);
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• Statistical physics tools (such as measuring the mean-squared displacement
of cells);

• Integration with common data formats in the domain (such as SBML);

• User friendly environment for building and running models with minimal
programming;

• Computational acceleration for simulating large systems.

The platform should also be extendable such that new processes may be added
to the library, usable such that the platform interface is intuitive and does not
require extensive programming to achieve valid model outputs, and scalable such
that modelling of populations relevant to real system is feasible. Implementation
of some computational acceleration such as multi-threading, parallelization and
GPU acceleration is crucial for this scaling up to large system sizes.

2.6 Summary

In this chapter we have reviewed the relevant biological and computational lit-
erature, forming an understanding of the problem we are trying to solve, and
the existing techniques which are used to study these phenomena. From this
literature review, we have established a set of requirements that our simulation
platform should meet in order to provide adequate features for modelling multi-
cellular systems, focusing bacterial populations dynamics.
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Chapter 3

Simbiotics - an integrative
framework for modelling
multicellular populations

This chapter introduces Simbiotics, a modelling framework for 3D simulations of
bacterial populations. An overview of the software features is presented, followed
by the mathematical details of the modelling and analysis modules. Additional
novel features such as SBML integration and microscopy image parsing are also
presented. This chapter addressed Objective 1 - Development of an extendable
modelling platform and data format which allows one to express models of inter-
acting multi-species bacteria, simulate those systems and perform analysis. The
work presented in this chapter is an updated version of the published work: J.
Naylor, H. Fellermann, Y. Ding, W.K. Mohammed, N.S. Jakubovics, F. Dafhnis-
Calas , S. Heeb, M. Camara, J. Mukherjee, C.A. Biggs, P.C. Wright, N. Krasno-
gor Simbiotics: A Multiscale Integrative Platform for 3D Modelling of
Bacterial Populations in ACS Synthetic Biology, 6(7):1194-1210, July 2017

3.1 Overview

Simbiotics [159] allows for the design, simulation and analysis of multicellular
population models, with current features focusing on bacterial populations. Sim-
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Figure 3.1: An overview of the Simbiotics library and structure. The left panel
lists the modelling features used for representing individual agents and their dy-
namics. The sections (which are in bold) are the domains of the library, and con-
tain modules which are individual Java classes implementing the feature. Right
panel: the modelling features which are used to represent the spatial domain
and its boundary conditions, as well as initial conditions and model events (sched-
ules). An exhaustive list and more details on the library modules is provided in
Section 8 of the Simbiotics user guide (In Appendix B).
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biotics simulates hybrid-models, where an agent-based model which describes
bacteria and other physically interacting agents is coupled to a continuous chem-
ical environment. Through this coupling we can observe the interplay between
individual cellular processes and population level organisation. Each agent can
have many submodels describing its internal biological processes. Many unique
species can be defined, and large mixed populations can be simulated.

Simbiotics provides a modelling library consisting of a wide range of processes,
describing physical, chemical and biological processes of bacterial dynamics. This
library contains a range of common modelling methods applied in bioinformatics,
such as and boolean networks, Gillespie simulations and differential equation inte-
gration with a range of integrator modes (such as 3rd and 4th order Runge-Kutta
integration). The library also contains analysis tools and virtual lab equipment
for interacting with and collecting data from the simulation. An overview of the
Simbiotics library can be seen in Figure 3.1.

The features provided in the library are motivated by the case study systems
and other models presented in this thesis. The experimental systems and our
collaborators set the requirements of Simbiotics, directing its development and
determining which features should be implemented in the library in order to be
a useful tool for modelling multicellular systems.

Simbiotics library modules are parameterised to allow for fine-tuning of user
needs. New library modules may be developed and added to the library by
implementing Simbiotics interface classes (full description is provided in the User
Manual in Appendix B). The platform and library are readily extendable to add
new features as necessary, ensuring the relevance of the software as computational
methods and knowledge of biological processes develop.

Development of a model specification is achieved through a pattern some-
what similar to an entity-component system (ECS), where functional components
are composed together to create complex objects. Model specifications are con-
structed by attaching library modules to a model specification, where they can
be composed with other modules. Simbiotics then simulates and integrates only
the processes defined in the model.

Novel functionality in Simbiotics include the processing of microscopic im-
ages to initialise the simulation of the spatial state, additionally the integration
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of existing standards such as SBML ensure the accessibility and communication
of models. We allow for the modelling of processes such as membrane trans-
port through passive or active mechanisms, active cell motility due to flagellar
or pili activity and chemotaxis. Simbiotics may also simulate cell surface ad-
hesion through processes such as electrostatic and receptor-adhesin interactions.
Extracellular-polymeric substances (EPS) may also be modelled, either through
a particulate representation or via mass-spring kinetics which cause bacteria to
adhere to the substratum and other cells. The integration of these multi-scale
processes is a main contribution of Simbiotics, allowing for the modelling of large
bacterial populations whilst capturing micro-processes in individual cells.

3.2 Modelling

We describe the main Simbiotics Library modules, elaborating on their func-
tionality and the mathematics used in their calculations. These submodels are
independent and can be attached to models to compose them into a full model
specification. Description of how the library system and models are implemented
programmatically is described in Chapter 5.

Figure 3.2: a) An unrasterised cuboidal simulation domain. b) Rasterisation of
the domain where Gd = 1. c) Rasterisation of the domain where Gd = 2.
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Environment

The spatial domain describes the spatial environment and boundaries of the sim-
ulation, it may be 3D or constrained to 2D. It is continuous space with a grid
system to rasterise the domain into subvolumes for representing chemical distri-
butions. The rasterisation is based on a binary division of the spatial domain
into an octree structure, where the depth of the octree is defined by the grid
depth Gd, which must be an integer. An example can be seen in Figure 3.2. Do-
main boundary conditions may describe a solid surface and its physicochemical
characteristics, periodic boundaries may also be defined such that cellular and
chemical entities enter the opposing side of the domain which they leave. An
escape boundary can be defined such that entities are removed from the simula-
tion when leaving the boundary. Additionally a boundary may describe a rate
with which to introduce chemicals or bacteria into the environment, modelling a
chemostat or stochastic bacterial world outside of the simulation domain.

Spherical cells

Cells may be cocci, represented as spheres. Each has a position vector pi which
represents its center as coordinates in 3D continuous space bounded within the
simulation domain, a radius ri and mass mi. Additionally each cell has a velocity
vector vi which describes its current velocity as a 3D vector, and a 3D unit vector
which describes the orientation of the body ψ̂i.

Rod-shaped cells

Cells may be bacilli, represented as rods. Each rod cell is modelled by two points
at positions pai and pbi , that are connected by a stiff spring. This representation
allows for physically realistic force calculations, capturing rotation of the rod
by distributing forces to the two points whilst maintaining a fixed rod length.
This rod length can then be modified by cell growth calculations, that cause a
symmetrical extension or contraction of the length, not affecting the radius of the
rod. This representation produces a realistically growing bacillus cell, producing
growth patterns as observed in experiments.
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Figure 3.3: We consider two cells, a spherical cell (coccus) at position pi and a
rod-shaped cell (bacillus) at position pj. (a) Spheres have a position pi. Rods
have start and end positions paj and pbj, a length lj = pbj − paj , and a center
position pj which is equidistant between paj and pbj along its length lj. (b) Both
spheres and rods have an associated radius ri/j and mass mi/j. Spheres have an
orientation ψ̂i, and rods have an orientation ψ̂j =

lj
lj
.

The two positions defining the length of the rod construct the line li = pbi−pai ,
which describes its length li = |li| and orientation ψ̂i = li

li
. Rods are considered

to be cylindrical along li, with hemispherical caps. Each has a center of mass pi
which is the point along the rod axis that is equidistant from the two end points.
Rods also have a radius ri, mass mi and each of its spheres has a velocity vector,
vai and vbi .

A schematic for spherical and rod-shaped cells can be seen in Figure 3.3 (a)
and (b).

Cell neighbourhood

A Verlet-list is implemented to store the nearest neighbours of a cell, for a cell
i its nearest neighbour list is denoted as M i. A neighbouring cell j is included

44



3. Simbiotics - an integrative framework for modelling multicellular populations

Figure 3.4: (a) A cell’s center position determines which diffusion grid voxel V i/j

the cell is in. (b) An example of cell neighbourhoods. The red circle represents
the neighbourhood range of the bacilli cell at pj, and the blue circle the range of
the cocci cell at pi. For a given cell, other cells are considered in a neighbour if
their center point exists within the range.

in this list if the absolute distance between cell’s closest points pi and pj is less
than a given threshold Mr. For spherical cells, MS

r = ri + rmax, where rmax is the
maximum cell radius in the system. For rod-shaped cells MR

r = 0.5li + 0.5lmax,
where lmax is the maximum rod length in the system. The total number of cells
at any time t is denoted by N(t). A schematic showing the representation of
cellular agents can be seen in Figure 3.4 (b).

A cell’s local environment also has chemical properties, its position pi maps
to a voxel Vi in the discretised grid space. This voxel contains a list of chemical
species and corresponding concentrations present in that volume. The concentra-
tion at Pi may be an interpolation between Vi neighbouring voxel concentrations,
this is calculated with Sheppard’s method as implemented in the Cx3Dp compo-
nent of the software [238]. Alternatively it may be assumed that each voxel has
a uniform distribution within it. A schematic can be seen in Figure 3.4 (a).
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Figure 3.5: An example of a sphere and rod cell colliding, xij is the magnitude
of the overlap between cells. For a bacilli the force of a collision is distributed to
its start and end points according to Pj.

3.2.1 Physics

The motion of cells is determined by Newtonian dynamics, forces are translated
into a change in velocity, and subsequently a change in velocity resulting in a
change in position:

dpi(t)

dt
= vi(t) (3.1)

dvi(t)

dt
=
F T
i (t)

mi

, (3.2)

where F T
i is the total force experienced by a bacterial cell. The equation to

calculate F T
i is user defined, and may have as many force components as desired.

Here we present the default equation used to calculate F T
i ,

F T
i =

Mi∑
j=1

(F C
ij + F S

ij + F E
ij) + F R

i + F F
i + FG

i + ..., (3.3)

where i runs from 1 to N(t), F C
ij is the force due to cell-cell collisions, F S

ij is the
force due to specific adhesin receptor interactions, F E

ij is the force due to non-
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specific electrostatic interactions, F R
i is the translational diffusion force, F F

i is the
force of viscous drag on the cell and FG

i is the force of gravity. Together, F R
i and

F F
i turn equations 3.1 through 3.3 into a Langevin Dynamics approach [162].

The Strömer-Verlet method is used for the numerical integration of positions
and velocities due to forces. We calculate the force components individually, as
follows.

3.2.1.1 Collisions

Cells experience forces due to collisions with other geometries in the 3D domain.
For two cells at positions pi and pj , θ̂ij is the unit vector describing the line orien-
tation between the cell centers from j to i, calculated as θ̂ij =

pi−pj

|pi−pj |
. Resolving

collisions between spherical cell involves calculating response forces to apply to
each cell. This is modelled as a strong spring which pushes cells apart, where F C

ij

is the total force experienced by a cell due to its colliding neighbours, KC the
spring constant for collisions and xij is the overlap distance of collision partners,
xij = ri + rj − |pj − pi|,

F C
ij =

KCxijθ̂ij if xij > 0

0 otherwise.
(3.4)

The sphere at position pi receives the force F C
i = F C

ij, and the sphere at
position pj receives the force F C

j = −F C
ij according to Newton’s third law.

A similar approach is taken for modelling collisions with rod-shaped cells. For
the two colliding rod lineThe ratio along the rods which the points lie Pi and Pj
are calculated as Pi =

|ci−pa
i |

li
and Pj =

|cj−pa
j |

lj
. We calculate the overlap xij

between rods to be xij = ri + rj − |lij|. We then calculate the total force that
rods exert on each other in the same form as Equation 3.4, the distribution of
this force onto the rod’s end points follows the same approach as implemented in
previous modelling work. [107]. Where F Ca

i is the force applied to point pai ,
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F Ca
i = −(1− Pi)F C

i (3.5)

F Cb
i = −PiF C

i (3.6)

F Ca
j = (1− Pj)F C

j (3.7)

F Cb
j = PjF

C
j . (3.8)

Collisions between a sphere and rod are solved as a partial form of rod-rod
collisions. For a sphere at position pi, we find the position cj on the rod line
segment lj which forms the shortest line between them lij = cj−pi. We calculate
the overlap xij, forces F i amd F j and ratio Pj in the same manner as for rod-rod
collisions. The sphere receives the full force F i and F jis distributed onto the rods
constituent spheres in the same manner as Equations 3.7 and 3.8. A schematic
can be seen in Figure 3.5 (a).

Collision force responses may be modelled with Hertzian theory rather than
the force expression in Equation 3.4. Hertzian theory models the elastic contact
between colliding cells. In Equation 3.4 KCxijθ̂ij is substituted with E(ri +

rj)
1/2x

3/2
ij , where E is the parameter representing the elastic modulus of a cell[60,

71, 208].

3.2.1.2 Surface-mediated physical interactions

Adhesin receptor interactions are modelled as springs connecting cell geometries.
An interaction between an adhesin-receptor pair q and s has a specific force
constant KS

qs associated with it. The extension of the spring is calculated as
αij = la − lr. Where la = |pi − pj| is the actual length of the spring, and
lr = Rl(ri + rj) is the resting length of the spring. Rl being a spring relaxation
factor allowing the spring to leave an offset between cell surfaces.

F S
ij =

KS
qsαijθ̂ij if αij > 0

0 otherwise.
(3.9)

An adhesin-receptor interaction is reversible if a sufficiently large force pulls
the cells apart. This is modelled as a maximum extension that the spring may
reach before breaking. We calculate the maximum extension to be αmax

ij = Cpq · lr,
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where Cpq is the extension factor for adhesin and receptor p and q. If αij > αmax
ij

the interaction spring is removed.

Cells experience forces due to non-specific interactions such as van der Waals
interactions and electrostatic repulsion when their membranes are in close range.
An established method for modelling these forces is DLVO theory [85, 167]. How-
ever this model operates on distances in the order of nanometers which are neg-
ligible in Simbiotics. We have a similar representation, modelling a proportional
adhesive force as a two cell surfaces approach. KE

ij is the adhesive force constant
and dij is the distance between the cell centers defined as dij = |pi − pj|. Two
cells interact if they are within range of each other’s extended sphere of influence,
defined as the cells radius ri multiplied by a range factor rE.

F E
ij =


KE

ij

d2ij
θ̂ij if dij <

rE(ri+rj)

2

0 otherwise.
(3.10)

3.2.1.3 Passive motility

To calculate the force random fluid motion has on a free-floating cell, we use
Equation 3.7 to find the force on a given particle at each moment in time. KR

is a constant describing the maximum force the cell experiences. We generate a
random number between 0 and KR and multiple it by a random unit vector η̂ to
calculate the current force:

F R
i = KRη̂. (3.11)

In the numerical integration, we must take care to normalize the force by the
inverse square root of the integration step.

To describe the effect of friction for each cell we calculate a drag force which
is proportional to the friction coefficient KF, representing the viscosity of the
medium. The drag force is also proportional to the velocity of the cell vi:

F F
i = −KFvi. (3.12)
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Gravity is modelled as a constant force acting on a cell,

FG
i = KGmiγ̂, (3.13)

where KG is the gravitational acceleration constant, mi is the mass of the cell
and γ̂ is the unit vector describe the direction of the force, pointing to negative
y.

3.2.1.4 Active motility

Bacteria can be actively motile due to flagella micro-motility or pili mediated
twitching-motility, these processes may be deployed to accomplish a random walk
or chemotaxis [168, 169, 214].

Micro-motility in species such as Escherichia coli involve run and tumble
phases, in which bacteria alternate between accelerating forwards and rotating
in place[107]. We model this by probabilities pendrun and pendtumble with which
the bacteria switch from a run or a tumble into the alternate state. During the
run phase a constant force Fendrun is applied to the bacteria in the direction it is
facing ψ̂. During the tumble phase we assign a new orientation ψ̂ to the cell by
generating a random unit vector. No directional force is applied to the bacteria
when tumbling.

Twitching motility is modelled using the same algorithm as the micro-motility
with different parameters. Both pendrun and pendtumble are relatively high, re-
sulting in low persistence rapid movements.

Chemotaxis is modelled using a modified version of the micro-motility run
and tumble dynamics, implemented similar to the Keller-Segel method [117, 224].
Cells perform a run and tumble and sample the concentration of the chemoat-
tractant at periods of ∆tmemory representing their sensory memory. Cells compare
their current concentration C(t) with the previous concentration they experienced
C(t−∆tmemory). This is calculated by C(t)−C(t−∆tmemory), if the value is less
than 1 the cell is descending the gradient and has a high probability to tumble.
If the value is greater than 1 we know we are ascending a gradient or traversing a
plateau, we calculate the gradient strength by how much C(t)−C(t−∆tmemory)

is above 1. The cell has a probability to tumble pendrun that is inversely propor-
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tional to the gradient strength, such that cells ascending a gradient are less likely
to stop running.

3.2.2 Chemistry

Simbiotics allows for custom definition of chemical species with their respective
diffusion and degradation rate constants. Chemicals can exist in the extracellular
space or within cells and can be transported across membranes via a variety of
mechanisms. Chemical reactions occur in intracellular compartments that are
elaborated on in the Cell growth and death section (Section 3.2.3.1).

Figure 3.6: (A) Schematic of extracellular diffusion, showing localised chemical
concentrations in the domain rasterisation, and the flux between the voxels of
that rasterisation. (B) Membrane transport occurs between the intracellular
compartment and the grid voxel the cells center point exists in.

3.2.2.1 Extracellular diffusion

Extracellular diffusion is implemented with the finite volume method [16]. The
simulation domain is decomposed into regular non-overlapping subdomains. The
flux between neighbouring subdomains is calculated for each chemical species as
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follows:

Ji → j = Dc
Sij

dij
(uj − ui), (3.14)

where ui and uj are the concentrations of a chemical species in the two neighbour
subdomains, Dc is the corresponding diffusion coefficient for that chemical species
and Sij is the cross-section connected the two subdomains, and dij is the distance
between the center points of the two subdomains. A schematic can be seen in
Figure 3.6 (a).

The only extracellular reaction modelled is degradation, to calculate this a
rate law can be defined for each chemical species. Where A is a chemical species
and kA is its rate of degradation:

A
kA→∅. (3.15)

One may also describe chemical sources and sinks, a chemostat adjacent to
any simulation domain boundary, a flux of bacteria into the domain through
boundaries, and a basic flow-chamber which models a constant flow across the
entire domain.

3.2.2.2 Membrane transport

Chemicals can pass through cell membranes via either passive or active transport
mechanisms. Passive membrane transport is solved in a similar manner as de-
scribed in the Diffusion section (Section 3.2.2.1), such that the flux is only from
high to low concentrations [142]. The flux due to passive transport mechanisms
for a given chemical species is denoted by JP

c , where Ai is the surface area of the
cell, Ci is the concentration of the chemical in the cell, and Cj is the concentra-
tion of the chemical in the extracellular compartment which the cell center point
reside in. A membrane permeability factor for individual chemical species Pc can
be defined such that the flux is proportional to a chemical’s permeability:

JP
c = PcAi (Cj − Ci). (3.16)

A schematic can be seen in Figure 3.6 (b).
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Active transport is modelled via a Monod function that calculates the flux
based on the source concentration, it is a unidirectional flux and the source can
be set to be either intracellular or extracellular [215]. The flux due to active
transport mechanisms for a given chemical species is denoted by JA

c , where C
is the chemical concentration at the source, Kc is the half-saturation constant
of the chemical flux, and Qc is the maximum flux at which the active transport
mechanism can work for that chemical species:

JA
c = Qc

Kc

Kc + C
. (3.17)

3.2.3 Biology

A wide range of biological processes are implemented, including cell growth kinet-
ics and metabolic rules, cell division, motility, quorum-sensing through membrane
transport, cell-cell and cell-surface adhesion as well as gene regulatory networks.
Bacteria can also produce extracellular polymeric substances, which can form an
extacellular matrix. We describe next the set of modelling decisions and simpli-
fications made in order to capture and integrate these various processes.

3.2.3.1 Cell growth and death

As bacteria grow their mass increases and we calculate the change in mass ∆m

for the current timestep based on growth and maintenance kinetics. Here we
describe kinetic representations that are valid in Simbiotics, we follow a similar
approach to iDynoMiCS [126]. The change in the mass of a bacterial cell is based
on the calculated growth rate µi., where µi is a function of the depending nutrient
concentration Si in the local extracellular compartment Vpi

,

dmi

dt
= µi(Si). (3.18)

Bacterial growth can be modelled as a constant process ignoring substrate
dependence. Bacteria grow according to a growth rate µi that is calculated by
two parameters, the first parameter Gr is the mean growth rate, and the second
parameter Gv is the growth variation value. The actual growth rate µi is calcu-
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Figure 3.7: Schematics of growing cells. (A) Spherical (cocci) cells increase
in radius as their mass grows, expanding symmetrically. (B) Rod-shaped cells
(bacilli) increase in length as their mass grows, elongating symmetrically.

lated as follows, with rnd being a uniformly distributed random number between
0 and 1.

µi = Gr − (Gv ∗Gr) + (2 ∗ rnd ∗Gr ∗Gv) (3.19)

More complex growth dynamics can be specified using reaction kinetics, con-
sidering factors such as cell maintenance and available nutrient concentration. A
variety of reaction kinetics are implemented which are listed in Table 2, one can
compose these kinetics to design custom nutrient-based growth dynamics.

Additionally the modeller can write ordinary differential equations (ODEs)
describing the growth of bacterial. This is achieved by describing how the mass
changes over time (dM

t
), and can include variables such as the cell’s current in-

tracellular of extracellular molecular concentrations.

Spherical cells die if their radius is below a minimum radius rmin, and rod-
shaped cells die if their length is below a minimum length rlen. When a cell
dies its geometry is completely removed from the simulation, any intracellular
chemicals are then moved to the extracellular compartment in the diffusion grid
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Growth kinetic Equation
First-order kinetic µ = Gr ±Gv

Monod kinetic µ = S
KS+S

Simple inhibition µ = Ki

Ki+S

Hill kinetic µ = Sh

Kh
S+S

h

Haldane kinetic µ = S

KS+S+
S2

Ki

Table 3.1: Growth kinetic equations, were µ is the growth rate, S is a given sub-
stance concentration and K is the half-saturation constant of a given substance.

which contained the cell’s center of mass. Cell growth and death are implemented
as an extended version of the dynamics used in the iDynoMiCS software [130].
Growth dynamics may now be coupled to either extracellular or intracellular cell
chemical concentrations, additionally the distribution of intracellular chemicals
upon cell death is implemented.

We assume that cell biomass density remains constant throughout the cell
cycle [209], therefore when a cell grows in mass it is expressed by a growth in
volume. As a coccus cell grows its radius ri increases, expanding symmetrically
as can be seen in Figure 3.7 (A). For a bacillus cell, growth is only along the
length of the cell li, as variations in its width are negligible in comparison [35],
elongating symmetrically as seen in Figure 3.7 (B).

3.2.3.2 Cell division

A binary fission library module implemented. Cell division occurs upon a cell
reaching twice its original mass [35, 180]. We consider child cells to inherit about
half of the mass of the parent cell [154].

This is implemented for coccus cells, however an issue arises with this method
for bacillus cells. Preserving mass results in the two child cells being longer than
the parent cell, meaning that they may be placed in the model overlapping adja-
cent cells, resulting in collisions producing unrealistic growth patterns. Instead,
bacilli cells are modelled as dividing upon reaching twice their original length,
such that the two child cells can be positioned within the volume of the parent cell.

Spherical cells
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Figure 3.8: (A) Schematic of cocci cell dividing. Division occurs upon reaching
twice the original cell mass. The child cells are positioned within the parent cell’s
volume such that they don’t overlap. pj is the center position of the dividing
parent cell, which has mass mj. The child cells masses preserve the mass of
the parent cell, such that mk + ml = mj. Their center of masses pk and pl
are determined by calculating the radius of the child cells based on their mass,
and thus the offset they must be in order to not overlap. (B) Schematic of
bacillus cell dividing. Division criteria is the cell reaching twice its original length
(including the radius of hemispherical caps). The child cells are positioned within
the parent’s volume and do not overlap, pj and lj are the position and length of
the dividing cell. The positions of the child cells are pk and pl, and they have
lengths lk and ll. Both child cells inherent the same radius rj.

Dividing spherical cells form two child cells which are placed either side of the
parent’s centre of mass, as seen in Figure 3.8 (A). The size and placement of child
cells are determined by first finding the mass that the children inherit, and then
calculating the corresponding volumes and radii, followed by the offset between
the child cells in order for them not to overlap.

The parent cell’s mass is divided by ratio Dr, which is calculated as

Dr = 0.5 + ((Dv ∗ rand)− (
Dv

2
, ) (3.20)

where rand is a uniformly distributed random number between 0 and 1, and
Dv is a parameter to the amount of noise around exactly a 50/50 split of mass
between children. The two masses mj and mk are then calculated as
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mj = DrmT (3.21)

mk = (1−Dr)mT, (3.22)

where mT is the total mass of the dividing parent cell. The resulting volumes
the child cells are then calculated using this mass, assuming a constant density.

Vj = ml/ρi (3.23)

Vk = mk/ρi (3.24)

. (3.25)

The radii of the child ri and rk cells can then be calculated with r3 = V
4
3
π
.

These radii can then be used with a randomly generated unit vector ψ̂i to find
the center points pj and pk of the child cells,

pj = pi + (rj)ψ̂i (3.26)

pk = pi − (rk)ψ̂i. (3.27)

The two child cells are created at these positions, such that they do not overlap
but are touching. All intracellular chemical molecular amounts are also divided
according to this ratio. Additionally all cell defined processes are copied across
to the new child cell.

Rod-shaped cells
Rod-shaped bacteria replicate upon reaching twice their original length [50]. This
is modelled as two child cells being placed within the volume of the dividing par-
ent cell, as can be seen in Figure 3.8 (B). This is slightly different to dividing
spherical cells, as it does not conserve mass in order to make sure there is not
additional volume that child cells consume.

For a dividing rod whose center of mass is at position pi and has an orientation
ψ̂i, we calculate the position of child cell centers of mass pj and pk as follows,
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pj = pi + (0.5li + ri)ψ̂i (3.28)

pk = pi − (0.5li − ri)ψ̂i. (3.29)

Both child cells inherit the same radius as the parent cell and are of identical
lengths, we must take care to subtract the radius from the child cell length, so
that both child cells fit within the volume of the parent cell, lj = lk = 0.5li − ri.

3.2.3.3 Extracellular polymeric substances

Bacteria can produce extracellular polymeric substances (EPS) [128, 195]. EPS
can be modelled via two mechanisms. The first is an implicit form modelling
EPS via mass-spring dynamics connecting adjacent cells. This implementation
utilises the same algorithm as the specific cell-surface interactions as described
in the Physics section (Section 3.2.1.2). This representation assumes that when
two cells are close by their relative positions are constrained by the presence
of adhesive EPS, thus a spring is formed between two neighbouring geometries
where the distance between their center positions pi and pj is less than the sum
of their radii multiplied by some range factor REPS(ri + rj).

An alternative form is to model EPS as particles that exist as geometric
agents in the environment. This is modelled in a similar manner to iDynoMiCS
[130]. Bacterial cells have capsular EPS which is bound to their membrane, this
capsule has a volume V C

i associated with it, and it is added to the cell’s volume
to calculate the cells total radius considering both active (cellular) and inactive
(EPS) biomass. Upon V C

i reaching a threshold VEPS, an EPS particle is added
to the local environment at a random position adjacent to the cell. The EPS
particle has the same volume as VEPS and the capsule volume V C

i is reset to 0.
EPS particles are modelled as passively-motile spheres which may undergo

specific and non-specific interactions with neighbouring EPS particles and cells,
as described in the Physics section (Section 3.2.1.2).

3.2.3.4 Boolean networks, ODE, Gillespie and SBML integration

Intracellular processes such as gene regulation and metabolism can be modelled
using either SBML models, Boolean networks, Gillespie models, or sets of ordi-
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nary differential equations, all being widespread formalisms to model cell internal
dynamics.

Boolean network representations may be used to represent networks of genes,
or higher level concepts such as phenotype states or decision making rules. Nodes
in the network are in one of the discrete states on or off, with directed arcs
between nodes to describe an activation or inhibition relation. Arcs into a node
are turn into propositional logic states, form transition rules between nodes. All
node transitions are solved synchronously and then updated.

The modeller may specific their own sets of ordinary differential equations,
for which a 4th order Runge-Kutta integrator is implemented.

A Gillespie simulation module is implemented, allowing for stochastic chemical
processes to be represented and integrated using the general method.

An SBML solver LibSBMLsim[210] is integrated, allowing for each cell to po-
tentially have its own SBML model. SBML can be used to describe the metabolic
or gene regulation of a bacterial cell. Any state variable or parameter of the SBML
model can be set or get by other submodels of a cell in Simbiotics, allowing for
the full integration of SBML (except for events).

For all representations the variables are accessible from other modules, this
enables a coupling between cell internal dynamics and interactions with their envi-
ronment. For example these methods can be linked with the membrane transports
module to allow for chemical species to permeate the cell membrane, simulating
chemical signalling. Another example includes modelling of membrane structure
expression based on gene regulation, such that gene regulation effects how cells
adhere to each other.

3.3 Analysis

Simbiotics has a built-in analysis suite; this consists of additional submodels that
can be attached to a model specification to perform measurements. A virtual lab
is implemented for more in-depth analysis, offering some typical wetlab instru-
ments and mathematical analysis features, as well as scheduled model interac-
tions. Analysis tools and data exporters can be attached to the model specifica-
tion and used to collect data and process it throughout the simulation. Users may
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define schedules which automate model analysis modules, programming specific
model interactions or data collection and processing events.

The virtual lab currently consists of microsensors for sampling chemical field,
biomass, biofilm height and gene expression profiling. Model events such as pipet-
ting a chemical at a given time are also included. A simulated spectrophotometer
to obtain optical density measurements is also implemented. Additional statistics
tools include measurements of the mean squared displacement and velocity auto-
correlation function of bacteria, as well as detailed data gathering regarding cell
interactions, gene expression and spatially distributed biomass concentrations.
One can also run a biofilm height measurement algorithm that can encode a
heatmap image of biofilm heights as well as measuring the average and standard
deviation of measurements. A general data collector is implemented, which allows
the modeller to append desired properties of the system they wish to know, such
as cell species number, chemical concentrations, simulation execution time, gene
expression and number of cell-cell interactions.

An optical real time 3D rendering is provided by the interface, this allows
for the custom rendering of different model components. Live graph-plotting is
available to show model statistics during simulations. Snapshots and videos of the
simulation can be taken, with optional filters to allow for Z-stack slices, filtered
cell populations or cell state highlighting. Snapshots consist of all agent geometry
encodings and user-selected states, they may be loaded back into Simbiotics which
reconstructs the physical state and allows for the navigation of the 3D model.
Additionally a basic PovRay exporter can convert a Simbiotics snapshot into a
PovRay image file to be rendered.

All lab modules may be attached to a model specification in the same way
modules are attached to describe system dynamics. Modules have parameters for
users to tune their behaviour. Characterisation of systems using the virtual lab
may be achieved through parameter sweeps (parameter sensitivity analysis). The
user may set a model parameter to be a sweep, such that the simulation will run
multiple version each with a different parameter value in the sweep.
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Figure 3.9: (A) A chemostat models a chemical flux at a boundary of a domain.
(B) A bactostat models an influx of bacteria at a boundary of the simulation
domain.

3.3.1 Virtual lab

Chemostat

A chemostat is implemented which models fluxes of chemicals into and out of the
simulation domain. Chemostats can be attached to a domain boundary, and have
rates assigned to them describing the flux rate of specific chemicals defined in the
model. A given chemical C is introduced into (or removed from) the domain at a
flux rate rC . Chemostats can also be set to achieve a desired concentration level.
Defined fluxes can be set to be per unit area if the modeller chooses. A schematic
can be seen in Figure 3.9 (a) showing the flux of chemicals into the domain.

Bactostat

A bactostat is similar to a chemostat, it represents the flux of bacteria with
the larger environment beyond the simulation domain, and can be attached to
the boundaries of the domain. The bactostat has bidirectional flux, bacteria
which are leaving the simulation domain are removed, and rate rbac describes
the probability a bacteria will be introduced into the simulation per unit time.
As with the chemostat, defined fluxes can also be set to be per unit area if the
modeller chooses. The rate rbac is proportional to the density of cells outside
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Figure 3.10: Schematic of simulated spectrophotometer in Simbiotics. (A) Spec-
trophotometers work by projecting light into one side of a sample and detecting
the ratio of light which exits the other side. (B) In Simbiotics this is achieved
by projecting the population onto the boundary that the light enters, and ras-
terising that space into a 2D grid. (C) Each grid cell in the rasterisation can be
considered to be a trajectory of light rays travelling through the sample. If the
center point of a grid cell intersects with any projected cells, then it’s considered
that the light is blocked. (D) The entire rasterisation is assessed as seen in (C),
determining the ratio of light that has successfully travelled through the sample.

of the simulation domain dbac. The bactostat can have dbac as a static density,
such that the flux of bacteria into the domain is constant regardless of domain
dynamics. Alternatively dbac can be an accumulative density, such that bacteria
leaving the domain increase the flux back into the domain. A schematic can be
seen in Figure 3.9 (b) showing the flux of bacteria into the domain.
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Spectrophotometer

A simulated spectrophotometer allows for the collection of optical density read-
ings from the model. This is achieved by projecting the cells onto the face of the
domain from which the light enters, then partitioning this into a 2D grid. We
consider the light not to pass through a grid voxel if a cell intersects it. This
method does not consider the diffraction of light, thus some constant is applied
to optical density readings to account for this effect. A schematic showing this
process can be seen in Figure 3.11.

3.3.2 Mathematical tools

Mean squared displacement

Measuring the mean squared displacement (MSD) of agent geometries involves
considering the initial position p(0) of all geometries in a given set G. At a
given time t we calculate the displacement r for all geometries from their initial
position p(0) and takes the average. This average is squared to give the mean
squared displacement msd.

msd = < ri(t)
2 > = < (pi(t)− pi(0))2 > (3.30)

Velocity autocorrelation function

The velocity autocorrelation function (VAC) of agent geometries is calculated
by considering the initial velocity v(0) of all geometries in a given set G. At
a given time t we calculate the dot product of all geometry’s initial velocity
v(0) with their current velocity v(t) and take the average, this is the velocity
autocorrelation function vac

vac = < vi(0) · vi(t) > (3.31)
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Figure 3.11: Microscopy image loading, showing the processing from the origi-
nal microscopy z-stack to Simbiotics model state. (a) Schematic showing that a
z-stack undergoes image processing to extract and encode features such as cell
positions. This encoding is then used in Simbiotics model initialisation to model
state. (b) Example of microscopy image processing. left: 2D projection of mi-
croscopy z-stack. middle: 2D projection of image processed z-stack, from which
image features may be extracted. right: 2D projection of Simbiotics model, show-
ing loaded cellular agents in the same configuration as the original z-stack.

3.3.3 Microscopy image processing

A major contribution of Simbiotics is the ability to process microscopy images of
2D and 3D bacterial conformations. This allows for the initialisation of simula-
tions from realistic biological configurations.

To initialise the spatial configuration of bacteria one may use microscopy Z-
stack images. Image processing requires three steps: we first apply a threshold
image segmentation that generates binary data representing the Z-stack, we then
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identified individual cells and encode details such as center position and radius
in a data file. The data file can then be loaded in the configuration file that
Simbiotics uses to initialise the cell population. This process is depicted in Figure
3.11 where a Z-stack image is loaded into Simbiotics.

For a multispecies population one may use image analysis techniques to iden-
tify cell species, for visually similar species one may use staining techniques to
differentiate. Once the cell species has been identified this can be used to attach
relevant model processes describing the cell’s behaviour, such as an SBML model
and other Simbiotics submodels.

This microscopy image processing allows for the simulation of an imaged pop-
ulation, as well as the simulation of a subset of the population through some
filtering process. Through this one may observe the effect the filtered subpopu-
lation has on the development of the population by the divergence of the filtered
model from the original.

One may also compare the simulated state and the experimental state as
the system evolves, iteratively changing model parameters to fit them to the
experimental dynamics. This process could be automated, allowing for parameter
fitting of models through refinement of the original specification based on the
actual data.

3.4 Simbiotics integration loop

All of the processes described above can be integrated by the Simbiotics engine
once composed into a model. This is done by a core integration loop that iter-
ates through all model objects and integrates their solutions. The loop has the
following form:

Sta r t loop
− Solve e x t r a c e l l u l a r chemica l d i f f u s i o n
− Solve c e l l behaviour modules
− Solve the phys i c s ( c o l l i s i o n s and motion )
− Apply ana l y s i s modules ( such as data export ing )
End loop
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Figure 3.12: Flow diagram of the simulation algorithm. After initializing
the model with N cells, the outer loop iterates the system through time. In each
iteration the algorithm first solves for diffusion and decay of molecules in the
environment using a finite difference approximation to the Fick equation. Then,
for each cell in the simulation, its intracellular dynamics are solved and updated,
then afterwards all cell motion is calculated. Finally the analysis modules (such
as data exporters and model events) are executed. The algorithm is stopped after
T time units have been simulated, or some other user-defined stopping criteria
has been met.
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The iteration starts by solving extracellular diffusion, calculating how chem-
icals in the extracellular space move around the domain (excluding membrane
transport, as this is modelled as a cell behaviour process). Next all cell behaviour
dynamics are solved, such as cell growth, division, gene regulation and membrane
permeation of chemicals. The next step is calculating the physical forces in the
simulation and resultant motion of agents. The final step is applying any pro-
grammatic changes to the model, such as the user specifying the pipetting of a
chemical at a certain time in the simulation, and exporting any specified data to
file. Further details on the program flow can be seen in Figure 28.

The loop integrates the module process across a time step t, that is a fixed
value set in the Simbiotics configuration. This means processes that occur on a
fast timescale, such as diffusion, constrain t to be a small value, with which all
processes are integrated over.

3.5 Selecting parameter values

The values for parameters for the modelling features described above have been
deduced in a range of manners. Some parameters can be found through literature
data, others through experimentation and measurement, and some need to be fit
through simulation. Not all parameters correspond to a physical property, and
are used in modelling abstractions, however they must still be informed by the
natural systems they are designed to model.

The core parameters for the Simbiotics modelling features are listed here (in
the order they were presented in the modelling section for this chapter), with
typical values and reference.

Parameters listed as having been derived from literature have been found in
the papers cited in this chapter and the background, they include well known
values such as cell radii that can be found from various sources. Parameters
listed as having been derived from simulation fitting involve running simulations
with different values until realistic behaviour is produced by the simulation, based
on some measurable output (such as calibrating collision forces based on natural
growth patterns and collision behaviour, or calibrating the diffusion grid depth
based on stable diffusion dynamics).
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Parameter Description Typical value Source
Gd Grid depth 0-7 Simulation fitting
r Radius (cell) 0.5µm Literature
m Mass (cell) 11pg Literature
l Length (bacilli cell) 2µm Literature
KC Collision spring constant 20-100 Simulation fitting
KS
qs Specific interaction pair 1-100 Simulation fitting

KE
ij Non-specific interaction pair 1-100 Simulation fitting

KR Passive motility force constant 0.1 - 2.0 Simulation fitting
KF Friction coefficient 0.01 - 10.0 Simulation fitting
KG Gravity coefficient 0.01 - 10.0 Simulation fitting
Dc Diffusion coefficient 0.001 - 1000.0 Literature
Jpc Membrane diffusion coefficient 0.001 - 1000.0 Simulation fitting
Gr Growth rate 0.0001 - 0.01 Simulation fitting
Gv Growth rate variation 0.0 - 0.5 Simulation fitting
Dr Division ratio 0.5 Literature
Dv Division ratio variation 0.0 - 0.1 Simulation fitting
t Time step 0.0001 - 0.1 Simulation fitting

These basic parameters for Simbiotics vary in value depending on the system
being simulated. The platform is unit agnostic, that being it does not force the
value units, and it is down to the modeller to be consistent and correct with their
inputs. Due to this if the modeller changes the time step t, they must change
their other parameters that are time dependent taking into account this change
to t.

Each model built with Simbiotics involves different features and thus different
parameters. Parameters often need to be fit for each specific study, however
models of similar systems can often have shared parameter values. For example
parameters found in the validation tests (Chapter 4) were often valid in case study
models, such as the collision force constant KC . Other parameters however, such
as the random walk force constant KR, needed to be fit for each model in order
to match the experimental diffusion coefficient.

The problem associated with finding parameters and justifying the their val-
ues when modelling is common, and Simbiotics provides many modules with
parameters that can be used in different ways (depending on which method the
modeller chooses to represent a specific phenomena, and then how they connect
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those methods via model composition). Simbiotics provides an environment for
rapid-prototyping and trial and error, where model development involves finding
parameters that are available in literature first, and fitting other parameters based
on those. This may take numerous iterations and can require control experiments
with which to calibrate the model against.

3.6 Summary

This chapter has presented Simbiotics, a framework for integrative modelling of
multicellular systems. The Simbiotics library provides a range of modelling and
analysis features primarily for studying bacterial dynamics. The main features
have been presented here, elaborating on their implementation and parameters.
The analysis features have also been presented, showing how Simbiotics can act
as a simple in-silico lab where virtual experiments can be designed, simulated
and analysed. This chapter has also discussed parameter values for simulations,
how these can be determined and typical values that are used.

There are numerous simulators for population dynamics, however there is yet
to be a standardized platform for modelling bacterial populations in a multi-
scale manner. Simbiotics provides an extendable modular framework in which
the user can integrate a wide range of processes, including interfacing with stan-
dard formats such as SBML for modelling individual cells and microscopy images
for describing spatial composition of populations. The extendable library and
distributed CPU parallelization features allow for the scaling of Simbiotics func-
tionality as it is further developed.
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Chapter 4

Validation and testing of Simbiotics

This chapter presents a series of validation tests performed on Simbiotics model
features. Stress tests and analysis of Simbiotics perfomance scaling are also pre-
sented. Literature results from existing population modelling tools are reproduced
with Simbiotics. This chapter further addresses Objective 1, ensuring that the
developed software’s implementation is correct and produces accurate outputs.

4.1 Overview

To ensure the implementation of Simbiotics features are correct, and that they ac-
curately model the intended biological phenomena, a series validation tests were
performed. These act as sanity checks, for example ensuring a chemical concen-
tration can not be negative, as well as ensuring that mass is conserved in the
simulation. Additionally these tests deduced the stable parameter ranges for the
diffusion integrator. Validation of features involved testing small library mod-
ules in simple models, checking that they gave the correct output based on their
intended mathematical implementation. More complex models through the com-
position of library modules ensures that these methods are correctly integrated
together.
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Figure 4.1: Schematic showing Test 1 - An instantaneous force is applied to a
cell causing it to move. Top row: The cell does not experience any other forces
and moves unimpeded. Bottom row: The cell experiences a frictional force
(modelled as a drag force) as it moves through the space.

4.2 Validation tests

4.2.1 Physical integrator

To ensure the physical integrator (Strömer-Verlet integration) is correctly work-
ing, a series of increasingly complex tests were performed. To quantify system
dynamics the following properties are obtained from the simulation: the velocity
of cells, their squared displacement, and their velocity autocorrelation function
(VAC).

4.2.1.1 Forces

Test 1 - Instantaneous force
A single cell is created in a cubic simulation domain, it is at rest (velocity = 0) and
is in an environment void of any forces (including no friction.) An momentary
artificial force F = 10 is then applied to the cell in the +X direction after 10
seconds. A schematic of Test 1 can be seen in Figure 4.1.

As seen in Figure 4.2, the cell’s velocity, squared displacement and vac remain
at 0 until the applied force at 10 seconds. The instantaneous force causes an
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Figure 4.2: Top row: Test 1 without friction. An instantaneous force is applied
to a cell at t = 10. The velocity of the cell increases and stays constant at
10 seconds, as does the velocity autocorrelation function. The mean-squared
displacement increases quadratically due to this constant velocity away from its
point of origin. Bottom row: Test 1 with friction. The velocity and vac decrease
over time due to friction. This slowing in velocity can be seen in the mean-squared
displacement no longer being quadratic.

increase in velocity, which remains constant as there are no other forces acting
on cell.

The test is run again with the additional of friction force component (viscous
drag force), where the frictional coefficient KF = 0.01. This can be observed as
a decay in the velocity of cell.

Test 2 - Constant force
With the same set up as for Test 1, we set KF = 0.0 so that there is no friction in
the system and the force F = 0.01. The artificial force is also applied constantly to
the cellular agent (rather than an instantaneous force as in Test 1). A schematic of
Test 2 can be seen in Figure 4.3. As seen in Figure 4.4 this causes an acceleration
of the cell as anticipated.
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Figure 4.3: Schematic showing Test 2 - An constant force is applied to a cell
causing it to accelerate. Top row: The cell does not experience any other forces
and moves unimpeded. Bottom row: The cell experiences a frictional force
(modelled as a drag force) as it moves through the space.

4.2.1.2 Collisions

Test 3 - Boundary Collisions
Agents (such as cells) collide with solid boundaries, which is modelled as a reflec-
tion of the velocity. This calculation has an elasticity coefficient EC associated
with it, where EC = 1.0 is a completely elastic collision, and EC = 0.0 is com-
pletely inelastic. A schematic of Test 3 can be seen in Figure 4.5.

The first test is test up with the same conditions as Test 1, with an instanta-
neous force resulting in a constant velocity (no frictional force component.) The
cell is initial near to a solid domain boundary, and collides with it. As seen in
Figure 4.6 the velocity remains constant, and upon collision the VAC value is
inverted, as is the squared displacement gradient.

The elasticity of the boundary collision is set to be EC = 0.5, such that the
cell loses half of its velocity (kinetic energy) upon collision. The velocity is halved
at the moment of collision with the boundary, and the VAC value and the squared
displacement gradient half and invert.

A frictional component is added to the model to ensure it behaves as expected
in this circumstance. A friction force coefficient of KF = 0.001 is set. This causes
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Figure 4.5: Schematic showing Test 3, where a force is applied to a spherical
agent (a cell) causing it the collide with a domain boundary. Top row: The
collision with the boundary is completely elastic. Middle row: The collision
with the boundary is inelastic, and some energy is lost upon collision. Bottom
row: As well as an inelastic collision, the cell experiences a drag force.

a decrease in velocity of the cell over time, increasing the duration it takes to hit
the solid boundary.

Test 4 - Agent collisions
To test the collisions between agents, two cells are created. An instantaneous
force is then applied to one cell, firing it directly at the other. A schematic of
Test 4 can be seen in Figure 4.7. As seen in Figure 4.8, the kinetic energy is
transferred completely elastically from the first to the second cell upon collision.
The squared displacement shows that the first cell travels forward and collides
with the second cell, at which point is stops completely, as desired.
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Figure 4.6: Top row: Test 3 without friction and dampening. When the cell
collides with the boundary it rebounds in the reflected direction. It does not
lose any velocity, however as it changes direction is VAC flips to be negative.
Its squared displacement begins to decrease at the same rate as it increased as
the rebounded cell returns to its original position. Middle row: Test 3 with
dampening but no friction. The dampening introduced to the system causes
the cell to lose some energy upon colliding with the boundary, this can be seen
by its lower velocity at 65 seconds when it collides. Its VAC still flips as it
changes direction, but loses some magnitude, as does the gradient of its squared
displacement. Bottom row: Test 3 with both friction and dampening. With
both friction and dampening in the system, it can be seen that the cell loses
energy during its trajectory through the medium, not only upon collision.

4.2.1.3 Random walk

Test 5 - Random walker cell
Testing the translational diffusion force involved a similar setup to Test 1 (a single
cell suspended in 3D domain.) The cell now experiences two types of force. The
first is a ’kick’ force in a random direction, where the force magnitude is sampled
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Figure 4.7: Schematic showing Test 4 - A force is applied to a spherical agent
(cell) to induce a collision with a second static spherical agent.

Figure 4.8: Test 4 Agent collisions. Two cells C1 and C2 are placed in the domain
which experience no force. C1 is then accelerated directly at C2. The two cells
collide at T = 30s. Left: The total velocity remains constant in the system as
seen in on the left. Middle: There is a complete transfer of momentum from C1
to C2, with the velocity of C1 reducing to 0.0 and C2 achieving the same velocity
as C1 initially had (0.26). Right: The squared displacement of C1 increases then
plateaus upon collision, at which point C2 starts to move away from its original
position.

Figure 4.9: Schematic showing Test 5 - a cell undergoes a random walk through
the simulation domain.
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from a normal distribution around an average force. The second is a frictional
force to ensure that there is a maximum velocity the cell can reach. A schematic
of Test 5 can be seen in Figure 4.9.

As seen in Figure 4.10, we observe the that the velocity is changing randomly
oscillating around an average of 3.0µms−1. The squared displacement is also
randomly changing, however as the domain boundaries are solid walls, its squared
displacement can not go above the value determined by the long diagonal of the
simulation squared. In this instance the world domain is 100 ∗ 100 ∗ 100µm

The boundaries are set to be cyclical such that the cell can travel an unim-
peded distance. One can see from the squared displacement in Figure 4.10 that
it is increasing linearly, however due to it being a single cell this general trend
is not so clear amongst the fluctuations. The diffusion coefficient of the bacteria
can be determined from the mean squared displacement gradient, this calculation
will be shown for the average squared displacement of a larger population of cells.

Test 6 - Population of random walker cells
A population of 1000 cells are created in a cubic domain of length 100µm. Cycli-
cal boundaries are defined such that cell positions are not confined within the
100µm domain. Cells are initial in an evenly distributed spatial arrangement.
Each cell experiences an independent translational diffusion force, as seen in Test
5, causing it to do a random walk through the simulation domain. Cells also
experience drag force. The parameters are KR = 1.0 and KF = 1.0.

In the first test cells do not collide and can pass through each other, as seen
in Figure 4.11 (a). The second test includes cell collisions, shown in Figure 4.11
(b). The third test includes cell collisions and the formation of a spring between
colliding cells, shown in Figure 4.11 (c). These three tests were run to test that the
integrator remains stable even when new forces are introduced into the system.

As seen in Figure 4.12, the average velocity of cells remains constant, just
above 1.0µms−1. The average VAC oscillates around 0.0, showing that the
cells are constantly changing direction. The average mean squared displacement
(MSD) of the population of cells shows a linear increase, as they drift away from
their initial positions. The integrator can be seen to remain stable for all of the
test variations A, B and C.
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Figure 4.12: Test 6 results - Population of random walkers. Top row: results
for system A (where cells don’t collide), showing stable total velocity and VAC,
with a linearly increasing MSD. Middle row: results for system B (where cells
do collide), again showing stable total velocity, VAC and MSD. Bottom row:
results for system C (where cells which collide form a loose spring connecting
them), showing stable total velocity, VAC and MSD trajectories. The graphs
show 10 repeats of the test.
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4.2.2 Chemical integrator

To ensure that the numerical approximation of diffusing chemicals are correct we
perform a series of tests. First we verify that the finite volume method imple-
mented according to Fick’s laws is working correctly, simulating how chemicals
diffuse through the extracellular space, in relation to the analytical solution. We
then establish the stable parameter regions of the chemical diffusion integrator.
Finally we verify that the membrane transport mechanisms which carry chemicals
between the extracellular space and intracellular compartments are correct.

4.2.2.1 Extracellular diffusion

A cuboidal simulation domain is created of dimensions 100x100x100 µm. We
define a chemical S1 which can diffuse through space with a diffusion coefficient
D = 10−5ms−2. S1 has a degradation coefficient of Kd = 0.0 so it does not
degrade over time. We pipette 100,000 molecules of S1 into the system center of
the simulation domain, which was rasterised with a grid depth of Gd = 7, and
measure the spatial concentration profile over time. A schematic showing this
test can be seen in Figure 4.13.

Figure 4.13: Schematic showing Test 7 - Chemical S1 is pipetted into the center
of the 3D domain and left to diffuse. The concentration for different distances
from the original pipette position are recorded.

We expect that as the chemical profile should show a peak in the center,
which over time forms a Gaussian distribution and eventually flattens out as it
reaches an equilibrium. The overall amount of chemical S1 should be the same
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Figure 4.14: Results for the extracellular diffusion test, showing simulated results
(blue) and analytical solution (red) at (A) 10 seconds, (B) 30 seconds, and (C)
60 seconds.

as we pipetted, as it does not degrade. This can be seen in Figure 4.14, with the
analytical solution overlaid. The analytical solution was found using the diffusion
equation:

c(x, y, z, t) =
M

(
√

4πDt)3
exp(−x

2 + y2 + z2

4Dt
). (4.1)

To find the stable parameter regions of the diffusion integrator, we run this
same test with different input parameters, and observe if the integrator is stable
by checking whether fluctuations in the quantity of the molecules varies more
than 0.1 percent. The sensitive parameters are the simulation time step t, the
diffusing chemical’s diffusion coefficient D, and the grid depth G. The heatmaps
in Figure 4.15 show the stable regions for common values of these parameters.
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Figure 4.15: Heatmaps showing stable parameter regions of the extracellular
diffusion integrator. Black indicates the integrator is stable for those parameters,
and light pink indicates it’s unstable. A smaller simulation time step t is needed
for stable integration of chemicals with high diffusion coefficients. As the grid
depth (which is the resolution of the grid as described in Chapter 3) increases,
then the time step may need to be decreased to stability integrate the same
diffusion coefficient.
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4.2.2.2 Membrane diffusion

To ensure that membrane transport mechanisms are correctly implemented, we
devise a small system and check that the expected results of different types of
transport are yielded. We create a cell in a small 3D world, the extracellular
space is fill with a chemical S1.

There are two types of membrane transport. Passive transport represents
osmosis, where chemicals can move across the membrane from high to low con-
centrations. Active transport represents the proteins which can move chemicals
across the membrane against the gradient. A schematic can be seen in Figure
4.16.

Figure 4.16: Schematic showing Test 8 - molecules of a chemical S1 fill the extra-
cellular space, and can be transported across the cell membrane via either passive
mechanisms (osmosis) or by active mechanisms (transporter protein).

Additionally we test the two numerical approximation methods for calculating
the flux across the membrane. The first is the continous implementation, where
the flux is deterministically calculated. The second is a discrete implementation,
utilising a Poisson sampling to obtain a flux rate from a distribution around the
mean rate.

Active transport
The active transport mechanism uptakes the chemical S1 from the extracellular
space into the intracellular compartment as seen in Figure 4.17. The number
of S1 molecules in the extracellular space decreases, and increases in the intra-
cellular compartment. The intracellular concentration becomes greater than the
extracellular concentration, as the active transport can move molecules against
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Figure 4.17: Results for active membrane transport mechanism, showing
molecules being moved from the extacellular to intracellular compartment even
against the concentration gradient. Top row: shows the continuous method. (A)
the extracellular number of molecules. (B) the intracellular number of molecules.
(C). The intracellular (blue line) and extracellular (green line) concentrations.
Bottom row: shows the discrete method. (D, E, and F) correspond to the
same as (A, B and C). There are 10 repeats of the discrete method.

the gradient. The total amount of chemical S1 in the entire system remains con-
stant (Figure 4.17 (i)). This correct behaviour is seen for both continuous and
discrete methods.

Passive transport
The passive transport mechanism uptakes the S1 from the extracellular space
into the intracellular space until the concentrations are equal, as seen in Figure
4.18. The total amount of chemical S1 in the entire system remains constant.
This correct behaviour is seen for both discrete and continous method implemen-
tations.
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Figure 4.18: Results for passive membrane transport mechanism, showing that
transport occurs until there’s no concentration difference between the intracellu-
lar and extracellular space. Top row: shows the continuous method. (A) the
extracellular number of molecules. (B) the intracellular number of molecules.
(C). The intracellular (blue line) and extracellular (green line) concentrations.
Bottom row: shows the discrete method. (D, E, and F) correspond to the
same as (A, B and C). There are 10 repeats of the discrete method.

Figure 4.19: Results of the Poisson sampler for different lambda values. (A)
10,000 runs for λ = 0.1. (B) 10,000 runs for λ = 1.0. (C) 10,000 runs for
λ = 10.0.

Poisson sampler

We ensure that the Poisson sampler is correctly implemented by running tests
for different lambda values. The results as seen in Figure 4.19 show 10,000 iter-
ations of the sampler for a given lambda value, showing the correct behaviour of
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producing a normal distribution around that mean.

Figure 4.20: Left: Schematic showing the system for testing intracellular inte-
grators. The system is a basic chemical reaction network that converts S1 into
S2 at a rate K1, and converts S2 into S3 at rate K2. This network can be repre-
sented either as a set of differential equations, or as mass-action kinetics. Right:
The results of the different intracellular integrators. The ODE and SBML meth-
ods are deterministic methods, where as the Gillespie method is stochastic. The
graph shows 10 repeats for Gillespie method.

4.2.3 Intracellular dynamics integrator

To ensure the methods for modelling intracellular dynamics are correct we develop
small models of cells with metabolisms and gene regulatory networks. We first
check that a self contained cell with these dynamics behaves correctly, verifying
that components work. We then check create ensuring these components work as
expect in conjunction with other features, such as the cells growing and dividing
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into child cells. Finally we validate that integrating these systems gives accurate
results.

4.2.3.1 ODE, SBML and Gillespie submodels

We define a simple chemical reaction network which occurs within a cell, and
ensure all methods yield correct results. A cell is defined with a basic metabolism
which converts S1 into S2 at rate K1, and then converts S2 into S3 at rate K2.
This system can be modelled either as ordinary differential equations (ODEs),
an SBML model, or a Gillespie simulation. We test that each of these methods
gives the same result for this system, this can be seen in Figure 4.20.

Figure 4.21: Schematic showing Test 9, illustrating the growth and division of a
cocci cell (top) and a bacilli cell (bottom).

4.2.3.2 Cell Mitosis

To validate that the cell mitosis is correctly implemented, we develop a simple
model of a single cell which grows and divides. We do this test for the two mor-
phologies implemented in the Simbiotics library, coccus (spherical) and bacillus
(rod-shaped). A schematic showing these two cell morphologies growing can be
seen in Figure 4.21. The cells are set to grow at a constant rate, and divide upon
reaching around twice their original size (see Chapter 3 for full details on how
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Figure 4.22: Schematic showing results for Test 9. Tests for both cocci and bacilli
cells were conducted, where the parameter for adding noise to the growth rate,
Gv, and parameter to add a random offset to the division ratio between children
during mitosis, Dr, were varied. Bottom: The results of the tests stacked on top
of each other, showing 5 tests with cocci and 5 test with bacilli. (A) Gv = 0.0 and
Dr = 0.0. As can be seen the growth rate of cells is consistent and synchronised,
causing a doubling of the colony size roughly ever 1000 seconds. (B) Gv = 0.1
and Dr = 0.0. The growth rate of cells becomes slightly desynchronised. (C)
Gv = 0.1 and Dr = 0.1. Adding fluctuations to how mass is dividing between
child cells during mitosis results in a complete desynchronisation of mitosis events
across the population. The insets (i) showing the total biomass in the system.

mitosis is implemented). The number of cells and the total biomass is measured
over time.

Figure 4.23: A single cell with an initial chemical quantity grows and divides.
The chemical is not consume or degraded, and is assumed to be well mixed upon
mitosis.

As expected the generation time (time at which population size doubles) re-
mains constant, and goes up in steps as all the cells divide simultaneously, as
seen in Figure 4.22 A. To add noise into the system so that cells do not grow
and divide synchronously, we first add random fluctuations to the growth rate of
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Figure 4.24: As the cell population grows, it can be seen that the total amount
of S1 in the system is preserved.

cells. As seen in B the step function has some curve to it, as not all cells are
dividing at exactly the same time. To further desynchronise the mitosis event of
cells, we define a random fluctuation in the mass attributed to the two daughter
cells upon mitosis. As seen in C, the number of cells gradually increases rather
than forming a step function.

A final validation test is performed to ensure that intracellular chemical num-
bers are preserved during mitosis events. We create an equivalent model to the
original mitosis verification test, and we seed the initial cell with 100 molecules
of chemical S1 inside it. As the population grows, we record the total number of
S1 molecules in the system.

4.3 Performance tests

In this section performance tests of Simbiotics are presented, including an overview
of the large models built in case studies.

The bacterial coaggregation case study model (Chapter 7) involved simulating
100,000 cellular agents in a cubic simulation domain of length 400µm. Simulating
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4 hours of aggregation took 7 hours of computational time.
The biofilm case study model (Chapter 8) involved simulating an initial pop-

ulation of 3,000 cellular agents in a cuboidal domain of size 300x50x300µm. Sim-
ulating 12 hours of biofilm growth took 20 hours of computational time, at this
time there were 750,000 cellular agents in the simulation domain.

Both case study models were simulated on a high performance computing
cluster. The simulations were run distributed across 5 nodes in the cluster, with
each node specification being Xeon E5-2690 v2 with 265GB of RAM.

Performance analysis shows that calculating the physics of the system such as
cell-cell collisions, movement and interaction forces, consume the largest amount
of computational time. The scaling of the physics calculations is linear O(N) with
the number of cells, however becomes exponential O(N2) when cells are packed
together extremely closely such as when aggregates form or dense biofilms.

4.3.1 Stress tests

We preformed stress tests on the Simbiotics platform, analysing the performance
scaling for different population and domain sizes. Tests were performed on two
cores of a single node of the HPC.

4.3.2 Performance scaling

First we tested how performance scales for cellular populations of the same density
for varied domain volumes. We performed the tests for 3 population densities,
1.25e5cells

mL
, 5e5cells

mL
and 1e6cells

mL
. For each density we scale the population and domain

size, maintaining the same density and observing how performance scaled.
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Figure 4.25: Stress test showing log of simulated time against the simulation
execution time. Stress tests were performed with spherical cells, suspended in
a fluid experiencing a random mixing force. For each test, N is the number of
cells, and M is the length of one side of the cubic simulation domain in µm. (a)
Results for a density of 1.25e5cells

mL
. (b) Results for a density of 5e5cells

mL
. (c) Results

for a density of 1e6cells
mL

. All tests were performed on two cores of a single node of
the HPC.
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4.3.3 Sphere and Rod comparison

Figure 4.26: A stress test of sphere and rod-shaped cells, showing the log of
simulated time against the simulation execution time (both in hours). 100,000
spherical and 100,000 rod-shaped cells were simulated independently, suspended
in a fluid volume of 1mL. Cells experience a random mixing force to induce
collisions. Tests were performed on two cores of a single node of the HPC.
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4.4 Reproducing literature results

To further validate Simbiotics I conducted some brief studies reproducing litera-
ture results from some other related simulators. The motivation behind this was
to confirm that Simbiotics could reproduce a wide range of existing simulator
findings, both ensuring the correctness of Simbiotics and ensuring that a range
of existing models can be represented in Simbiotics. This is especially pertinent
in a discipline where lack of reproducibility has been a challenge [204].

Figure 4.27: CellModeller4 results showing fractal patterns forming at colony
boundaries. Figure adapted from [182]
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Figure 4.28: Simulation results generated by the Simbiotics model reproducing
previous literature findings of fractal pattern formation at the boundary of grow-
ing bacillus cells [182]. The system demonstrates the same phenomena as reported
in the original publication. The simulation was run with different friction and
cell length parameters, studying the effect these system properties have on the
fractal structures.
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4.4.1 Emergence of fractal colony boundaries

The spontaneous emergence of fractal colony boundaries due to mechanical in-
stability was demonstrated [182]. The model in the study was developed using
CellModeller4, a multicellular modelling tool developed at Cambridge University.
Their model was of a colony growing in 2D, simulating cell growth and division
coupled with physical shoving interactions between cells. Their results can be
seen in Figure 4.27.

I developed a model simulating the same system; two species of rod-shaped
cells growing on a 2D surface. My simulation findings show the same fractal pat-
terns forming at the boundary of colonies emerging purely from physical shoving
forces. The model is simulated for varying friction coefficients and cell lengths,
the results for which can be seen in Figure 4.28.

Figure 4.29: Edge detection circuit in CellModeller4. Figure taken from [181]
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4.4.2 Colony boundary detection

Boundary detection between two synthetic colonies was studied with CellMod-
eller4 [181]. Their model consisted of two growing bacterial species in a microflu-
idics environment, where one species (the source) produces a diffusible signal
molecule AHL, and the second species (the sink) produces a diffusible molecule
AiiA which degrades AHL. AHL activates the production of a fluorescent protein
in both populations (CFP for source cells, and YFP for sink cells). This produces
a system where YFP is synthesized by the sink cells along the boundary with the
source cells. Their model can be seen in Figure 4.29.

Figure 4.30: Snapshot of the edge detection circuit in Simbiotics, the circuit
demonstrates the same qualitative behaviour.

Simbiotics was used to develop an equivalent model, for which the results can
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be seen in Figure 4.30. Results for our model can be seen in Figure 4.32. The
models show the same YFP expression band forming at the colony boundary,
with a decaying intensity in YFP away from the boundary.

Figure 4.31: Bacterial ecology model studied with gro. Figure taken from [79]

4.4.3 Bacterial ecology model

Research into the ecological interactions of bacteria was conducted with gro [79],
a simulation platform developed at Washington University. They studied ecolog-
ical models of bacterial populations, observing system dynamics under different
mutual relationships. Three ecology models involving a dual species population
were considered. The first model treated the species as neutral to either other,
they only interact through physical shoving and do not activate or inhibit each
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others growth. The second modelled a cooperative relationship between the two
species, where cells secrete a molecule that the other species uses for growth, en-
couraging cells to grow in close proximity. The third model was of a competitive
relationship, where the species secreted a molecule which is toxic to the other
species and inhibits its growth, resulting in separation of colonies of extinction of
one of the species. Their results can be seen in Figure 4.31.

Models of the same ecological relationships between bacteria were developed
in Simbiotics. The results of the simulations can be seen in in Figure 4.32, showing
the same qualitative trends as observed in the original study.

Figure 4.32: Snapshots of the ecology model in Simbiotics. The three models
- mutualism, cooperation and competition - demonstrated the same qualitative
behaviour and studied in gro.

4.5 Summary

This chapter has presented the validation of Simbiotics functionality through a
series of small tests on models, acting as a sanity check on the implementation
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of the platform and ensuring the correct implementation of simulation features.
Some stress tests and performance analysis have been conducted, showing that
the physics integration is the main bottle-neck as cell populations grow to large
numbers. The performance of modelling cells as sphere (cocci) vs rod-shaped
(bacilli) has also been presented, showing the performance benefits if the model
can be simplified to cells being represented as spheres. The reproduction of
existing models in the domain of multicellular simulations support their findings,
and also demonstrate Simbiotics’ flexibility in modelling a wide range of systems.

The models built in this section help fit parameters to produce realistic be-
haviour. For example, the constants used in physical force calculations (such
as friction coefficient, and spring constant used in cell collisions) are fit by de-
veloping basic models of cell motion and collisions, ensuring these produce the
expected results. These parameters are then used in more complex models, such
as the models built reproducing literature results, that include additional dynam-
ics such as cell growth. The parameters for these additional dynamics can then
be fit, with those initial parameters fixed to the values found in previous models.
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Chapter 5

Biomodel and numerical methods
representation

This chapter presents the design concepts of the Simbiotics model and library, and
describe the file format used for representing and managing them. This chapter
address both Objective 1 and 2, implementing a data format to represent models
and simulation methods in an flexible and extendable manner through modular
design, that can be used to support a higher level modelling tool.

5.1 Overview

When developing models of systems there are two major concerns; how to rep-
resent the system of interest, and how to apply rules to generate meaningful
information. Devising a way to represent a system is non-trivial, especially for
complex-systems such as bacterial populations, for reasons discussed in Chapters
1 and 2. There are however underlying patterns in complex-systems, and there-
fore common principles can be used to model these systems. Similarly, though
many different modelling techniques exist, they can be represented and arranged
in some logical structure in order to be applied to a model appropriately.

In this chapter I discuss the design concepts in the Simbiotics framework
which has been built to accommodate for these two modelling concerns. An
explanation of how models and methods are represented is provided, followed by
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a description of a data exchange format which was conceived to encode these
models and methods. The data format allows for their reuse and communication,
and also serves as part of the software API allowing for the loose coupling of
software with Simbiotics.

Figure 5.1: a) Simbiotics architecture overview, showing that the interface is a
bridge with which the user attaches library models to the simulation core. b) A
schematic of a basic Simbiotics model, composed of a set of 6 library submodels.
The model specification utilises specific library modules for each feature of the
system, ranging from cell shape to metabolic behaviour. The model specification
can be composed and run via the interface layer. For a running model, the
core layer integrates all model defined processes and schedules their execution for
multi-threaded and multi-CPU environments.

5.2 Simbiotics Implementation

Simbiotics is developed in Java; it utilises the spatial representation, multi-
threaded and multi-CPU parallelized execution, and the 3D rendering as im-
plemented in the Cortex3Dp platform [177, 238]. The platform is designed with
a modular architecture, allowing for model features to be represented as discrete
components that can be readily added, removed and modified for the specific
modelling application. This is achieved via a three component architecture com-
prising of a simulation core, a modelling library and a modelling interface. This
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plug n’ play framework allows for rapid model prototyping and reiterative designs
for the reification of models. The software architecture is depicted in Figure 5.1
(a).

The core of Simbiotics is the computational engine, it deals with representing
the system state, integrating all model defined processes and scheduling com-
mands for parallel execution.

The modelling library contains a collection of modules, which are discrete
submodels describing specific model behaviour. These range from physical law
integrators and chemical diffusion-reaction solvers, to bacterial geometries, cellu-
lar dynamics and boundary conditions. Modules describing virtual lab compo-
nents and scheduling are also present, accompanied by analysis and data exporter
modules. Modules are all parameterisable to allow for their customisation. An
exhaustive list of present library modules can be found in the Simbiotics Guide
(user manual) in Appendix B.

The modelling interface allows the user to specify the inputs and outputs of the
platform. Models can be designed by composing library modules in a Java class,
or alternatively in a JSON model file which is then parsed into the corresponding
Java objects. The interface also allows for the optional real-time 3D rendering of
the simulation, with live graph plotters visualising model statistics and on-the-fly
analysis.

Simbiotics is packaged into a stand-alone jar file, which can be run from
command-line. It requires a configuration file which contains the Simbiotics pa-
rameters and file path to the JSON model file. A full description of how to
compose models in Simbiotics can be found in the User Manual.

Note that Simbiotics is unit agnostic, such that it does not enforce the units
for the parameter values. This means that the modeller is responsible for ensuring
parameters are converted to consistent units.

5.2.1 Representation of a bacterial cell

Bacteria exhibit a wide range of behaviours as discussed in Chapters 1 and 2.
A single bacterial cell can also differentiate throughout its lifespan, resulting in
potentially significant changes to its behaviour. In order to capture this in a
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model, we start by representing a single cell as a discrete entity which has a
morphology, and a set of behaviours. The morphology represents the physical
shape of the cell, this may be a single object or complex structure consisting
of multiple geometric parts. The behaviours represent the cell’s processes and
interactions. Each behaviour is an independent module concerned with modelling
a particular process. This model forms a tree, with the species object being the
root node, and the morphology and behaviours two child nodes. A schematic
showing the representation of a single cell can be seen in Figure 5.2.

Figure 5.2: Basic model of a single cell. It’s represented as a tree where the root
node is the species unique id, which has two child nodes, describing the species’
morphology and associated behaviours (cellular processes). (A) The abstract
structure of the basic single cell representation. (B) An example of basic cell
species with a bacillus morphology and some associated cellular behaviours.

This method of modelling a single cell is rather rigid as it has a static set of
behaviour modules which are independent processes, whereas in reality these pro-
cesses are interdependent and may change over time. To accommodate for this,
we introduce a set of states and links to the model, as seen in Figure 5.3. The
states can be used to represent cell properties and abstract decision making flags,
which the behaviour modules can read/write allowing for the integration of sep-
arate behaviours. The links can connect states, behaviours and the morphology
between each other, allowing for dynamic changes to the cell’s behaviour during
simulation. This way of programmatically representing a cell allows for the inte-
gration of a wide range of cellular machinery and can also capture differentiation
of individual cells.
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Figure 5.3: Model of a single cell which allows for more complex dynamics to be
represented. The species has four child nodes, where the morphology describes
its shape, the states describe its properties, the behaviours describes it processes,
and the links describe relations between these parts.

5.2.2 Representation of a population model

The representation of a population model is a super-set of how we represent a
single bacteria. A model can contain many species of bacteria and environmen-
tal factors relevant to the system such as extracellular chemical gradients and
physical forces. Additionally a model may contain data collectors, devices for
interacting with the model, and schedules to define events or periodic actions.

Figure 5.4: A model is represented as a tree, where each depth in the tree corre-
sponds to a different modelling concept.

The model is also represented as a tree, where each depth of nodes relates
to a different modelling concept, as can be seen in Figure 5.4. The root node
(depth = 0) is the model object which has many child nodes (depth = 1). Each
of these child nodes corresponds to different domain, where a domain is a sub-
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section of processes in the model. For example, there are different domains for
defining bacterial species, data collectors, schedules and environmental factors.
Each domain can also have many child nodes (at depth = 2), where each of these
nodes represents a module in that domain. A module implements a specific model
feature. For example, in the domain relating to environmental factors, there is a
module implementing chemical diffusion in the extracellular space, and another
to define how gravity acts on cell morphologies. Finally, each module may have
many child nodes (at depth = 3), where each child node is a property of that
module. An example of module properties has already been seen in the model
of a single bacterial cell in the section above; the species is a module, and the
morphology, behaviours, states and links are each a property of that module.
Figure 5.5 is a schematic showing part of a population model which follows this
structure, with the single cell model highlighted in blue.

Figure 5.5: Schematic depicting part of a model with the single species model in
its species definition domain (highlighted in blue).

The properties of modules can point to other modules via a unique string ID
system, allowing for the weak referencing between modules to compose complex
simulation objects. For example, a species definition has a morphology property,
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this property is the string ID of the target morphology module which is defined
in the morphologies domain. This can be seen in Figure 5.6. This method of
binding modules together is somewhat similar to an entity-component system,
as described in Chapter 2. It is a compositional design pattern where functional
units are composed by tying together modular parts in a loosely coupled manner,
meaning that minimal changes need to be made when whole program or model
when a module is modified or substituted.

Figure 5.6: Complex models can be developed by connecting modules in different
domains together, this can be done by setting a module property point to another
module.

This method also allows for the reuse of defined modules in the model, for
example two species may have the same morphology or behaviour process, there-
fore they both refer to the same module rather than having to define the same
thing twice. An example can be seen in Figure 5.7, showing two bacterial species
defined, where your_species has a mitosis behaviour module describing how the
cell divides into two child cells, and my_species has this mitosis module as well
as a flagellar module describing its motility.

Representation of models by this method is flexible, the modular design allows
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Figure 5.7: Modules can be seen as templates which describe a specific behaviour,
this means that a module can be used by numerous other modules, as they instan-
tiate their own version the module. For example if a behaviour module describing
cellular mitosis is defined, this can be used by all cell species that undergo that
type of mitosis, rather than having to redefine it for each. This structure is similar
to an entity-component system.

for new domains, modules and properties to be easily introduced and connected
together into functional units. Now we have addressed the first modelling concern
which is devising a way to represent the system, now describe the method to apply
rules to the model (numerical methods) to generate meaningful information.

5.2.3 Representation of numerical methods library

Numerical methods are implemented in Java as part of the Simbiotics platform,
and are stored in the modelling library. This modelling library is a tree structure,
similar to the model representation. Each numerical method is implemented as a
module, and these modules are arranged into domains, as can be seen in Figure
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5.8. The domains, modules and properties in the library are equivalent to those
in a valid model.

The different depths of the library tree are the same as the modelling library,
except for an additional intermediate layer (at depth = 3) containing the meta-
data for modules, between the modules and properties. Each module has two
metadata nodes, the first is class name of the Java object this module corre-
sponds to, and the second is the template containing the properties with their
default values.

Figure 5.8: Schematic showing structure of the numerical methods library. The
library is structured as a tree similar to the model, however there is an inter-
mediate metadata layer in-between modules and properties. This metadata node
contains one node containing information such as the Java class name this module
corresponds to, the other containing the template of properties for that module
with default values.

Models are constructed by composing library modules together, and library
module may have many instances defined in the model. Each module in the
library has a unique string identifier which is used in the model definitions. Each
module also has a name, which can be set by the modeller to differentiate between
different instances of a module.
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This representation provides an easy mapping between a model and the nu-
merical methods to simulate them. Changing which method is used to simulate a
particular aspect of a model simply involves changing the string id to a different
library module in that domain. A schematic can be seen in 5.9 showing how the
contents of a model and of the library related, a model is a subset of the features
available in the library. Additionally this structure allows for the library to be
readily extended, as new branches can be added to the tree horizontally, adding
new domains, modules and properties with ease.

Figure 5.10: Schematic showing the base structure of the exchanged JSON data
files. Files consist of a single JSON object which is considered to be the root
node of a tree. A node has an "id" field which is its unique string identifier, and
a "data" field which may be many child nodes or a primitive value such as a
number or string.
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5.3 Files and related schemata

A model tree and library tree can both be represented in a machine tractable
file format. This file format chosen is JSON (Javascript Object Notation), as
it has simple syntax, data structures, and there are many available open-source
software libraries for reading and writing JSON. This allows for data exchange
with Simbiotics in a loosely coupled manner.

To represent a tree in JSON we consider a node in the tree to be a JSON
object, which has an string identifier and some data describing its children. This
structure is encoded as a JSON schema, as seen in Figure 5.10, where there may
only be one root node, and each node must have an id and data field present.
The id must be a string identifier, and data can be any value, including one or
many child nodes.

This is the basic structure that the model and library JSON files follow. These
files do have other constraints, such as that each depth of the tree is allocated to
a modelling concept (depth=1 maps to domains), and that there is a set depth
that the trees must be in order to be parsed by Simbiotics. More complex schema
are generated to enforce the specific structure of model files and library files, as
explained below.

5.3.1 Model file

A model file encodes the tree structure as seen in Figure 5.4, and a depiction of
it can be seen in 5.11. It contains the domain modules and properties for that
specific module. A Simbiotics Java model can be exported to a JSON model file.
The JSON model file can then be used as an input to Simbiotics, which parses
it back into its Java form for simulation. A valid model file for Simbiotics may
only contain domains, modules and properties which are present in the numeri-
cal methods library. To ensure this, a model schema is generated by Simbiotics
based on the library, it enforces the id and data tree structure with constraints
on which domains, modules and properties are permitted at each depth of the tree.

Specifically, the model schema enforces:
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• The id of the root node is the string name of the model, and its data
contains a list of nodes which encode the domains. Its id is constrained to
be a string.

• Each domain has its id set to its unique string identifier, and its data con-
tains a list of nodes which encode the modules. The id value is constrained
to be one of the domain names present in the library.

• Each module has its id set to its unique string identifier, and its data con-
tains a list of node which encode the properties. The id value is constrained
to be one of the module name present in the library domain it is defined in.

• Each property has its id set to its unique string identifier, and its data can
be any primitive or data structure (array or map), it may not have any
child nodes. The id value is constrained to be one of the property names
present in the library for that specific module.

The model file schema is generated directly from the Simbiotics source code,
making it very easy to update the schema as the platform is further developed.
The generation is achieved via the following steps:

• Each domain is a map in the Simbiotics Library class. The map’s variable
name is used as the domain id.

• Each module is an object which exists with one of the domain maps. Mod-
ules are assigned a unique identifier which are used as the module id.

• Each property is a public variable in a module class. The variable name
is used as the property id, and its value is used the default value for that
property, stored in its data field.
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Figure 5.11: Schematic showing structure of a JSON model file. The colours
depict the relationships between the different forms. Top: A model in its tree
representation Bottom Left: The encoded model, using JSON objects and ar-
rays to preserve the hierarchy of the tree. Bottom Right: The encoded model
file showing the preserved id and data pattern.
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5.3.2 Library file

The library file encodes the numerical modelling library, abiding by the structure
seen in Figure 5.8. A depiction of the library file can be seen in Figure 5.12. It
contains all of the numerical methods that are present in the Simbiotics library,
and is generated directly from the Simbiotics source code in a similar way to how
the model schema was generated. The library file schema enforces the id and data
tree structure, and that the metadata structure is followed (only 2 child nodes,
one which may not have child nodes).
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5.4 Standard data exchange format for popula-

tion biomodels

The model and library representations developed, along with their corresponding
file formats, allow for the communication of population models and simulation
methods. These files can be used as intermediate formats for exchanging popula-
tion models, parsed by software APIs to connect simulators, model development
environments and other related software in a loosely coupled manner. This allows
for a potential ecosystem of tools being used to develop/modify/simulate/analyse
population models. This could act as a partner to SBML (described in Chapter
2), which is an XML flavour used for modelling single cell dynamics, and has a
large number of tools which can read/write it. The format we propose can embed
SBML models into physically interacting populations with additional behaviours
that SBML does not represent, allowing for the specification of interacting SBML
models.

5.5 Summary

In this chapter I have described the representation of biomodels and the Sim-
biotics library. Models are comprised of library modules which are composed
together, allowing the direct mapping to the numerical methods required to solve
a model. They can easily be edited, with model features being substituted with
other modules from the modelling library. The model and library can both be en-
coded into a flexible and extendable file format, with a structure that is enforced
by schemata, allowing for their reuse, communication and parsing by common
programming frameworks. This conceived model file format offers an extension
to the SBML standard, allowing for populations of interacting SBML models to be
embedded in spatial population models. The file formats are a flavour of JSON,
which means they can be easily read and written by other software across many
programming languages. This provides the basis on which population biomodels
can be shared and integrated into related software tools beyond Simbiotics.
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Chapter 6

Easybiotics - a graphical
environment enabling rapid
population modelling and analysis

This chapter presents Easybiotics, a graphical user interface (GUI) for the use
of Simbiotics without programming experience. The implementation and features
of Easybiotics are described, elaborating on the modelling environment, as well
as how it interfaces with Simbiotics in a flexible manner. A brief example of
model prototyping and refinement is presented, demonstrating how Easybiotics
can be used to facilitate biomodel design and analysis. This chapter addresses
Objective 2 - Development of an easy to use interface to enable those with minimal
programming experience to build models of mixed consortia of bacteria.

6.1 Overview

To ease the use of integrative modelling (IM) techniques by domain experts I
have developed Easybiotics, a graphical user interface (GUI) for multicellular
modelling and analysis. Easybiotics acts as an abstraction layer to a simulation
framework (in this case Simbiotics), freeing the modeller to focus on develop-
ing and analysing biomodels, rather than on programming simulator and model
implementation details.

121



6. Easybiotics - a graphical environment enabling rapid population modelling
and analysis

The design of Easybiotics has been determined by an informal requirements
analysis based on conversations with Masters students who are using Simbiotics
and similar tools, as well as experimentalists I have met at conferences and work-
shops. They provided me with a clear picture of what types of models they are
building, the questions they would like to ask the model and their workflow. For
example the inclusion of an interface to allow simulating populations of SBML
models was motivated by conversations with modellers at conferences. Further-
more the awareness that many people engaging in multicellular modelling are
not programmers by training, the requirements for the software included being a
simple to use tool which does not require programming knowledge.

An easy to install process and minimal software dependencies allow for the
use of tool in many contexts, reducing the barriers to entry for using integrative
modelling techniques. Easybiotics is applied to Simbiotics, visualising the Simbi-
otics library and allowing for simple model composition, simulation and analysis.
This allows for use of Simbiotics without having to program Java models or use
the command-line to run simulations.

Easybiotics is developed in Python 2.7, and uses the Kivy library for creating
graphical widgets. The Pandas module is used for data and file handling, and
Matplotlib is used for rendering graphs. The software is developed in a stand-
alone manner, and has an API which can interface with Simbiotics or potentially
a different simulator.

6.1.1 Loose-coupling with Simbiotics

To ensure the scalability of Easybiotics as modelling techniques advance, it is
developed in a dynamic manner which populates the interface based on the library
file (as described in Chapter 5). This loose-coupling between Easybiotics and
Simbiotics ensures minimal if any changes need to be done to either software if the
other one changes. Specifically Easybiotics and Simbiotics have to communicate
about the following:

1. Simbiotics needs to tell Easybiotics what modelling features it has so that
Easybiotics can display the library and model interactively;

2. Easybiotics needs to tell Simbiotics to run a model file.
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Figure 6.1: Schematic showing exchange protocol between Simbiotics (back-end)
and Easybiotics (front-end). The requirements (1) and (2) are illustrated, showing
the files output my Simbiotics which are used by Easybiotics. Simbiotics exports
the modelling library JSON file, which informs Easybiotics on what modelling
features it has. Easybiotics then displays these features and lets the user create a
model JSON file. This model file must then be checked against the model schema
provided by Simbiotics, which ensures the model structure and content is valid.

To achieve (1) Simbiotics exports a library.json file which is interpreted by
Easybiotics. To achieve (2) Easybiotics calls Simbiotics via its command-line
API, passing the model file. Figure 6.1 illustrates this.

6.1.2 Dynamic population of Easybiotics interface

To ensure the scalability of Easybiotics as modelling techniques advance, it is
developed in a dynamic manner which populates the interface based on the library
file (as described in Chapter 5). The library file (a JSON tree structure) is parsed
and stored as a dictionary of dictionaries in Python, as to preserve the hierarchy
of the tree.

The available domains are loaded from the library and visualised in the model
editor. When the user selects to add a module to a model domain, the entry in
the library dictionary for that domain is rendered by Easybiotics as a sub-library
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for the user to browse. When the user clicks on a module, its properties are
retrieved from the map and visualised dynamically. Properties of type String or
Number are rendered as text input boxes, and Boolean properties are displayed
as toggle switches. This can been seen in Figure 6.2, where (A) shows a model
loaded in Easybiotics, and (B) and the corresponding model file structure. This

Figure 6.2: The Easybiotics interface is dynamically populated from input files.
(A) Screenshot of Easybiotics with a simple model loaded, consisting of a single
module, S1, in the chemicals domain. The properties of S1 are visualised in the
model tree, and if the S1 module is selected its properties also also display panel
property viewer (highlighted in blue). (B) A schematic showing the model file
structure.
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method allows for automatic detection of invalid inputs types, as can be seen by
the degradation_constant parameter highlighted in red in Figure 6.2 (A).

Currently Simbiotics is the provider of the library file, however theoretically
another simulator could have an API which achieves the same thing, due to the
flexible modular design of this Java <-> Python protocol. Note that for the case
of Simbiotics, the domains correspond to maps in the Simbiotics java library
class, the modules correspond to java objects in those maps, and properties of
a module are the public variables in the corresponding java object (as described
in Chapter 5). This makes it a completely automatic process to integrate new
modules (and even domains) into Easybiotics as they are developed in Simbiotics.

6.2 User friendly integrated-development environ-

ment for biomodelling

Easybiotics provides a simple GUI for complex modelling with relative ease and
speed relative to programming Simbiotics models in Java. A simple click-and-
select interface allows for models to be composed from library modules, and
visualised as an interaction modelling tree (highlighted in green in Figure 6.3).
The model items can be selected and a description of them, as well as access to
the modifying module properties is available in the display panel (highlighted in
red in Figure 6.3). The settings to the Simbiotics simulator, such as whether to
load the real-time model visualisation or SBML integration, can be modified in
the configuration editor (highlighted in blue in Figure 6.3). Additional features
such as live graph plotting and parameter sensitivity analysis are available from
the file-bar (highlighted in yellow in Figure 6.3). Regularly used functions such
as running and saving a model are available on the button panel (highlighted in
orange in Figure 6.3), as well as by hot-keys (which are listed in the Help menu
on the file-bar). Information regarding which model is loaded, the project name,
and the currently selected model item are displayed in the information panel
(highlighted in purple in Figure 6.3).

The interface contains descriptions of the menu system and functionality, as
well as information detailing the library modules. A series of example projects are

125



6. Easybiotics - a graphical environment enabling rapid population modelling
and analysis

F
igure

6.3:
O
verview

of
the

E
asybiotics

m
odelling

interfaces.
T
he

file
bar

is
highlighted

in
yellow

,
the

Sim
biotics

configuration
editor

in
blue,the

m
odelspecification

editor
in

green,the
display

panelin
red,and

the
button

panel
in

orange.

126



6. Easybiotics - a graphical environment enabling rapid population modelling
and analysis

F
ig
ur
e
6.
4:

(A
)
sh
ow

s
th
e
m
od

el
sp
ec
ifi
ca
ti
on

ri
gh

t
w
he
re

th
e
us
er

ha
s
ri
gh

t-
cl
ic
ke
d
on

be
ha
vi
ou

rs
,a

nd
is

pr
es
en
te
d

w
it
h
th
e
A
d
d
bu

tt
on

.
(B

)
W

he
n
th
e
ad

d
bu

tt
on

is
se
le
ct
ed

th
e
be
ha
vi
ou

rs
su
b-
lib

ra
ry

is
di
sp
la
ye
d
in

po
p-
up

bo
x.

N
ot
e:

th
er
e
ar
e
ho

tk
ey
s
to

pe
rf
or
m

eq
ui
va
le
nt

ac
ti
on

s
(w

hi
ch

ar
e
fo
un

d
in

th
e
H
el
p]

m
en
u
on

th
e
fil
e
ba
r.

127



6. Easybiotics - a graphical environment enabling rapid population modelling
and analysis

included in the software to illustrate model composition and analysis methods.
Library module parameter inputs have warnings notifying the user if an incorrect
value type is entered.

The amount of RAM that the JVM (Java Virtual Machine) uses for the sim-
ulation can be set by selecting ’Settings - Run Settings’ from the file bar. Here
you can set the initial amount allocated as well as the maximum amount the
simulation may use. Models can be run by either clicking the ’Run’ button in the
button panel, or by selecting one of the run options on the file-bar.

6.2.1 Intuitive model development

Model development in Easybiotics is simple and compositional. Right-clicking on
a model domain and selecting Add opens the corresponding sub-library, in which
the modules of that domain can be browsed and selected. An example of this can
be see in Figure 6.4. Module properties (parameters) may be set during module
selection as well as being modifiable in the display panel once attached to the
model. Once a module is added, it appears as children under the corresponding
domain in the model specification tree, as seen in Figure 6.4 (C).

Specific modules defined in a model can be composed together through the
use of their unique ID (as described in Chapter 5). For example when defining
a bacterial species, the value which goes into its morphology property entry is
the unique ID of the corresponding morphology module. An example of this can
be seen in Figure 6.5 (A), with an inset (B) showing the model structure this
encodes for.

To facilitate this binding process and make self evident where it can be done,
all properties which can be bound have a drop down menu allowing for the selec-
tion of any valid modules which exist in the model. An example can be seen in
6.5 (C). Some other properties may be constrained to specific values, for which
a drop down menu is also implemented, as can be seen in 6.5 (D). If a property
should point to a file, then a browse button is rendered next to that parameter,
as seen in Figure 6.5 (E).

Model analysis can be conducted by attaching data collectors to the model,
the user may choose which data they gather for the model. Parameter sensitivity
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can be characterised by running parameter sweeps, which involves running the
model under a range of parameters to observe how system dynamics change.
Easybiotics also provides functionality to plot live graphs directly from the data
collectors attached to the model.

Figure 6.6: Screenshots of Easybiotics showing the process to create real-time
graphs of data collected from a model simulation. (A) A sampler module called
"sample_data" is attached to the exporters domain of the model, and has nu-
merous samples such as recording the simulation time and chemical quantities in
the intracellular and extracellular space. (B) Selecting to add a create a graph
from the file bar loads a pop-up box prompting the user to select one of their
defined exporter modules. (C)When an exporter is selected the user is prompted
to select which samples to plot on the X and Y, facilitated by drop-down boxes
which are automatically populated with the defined samples.
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Figure 6.7: Screenshots show the process to create parameter sensitivity analysis
tests in Easybiotics, called parameter sweeps. (A) The user is prompted to select
an iterable parameter of the simulation (currently only properties which are of a
number type are valid to sweep). (B) Once a valid parameter is selected then the
user is prompted to enter the range of values for the parameter. As an alternative
to entering a min, max and interval for the parameter values, they may specify
a list of values.
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6.2.2 Data collection and live graph plotting

Easybiotics provides functionality to use the analysis tools in Simbiotics, and al-
lows for live graph plotting from the data files that Simbiotics exports. There
are many properties of a model which can be measured, such as biomass, spatial
chemical distributions and gene regulation activity. The model specification al-
lows for data exporters to be attached to the simulation. Numerous exporters can
be defined, where each collects specific data about the simulation and writes it to
file. Graphs may then be defined, which are set to plot data from the exporters.
Graphs can be saved and loaded to/from file for easy reuse, they are separate to
the model specification. To run real time graphs during the simulation run, select
the ’Run - Run with live graph plotting’ option from the file bar, and specifying
the graphs which are to be rendered.

6.2.3 Parameter sensitivity analysis

Population models are often complex with many parameters and potential system
states. In order to characterise systems it is often useful to simulate a model with
changes in one or a small number of parameters. Easybiotics provides a feature to
support this type of analysis, called parameter sweeps. The model is run for each
of the defined values in the parameter sweep range, and the results are stored
in separate folders (along with a copy of the model file and parameters that it
was run with). Many parameter sweeps can be defined, where each sweep is a
specific model parameter and a list of values for it to take. Parameter sweeps
can be run independently, where each parameter is explored with the default
value for all other parameters. Alternatively they can be run exhaustively, where
all combinations of parameters are simulated. Live graph plotters may also be
attached to parameter sweeps, plotting the data from all simulations on one graph
for easy comparison. Similar to graphs, parameter sweep objects can be defined
and saved to a separate file.

Managing and analysing data output from many simulations is currently as-
sisted by a set of Python scripts. The scripts allow for the extraction of specific
data from a set of different simulation runs. For example, when doing parameter
sensitivity analysis, it is often necessary to obtain the same set of data from the
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different results folders in order to compare them.

Figure 6.8: Post-simulation visualisations of a growing colony of bacillus cells.
(A) Rendering of cells where the colours show the lineage of cell lines, as upon
mitosis one of the daughter cells has a small mutation in colour, exposing growth
patterns. (B) Rendering of cells where the colours show the physical pressure
the cell experiences, with black being low pressure and red being high.
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6.2.4 Visualisation of models

Easybiotics provides functionality to render visualisations of simulations after
they have finished executing, as an alternative to a real-time visualisation. This
can be achieved by attaching a certain type of exporter, called a geometry_imager,
to the model specification. This exporter writes all geometry properties to a file
periodically, writing a new file for each time point. It produces a series of indexed
files which can be found in the results folder you set for the exporter.

Each geometry image file can be rendered independently into an static 3D
scene, which is loaded in the Simbiotics GUI allowing the user to move the camera
around the scene and modify which properties are visualised. An example can be
seen in Figure 6.8, where a growing colony can also be visualised by the pressure
cells experience.

A sequence of geometry images can also be loaded into an animated 3D scene.
The user may set the delay between the animation frames, and whether the
renderer should skip indexes of geometry image files. The animation renderer
also runs a camera to record the animated 3D scene and convert it into an .avi
file.

6.3 Rapid model prototyping

The features provided by Easybiotics allow for the rapid prototyping of models,
providing a similar platform as any CAD tools in traditional engineering domains
offer. Models can be constructed, run and analysed without technical (program-
ming) challenges, models can be saved and modified in a different version, giving
freedom to explore system dynamics and try alternative methods of simulating
particular model features. Small and medium sized models can be run on lap-
tops and desktop machines, however a HPC is often needed for large simulations
(100,000+ cells).

To exemplify the Easybiotics environment Figure 6.9 shows a running sim-
ulation with live graph plots of data the simulation is generating. The system
consists of a species of synthetic bacteria that have the metabolic pathways
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and analysis

S1
k1→ S2 (6.1)

S2
k2→ S3 (6.2)

S3
k3→ S4 (6.3)

where k1 = 0.2, k2 = 0.1 and k3 = 0.05. The cells are free-floating in a cubic
domain as if it were the fluid phase. The domain is filled with S1, and the cells
have an active membrane transport mechanism to uptake S1 into the cell, where
it is involved in the reactions stated above. The product S4 is then secreted by
the cell via an active transport mechanism.

The interface Easybiotics allows for the building of the model relatively simply;
the metabolic pathways were defined in an SBML file using Copasi [87]. Alterna-
tively these could have been defined as a set of ODEs or a Gillespie model, both
possible representations of which can be seen in Figure 6.10 (A) and (B), the
membrane transport definitions in (C), the initial conditions in (D), and the data
exporter in (E). Upon hitting Run the live Simbiotics simulation viewer shows
as an individual window, as the graphs defined from the data exporters (as seen
in the Data collection and live graph plotting section above) display as individual
windows for each graph (as seen in Figure 6.9).

Once a specific design has been achieved and prototyped in small models, the
modeller can turn off the live visualisation and graph plotting and run a much
large simulation by modifying the model parameters. The generated files from the
data exporters can then be used for post-simulation graph plotting and analysis.
Furthermore, parameter sweeps could be defined defined, which automates the
running of models with different parameters - this allows the modeller to schedule
a series of in-silico experiments.

Further elaboration of how Easybiotics can be used to rapidly prototype and
explore models can be found in the Easybiotics user guide model building Tuto-
rials, found in Appendix C.
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Figure 6.10: (A) An example of how the same metabolic pathways could be mod-
elling using a Gillespie model - ComplexReaction_0 is selected and its properties
(parameters) can be seen on the right, where the reactants, products and rate can
be set. (B) An example of how the same metabolic pathways could be modelled
using ODEs - DifferentEquation_0 is selected and its properties displayed, where
an equation describing the change in S2 is defined. (C) The membrane trans-
port mechanism in the model - MembraneFlux_0 is selected showing it models
a non-osmotic flux of S1 going into the cell, and the flux is picked from a Pois-
son distribution. (D) The initial conditions to the model - initial_population is
selected, with its properties showing it defines 100 instances of the cell species.
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6.4 Summary

Research in the Synthetic Biology domain is growing [193], and as more researcher
engage in developing novel biological devices, the formalisation of design and
testing methods becomes ever more important. Developing a robust synthetic
system typically requires multiple iterations around the specify->design->build-
>test cycle to meet specifications. This process is laborious and expensive for
both the computational and laboratory aspects, hence any improvement in any
of the workflow steps would be welcomed.

In this spirit I have developed Easybiotics, an abstraction-layer for hiding
model implementation details from model building and analysis. It allows for
full access of Simbiotics functionality through a loosely-coupled interface ensur-
ing maintainability of the software. Easybiotics provides an intuitive graphical
environment for the rapid-prototyping of multicellular models, and gives the user
access to features for characterising those models through data collection, graph
plotting and parameter sensitivity analysis. The platform (in conjunction with
Simbiotics) can act as a virtual lab that can be used to develop, store, run and
analyse in-silico experiments - offering a means by which these experiments can
be reliability reproduced on different people’s computers.

With the push for computer-aided design in Synthetic Biology [33, 69, 232],
and development of numerous tools for designing and simulating genetic circuits
and metabolic pathways [32, 116, 136], we hope Easybiotics provides a suitable
platform for assisting in modelling distributed multicellular biodevices.
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Part II Abstract

In this part of the thesis I present four case studies conducted with Simbiotics.
The case studies were selected to study the influence of physical and chemical
interactions independently, exercising the modelling features of Simbiotics in dis-
crete stages.

The first case study investigates the influence of cell-cell physical interactions,
and the second study investigates both cell-cell and cell-substratum interactions
coupled with cell growth. The third case study focuses on chemical-signalling
between cells in a static spatial domain, and the fourth study investigates how
synthetic chemical-signalling can be harnessed to form spatial patterns of gene
regulation in immotile cell populations.

To more clearly delineate the library modules that were used in these four
case studies (and used in the other models presented in this thesis), a graphical
depiction can be seen below in Figure 6.11. This provides a key depicting the set
of model components used in all of the studies (this is not the exhaustive list of
Simbiotics features), and they are then shown to be present or not for each of the
models.
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Figure 6.11: An overview of the library modules used in the Simbiotics models.
Each study required the representation and integration of different processes. Cell
morphology modules have a blue background, physical force component modules
have a yellow background, single cell dynamics have a grey background, and
extracellular diffusion is shown as purple. Note that the membrane transport
module is used in its discrete form in Study 3, its continuous form in Study 4.
For simplicity most icons are drawn with a coccus bacteria, though the processes
are not exclusive to these geometries.
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Chapter 7

Study 1 - Dental plaque: Bacterial
coaggregation

In this chapter we present a study on coaggregation of two bacterial species in-
volved in dental plaque formation. The influence of physical interactions mediated
by receptor-adhesin, electrostatic and van der Waals forces on aggregation rate
are considered. This study was done in collaboration with Waleed Mohammed
and Nick Jakubovics from the School of Dentistry at Newcastle University with
Waleed doing the experiments. The chapter addressed the first part of Objective 3
- Studying the effect of physical shoving and cell-cell adhesion on bacterial coag-
gregation and biofilm formation. The model and results of this chapter have been
published: J. Naylor, H. Fellermann, Y. Ding, W.K. Mohammed, N.S. Jakubovics,
F. Dafhnis-Calas , S. Heeb, M. Camara, J. Mukherjee, C.A. Biggs, P.C. Wright,
N. Krasnogor Simbiotics: A Multiscale Integrative Platform for 3D Mod-
eling of Bacterial Populations in ACS Synthetic Biology, 6(7):1194-1210, July
2017.

7.1 Overview

This case study was motivated by the investigation of purely physical interactions
on the aggregation of bacteria in the fluid phase. This developed model involved
simulating only physical processes, allowing for the physical modelling compo-
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7. Study 1 - Dental plaque: Bacterial coaggregation

nents in the Simbiotics library to be verified with experimental data generated
by our collaborators at the School of Dentistry.

Figure 7.1: Microscopy images showing Streptococcus gordonii (a) and Actino-
myces oris (b) where the scale bar is 1µm. (c, d) S. gordonii and A. oris are
modelled as spheres. (e) Depiction of the modelled interactions between S. gor-
donii and A. oris.
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7. Study 1 - Dental plaque: Bacterial coaggregation

7.2 Introduction

Dental plaque is a biofilm caused by colonisation of the teeth by oral bacteria
[149]. The coaggregation of bacteria plays a part in plaque formation [176], where
bacteria of different species physical adhere to each other via specific molecules,
leading to gene regulatory changes in the participant cells [155]. Understanding
the mechanisms and dynamics of coaggregation can allow for the development of
new dental hygiene products for disrupting plaque formation [2, 138, 223].

The process of coaggregation is heavily dictated by the surface characteristics
of bacterial cells. Cell surface charge effects the strength of van der Waals and
electrostatic forces between cells, referred to as non-specific interactions. Surface
adhesins and receptors may also be present, which undergo specific interactions
if they have the appropriate structure to form an adhesive bond - this bond has
a key-lock mechanism [29, 186].

We consider the influence of these specific and non-specific interactions on
the aggregation of two bacteria found in the mouth, Streptococcus gordonii and
Actinomyces oris, that have a matching adhesin and receptor pair [14] (depicted
in Figure 7.1). We are interested in investigating the driving forces behind ag-
gregation, analysing aggregation dynamics for different specific and non-specific
interactions. The system was studied experimentally and with a computational
model built in Simbiotics.

7.3 Methods

7.3.1 Experimental

To isolate the process of surface-mediated interactions without metabolic be-
haviour, the cells were initially washed in sodium azide, such that their biological
activity is ceased but their physical properties were preserved. Through this we
ensure the system is of minimal complexity, isolating the process of cell-to-cell
adhesion without biological activity or active motility. The aggregation of bac-
teria in a cuvette of 1mL solution was measured by following changes in optical
density. We started with a well-mixed population and use a spectrophotometer to
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7. Study 1 - Dental plaque: Bacterial coaggregation

obtain a time series of OD 600 measurements. As aggregates formed the optical
density of the population decreased as more light could pass through the cuvette.

7.3.2 Model

To capture the core features of the system, we decompose it into its core compo-
nents and processes. Components are considered to be the definable objects of
the system, and processes are the mechanisms through which they interact.

Components

1. 3D Fluid Environment
The fluid medium is represented as a cubic domain in which the cells can move
around. All faces of the cube are periodic, such that when a cell exits the cube
via one of these faces it enters through the opposing face.

2. Cells (S. gordonii and A. oris)
S. gordonii and A. oris cells are represented as rigid-body spheres.

3. Surface adhesins and receptors
Surface adhesins and receptors are represented implicitly on the surface on bac-
terial cells, stored in its properties.

Processes

1. Specific adhesin and receptor interactions
Specific interactions between adhesins and receptors are defined, where each in-
teraction has an associated rate at which two physically contacting cells have a
specific interaction, and an associated force. These interactions are modelled as
a spring that forms between two cells.

2. Non-specific electrostatic/van der Waal interactions
Non-specific interactions between cells such a electrostatic repulsion and van der
Waals forces are modelled as forces applied on neighbouring cells that are within
a close proximity.
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3. Random motion of fluid
The random motion of fluid acting on a cell is modelled by two force components.
The first being a random force exerted on a particle at each point in time, the
second being the viscous drag force a cell experiences as it moves through the
fluid medium.

Figure 7.2: (A) The cell interactions in the model. Left and Right show the non-
specific interactions between cells of the same species Center shows the additional
specific interaction between the two species. (B) The initial condition of the
coaggregation model - a well mixed balanced population of the two species. (C)
An illustration of the coaggregated cells.

Model description

Bacterial cells are modelled as spheres with surface properties. Each cell performs
a random-walk due to the effect of Brownian motion causing the population to
mix. Cells have an extended sphere of influence to represent their surface charge
effects, these are modelled as non-specific interactions as described in the Chapter
3. S. gordonii cells have adhesins on their surface and A. oris have a matching
receptor, an interaction between the two is modelled as a specific interaction as
described in Chapter 3.
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As the main parameters to the simulation we consider the strength of non-
specific interactions due to surface charge, KE. We also take the probability that
two colliding cells with a matching receptor-adhesin will interact PS, representing
the density of adhesins and receptors on the cell surfaces. Further more we
consider the strength of an adhesin-receptor interaction KS.

We start with a well mixed population of individual bacteria and use the
simulated spectrophotometer as described in the Simbiotics Analysis section to
obtain a time-series of optical density measurements. Figure 7.2 further illustrates
the model.

Figure 7.3: Left: Initial population of simulated S. gordonii. Right: Snapshot
of simulated S. gordonii showing aggregation.

7.4 Results

To understand the dynamics of coaggregation we first isolate the processes of
non-specific mediated mono-aggregation. After this we consider the independent
effect of a specific interaction between two species. The third case is the combined
model of non-specific and specific interactions. Finally we consider the effect of
cell population density on the system, performing experiments and simulations
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Figure 7.4: Simulated and experimental optical density measurements showing
aggregation. Dashed lines are experimental results, solid lines are simulated. (a)
Simulated aggregation due to non-specific interactions with different force con-
stant KE values, compared to experimental optical density curves for single pop-
ulation aggregation. (b) Simulated aggregation due to specific receptor-adhesin
interactions with different force constants KS values, compared to experimen-
tal optical density curve of mixed population coaggregation. (c) Simulated ag-
gregation due to both non-specific and specific interactions with different force
constants KS/E values, compared to experimental optical density curve of mixed
population coaggregation.

Model feature Parameter Symbol Value Unit
Sphere S. gordonii cell radius rgordonii 0.5 µm
Sphere A. oris cell radius roris 0.5 µm

Brownian motion Force constant KR 2.2 µm

cs
3
2

Friction Force constant KF 2.0 µg
cs

Gravity Force constant KG 0.0002 µm
cs2

Non-specific interactions Force constant KE 25-50 µg µm
3

cs2

Range rE 3.0 interactions
cs

Specific interactions Force constant KS 6-7 µg
cs2

Probability PS 0.1-10 interactions
cs

Table 7.1: Model features and their parameters for the basic coaggregation case
study model

of mono and coaggregation at 3 different initial cell densities, 0.5x, 2.0x and 4.0x
that of the original system.

Analysis of non-specific interactions involved changing the force bacteria exert
on each other capturing different surface charges. Figure 7.4 (a) shows optical
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Figure 7.5: Simulated and experimental optical density measurements showing
aggregation. Dashed lines are experimental results, solid lines are simulated. (a)
Experimental optical density curves of two mono-aggregating and one coaggre-
gating population. The three curves are shown for each density (from top to
bottom) 4.0x, 2.0x, 1.0x and 0.5x. (b) Simulated optical density curves of ag-
gregation curves for A. oris and S. gordonii aggregation independently, and one
curve for coaggregation of a mixed population. The three curves are shown for
each density (from top to bottom) 4.0x, 2.0x, 1.0x and 0.5x.

density measurements for both the experimental and simulated tests. The ex-
perimental curves show the single-species aggregation behaviour of S. gordonii
and A. oris on their own. As the non-specific interaction force constant KE is
increased the rate at which aggregates form increases, however it saturates at
values of KE > 50. With high force constant values regularly sized aggregates
typically form as seen in Figure 7.6 (b), low force constant values lead to irregular
aggregation at around KE = 35 as seen in Figure 7.6 (d). Aggregation does not
occur when KE ≤ 30, this is due to the attractive electrostatic force not being
sufficient to prevent Brownian motion from causing the cells to dissociate.

Analysis of additional specific interactions involved changing the probability
PS at which two colliding bacteria with matching receptor and adhesin will in-
teract specifically, and the strength KS of this interaction. Figure 7.4 (b) shows
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optical density measurements for experimental and simulated coaggregation. Ex-
perimental (dashed lines) show coaggregation of a mixed S. gordonii and A. oris
population. Simulated (solid lines) show coaggregation optical density measure-
ments, a parameter sweep over KS and PS was performed. Figure 7.4 (c) shows
the same experimental results with the coaggregation results of the combined

Figure 7.6: Simulation snapshots and microscopy images showing aggregation
in both simulated and actual system. In microscopy images A. oris are red
and S. gordonii are green. (a) Initially well-mixed population of simulated cells
(both A. o and S. g). (b) Uniformly distributed aggregates after 4 simulated
hours. (c) Large aggregates among many un-bonded cells. (d) Asymmetrically
distributed aggregate sizes with few un-bonded cells. (e-h) 2D projections of
cross-sections taken from (a-d). (i) Microscopy image of experiment showing
an initially well-mixed population. (j, k, l) Microscopy images showing different
aggregation structures. All images show the microscopy/simulation after 4 hours.
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specific and non-specific interaction model. One can see the aggregation rates
from purely specific interactions as seen in Figure 5 (b) are enhanced by the
presence of non-specific interactions as seen in Figure 7.4 (c). An explanation for
why this may occur is due to non-specific interactions having an extended sphere
of influence, interacting with neighbours which aren’t in direct contact, whereas
specific interactions only occur for cells which are in physical contact.

Strong specific interactions typically lead to uniform aggregate sizes similar
to non-specific interactions, however variations of low KS and PS values lead
to irregular aggregation as seen in Figure 7.6 (c) and (d). The reason for this
may be due to the fact that single cell-cell interactions easily dissociate due to
Brownian motion, however if small aggregates persist, other cells may join to form
a larger aggregate. The presence of additional cells creates a network of specific
interactions between neighbouring cells in the aggregate. A synergistic effect
occurs where each cell has multiple interactions, stabilising the aggregate and
leading to a few large aggregates forming in a generally well-mixed population.
When interactions are strong enough, cells do not dissociate once they adhere to
each other. In a well-mixed solution with uniformly distributed Brownian motion
this leads to regularly sized aggregates.

Our model does not produce the large aggregate islands as seen in the mi-
croscopy images shown in Figure 7.6 (h). The reason for this may be due to
additional forces present in the actual experiment such as hydrodynamics which
we do not model explicitly.

Aggregation at varied population densities
To consider the effect of population density on aggregation experiments with
0.5x, 2x and 4x the initial population size were performed. Figure 7.5 (a) shows
experimental results, and (b) shows simulation results.

We find the aggregation rate of bacteria is proportional to the population
density. This can be explained by the mean free path that a cell travels before
interacting with another cell decreasing as density increases, therefore a higher
probability of a physical adhesion as density increases. An additional mechanism
is that large clusters tend to sink faster, as the combined motions of its constituent
cells cancel, leading to a stronger effect of gravity. The sinking of aggregates leads
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to a decrease in the OD600 reading.

We find that aggregation rate is more sensitive to population density in the
simulation, however overall simulation results show strong qualitative trends with
the experimental findings. We note that spectrophotometry is a generalised tech-
nique which has been applied to the measurement of aggregation, and due to the
nature of the method it is not a perfect deduction of aggregate formation.

7.5 Discussion of Simbiotics

This study heavily informed the design of Simbiotics as it coincided with the early
development of the software. The requirements of the software were based on our
collaborator’s needs, ensuring the platform could simulate the relevant features of
their system. The model needed to simulate bacterial adhesion, however processes
such as hydrodynamics were not required due to the questions they wished to ask
the model. The features relevant to the study were implemented as modules in
the software, such as modules describing two types of cell adhesion (specific and
non-specific) and another module describing passive motility of cells (random
walk).

This study involved developing a variety of models, some using different fea-
ture modules than others (for example the coaggregation models required the
addition of a specific interaction module). Additionally, each of those models had
numerous parameters that were to be explored. Due to this is was clear that
some form of file format was required to represent models, and that the platform
had to be able to run a given model with many different parameter values.

The library of modelling features proved very powerful for building these dif-
ferent models, allowing for the easy design, composition and modification of each
system. Additionally having the model specifications written to text file allowed
them to easily be used as the input to Simbiotics on the high-performance com-
puting cluster.
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7.6 Summary

This case study has investigated the influence of physical interactions on bac-
terial coaggregation in the fluid phase. The effect of specific and non-specific
interactions have been characterised individually and in combination, both ex-
perimentally and with a computational model built in Simbiotics. A model was
developed to reproduce the experimental behaviour, and then to characterise the
influence of the relevant parameters. Model findings show that the influence of
non-specific electrostatic interactions accelerate the rate of aggregation due to
their extended sphere of influence, and that aggregation rate scales with popula-
tion density due to the increased rate of cell physical interactions.

This study provides a basic model on which future investigations can be con-
ducted. The model could be extended to include pellicle colonisation and cell
growth, investigating how S. gordonii colonise may colonise a surface, allowing
A. oris (which do not directly adhere to the pellicle) to be recruited to the plaque
biofilm through the interactions with S. gordonii. Additionally, as our knowledge
of the genes relating the adhesion expands, we can extend the model to inves-
tigate how physical adhesion feeds back to gene regulation [84, 139, 144]. This
avenue of investigation may offer insights into how we can disrupt this process
by developing advanced oral care products.

The work was done in collaboration with Newcastle School of Dentistry, with
Waleed Mohammed conducting the experiments.
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Chapter 8

Study 2 - Synthetic E. coli biofilms

In this chapter we present a study on biofilm formation conducted with Simbiotics.
The influence of physical interactions between cells and substratum are investi-
gated, studying how these lead to different biofilm architectures. This study was
done in collaboration with Joy Mukherjee, Felix Dafhnis-Calas, Miguel Camara,
Stephan Heeb, Catherine Biggs and Phillip Wright, with Joy conducting the ex-
periments. This chapter further addresses Objective 3 - Studying the effect of
physical shoving and cell-cell adhesion on bacterial coaggregation and biofilm for-
mation. The model and results of this chapter have been published: J. Naylor, H.
Fellermann, Y. Ding, W.K. Mohammed, N.S. Jakubovics, F. Dafhnis-Calas , S.
Heeb, M. Camara, J. Mukherjee, C.A. Biggs, P.C. Wright, N. Krasnogor Simbi-
otics: A Multiscale Integrative Platform for 3D Modeling of Bacterial
Populations in ACS Synthetic Biology, 6(7):1194-1210, July 2017.

8.1 Overview

This case study was motivated by the investigation of physical interactions on
biofilm formation and development. This was a natural extension of Study 1,
where only physical interactions between cells in the fluid phase were modelled.
Here we coupled physical interactions with cell growth, modelling planktonic cells
initially in the fluid phase which can attach to the substratum. The modelling
components used for simulating bacterial growth could be further validated in
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this study by comparison with experimental data generated by our collaborators.

8.2 Introduction

Biofilms pose a serious concern to public health due to the potential to cause
infections and their resistance to antimicrobial agents [52]. Developing solutions
to combat biofilms involve destroy existing biofilms, treating surfaces to prevent
cell adhesion, and interruption of bacterial communication systems discoordinat-
ing biofilm formation [34, 57, 134, 140]. However, due to limitations in these
approaches, novel solutions may be counter-intuitive, and involve the growth of
synthetic ’friendly’ biofilms, which act as intelligent surfaces to prevent infection.
Development of synthetic biofilms with such properties is a dream of Synthetic
Biology, and only the first steps toward the conception of such a system have been
achieved. Synthetic biofilms have been grown to better understand the roles of
biofilm components, relationships within the biofilm, and functions of biofilms
[4, 203].

The more basic study of how biofilms can be controlled is investigated here.
We consider the influence that cell surface properties have on biofilm formation
and development, in the hope to better understand how these can be tailored
to produce specific biofilm architectures. Three Escherichia coli mutants that
form different biofilm architectures are investigated, and a model is constructed
to study the potential driving forces behind these architectures.

8.3 Methods

8.3.1 Experimental

Three strains of E. coli are used in the experiments, DH5-α, a csrA strain with
higher surface charge, and a PgaA strain with an even higher surface charge.

The strains were cultivated overnight for 16 hours in a 3ml Synthetic Urine
media with the addition of 0.1% glucose [28] aerobically at 30◦C and 120 rpm.
Overnight grown cultures were then re-inoculated into fresh Synthetic Urine me-
dia (1:100 dilution) and 200µL was grown in a 96 well plate in the static condition

156



8. Study 2 - Synthetic E. coli biofilms

for 48 hours. The supernatant was then removed and its optical density was mea-
sured. The optical density of the biofilm formed on the surface was also measured
by re-suspending the biofilm with the synthetic urine media, and the plankton-
ic/biofilm ratio was considered. The biofilm was also imaged by staining the
biofilm formed on these 96 well plates using the Live/Dead BacLight stain (Ther-
moFisher Scientific, UK) using a Leica SP2 confocal laser scanning microscope.

8.3.2 Model

We aim at developing a minimal model of the system, allowing for the dynamics
emerging from physical interactions to be clear and well characterisable, rather
than having a complex model for which the relationships are convoluted by many
interacting processes.

To establish the features that should be present in the model, the experimental
system is decomposed into key components and processes.

Components

1. 3D Fluid Environment with Substratum
The fluid medium is represented as a cubic domain. Horizontal faces (X and Z)
are periodic, such that when a cell exits the cube via one of these faces it enters
through the opposing face. The Y faces are solid, such that cells can not pass
them. The base of the cube (plane at Y minimum) has adhesive structures on it
that cells can adhere to.

2. E. coli
E. coli cells are represented as rigid-body spheres.

3. Extracellular polymeric substances (EPS)
An implicit representation of EPS is used where loose springs which form between
cells upon cell-to-cell adhesion
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Processes

1. Cell motility
Cell motility is represented as a random force that each cell experiences at each
time point. The magnitude of this force is significantly smaller for cells which
are sessile than those which are planktonic, in order to capture the shift from
flagellar to pili-mediated motility.

2. Cell-to-cell and cell-substratum adhesion
Cell-cell adhesion events are represented by springs which form at a given rate
between bacterial cells that are physically contacting.

3. Cell growth and mitosis
Cell growth is represented by the spherical cells growing in mass (and thus vol-
ume). Mitosis occurs upon cells reaching twice their initial mass.

Model description

Individual cells metabolisms and gene regulation are not explicitly modelled.
Rather, a high level ’brain’ is implemented in each cell which computes whether
the cell is in a planktonic or a sessile state. These two states toggle parameter
values relating to the cell’s behaviour, providing an implicit differentiation in the
cell’s metabolism and gene regulation, thus two phenotypes are present in the
model.

Planktonic

Cells are considered planktonic if they have no adhesion partners, or if their ad-
hesion partner is also in the planktonic state. Characterised by their motility and
slow growth rate, they experience large random motion forces, implicitly captur-
ing their flagellar-mediated motility. Planktonic cells have a low probability that
they will undergo cell-to-cell adhesion with another planktonic cell.

Sessile

Cells are considered sessile if they have adhered to the substratum, or if one of
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there adhesion partners is also in the sessile state. They are immotile with a high
growth rate, experiencing small random motion forces emulating the twitching-
motility mediated by pili. They have a high probability of undergoing cell-to-cell
adhesion.

Figure 8.1: (A) The cell interactions in the model. Left shows the adhesion
between two cells Right shows the adhesion between a cell and the substratum.
(B) The cell processes in the model; a cell grows in biomass (modelled as sphere
increasing in volume) and divides (undergoes mitosis) upon reaching twice it’s
original mass. (C) An illustration of how cell states are determined; cells which
have adhered to the substratum, or part of a cell cluster that has adhered to the
substratum at some point, are considered sessile. Cells which are still free-floating
are planktonic (event if adhered to another planktonic cell). (D) The initial
condition of the model - a well mixed population of cells. (E) An illustration of
biofilm formation in the model, with cells adhering to the substratum.
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Our model of biofilm development represents cell growth, cell motility, surface-
mediated interactions and basic gene regulation. Cells are modelled as initially
free-floating spheres, and experience Brownian motion with a force constant Krp.
Cells contacting the substratum may adhere to it with the rate Ps and an inter-
action strength Ks. Once attached to the substratum, cells experience a lower
magnitude of Brownian motion, Krs, and may adhere to other contacting cells
at a rate Pc and an interaction strength Kc. These cells are then considered to
be part of the biofilm and experience lower Brownian motion and may adhere to
other cells. Cells grow at a rate Gr with growth dynamics as described in the
Simbiotics modelling section. All model parameters can be seen in Table 8.1.

Initially in the planktonic state, a population of motile cells are free to move
within the cubic world. Planktonic cells do not tend to adhere to one another.
Upon colliding with the substratum, these cells adhere to the surface, shifting
from the planktonic state to sessile. This process is reversible, and if the cell
experiences enough force to pull it away from the surface, this cell will again
become planktonic. Sessile cells have a higher growth rate, along with a higher
propensity to undergo cell-to-cell adhesion, thus they proliferate forming com-
munities of bacteria on the surface. An illustration of the model can be seen in
Figure 8.1.

Model feature Parameter Symbol Value Unit
Sphere E. coli cell diameter r 1.0 µm

Brownian motion Force constant KR 2.2 µm

cs
3
2

Friction Force constant KF 2.0 µg
cs

Gravity Force constant KG 0.0002 µm
cs2

Cell growth Growth rate Gr 0.00025 µg
cs

Specific interactions Cell-cell force constant Kc 0.1-10 µg
cs2

Cell-surface force constant Ks 0.1-10 µg
cs2

Cell-cell probability Pc 0.1-10 interactions
cs

Cell-surface probability Ps 0.1-10 interactions
cs

Table 8.1: Model features and their parameters for the biofilm case study models.
For the models all parameters remained the same except for Ks, Kc, Ps and Pk.
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Figure 8.2: Snapshots of simulated biofilm with K = 10 and P = 10, shown after
12 hours on the left and after 24 hours in right. Both have a top-down view and
a side view displayed below.

8.4 Results

We consider the height distribution of biofilms to characterise their morphologies.
Biofilms which are flat and uniform produce a low standard deviation in height,
whereas lumpy and irregular biofilms produce a larger height variation. Through
this process we can relate local cell surface interactions to colony level spatial
organisation.

We observe the effect of cell surface charge by growing biofilms with different
cell parameters. The parameters modified are the rate Ps with which a cell
adheres to a surface it is in contact with, strength Ks of the interaction with
the surface, rate Pc with which a cell will adhere to another contacting cell and
strength Kc of that cell-cell interaction. Snapshots of a simulated biofilm can be
seen in Figure 8.2.

First we set cell-surface and cell-cell parameters to be symmetric, such that
cells have the same rate at which they interact with other cells and surfaces, and
they interact with other cells and surfaces with the same force constant.
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Figure 8.3: Heatmaps showing height (µm) of simulated biofilms under different
parameters. The strength of interaction K and rate of interaction P are varied.
Cell-surface and cell-cell interactions have the same rates in these simulations.
These images show the biofilm after 12 hours.

From Figure 8.3 one can see that as we increase the rate at which cells interact
Ps/c, the biofilm covers more surface area due to more bacteria attaching directly
to the substratum. Clusters then form as other planktonic cells attach to those
already in the biofilm. As we increase the strength of cell interactions Ks/c we
observe taller and denser biofilms, this may be explained by the fact that bacteria
stick to each other more firmly and thus the biofilm can grow stable mushroom-
like structures which extend from the substratum into the fluid medium.

By changing the parameters Ps/c and Ks/c we obtain varied biofilm develop-
ment. However these parameters produces a consistent biofilm architecture, with
hemispherical clusters of bacteria spreading across the surface forming lumpy and
irregular biofilms.

We consider the effect that an asymmetrical cell adhesion to other cells than
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Figure 8.4: (a) Biofilm grown with high cell-surface interaction rates and low
cell-cell interaction rates [Ks = 10, Ps = 10, Kc = 0.1, Pc = 0.1]. (b) Biofilm
grown with high cell-surface interaction rates and medium cell-cell interaction
rates [Ks = 10, Ps = 10, Kc = 0.25, Pc = 0.25]. (c) Biofilm as seen in Figure
7 (c) [K = 10, P = 10] which has equal K and P values for both cell-cell and
cell-surface (Kc = Ks and Pc = Ps).

Figure 8.5: Height distribution of experimental biofilm (top) and simulated
biofilm (bottom). The general trend of DH5-α forming very little biofilm (less
than 1µm), csrA forming slightly more flat biofilm (less than 5µm), and pgaA
forming a larger and lumpier biofilm (varied heights up to 20µm or more).
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Figure 8.6: Comparison between experimental biofilms (top row) and simulated
biofilms (bottom row). The images show the three different E. coli strains in the
case study (from left to right), dh5-α, csrA and pgaA. The model and experiments
look qualitatively similar, as well as having quantitative similarities as seen in
Figure 8.5.

to surfaces would have. In Figure 8.4 (a, b, c) we compare biofilms grown with
symmetric cell-cell and cell-surface adhesion to a biofilm grown with asymmetric
parameters, such that the probability a cell will bind to a surface Ps and the
strength of that cell-surface interaction Ks are relatively high in comparison to
cell-cell interaction probability Pc and strength Kc. This results in significantly
reduced biofilm formation, with a spreading of cells across the surface leading to
a more uniform structure.

Our model and analysis offer an explanation as to how cell-surface interactions
can influence biofilm architecture. When cells interact with the environmental
surfaces and other cells at a similar rate biofilms tend to form an irregular and
lumpy structure. This can be explained by early colonisation leading to clustered
growth on the surface forming an irregular structure, as lumps increase the prob-
ability that planktonic cells will adhere to them as they protrude into the fluid
due to strong cell-cell interactions. Cells that interact weakly with each other
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but strongly with a surface tend to form flat and uniform biofilms. This can be
explained by cells in the biofilm being able to detach from other cells, allowing
them to spread across the surface or becoming planktonic in the fluid; they may
then colonise the surface elsewhere. Over time cells populate the surface, but
due to weak cell-cell interactions a thick layer of cells does not emerge until the
surface is covered forcing growth in height.

Model findings reinforce the observations made in experiments, Figure 8.5
(A) shows experimental biofilm height distributions and (B) simulated height
distributions. Strains such as PgaA which have a higher surface charge have
stronger cell-cell interactions which lead to large irregular biofilms, where as a
low surface charge strain DH5-α produce less biofilm with a uniform structure.
Visual comparisons between experimental and modelled biofilms can be seen in
Figure 8.6.

8.5 Discussion of Simbiotics

This study was conducted alongside Study 1, and played a large part in informing
the design of Simbiotics. This study involved the simulation of more biological
features, such as cell growth and division, which were not present in the first
case study. These further set the requirements of Simbiotics, driving the im-
plementation of cell growth and division modules. The system also required the
representation of a substratum (solid surface) on which bacteria could attach, and
helped inform how the boundary conditions in Simbiotics could be implemented
and specified by the user.

The modelling library architecture supported additional biology modules and
boundary conditions well, allowing them to be defined as independent blocks and
attached to the model specification as other features are. This process solidified
the architecture of the library system (as described in Chapter 5), with a library
consisting of subdomains, each with their own modules and sub-parameters. This
structure was able to capture a range of features and having them dynamically
linked by the modeller, giving them freedom to express models flexibly.

Challenges faced during this study include scaling to large simulation sizes.
The model is more complicated than that shown in Study 1, and due to cell growth
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the population of cells increases over time. Larger populations and clustering
of cells as they grow on surfaces induces many collisions, which begins to slow
the physics integrator at large population sizes. Simbiotics could simulate large
system sizes, with a maximum of about 750,000 cells, which gave confidence in
Simbiotics’ capacity to simulate meaningful system sizes.

8.6 Summary

This case study investigated how physical interactions can influence biofilm for-
mation and structure. A model including cell growth, motility and adhesion
was developed, simulating the colonisation of a surface and expansion into a
biofilm. Simulations were comparable to experimental findings both qualitatively
and quantitatively, and showed that an asymmetric cell-cell and cell-substratum
adhesion could be a potential explanation for the differences in biofilm architec-
ture between the species.

These types of effects could potentially be harnessed in the pursuit of de-
veloping synthetic biofilms with targeted behaviour, providing insights into how
cells can be modified to produce specific architectures. Control over the physical
structure of biofilms may help us developing robust and efficient bio-devices, such
as for the synthesis of nanomaterials [164], or the development of biosensors and
intelligent surfaces [62, 146].

The work was done in collaboration with Sheffield Department of Chemical
and Biological Engineering, with Joy Mukherjee conducting the experiments.
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Chapter 9

Study 3 - Population Dynamics of
Autocatalytic Sets in a
Compartmentalized Spatial World

This chapter presents my contribution to a study on population dynamics of au-
tocatalytic chemical sets conducted with Simbiotics. This case study was an un-
expected use of Simbiotics, being an Origins of Life study exploring potential dy-
namics of protocells, in contrast to modelling bacterial population. The system of
interest was very similar to models of bacterial populations, and thus Simbiotics
was an appropriate tool. This Chapter overviews my contribution to a published
manuscript, which was written by Wim Hordijk. My contributions involved devel-
oping the presented model, with which Wim studied a variety of system dynamics,
and extending the Simbiotics modelling library to include relevant modelling fea-
tures such as a discrete membrane transport implementation.
This chapter addresses Objective 4 - Studying the effect of synthetic chemical
signalling and gene-regulation on biophysical patterning in bacterial populations,
however in this case it is chemical signalling between compartments of chemical
reaction networks.
This work is published: W. Hordikj, J. Naylor, H. Fellermann, N. Krasnogor
Population Dynamics of Autocatalytic Sets in a Compartmentalized
Spatial World in Life, 8(3):33, August 2018.
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9.1 Overview

This case study investigates the influence of chemical signalling and intracellular
dynamics on populations of protocells (referred to as compartments). The pro-
cesses of intracellular dynamics and intercellular signalling were isolated in this
study, excluding the modelling of physical interactions, considering the system to
consist of spatially distributed immotile compartments. The model used simula-
tion features not used in previous casestudies, namely for simulating intracellular
chemical reactions with the Gillespie method, simulating membrane diffusion as
a discrete process, and simulating extracellular diffusion. The study provided a
good use of Simbiotics outside of its original scope, exercising the platform’s ver-
satility in represented various types of multicellular system. This study also drove
the further development and testing of the platform, including adding additional
features for modelling and streamlining the model building process.

9.2 Introduction

This case study was established when Wim Hordijk, a visitor at Newcastle Uni-
versity, became interested in using Simbiotics for an origins of life study. The
study investigates how protocells may evolve, modelling autocatalytic chemical
networks within compartments that can interact through diffusable molecules,
simulating how these potential protocells may evolve over time. An example of
one of the autocatalytic sets used in the study can be seen in Figure 27.

This collaboration involved me developing a model of the system, and Wim
using this model to study different system dynamics. The study was primar-
ily conducted by Wim and he wrote a now published manuscript (available in
Appendix C). The system and modelling methods are described below, and my
contribution to the study is outlined.
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Figure 9.1: RAF set example. Left: An example of a RAF set as found in
an instance of the binary polymer model. Black dots (labelled with bit strings)
represent the molecule types, and white boxes represent reactions. Solid black
arrows indicate molecules going into and coming out of a reaction, while dashed
grey arrows indicate catalysis. Coloured polygons indicate some of the RAF
subsets. Right: The six closed RAFs (colour coded) and their mutual subset
relationships.

9.3 Methods

Model

As with previous studies, the systems are decomposed into their abstract compo-
nents and processes relevant to this level of modelling.

Components

1. Substratum
The substratum is represented as a 2D domain on which compartments can exist.

2. Compartments
Compartments are represented as rigid-body spheres.
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Processes

1. Chemical reaction network
Chemical reaction networks are represented as stochastic Gillespie models em-
bedded within compartments.

2. Membrane transport
Transport of chemicals across the cell membrane are modelled as discrete fluxes
between the intracellular and extracellular spaces.

3. Extracellular diffusion
Diffusion of extracellular chemicals are modelled by rasterizing the 2D domain
into voxels, and solving the flux of chemicals between these voxels.
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Figure 9.2: (A) The cell interactions in the model, showing that cells communi-
cate via diffusable chemical signals. (B) The cell processes in the model. Left
shows that cells have metabolic pathway activity. Right shows that cells have a
membrane transports mechanism allowing chemicals to be transporting in and
out the cell. (C) The extracellular processes in the model are chemical diffusion.
(D) The initial condition of the model - a well mixed population of cells on a 2D
surface. (E) Systems are induced by pipetting chemicals into the center of the
domain.

Model description

The model is initialised with compartments (spheres) randomly distributed across
the 2D domain, with initial chemical concentrations of some chemicals in the
extracellular space. Compartments do not move or grow, and have chemical net-
works within them which are modelled with the Gillespie method. The membrane
of each compartment is modelled with a discrete membrane implementation, us-
ing a Poisson sampler to calculate the current chemical fluxes. Chemicals in
the extracellular space can diffuse, allowing compartment’s reaction networks to
interact with each other.
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Figure 9.3: The influence of a permeable inducer. Three snapshots over
time from a simulation where the RAF set produces an permeable inducer that
can diffuse through the lattice. The blue spheres indicate the concentration of
this inducer in the different grid locations.

Figure 9.4: A population of compartments. Four snapshots over time from
a simulation with 100 compartments.

The most active reactions within the compartment set its state, which is im-
plemented as the compartment changing colour in the simulation. A snapshot of
the model can be seen in Figure 34, showing a population of cells in different states
(black or yellow) and diffusable chemicals (light blue). A later snapshots of the
model can be seen in Figure 31, showing diversity in the states of compartments
in the population, forming sub-populations of different phenotypes.

The time evolution of compartment’s state changes were tracked, this was con-
sidered for numerous different chemical network sets. Full details on the models
and study can be found in Appendix C.
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9.4 My contribution

My contribution to this study involved developing a model of Wim’s system in
Simbiotics based on his requirements. This involved building and testing ad-
ditional features that were desired for the model. Additionally I developed an
interface to manipulate the features and parameters of the core model to specify
his desired system, allowing him to conduct a variety of in-silico experiments
with this model.

Wim’s requirements for simulating his model were the following:

1. The model had to be able to simulate a chemical reaction network (as seen
in Figure 26) using a Gillespie implementation.

2. Compartments should be simulated as permeable entities in a 2D domain

3. Chemicals should be diffusable between compartments

4. There should be some form of source to introduce chemicals to the system

5. The simulation should be able to handle low molecule numbers (meaning a
discrete representation of chemical molecules is desired).

Simbiotics did not have a Gillespie module implemented, having only differ-
ential equations to represent the chemical network which were not appropriate
to model low-molecule numbers as they are a continuous representation. Due to
this, I developed a Gillespie module that could be used to describe the internal
dynamics of a cell, which could be used as an alternative to differential equa-
tions. Additionally I implemented a module to describe permeation of chemicals
through a membrane in a discrete form by implementing a Poisson sampler to cal-
culate flux rates. The addition of these two new modules allowed for the system
to be modelled in Simbiotics.

Wim had numerous systems of interest, and to facilitate this I developed a
small modelling interface in the form of a text file input. This text file allowed
Wim to input his own custom chemical networks, and set other parameters of
the model such as the domain size, number of compartments, as well as initial
chemical amounts. Developing this interface allowed for Wim to express a wide
range of systems in a simple form, enabling him to use Simbiotics unsupervised.
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9.5 Discussion of Simbiotics

The models for this case study involved significantly different features to studies
1 and 2. This study included simulating diffusable intracellular and extracellular
chemicals, and specific chemical reactions networks within compartments. The
simulations run for this study consisted of much small domain and cell population
sizes, and did not require the modelling of cells growing, moving or colliding.
Rather, intracellular reactions and extracellular chemical diffusion were the main
aspects, and very low molecule numbers had to be handled.

Simbiotics already had the functionality for simulating these phenomena in
some form, however they were not appropriate for this study. Specifically the
reaction networks should be modelled using the Gillespie method rather than as
differential equations, due to very low numbers of molecules. Additionally due
to low molecule numbers, the membrane transport module (which solves how
molecules move between intracellular and extracellular compartments) needed to
be a discrete implementation, rather than continuous.

To include these new features was simple in Simbiotics, the appropriate section
of the modelling library just required a new module to be added. The Gillespie
method was implemented as a biology module, such that it could be attached
to a species definition and could simulate intracellular reactions. The membrane
transport mechanism was also implemented as a biology module, utilising a Pois-
son sampler to solve the rate at which molecules cross a membrane in a discrete
form. This process further demonstrated how crucial it was for a framework such
as Simbiotics to contain a set of cross-compatible features to not only model
different features, but also provide different methods to model the same feature.

Developing an interface with which Wim could run different types of simula-
tions drove the development of the user interface, Easybiotics (Chapter 6). In this
case the interface was developed as an input script for this study, which would
be parsed alongside the core model and used to set the details of the model. This
process informed how the architecture of a front-end interface could be made,
and which types of work-flows are useful for modellers.
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9.6 Summary

This study investigated the influence of chemical signalling on compartmentalised
chemical reaction networks, in the context of protocell evolution. This provided
a simple study with which to use the software to model intercellular signalling in
intracellular dynamics, whilst ignoring growth and movement of cells/compart-
ments.

Wim Hordijk drove the study and used a model I built of his system to
simulate numerous systems of interest. The resulting publication was written by
Wim and can be found in Appendix C. This chapter overviewed my contribution
to the study, including the model I developed and the features I implemented
based on Wim’s requirements.
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Chapter 10

Study 4 - Pattern formation via
synthetic cell signalling

In this chapter we present a study on pattern formation in multicellular sys-
tems based on synthetic cell signalling. This study was done in collaboration
with Francisco Romero Campero at Universidad de Sevilla. This chapter further
addresses Objective 4 - Studying the effect of synthetic chemical signalling and
gene-regulation on biophysical patterning in bacterial populations.

10.1 Overview

This case study is motivated by the investigation of synthetic chemical signalling
on the spatial patterning of gene regulation in multicellular systems. The pro-
cesses of intracellular dynamics and intercellular signalling are isolated, modelling
the system as being composed of spatially distributed immotile cells. This study
naturally built upon the modelling components used in the previous study on
chemical signalling (Chapter 9), using these components to explore how synthetic
genetic circuits and chemical signalling can be designed to generate specific spatial
patterns of gene regulation.
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Figure 10.1: (A) Synthetic bacteria can act as individual processing units, or
functions, which takes some input(s) and producing some output(s). (B) Dif-
ferent species of synthetic bacteria, each with their own targeted behaviour, can
be connected by diffusable chemical species acting as ’wires’. (C) The chemical
’wires’ are driven by chemical diffusion, and thus the properties of the diffusing
molecule are important. Slowly diffusing molecules can be used as slow signal
transmissions, and rapidly diffusing molecules for fast signal transmission (D)
Different species of synthetic bacteria are spatially distributed in the most robust
manner based on how signals should optimally propagate around the population
to produce device functionality.

10.2 Introduction

Gene modification techniques have allowed for the re-programming of cellular
dynamics. This allows for the design of targeted behaviour in cells, considering
them as computational units or bio-factories which may act alone or in paral-
lel with other programmed cells [11, 160, 178, 179]. Due to the complexities
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associated with integrating large circuits into single cells, the development of dis-
tributed bio-computation is a more reliable method [143]. Techniques have been
developed to accelerate the design of synthetic genetic circuits (SGRNs) [166],
and early studies of spatially distributed populations of SGRNs call for further
investigation of these systems [17, 18, 109].

Here we investigate two systems of SGRNs that produce targeted population
behaviour. The first is a system that generates a pulse of gene expression, similar
to the band-detector system [19]. The second is a pattern forming system that
creates alternating stripes of gene regulation. Simbiotics is used to model the
systems, allowing for design-space exploration and robustness testing.

Figure 10.1 overviews how we see cells as functional components in a device.
We may see each species as an individual component that gives a specific output
for a specific input, where those inputs and outputs are diffusable molecules. The
transformation from input molecules to output molecules can be achieved by an
SGRN within the cell. The cell should also have membrane transport mechanisms
to uptake inputs and secrete outputs. Individual cells can then work in tandem
to produce a population-scale device, possibly with many species each performing
a specific part of the bio-device function. The communication between cells de-
pends on the diffusible chemicals, thus chemical properties such as diffusion and
degradation rate are crucial for effectively ’wiring’ together different cells. The
properties of particular diffusing molecules may be designed to control slow and
fast signal propagation in the device, and the final bio-device spatially arranged
in a manner which produces optimal functionality based on these designs.

10.3 Methods

10.3.1 Model

To model the developed systems we consider a simple population of cells that
have SGRNs and can communicate via chemical signalling. These processes are
isolated by excluding cell movement of growth from the model. The cells are
modelled as rigid-body spheres that are spatially distributed across a 2D domain,
as if they were on a substratum.
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As with previous studies, the systems are decomposed into their abstract
components and processes relevant to this level of modelling.

Components

1. Substratum
The substratum is represented as a 2D domain on which cells can exist.

2. Cells
Cells are represented as rigid-body spheres.

Processes

1. Gene regulation
Gene regulatory networks are modelled as sets of ordinary differential equations.

2. Membrane transport
Transport of chemicals across the cell membrane are modelled as continuous fluxes
between the intracellular and extracellular spaces.

3. Extracellular diffusion
Diffusion of extracellular chemicals are modelled by rasterizing the 2D domain
into voxels, and solving the flux of chemicals between these voxels.

Model description

A population of cells are evenly distributed across a flat substratum, each cell
has a gene network modelled as ODEs which are solved deterministically us-
ing a Runge Kutta 4th order integrator. Membrane transport between the cells
and extracellular space are modelled as continuous fluxes, and the extracellular
diffusion is modelling using a finite-difference implementation of Fick’s law to
calculate chemicals fluxes between the rasterized voxels. An illustration of the
model can be seen in Figure 10.2. This model is used as the basis for simulating
the two example systems, the further details of which can be found below in their
corresponding results sections.
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Figure 10.2: (A) The cell interactions in the model, showing that cells commu-
nicate via diffusable chemical signals. (B) The cell processes in the model. Left
shows that cells have gene regulatory network activity. Right shows that cells
have a membrane transports mechanism allowing chemicals to be transporting
in and out the cell. (C) The extracellular processes in the model are chemical
diffusion. (D) The initial condition of the model - a well mixed population of
cells on a 2D surface. (E) An example of type of system induction used in the
model - turning on a chemostat to input chemicals into the domain. (F) Another
form of induction used in the study - pipetting chemicals into the center of the
domain.

10.4 Results

10.4.1 Pulse generator system

The pulse-generator system consist of two species of cells, a sender species and
a receiver species. The sender species produces a signal which the receiver can
detect, triggering the receiver cell to produce GFP for a limited duration. Specifi-
cally, the sender species produces AHL, which is transported across the membrane
and into the extracellular space. The AHL may diffuse through the extracellu-
lar space, and can be transported across the receiver cell’s membrane, where it
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Figure 10.3: The sender and receiver genetic networks for the pulse generator
case study. The sender cell synthesizes AHL which may diffuse through the
extracellular space into the a receiver cell. AHL causes a pulse of GFP production
in the receiver cell by activating GFP synthesis and a slower activation on CI
production which ends up inhibiting GFP expression.

involved in the receiver’s gene regulatory network. This causes GFP to be ex-
pressed by the receiver, as well as CI at a lower rate, which eventually inhibits
GFP synthesis. As the signal molecule AHL diffuses through the spatial domain,
it causes a pulse of GFP to propagate through the population, emanating from
the position(s) where AHL was added. The signal molecule and GFP pulse decay
over time. A variation of this system is also modelled where the receiver cell re-
lays the signal when active, by producing and secreting AHL in addition to GFP
being synthesized. This propagates the signal and prevents the GFP pulse from
decaying. The influence of the diffusing signal molecule on these two systems is
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Figure 10.4: (A) A schematic showing the experiment for measuring pulse prop-
agation response of the receiver cells. AHL is introduced via a chemostat on
the left of the simulation domain supplies an initial amount of AHL and is then
switched off. (B) Heatmap showing the distance that the pulse propagated to
for the circuit which does not produce additional AHL. Low diffusion rates and
high degradation rates cause the pulse to decay before travelling across the whole
domain. (C) Heatmap showing the pulse distance travelled for the circuit with
relay (that produces AHL as well as GFP). The pulse is propagated further, typ-
ically reaching the end of the domain, however for very low diffusion rates it can
be seen that the pulse still decays and does not continue indefinitely.
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Model feature Parameter Symbol Value Unit
Domain Width x 100 µm

Height y 0 µm
Depth y 50 µm

Grid depth Gd 7
Sphere E. coli cell diameter r 1.0 µm

Membrane diffusion Permeation rate Dj
i 1.0 µm2s−1

Extracellular diffusion Diffusion rate Di 0.001 - 10.0 µm2s−1

Degradation rate Ki 0.001 - 10.0 µm3s−1

GRN parameters k1 0.6 µm3s−1

k2 0.01 µm3s−1

k3 1.0 µm3s−1

k4 0.001 µm3s−1

k5 0.5 µm3s−1

k6 0.0001 µm3s−1

k7 0.0005 µm3s−1

k8 2.0 µm3s−1

k9 0.5 µm3s−1

k10 0.00001 µm3s−1

v1 0.6 µm3s−1

v2 0.45 µm3s−1

v3 2.0 µm3s−1

Table 10.1: Model features and their parameters for the biofilm case study models.
For the models all parameters remained the same except for Ks, Kc, Ps and Pk.

studied, considering the effect signal diffusion and degradation coefficients have
on the velocity and duration of the propagating GFP pulse.

A schematic showing the sender and receiver (without the relay) can be seen
in 10.3, and the equations describing this system one below:

ODEs describing sender cell’s GRN

dAHL

dt
= v1 − (k1 ∗ AHL) (10.1)
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ODEs describing Pulse receiver cell’s GRN

dAHL

dt
= −k1 ∗ AHL (10.2)

dLuxR

dt
= v2 − (k2 ∗ LuxR) (10.3)

dLuxRAHL

dt
= (k3 ∗ AHL ∗ LuxR)− (k4 ∗ LuxRAHL) (10.4)

dGFP

dt
=

v3 ∗ LuxRAHL
LuxRAHL+ k5

∗ 1

1 + (CI/k6)
− (k6 ∗GFP ) (10.5)

dCI

dt
=

v4 ∗ LuxRAHL
LuxRAHL+ k5

− k7 ∗ CI (10.6)
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The simulations are performed in a 2D domain of dimensions 50 ∗ 50µm.
For simplicity in characterising the receiver cell’s dynamics, the sender cells are
represented as a chemostat on the left side of the simulation domain which serves
as the influx of an initial amount of AHL to induce the pulse. A schematic of
this can be seen in Figure 10.4 (A).

The first test performed analyses the distance travelled by the pulse for the
two variations of the genetic circuit. In the case of the receiver circuit which
does not produce AHL, it can be seen that the distance travelled by the pulse is
proportional to the diffusion rate and inversely proportional to the degradation
rate, as seen in Figure 10.4 (B). In the case of the receiver circuit with relay (that
produces AHL as well as GFP), it can be seen that the pulse travels a further
distance, and for the parameters simulated tends to reach the other side of the
simulation domain (50 ∗ 50µm), as seen in Figure 10.4 (C). The pulse does not
propagate indefinitely even when receiver has the relay circuit, as can be seen for
very low diffusion rates and high degradation rates.

The second test performed focuses on the variation of the circuit which pro-
duces AHL as well as GFP. The velocity of the pulse was measured for different
diffusion and degradation coefficients. Pulse velocity scales scales proportion-
ally with the diffusion coefficient, and inversely proportional to the degradation
coefficient, as seen in Figure 10.5 (A).

The robustness of the system under different spatial arrangements of cells
is also studied. A patchy spatial arrangement of receiver cells can inhibit the
propagation of the GFP pulse, as seen in 10.5 (B) and (C). It is observed that for
low diffusion rates, the pulse propagation is robust and is not greatly affected by
potentially sparse patchy receiver cell spatial arrangements, however it has a low
signal propagation speed. High diffusion rates tend to be less stable, even for low
degradation rates, this is most likely due to the signalling molecule (in this case
AHL) being able to diffuse away freely into the space where there are no cells a
degrade before sufficiently activating receiver cells genetic circuits to propagate
the pulse at a high velocity.
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Figure 10.5: The pulse velocity for receiver circuit which relays the signal is
measured for different diffusion and degradation coefficients of the signal molecule
(AHL). The robustness of signal propagation is considered by performing the same
experiment for different spatial arrangements of cells.

Pulse generation through colonies

To investigate how the pulse generator worked in a larger population of cells with a
differential spatial arrangement, the receiver circuit (without relay) was embedded
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Figure 10.6: The pulse generator receiver circuit (without relay) embedded in
cells part of three adjacent colonies. The system is induced by pipetting AHL
into the center of the domain - this causes a pulse to propagate through the
colonies from that position. It can be observed that the pulse becomes distorted
around the edges of the colony, this is due to the AHL being able to diffuse more
freely in the empty space, where as it is consumed as it diffuses through areas
with cells in it - this causes the diffusion cloud to wrap around the colonies.

in three adjacent colonies of bacillus (rod-shaped) cells. The system was induced
by pipetting AHL was pipetted into the center of the domain. The results can be
seen in 10.6, showing the pulse emanate from the center and through the colonies.
An interesting phenomenom observed in the model is that the pulse appears to
wrap around the colonies and deforms the pulse propagation. An explanation
for this may be that the AHL can diffuse freely (without being consumed) in the
empty spaces between colonies, causing it to diffuse relatively quick to the AHL
diffusing through the colonies.

10.4.2 Pattern formation system

The pattern-formation system consists of a receiver cell with a more complex
GRN, seen in Figure 10.7. Receiver cells have parallel genetic circuits, one which
produces fluorescent protein F1, and the other produces a different fluorescent
protein F2. Synthesis of F1 is induced by a diffusable signal molecule S2, and
synthesis of F2 is induced by a different signal molecule S1. The genetic circuit
that synthesizes F1 when induced also produces a repressor R1, which inhibits
the activity of the circuit that synthesizes F2, and vice versa. This means that
when a receiver cell receives input signal S1 or S2, it commits to that genetic
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Figure 10.7: The genetic circuit for the receiver cell in the pattern-formation case
study. There are two parallel circuits, which are activated by signalling molecules
S1 or S2 respectively. Circuit activation causes synthesis of the respective flu-
orescent protein (F1 or F2), inhibition of the parallel circuit, and synthesis of
the opposite signalling to that which it was activated by. This causes a leap-frog
effect and stripes of gene expression as the signals diffuse through a spatially
distributed cellular population, as S1 triggers S2 production, S2 then triggers S1
production.

circuit being activated, repressing the activity of the other. Furthermore, when
a genetic circuit is active, is being synthesizing the signal molecule for the other
genetic circuit, which is then transported out of the cell. This specifies that a
receiver cell producing fluorescent F1 produces a signal telling its neighbours to
produce F2.
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ODEs describing Pattern formation receiver cell’s GRN
dR1

dt
=

v1

1 + Rep2
ki

− (kr ∗R1)− (kc ∗R1 ∗ S1) (10.7)

dR2

dt
=

v1

1 + Rep1
ki

− (kr ∗R1)− (kc ∗R2 ∗ S2) (10.8)

dF1

dt
= v2 ∗

R1act

R1act+ km
∗ 1

1 + Rep2
ki

− (kd ∗ F1) (10.9)

dF2

dt
= v2 ∗

R2act

R2act+ km
∗ 1

1 + Rep1
ki

− (kd ∗ F2) (10.10)

dR1act

dt
= (kc ∗R1 ∗ S1)− (kd ∗R1act) (10.11)

dR2act

dt
= (kc ∗R2 ∗ S2)− (kd ∗R2act) (10.12)

dRep1
dt

= v3 ∗
R1act

R1act+ km
∗ 1

1 + Rep2
ki

− (kd ∗Rep1) (10.13)

dRep2
dt

= v3 ∗
R2act

R2act+ km
∗ 1

1 + Rep1
ki

− (kd ∗Rep2) (10.14)

dP1

dt
= v4 ∗

R2act

R2act+ km
− (kd ∗ P1) (10.15)

dP2

dt
= v4 ∗

R1act

R1act+ km
− (kd ∗ P2) (10.16)

dS1

dt
= (v5 ∗ P1)− (ks ∗ P1)− (kc ∗R1 ∗ S1) (10.17)

dS2

dt
= (v5 ∗ P2)− (ks ∗ P2)− (kc ∗R2 ∗ S2) (10.18)
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Figure 10.8: Simulations of the pattern formation system forming linear stripes.
The system is induced by a chemostat being temporarily turned on at the left side
of the domain. Results for different diffusion and degradation rates are displayed
- showing that stripe frequency is inversely proportional to diffusion rate, and
proportional to degradation rate.
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Figure 10.9: Simulations of the pattern formation system forming linear stripes.
The system is induced by a pipetting into the center. Results for different diffu-
sion and degradation rates are displayed - showing the same trends as the linear
system. The spatial rasterization begins to cause artefacts at low diffusion rates
and high degradation rates, causing the concentric rings to appear more diamond
shaped.
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The emergent behaviour of this system is that from the initial position(s) of
induction with either S1 or S2, stripes of alternating production of F1 and F2
emanate from the induction position(s). We consider the influence of the diffusion
and degradation coefficients of the diffusing signals S1 and S2 on the frequency
of these stripes.

The simulations are performed in a 2D domain of dimensions 100∗100µm, and
two types of system induction are performed. The first is by temporarily turning
on a chemostat to create an influx of inducer molecule S2 into the system, in the
same way AHL was induced into the pulse generator study. The results for this
can be seen in Figure 10.8 showing linear stripes. The second induction method
is by pipetting S2 into the center of the domain. The results for this can be seen
in Figure 10.9, showing concentric rings emanating from the induction point.

The frequency of stripes is observed to be inversely proportional to the diffu-
sion coefficient, and proportional to the degradation coefficient, as seen in Figure
10.8. High values for diffusion and degradation tend to inhibit the pattern forma-
tion process. In the case of diffusion, high values result in the activation of the
genetic circuit not occurring sufficiently to produce fluorescent proteins, as the
signal molecule diffuses to low concentrations too rapidly. In the case of degra-
dation, high values result in distortion of the pattern formation process, leading
to the disorganisation of the stripes into unpatterned distributions of fluorescent
protein expression, and the decay of the patterns propagating further.

10.5 Discussion of Simbiotics

This case study required similar features to Study 3, consisting of a static cell
population in a 2D or 3D domain, with intracellular dynamics and diffusable
molecules. The implementation of the model was not a challenge in Simbiotics,
and did not require the implementation of additional modelling features. The
differential equation module was used to model individual cell gene networks,
and the membrane transport mechanism was used in its continuous form.

The main challenge with the study was finding the parameter regions where
the desired phenomena occured, as simulations may take some time for popula-
tion dynamics to emerge, and there were numerous parameters to the models.
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Simbiotics was a powerful tool here, as it easily allowed for models to be run with
different parameters, however for exploring many parameters and storing the re-
sults in a meaningful manner was still a mostly manual process. This motivated
the development of a parameter sweep module, which was developed in Python
as an external module. The python script cycled through parameters and started
simulations, then saved the results to a folder system organised by modified pa-
rameter values. This module was used in Easybiotics as part of the parameter
sweep and graph plotting implementations (as described in Chapter 6).

10.6 Summary

This case study has explored theoretical functionalisation and patterning of mul-
ticellular systems through the design of synthetic chemical signalling. The geo-
metric effect of spatially distributed cells and chemical signalling can be controlled
to generate designed behaviours in populations, allowing for the conceptualisa-
tion of distributed genetic circuits. These studies offer insights into how basic
functional components of a more complex distributed multicellular device could
be developed.

Specifically, a synthetic circuit for propagating a pulse of gene regulation
across a population of cells has been characterised, exposing how such a system
could be robustly implemented for signal propagation. Further investigation into
this system could involve randomising patchy populations of cells and measuring
pulse velocity, in order to better understand the relationship pulse propagation
has with population density and geometric distribution of cells.

A pattern formation system for implementing stripes of alternating gene reg-
ulation has also been studied, considering the influence of diffusable molecule
properties on stripe formation and width. An extension of this case study could
explore the functionalisation of the stripes, with cells grown and patterned on a
2D surface acting as a signal processing array.

Simbiotics has provided a CAD environment for designing and analysing these
systems. The potential design space of a system can be explored through rapid-
model prototyping, and characterised through methods such as parameter sen-
sitivity analysis, identifying driving forces and key relationships in the system.
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This form of in-silico modelling allows for feasibility and robustness testing of
systems prior to synthesis, aiding in the design of distributed genetic circuits in
synthetic multicellular systems.
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Chapter 11

Discussion and Conclusions

This chapter presents the discussion and conclusions of this research. The orig-
inal motivations and goals are revisited, then a reflection on the contributions is
presented. This is followed by a discussion of the limitations of the research, and
the future outlook for this area of study.

11.1 Overview of thesis motivation and goals

The natural world exhibits a wide range of phenomena that emerge from common
parts. The versatility and performance of natural systems is undeniable, with
robust systems on many scales having evolved. How nature achieves this is a
salient question, and pursuit of this can help us understand natural phenomena
as well as how we may advance our own engineering capabilities, benefiting from
those design principles found in nature.

Biological multicellular systems are a prime example of a natural system that
exhibits complex, robust and versatile behaviour. A comprehensive understand-
ing of how these systems behave has been paved by years of research in the
domain of Biology, and accelerated by the emergence of Systems Biology, allow-
ing for analysis of large data sets and formalisation of knowledge into predictive
models. Functional biological components have been identified, that Synthetic
Biology aims to repurpose for bioengineering purposes.

Facilitating these practices are computational methods and tools, of which
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many have been developed for simulating particular processes of cells, however
there does not exist an effective tool for integrating these methods into a multi-
scale model of cell populations in an accommodating manner.

My thesis aims to integrate the modelling and analysis methods for bacterial
populations into an easy to use framework, enabling domain experts who may
have minimal programming experience to engage in modelling using cutting edge
simulation techniques. Additionally I aimed to apply the developed framework
to modelling physical and biochemical interactions in multicellular systems.

The specific aims of this thesis as stated in Chapter 1 are:

• Aim 1: Develop an easy to use, flexible and extendable workbench for
integrative modelling of multicellular populations.

• Aim 2: Model and analyse multicellular populations patterned by physical
and biochemical interactions.

11.2 Reflection on contributions

Through addressing these aims, my research strived to expand computational
methods for integrative modelling of multicellular systems. Key challenges laid
in integrating cell processes into a flexible single-cell model, and coupling this
with physically realistic modelling techniques to simulate interacting populations
of those single-cell models. Embedding these features in a software framework
that other programmers could include and build with was the next step, followed
by the development of a higher level software tool allowing domain experts who
may only have minimal programming experience to use the tool.

Addressing these challenges involved conception of a modular software archi-
tecture in which a library of state-of-the-art methods could be implemented as
modules, and provided to the modeller as ’building blocks’ with which they can
construct a model (presented in Chapters 3 and 5). The library focuses on the
features of bacterial systems, however the library can be easily extended to in-
clude modules relating to other multicellular systems (such as for the modelling
of tissue development). Notably the library modules for simulating intracellu-
lar dynamics include Boolean networks, ODEs, Gillespie simulations and SBML
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integration, which can be used in conjunction with membrane and extracellular
diffusion methods for simulating populations of interacting single-cell models in
a spatial domain.

The extendibility of the platform was achieved through the programming of
modular interfaces, allowing for new functionality to be added to the platform
and library in a self-contained manner. This proved useful during case study
modelling, which often drove the implementation of specific methods to be in-
cluded in the library. For example in Study 3 (Chapter 9) the systems simulated
involved low numbers of diffusable molecules, therefore a discrete version of the
membrane diffusion method was implemented in order to realistically simulate
the model. The addition of this discrete membrane diffusion method involved
writing a single Java class that extending one of the Simbiotics interfaces. This
class is then included in the library, which automatically encodes the module
in the library file, and is seen as a valid module in the model file without any
modification.

The versatility of the platform allowed for a range of multicellular systems
to be modelled. This was achieved by implementing the methods in the library
as modular ’building blocks’ which could be composed with other modules via
interfaces, giving the modeller freedom to integrate only the methods they wished
to use. This compositional method for model development proved to be a powerful
way to create the case study models (Chapters 7-10) and the models reproduced
from literature (Chapter 4.3). Each of those models required the use of different
methods, such as modelling intracellular dynamics using the Gillespie method in
Study 3, and using differential equations in Study 4. A figure illustrating which
modules were used in the case study and others models can be found in the Part
II Abstract.

Simbiotics has been used to model the multicellular systems patterned by
physical and biochemical interactions (Chapters 7-10). The findings of these
studies have shown the valuability of Simbiotics for modelling emergent dynam-
ics in natural systems, and in designing emergent behaviours in synthetic ones.
Significant system sizes (up to 750,000 cells) have been simulated, and investi-
gated through parameter sensitivity analysis to determine driving forces of the
system and relationships between parameters. The literature findings reproduced
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in Chapter 4 Section 4.3 act as confirmation that the implemented features in
Simbiotics produce realistic simulations of physical and biochemical processes in
multicellular systems.

Notably Simbiotics has been used to study systems outside of the initially
intended domain of bacterial multicellular systems, being applied to Origins of
Life study regarding auto-catalytic sets in interacting spatial compartments, as
seen in Chapter 9. The versatility of the tool has found uses by other researchers;
it was used by the Newcastle 2017 iGEM team to model a distributed biosen-
sor - where the SBML models simulated in Simbiotics were designed in Copasi;
David Nettleship used Simbiotics for his Undergraduate dissertation Investigat-
ing programmable pattern formation in synthetic bacterial colonies, where Copasi
was again used alongside Simbiotics; Simbiotics is currently being used by the
Newcastle 2018 iGEM team for a spatial chemotaxis model.

The application of the software outside its original scope is promising, however
currently researchers who have used the software have had programming exper-
tise. The ability for non-programmers (especially experimentalists who work with
the systems that we informaticians model) to have access and use these tools is
a challenge which has not yet been fully addressed. Existing work in this do-
main of multi-scale modelling has typically been done by Engineering faculties.
The introduction of Easybiotics has aimed to remedy this, serving as an intuitive
in-silico lab, providing features such as those seen in Chapter 6 which give non-
programmers/engineers to engage in modelling. Easybiotics is currently in the
pre-release stage, thus its use within the modelling community has not yet been
determined.

A challenge facing the modelling and simulation community is in the repro-
ducibility of results by third parties, even with a full description of how the
original model worked [204]. For this reason it is crucial that formalisation is
brought to the modelling and simulation practice, ensuring its reliability as a
scientific instrument [202]. To address this, I introduced a file format encoding
population models and methods for their reuse and communication (Chapter 5).
A significant contribution provided by this format is that it allows for popula-
tions of interacting SBML models to be embedded in a physically realistic model,
and encoded in a machine tractable file format. This file format also enabled
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the externalisation of Simbiotics models and methods, providing an intermediate
format for loosely interfacing with other software (such as Easybiotics).

The contribution of the software to the natural sciences, particularly the un-
derstanding of multicellular systems, is yet to be realised beyond some relatively
basic models. The case study simulations and model findings presented in this
thesis have been valuable for formally representing our knowledge of a system, and
investigating the system dynamics once a sufficient model has been constructed
as seen in the literature modules and case studies (Chapter 4.3 and Chapters
7-10). In all these cases, they call for more research to be done to realise novel
aspects of biological systems.

11.3 Limitations

The methods developed in this thesis are a small step forward for the integra-
tive modelling domain, and there are numerous limitations to the techniques pre-
sented. These are addressed here, and are decomposed into limitations regarding:
modelling, usability, extendibility, performance and conceptual aspects.

With regards to the modelling, Simbiotics lacks in the modelling of some fea-
tures which may be desirable to consider when developing multicellular models.
One of these is that Simbiotics does not exclude cell volumes from the calculated
volume of an extracellular voxel. This means that even if a voxel is full of cells,
the extracellular diffusion algorithm does not account for this excluded volume
when calculating fluxes, which may cause artefacts in models where there are
large populations of densely packed cells interacting with chemical fields. Fur-
thermore, currently Simbiotics does not have a fluid dynamics module (such as
an implementation of the Navier-Stokes equations). This aspect is crucial for
the physically realistic modelling of biofilms, and thus right a range of investi-
gations into biofilms can not be conducted with the tool. Other key modelling
limitations in the platform include: lack of extracellular chemical reactions; lack
of 3D meshes to model more complex geometries; and lack of periodic boundary
conditions for chemical diffusion. Due to these limitations the types of systems
that can be modelled, and the types of questions that the model can answer, are
currently constrained.
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With regards to extendibility of the platform, some of Simbiotics’ core imple-
mentation constrains the direction in which the software can be readily extended.
The core implementation is as an Agent-based Model (ABM), where the agents
exist in a continuous space that is then rasterized into subvolumes to represent
localised chemical concentrations, with which agents can interact. The imple-
mentation of this makes it difficult for an alternative representation of physical
cells to be added to the framework. For example, vertex models are a possible
method to represent densely packed populations of cells such as tissues, however
developing a vertex model and coupling it with the existing framework would
require significant work. This is in contrast to implementing a new method for
simulating gene regulation, or addition of fluid dynamics to the grid rasterisation,
which both fit with the existing design pattern of the software.

With regards to usability, installation of Simbiotics and Easybiotics onto a
users native system is currently done manually rather than by an installation
program. Though Simbiotics and Easybiotics have minimal dependencies, this is
still potentially technical work that has to be done by the user to get a working
copy of the software. To address this we have released a virtual machine image
with the software installed allowing for out-of-the-box use, however this method of
distribution is not easily manageable as new versions of the are released. Virtual
machines also complicate the users experience with the software.

In the cases that Simbiotics or Easybiotics crash (such as a corrupt model
file, or an error in the execution) the error messages that are output to the user
can appear cryptic. Additionally, even though the user is notified of basic things
such as what the valid input type is for a parameter, there is currently no feature
to inform the modeller if their parameter value is within a stable range for the
integrator. Additionally if the Simbiotics integrators become unstable it is not
apparent to the user. These issues can be confusing to a user, and may serve to
undermine the trust a user has in the software.

With regards to performance, the Simbiotics platform utilises the Cortex3Dp
module for multi-threaded and multi-CPU execution, enabling the platform to
take advantange of high-performance computing clusters (HPCs). Simulations
run on HPCs can capture large system sizes (100,000+ cells) for significant periods
of time (1h+). Most potential users of Simbiotics would most likely be using it
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natively on their machine (possibly a laptop) and thus gain no significant benefit
from the current scheduler optimisations. Due to this, there is currently a bottle-
neck in regards to how large of a system you can run for a significant amount of
time on a single machine, depending on the complexity and factors in the model.

The limitations of the work are underpinned by its conceptual design and
target use. The platform was constructed to aid in the modelling of multicellular
systems where the single cell is treated as a discrete individual that is free to move,
and to have its own unique intracellular dynamics that may change throughout
its lifespan. This enforces a level of abstraction on the modeller, and restricts
how easily the software can be scaled up to simulate system sizes often observed
in nature (over 109 cells), as cells have to be represented as individuals, rather
than as clusters or motifs.

11.4 Future work

Outlook for this area of research is promising, with many research papers being
published around the world in both the Systems and Synthetic biology domains.
Simbiotics was designed taking into consideration this rapid growth and constant
generation of new knowledge and modelling techniques, allowing it to be easily
maintained as science progresses. Targeted future work aims to remedy the main
limitations that have been identified in the methods presented here, and to keep
to keep up with the changing domain.

In future work, we plan to expand the Simbiotics modelling library and vir-
tual lab to accommodate for more cellular behaviours and ways of analysing
model properties. To increase the platform’s capabilities for biofilm modelling,
the addition of a hydrodynamics module to the library is planned, as is the im-
plementation of excluded cell volumes (such that the extracellular diffusion grid
calculates it’s volume considering that cells take up volume). Further more, we
plan to integrate Simbiotics and Easybiotics with the Infobiotics Workbench 2.0
design suite for synthetic genetic designs [24], which also gives access to synthetic
circuit model checking, and biocompilation.

To ease the usability of the platform a cross-platform installer is also to be
developed, allowing for the non-technical installation of Simbiotics and Easybi-
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otics without the need to use the virtual machine. This alongside a series of video
tutorials should provide domain experts with the resources they need to engage in
modelling. Additionally, a feature to enable the specification of parameter units
is to be implemented in Simbiotics, allowing the user to more freely enter the
parameter values of the system leaving Simbiotics to handle the conversion into
the correct units. This feature could be propagated up to Easybiotics, signalling
to the user what realistic parameter values are. Additionally the implementation
of a feature which informs the user if the integrator becomes unstable, and if so
which part is unstable, is to be reported to the user.

We plan to optimise the simulation execution scheduler, making it more pow-
erful for running on single machines. This could be achieved by the implemen-
tation of a dynamic time-step solver would also be beneficial. This would offer
some speed up for simulations by unconstraining the simulation of all process
from the global timestep, and solving the steady state of relatively fast processes
and allowing for larger timesteps for less time-sensitive processes.

Regarding future modelling work - now that we have a series of basic models
constructed and trust in the tool, we plan on simulating more complex models of
bacterial coaggregation and biofilm formation, where both physical and biochem-
ical processes are considered. Further studies involve more collaboration between
experimental and computational sides, striving for predictions to be made by
in-silico models and tested experimentally.

11.5 Summary

In this thesis I have discussed state of the art methods for computationally mod-
elling multicellular systems, establishing some key issues preventing those meth-
ods from being more readily integrated into the study of multicellular systems.

To address these issues, we have introduced Simbiotics, an integrative frame-
work for modelling and analysing multicellular systems. The Simbiotics library
of modelling tools allows for the flexible representation of multi-species cellular
populations, integrating previously distributed state-of-the-art methods into a
common platform. Easybiotics enables domain expert such as microbiologists and
chemical engineers to use Simbiotics with minimal programming experience, over-
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coming a challenge I found presented to me regularly by many experimentalists
at conferences who wished to model their systems. Additionally, a light-weight
and versatile data format has been introduced for representing and sharing multi-
cellular population models, encapsulating SBML (an existing biomodel standard)
and building on such formalisations for denoting biological systems.

Case study findings have indicated that Simbiotics can be a valuable tool
when studying emergent multicellular dynamics, both in the studying of natural
systems and in the exploration of design spaces for novel synthetic devices. Model
development can verify that our understanding of the experimental system is
correct, and explain the driving forces behind population behaviour. It can also
expose discrepancies between the real system and the simulated one, thereby
revealing areas of insufficient system understanding. My thesis further sets the
stage for more complex models to be developed of multicellular systems, studying
how cell internal dynamics and population level organisation are connected.
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Appendix A - Simbiotics user guide

This appendix contains the Simbiotics user guide. The mainual contains infor-
mation on how to get and install Simbiotics, tutorials on how to build models,
as well as a tutorial on how to add new features (by programming new library
modules). The manual also elaborates on the software usage and content.

.1 Introduction

Welcome to the Simbiotics user guide! In these guide we’ll take you through what
the software does, how to install it, and how to use it. In brief Simbiotics is a
java simulator which lets you construct models of multicellular systems, primarily
populations of mixed bacterial species. Simbiotics can be used via a graphical user
interface called Easybiotics. Once you have installed Simbiotics, you can go over
to the easybiotics_guide.pdf if you wish to use that for model building/analysis.

You can also try Simbiotics in a Virtual Machine for easy out-of-
the-box use, it can be found on the website along with video tutorials
on how to use the software.

https://bitbucket.org/simbiotics/simbiotics/wiki/Home

Overview

Simbiotics is a 3D modelling platform which allows for the design, simulation and
analysis of multicellular systems. The platform is focussed on modelling of bacte-
rial populations, allowing for the representation of unique cellular species, where
their individual behaviour and interactions can be defined. Through this one can
simulate the emergent behaviours exhibited by the population, arising from the
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interplay between micorprocesses such as individual cell’s genetic regulation, and
macroscale processes such as dynamic spatial arrangement.

Simbiotics provides a standard modelling library for simulating typical pro-
cesses of bacteria, such as growth, motility, gene regulation, metabolic activity
and cell-surface appendages (receptors and adhesins). The library also provides
some models of environmental factors such as a fluid mixing force, bouyancy/-
gravity, friction and a primitive flow chamber.

Additionally one can attach virtual devices to a model in order to probe or
interact with it, allowing for a partial virtual lab experience. Data exporters
can also be attached to a model in order to collate, format and write data to
file. The inclusion of auxiliary programs to model specifications allows for ini-
tial conditions, repetitive tasks and desired interactions with the model to be
automated.

In order to design a model in Simbiotics, modules from the Library can be
attached to a model. This means that the modeller can fine tune the simulation
content, designing a specification in a compositional manner in order to build
bacterial and environmental models. In addition this means that only processes
relevant to a model will be simulated.
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License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details: http://www.gnu.org/licenses/gpl.html

Technical overview

Simbiotics is written in Java 1.7. It utilises the spatial representation and paral-
lelised scheduler as implemented in Cortex3Dp [238]. Simbiotics was developed
using LibSBML 5.13 and LibSBMLSim 1.3.

Terminology

To clarify some of the terminology used in this document, we list some keywords
and their meaning.

Term Meaning
Library module Java classes within the Simbiotics library which describe model-specific

behaviour
$SIMBIOTICS The main Simbiotics folder, which contains the src folder

Table 1: User manual terminology
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.2 Getting Simbiotics

Simbiotics

Simbiotics is available at:

https://bitbucket.org/simbiotics/simbiotics/wiki/Home

Simbiotics is developed in Java 1.7, you must have the following installed:

• Open JDK >= 6 (GNU General Public Licence + classpath exception) or
Oracle Java SE >= 6 (Oracle Binary Code Licence)

And optionally, if you wish to use SBML integration, you must have:

• libSBML - http://sbml.org/Software/libSBML (GNU LGPL)

• libSBMLSim - http://fun.bio.keio.ac.jp/software/libsbmlsim/ (GNU LGPL)

If you aren’t using SBML integration you can skip to 3. Running Simbiotics
section.

Getting Dependencies

Simbiotics can be used in its minimal form without any dependencies, however
if you wish to use the SBML integration you must have the following software
packages installed, and linked to the project.

LibSBML

The first dependency is the Systems Biology Markup Language (SBML) library.
SBML is a language format for representating computational models of biological
processes, such as the metabolism and gene regulation of individual cells. Simbi-
otics can handle SBML through these libraries to represent populations of SBML
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models interacting with each other. LibSBMLj is a java interface for the SBML
format, and can be downloaded at the link below:

Download LibSBML

LibSBMLsim

The second dependency is LibSBMLsim, a simulator which is used to run SBML
models. It is written in C++ and LibSBMLsimj is the java interface for using
the library, and can be downloaded from the link below:

Download LibSBMLsim

Linking dependencies

Once they are installed on your system (make sure you have the correct ones for
your operating-system and cpu-architecture), locate libsbmlj.jar/libsbmlsimj.jar
and libsbmlj.so/libsbmlsimj.so files on your system, and copy them into the $SIM-
BIOTICS/jars folder (overwrite any existing versions which are in that folder).

Compiling Simbiotics

The supplied Simbiotics source code must be compiled to an executable jar if
you wish to run it from command-line. This is a simple one stage process; from
command-line enter the $SIMBIOTICS root folder and run the make command,
as such:

Listing 1: Compling Simbiotics source to executable jar

cd $SIMBIOTICS

make
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.3 Running Simbiotics

Simbiotics can be run in multiple ways allowing the user to choose which is most
appropriate for them. Simbiotics can either by run via command-line, an IDE,
or Easybiotics (see easybiotics_guide.pdf).

Using Simbiotics by command-line

Simbiotics can be launched by command line using the jar file, as seen below.

Listing 2: Minimal use of jar file

cd $SIMBIOTICS

java -jar simbiotics.jar

A specific configuration file may also be provided as a command line argument.
The configuration file (config) contains the launch parameters for the software.
Example configuration files can be found in $SIMBIOTICS/examples/configs.
The configuration file is described in Section 6.1.

There are a range of command line parameters (arguments) for simbiotics to
supply other information to simbiotics:

Listing 3: Parameters

-config the configuration file

-model the model file

-parameters the model parameter file

-results the target results directory

If a parameter which is already in the configuration file is provided as a
command-line argument, it will override the value specific in the config.

Below are some other examples of launching Simbiotics from command-line.

Listing 4: Loading a model

#setting a custom java model

java -jar simbiotics.jar -config configs/default.json -model

simbiotics.examples.Model1_Aggregation

212



. Appendix A - Simbiotics user guide

#setting a custom java model and custom results directory

java -jar simbiotics.jar -config configs/default.json -model

simbiotics.examples.Model1_Aggregation -results my_results/

#setting a custom JSON model and custom results directory

java -jar simbiotics.jar -config configs/default.json -model

examples/models/1_aggregation.json -results my_results/

213



. Appendix A - Simbiotics user guide

Using an Integrated Development Environment (IDE)

For this user manual the IDE we will use is Intellij 14.1, which can be downloaded
at the link below.

Download Intellij 14.1

The following steps are how to open the project in Intellij, version 14.1 was
used for this user guide.

1. File - New - Project from Existing Sources

2. Select the simbiotics main folder.

3. Create project from existing sources

4. Name the project

5. Make sure the simbiotics src folder path is selected

6. Make sure the libraries are selected

7. Finish

The dependencies may need to be manually linked in the IDE.

1. Navigate to File - Project Structure... (Ctrl+Shift+Alt+S)

2. Click on the Libraries tab on the left

3. Click New Project Library (Green +)

4. Choose Java

5. Navigate to the $SIMBIOTICS/jars folder

6. Choose one of the .jar or .so files

7. Choose to add it to the simbiotics module

8. Repeat this for all of the files in $SIMBIOTICS/jars (both .jar and .so
files)
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You can test that Simbiotics is running correctly by navigating the one of the
example models, such as "srcsimbioticsexamplesModel1_Aggregation.java" and
run the java application with that class as the main entry.

Once you have verified that you can launch Simbiotics from the IDE, please
see the section below entitled "Developing Simbiotics models in Java" for tutorials
on how to build models.

215



. Appendix A - Simbiotics user guide

.4 Live visualisations of simulations

To run simulations with a live visualistion, set the gui variable in the configu-
ration file to be true . This loads the Simbiotics GUI, which renders a 3D scene
which can be navigated with a camera. It also provides a tool bar with additional
functions which are described below.

Visualisation layers

The renderer can be set to only display certain layers of the simulation.

Functions

Functions can be performed such as running a spectrophotometer scan on the
system to take an optical density measurement.

Options

In the options menu you can pause/unpause the simulation. Additionally you
may allocate more CPU threads.

View

The camera position can be modified/reset here.

Window

Popup windows can be shown to show the details of the simulation.

Recording

Both images and videos may be taken of the visualisation. Images work in the
same way as having a geometry_image exporter attached to the model speci-
fication - it writes the properties of all the geometries in the simulation to a
file.

216



. Appendix A - Simbiotics user guide

Video recording generates an .avi which can be found in the $SIMBIOTIC-
S/results folder.
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.5 Developing Simbiotics models in Java

To illustrate how to build Simbiotics models in Java, we run through some basic
examples. The first tutorial is a step-by-step overview of how to create a basic
model, withe the following building upon those ideas to develop more complex
models.

Tutorial 1 - Creating your first model

In this first tutorial we will describe how to construct a basic model, followed by
how to attach some library modules to describe model functionality and perform
basic analysis and data collection.

The complete model can be found in the Simbiotics project at:
simbiotics.examples.Tutorial1_AggregationOpticalDensity

Creating a model class

First we define a new model class which extends Model. Make sure it this new
class is in the Simbiotics source code folder. This class needs two functions to
work, a Java main method to so you can start the simulation from the model
class, and a build method in which the model specification definitions are. The
main method should have a call to the initialise function, and should pass the
.class variable of the model you are defining. The build method contains the
model specification, and is used by calling desired define functions and passing in
modules from the Simbiotics library. Additionally one may override the prestep
and poststep methods, which are called before/after solving each iteration of the
simulation, and can used for direct injection of commands as the simulation runs..

// define a new class which extends Model

public class MyModel extends Model {

// define a main method in which this objects static class

variable is passed into the initialise function

public static void main(String[] args){
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initialise(MyModel.class);

}

// override the Model build method

public void build(){

// model definitions go here

}

// optionally override the Model prestep method

public void prestep(){

// custom modeller definitions

}

// optionally override the Model poststep method

public void poststep(){

// custom modeller definitions

}

}

In the build function, the modeller is required to define the simulation do-
main size (world size). This is shown below where a world of size 100*50*100
micrometers is specified.

We also define boundary conditions which describe the behaviour at the do-
main boundaries. Here we set the X and Z axes to be cyclical (periodic) bound-
aries, such that agents which leave a face of the cuboidal domain on the X and Z
axes enter from the opposing face of the domain. By default boundary conditions
are set to be solid walls, in this case the Y axis (top and bottom faces of the
cube) are impassable.

// define the world domain to be 100*50*100 micrometers (in form {x,

y, z})

defineWorldSize(100, 50, 100);

// define the world X and Z boundaries to be cyclical

defineBoundary(Axis.X, new CyclicalBoundary());
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defineBoundary(Axis.Z, new CyclicalBoundary());

Three solver systems for the model are required, namely the physical inter-
gration solver, reaction-diffusion solver and the goemetry collisions solver. You
may use different libraries modules for these, if none are loaded them the default
solvers (standard solvers) are used. This is shown below, where we use the default
library modules for each of the solvers.

The StandardPhysics module implements a verlet integrator which describes
how forces are translated into velocities and positions for agent geometries. The
StandardDiffusion module implements a finite-volume method of Fick’s Law for
solving the diffusion of chemicals in the world domain. The StandardCollisions
module implements a mass-spring law to describe how intersecting agent geome-
tries exert forces on each other.

// define the physics solver (StandardPhysics implements verlet

integration) and add force components

definePhysics(new StandardPhysics());

// define the diffusion solver (StandardDiffusion implements a

finite-volume method of Fick’s law)

defineDiffusion(new StandardDiffusion());

// define the collision solver (StandardCollisions implements a

mass-spring system)

defineCollisions(new StandardCollisions());

The modeller can define cell species using a CellSpecies, which describes the
name and functionality of the species. Below we define two species, "species_a"
which is red and is represented as a sphere of diameter 0.9 micrometers, and
"species_b" which is green a sphere of 1.1 micrometers.

Populations of the two species are then defined, 300 "species_a" cells and 200
"species_b" cells by creating an initial condition.

// define the coccus morphology (spherical geometry)
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defineMorphology(new CoccusMorphology(0.5), "coccus");

// define two species of cells

defineCellSpecies(new CellSpecies("species_a", Color.RED, "coccus");

defineCellSpecies(new CellSpecies("species_b", Color.GREEN, "coccus");

// define a population of the species

defineInitialCondition(new InitialPopulation("species_a", 300),

"initial_species_a");

defineInitialCondition(new InitialPopulation("species_b", 200),

"initial_species_b");

Loading the model in its current state results in a static scene with the inani-
mate cell populations suspended in the domain. This is the first step of building
a typical model, providing the core components on which model functionality will
be layered.

Extending the model

Defining environmental forces is done via the physics solver system. The Stan-
dardPhysics module can take a set of force component parameters, which describe
the forces equations due to specific mechanisms. Force components are found in
the simbiotics.library.physics.components package.

We define two force components, Brownian dynamics and friction dynamics,
with force coefficients passed into their constructors.

// define the physics solver (StandardPhysics implements verlet

integration) and add force components

definePhysics(new StandardPhysics(new Brownian(2.4), new

Friction(2)));

Binding sites can also be used to represent targets for interactions, typically
representing cell surface proteins and carbohydrates. We define two binding sites
"adhesin_a" and "adhesin_b". We then define an interaction called "interac-
tion_a_b" which occurs between the two spcies of adhesin. An InteractionTem-

221



. Appendix A - Simbiotics user guide

plate describes interaction parameters, here we set the interacton force coefficient
to be 40 and the interaction rate to be 30.

defineBindingSite(new BindingSite("adhesin_a"));

defineBindingSite(new BindingSite("adhesin_b"));

// define the interaction and its mechanismwhich occur between

adhesins

defineInteractionMechanism(new SpringMechanism(40, 30), "spring")

defineInteraction(new SpecificInteraction("interaction_a_b", new

Pair("adhesin_a", "adhesin_b"), "interaction1"));

Now we have defined binding sites which have an interaction between them,
we can add the binding sites our cell species definitions, this is achieved via
adding a behaviour library module to the species. Below we define two behaviour
modules, both instances of CellAdhesion which is a module implementing how
cells detect binding site interactions with neighbouring cells. This module takes
a parameter list of Strings, being the IDs of the binding sites which are present in
that module. For our modules "adhesion_a/b" have their corresponding adhesin
as their constructor parameter.

We then modify the cell species definitions we defined earlier; cell templates
can take a parameter list of Strings after the cell geometry (sphere) parameter,
these are the IDs of the behaviour modules as we defined above. Cell species
"species_a/b" have their corresponding cell adhesion behaviour module attached
to their definition, "adhesin_a/b" are then implicitly represented on the surface
of "species_a/b".

// define the cell behaviour module which implements cell-adhesin

functionality

defineCellBehaviour(new CellAdhesion("adhesin_a"), "adhesion_a");

defineCellBehaviour(new CellAdhesion("adhesin_b"), "adhesion_b");

...

// add the new behaviour modules to the cell species templates using
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their unique keys

defineCellSpecies(new CellSpecies("species_a", Color.RED, "coccus",

"adhesion_a");

defineCellSpecies(new CellSpecies("species_b", Color.GREEN, "coccus",

"adhesion_b");

Binding stes can be used to define environmental structures such as binding
targets on solid boundaries. We define a binding site called "boundary_structure",
and an interaction "boundary_interaction" which occurs between "adhesin_a"
and the new boundary structure with a force coefficient of 100 and a rate of 100.

We then define a boundary condition on the Y axis, at the face of the cube
where the Y coordinate is the maximum of the world domain (in Simbiotics Y
max is the top face of the cuboid domain). The boundary is set to be a solid
wall, and has a property object assigned to. In the property object we defined
property called "structures", which takes a String array of the binding sites which
are present, in this case only the new binding site "boundary_structure".

// define the new environmental binding site

defineBindingSite(new BindingSite("boundary_structure"));

...

// define the interaciton between species_a’s adhesin, adhesin_a, and

the environmental_structure

defineInteractionMechanism(new SpringMechanism(100, 100), "spring_2")

defineInteraction(new SpecificaInteraction("boundary_interaction",

new Pair("adhesin_a", "boundary_structure"), "spring_2"));

...

//define the world Y boundaries to be solid, and the top substratum

has a surface structure which interacts with species_a

defineBoundary(Axis.Y, AxisFace.MAX, new SolidBoundary(new

BoundaryData(new Pair("structures", new

String[]{"boundary_structure"}))));
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Collecting data from the model

To collect data from the model we can define exporters, these are library modules
which read desired model state information and writes it to file. Additionally the
modeller can define devices, which are programs that perform built-in analysis
on the model state such as measurements or interactions with the model, device
data can then be used by exporters.

For this model we can measure the aggregation of the bacterial population
using a simulated spectrophotometer, emulating the process a biologist would go
through to acquire such data. We first define the spectrophotometer module,
then an exporter module which uses the data from this spectrophotometer. This
is achieved by using the ID of the spectrophotometer in the constructor of the ex-
porter. We take a spectrophotometer scan and export the data every 10 seconds,
this sample period is the second parameter to the exporter.

// define the optical density device

defineDevice(new Spectrophotometer(), "spectrophotometer");

// define the optical density

defineExporter(new SpectrophotometerExporter("spectrophotometer",

10), "od600_data");
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Tutorial 2 - Biofilm

In this tutorial we will develop a more advanced model, building on concepts we
covered in the first tutorial. We first develop a primitive single species biofilm
model, where planktonic cells can colonise a surface. We then extend the model,
introducing a second bacterial species which performs chemotaxis towards a chem-
ical which is produced by the first species biofilm, resulting in the second species
adhering the the biofilm. Growth kinetics are introduced, as well as a boundary
interface which describes a flux of new chemicals and bacteria into the world do-
main. Analysis is then performed to measure the biofilm height profile and this
data is written to file.

The complete model can be found in the Simbiotics project at:
simbiotics.examples.Tutorial2_BiofilmHeight

Environment setup

We first define a world domain size of 100*50*100 micrometers followed by defi-
nition of cyclical (periodic) boundaries on the X and Z axes, as we did in the first
tutorial. The domain boundary at the minimum value of the Y axis (bottom face
of the cuboid domain) is then set to be solid with binding sites present.

We then define the solver systems for the physics, diffusion and collisions in
the model. The physics system has three force components, namely forces due to
gravity, Brownian dynamics and friction (viscous drag force).

// define a world domain of 100*50*100 micrometers

defineWorldSize(100, 50, 100);

// define the world X and Z boundaries to be cyclical

defineBoundary(Axis.X, new CyclicalBoundary());

defineBoundary(Axis.Z, new CyclicalBoundary());

// define the world Y boundaries to be solid, and the top substratum

has a surface structure which interacts with species_a
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defineBoundary(Axis.Y, AxisFace.MIN, new SolidBoundary(new

BoundaryData(new Pair("structures", new

String[]{"boundary_structure"}))));

// define the boundary structure binding site

defineBindingSite(new BindingSite("boundary_structure"));

// define the physics solver (StandardPhysics implements verlet

integration) and add force components

definePhysics(new StandardPhysics(new Gravity(0.1), new

Brownian(2.4), new Friction(2)));

// define the diffusion solver (StandardDiffusion implements a

finite-volume method of Fick’s law)

defineDiffusion(new StandardDiffusion());

// define the collision solver (StandardCollisions implements a

mass-spring system)

defineCollisions(new StandardCollisions());

Bacterial species

A bacterial species is then defined; it’s represented as a red sphere of diameter 0.9
micrometers, and has a binding site "adhesin_a" on its surface which may inter-
act with the "boundary_structure" binding site. We then create 100 instances of
the species.

// define the binding site

defineBindingSite(new BindingSite("adhesin_a"));

// define the interaction between species_a’s adhesin (adhesin_a),

and the boundary

defineInteractionMechanism(new SpringMechanism(100, 100),

"spring_mechanism")
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defineInteraction(new SpecificInteraction("interaction_a_boundary",

new Pair("adhesin_a", "boundary_structure"), "spring_mechanism"));

// define the cell behaviour module which implements cell-adhesin

functionality

defineCellBehaviour(new CellAdhesion("adhesin_a"), "adhesion_a");

// define the morphology

defineMorphology(new CoccusMorphology(0.5), "sphere");

// define the cell species

defineCellSpecies(new CellSpecies("species_a", new Color.RED,

"sphere", "adhesion_a"));

// define cell population

defineInitialCondition(new InitialPopulation("species_a", 100),

"initial_species_a");

Multiple bacterial species

To develop the biofilm model further we introduce a second species. We define
"species_b", which is represented by a blue sphere of diameter 1.1 micrometers,
it has a binding site "adhesin_b" on its surface which may interact with "ad-
hesin_a" on "species_a" cells.

// define the binding site

defineBindingSite(new BindingSite("adhesin_b"));

// define the interactions which occur between adhesins

defineInteractionMechanism(new SpringMechanism(50, 50),

"spring_mechanism_2")

defineInteraction(new SpecificInteraction("interaction_a_b", new

Pair("adhesin_a", "adhesin_b"), "spring_mechanism_2"));
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// define the second morhology

defineMorphology(new CoccusMorphology(0.65), "larger_sphere");

// define the second cell species

defineCellSpecies(new CellSpecies("species_b", Color.BLUE,

"larger_sphere", "adhesion_b"));

// define second cell population

defineInitialCondition(new InitialPopulation("species_b", 50),

"initial_species_b");

Bacterial growth

We use two forms of bacterial growth in this model. The first is a constant growth
module which is not dependent on any factor, the second is a nutrient dependent
growth which depends on an extracelluar nutrient. In order to represent an ex-
tracellular nutrient which undergoes reaction-diffusion dynamics, we must define
the diffusion grid resolution and chemical species.

To define the diffusion grid resolution we pass a value of 3 to the Standard-
Diffusion constructor, this means a binary split will be recursively performed on
the cuboidal domain 3 times. For our domain size of 100*50*100 micrometers, 3
binary splits mean our diffusion voxel resolution is 12.5*6.75*12.5 micrometers.

We then define the "substance_b" chemical which represents the nutrient, it
has a diffusion rate of 50 and a degradation rate of 0.5.

We also define a "chemotaxis" behaviour module, which describes motility
dynamics in order to ascend a chemical gradient. We set the chemoattractant to
be "substance_b".

// define the diffusion solver (StandardDiffusion implements a

finite-volume method of Fick’s law) and an integer of how many

binary divisions to preform on the world domain

defineDiffusion(new StandardDiffusion(3));

// define substance_b with its diffusion and degradation rates
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defineChemicalSpecies(new Chemical("substance_b", 50, 0.5));

// define species_b’s oxygen chemotaxis module

defineCellBehaviour(new Chemotaxis("substance_b", 50, 50, 50),

"chemotaxis");

We define two forms of growth in the model. For "species_a" a constant growth
module is used, which has a growth rate of 0.0004 ± a variation of 0.0004fgs−1.

For "species_b" a nutrient dependent growth module is used. We first cre-
ate a reaction called "growth_reaction", defining its as non-autocatalytic, then
setting the maximum growth rate and reaction yield coefficient. We then add a
kinetic factor describing the form of the reaction, using a MonodKinetic we set
the depending substance to be "substance_b" and the half-saturation value to
be 0.5 We then create a ReactionKineticGrowth behaviour module and attach
the growth reaction we had defined. Then we set the stoichiometric yield coef-
ficients of the reactants and products in the reaction. We set the yields to be
"substance_b" decreasing by one unit as the cells "biomass" increases one unit.

Cells will divide (undergo mitosis) upon reaching twice the diameter they were
at birth.

// define the species_a’s constant growth module

defineCellBehaviour(new ConstantGrowth(0.0004, 0.0004), "growth_a");

// define the reaction kinetics for substrate-dependent growth

KineticReaction growth_reaction = new

KineticReaction("growth_reaction");

growth_reaction.setAutocatalytic(false);

growth_reaction.setMaxRate(0.001);

growth_reaction.setYield(1.0);

growth_reaction.addKineticFactor(new MonodKinetic("substance_b",

0.5));

// define species_b’s substance dependent growth module

ReactionKineticGrowth dependent_growth = new ReactionKineticGrowth();

dependent_growth.addReaction(growth_reaction);
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dependent_growth.addYield("substance_b", -1.0);

dependent_growth.addYield("biomass", 1.0);

defineCellBehaviour(dependent_growth, "growth_b");

The new modules must then be added to the cell species definitions by their IDs.
We modify the "species_a" definition to add the constant "growth_a" module,
and modify "species_b" to have the nutrient-dependent "growth_b" module and
"chemotaxis" module.

// define the cell species

defineMorphology(new CoccusMorphology(0.45), "sphere1");

defineCellSpecies(new CellSpecies("species_a", Color.RED, "sphere1",

"adhesion_a", "growth_a")

);

defineMorphology(new CoccusMorphology(0.6), "sphere2");

defineCellSpecies(new CellSpecies("species_b", Color.BLUE, "sphere2",

"adhesion_b", "growth_b", "chemotaxis")

);

Bacterial differentiation

To introduce bacterial differentiation to model we can embed some decision mak-
ing into the cells. A cell can be in a set of discrete states, which can be turned
on/off based on local environment factors. For this tutorial we represent this
decision making at a high level of abstraction by using a single state, indicating
whether the cell has adhered to the substratum. These states then effect the
behaviour that the cell has, changing the way it interacts with its environment.

First, we will set up some cell behaviours which can be turned on when the
cell attaches to the substratum. A secretor will be turned on which secretes
substance_b at given rate. Extracellular-polymeric substances (EPS) also start
being produced, EPS are represented as soft spheres.

// define the secretor which species_a has to secrete substance_b

defineCellBehaviour(new Secretor("substance_b", 100),
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"secrete_substance_b");

// define the species_a’s constant growth module

defineCellBehaviour(new SecretingCapsule(0.002, 0.002, 0.05),

"secreting_capsule");

Secondly we set the states of the species, in this instance both have one state
"SESSILE" which is true if the cell is attached to the surface.

Links are set up, which connect cell behaviours to cell states. For both
"species_a/b" there is a BiofilmSensor link, which connects their "adhesion_a/b"
to the "SESSILE" state, setting the state to be true if the cell has adhered to
the substratum (boundary structure) or to a cell is already sessile.

If a "species_a" cell is sessile it has the following behaviour:

• Turns on secretion of "substance_b" (StateToBehaviourLink)

• Increases its growth rate and variation (VariableChanger)

If a "species_b" cell is sessile is has the following behaviour:

• Turns on secretion of EPS (StateToBehaviourLink)

• Decreases its chemotaxis propel speed (VariableChanger)

// define the cell states

States states_a = new States();

states_a.add("SESSILE", false);

States states_b = new States();

states_b.add("SESSILE", false);

// define links

Links links_a = new Links();

links_a.add(new BiofilmSensor("adhesion_a", "SESSILE"));

links_a.add(new StateToBehaviourLink("SESSILE",

"secrete_substance_b"));

links_a.add(new VariableChanger(new Pair("SESSILE", "growth_a"), new

Pair("growth_rate", 0.00125)));
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links_a.add(new VariableChanger(new Pair("SESSILE", "growth_a"), new

Pair("deviation", 0.0005)));

Links links_b = new Links();

links_b.add(new BiofilmSensor("adhesion_b", "SESSILE"));

links_b.add(new StateToBehaviourLink("SESSILE", "secreting_capsule"));

links_b.add(new VariableChanger(new Pair("SESSILE", "chemotaxis"),

new Pair("run_force", 1)));

We must then attach the newly defined behaviours, states and links to the cell
species definitions, modify the original definitions.

// define the cell species

defineCellSpecies(new CellSpecies(

"species_a", Color.RED, states_a, links_a, new Sphere(0.9),

"adhesion_a", "growth_a", "secrete_substance_b")

);

defineCellSpecies(new CellSpecies(

"species_b", Color.BLUE, states_b, links_b, new Sphere(1.2),

"adhesion_b", "growth_b", "chemotaxis", "secreting_capsule")

);

Chemostat and bactostat

We define a flux of new bacteria and chemicals into the system. This is achieved
by defining a chemostat (for chemical fluxes) and a bactostat (for bacterial
fluxes), and assigning them an environment interface which describes which do-
main boundary they operate on.

Below we define two lists of Fluxes, one for chemicals representing a flux of
acid into the system, and one for bacteria representing the flux of the two species
into the domain. Flux declarations have the flux rate as their second parameter.

For chemicals we have flux of "substance_b" at a rate of 0.01 µMs−1 µm2.
For bacteria we have a flux of "species_a" at a rate of 0.6 cells s−1, and of
"species_b" at 0.4 cells s−1.

We then define an environment interface, describing which domain boundary
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this flux occurs at. Here we specific that the MAX boundary of the Y axis is
where the fluxes occur, meaning that cells and chemicals are introduced from the
top face of the cuboid simulation domain.

We then define the two devices, a Chemostat and a Bactostat, passing their
constructors the corresponding fluxes and the target environment interface. They
are also identifiable by their unique device IDs, "chemostat" and "bactostat".

// set up the fluxes used for the chemostat

ArrayList<ChemicalFlux> chemical_flux = new ArrayList<>();

chemical_flux.add(new ChemicalFlux("substance_b", 0.001));

// set up the fluxes used for the bactostat

ArrayList<BacterialFlux> bacteria_flux = new ArrayList<>();

bacteria_flux.add(new BacterialFlux("species_a", 0.6));

bacteria_flux.add(new BacterialFlux("species_b", 0.4));

// define the environment interface

EnvironmentInterface environment_interface = new

EnvironmentInterface(Axis.Y, AxisFace.MAX)

// define up the chemostat and bactostat devices with their

respective fluxes

defineDevice(new Chemostat(chemical_flux, environment_interface),

"chemostat");

defineDevice(new Bactostat(bacteria_flux, environment_interface),

"bactostat");

Biofilm height measurements

To analyse the model we take measurements of the biofilm height. This gives us
both the average and standard deviation of the biofilm height, as well as a 2D
heatmap which encodes the biofilm height profile.

First we define the biofilm height measuring device which samples the height of
the biofilm across the entire world domain. Its scan resolution is defined in its con-
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structor by as X and Z resolution, here we set that resolution to be 2 micrometers
on both the X and Z axes. We give it a device ID of "biofilm_height_measurer".

We then define a data exporter specifically for this device. We pass the ID of
the device we defined above to instruct the exporter to use data collected from this
device. The second parameter is the sample period of data collection, it’s set to
export the data every 25 seconds. The exporter unique ID "biofilm_height_data"
is the name of the file which will hold this default, it can be found in the results
directory which is defined in the Simbiotics configuration.

// define the biofilm height measuring device

defineDevice(new BiofilmHeight(2, 2), "biofilm_height_measurer");

// define the biofilm height exporter

defineExporter(new BiofilmHeightExporter("biofilm_height_measurer",

25), "biofilm_height_data");
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.6 Input/output

Configuration file

The configuration file is the first argument when loading Simbiotics from command-
line, it is the only compulsory argument. It describes the parameters for Sim-
biotics which can be seen in Table 2 below. When developing in an IDE, the
configuration parameters exist in the SimbioticsConfig class.

Listing 5: Simbiotics configuration file

{

"model_file": "simbiotics.examples.Model1_Aggregation",

"results_dir": "results/",

"duration": 0,

"simple_workers": 1,

"complex_workers": 4,

"max_nodes_per_pm": 20000,

"node_depth": 0,

"slot_resolution": 20,

"balance_round": 300

"verlet_update": 10,

"view_width": 1280,

"view_height": 800,

"parallel": true,

"profiling": false,

"gui": true

}

Keyboard/mouse interactivity

There are some default key bindings provided in Simbiotics. These can only be
run when the Simbiotics GUI is also loaded (gui = true in configuration file).
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Parameter Description Type
model_file The path to the model class/file to be simulated String
results_dir The default results directory for data exporting String
duration Number of simulated seconds before exiting, 0 means indefinite Double

simple_workers Number of simple worker threads Integer
complex_workers Number of complex worker threads Integer

max_nodes_per_pm Number of agent geometries in partition before it is split into subpartitions Integer
node_depth Number of binary splits of the cuboid domain into the diffusion grid of subdomains Integer

slot_resolution Number of voxels in each subpartition Integer
balance_round Number of iterations before the domain is checked if it should be split into subdomains Integer
verlet_update Number of iterations before updated a cells verlet list (nearest neighbours) Integer
view_width Width of the GUI frame in pixels Integer
view_height Height of the GUI frame in pixels Integer

parallel Whether the simulation should be run in a parallelized manner Boolean
profling Whether the simulation profiling data should be displayed Boolean
gui Whether the simulation should be run with a GUI Boolean

Table 2: Simbiotics configuration parameters

Input Action
Left click + drag Translates the model visualisation
Right click + drag Rotates the model visualisation

‘ Toggles pause
a Saves data for all exporters
q Takes a 3D snapshot of all geometric agents (for post rendering)

Spacebar Toggles the colour scheme

Table 3: Simbiotics input commands

236



. Appendix A - Simbiotics user guide

Inputs

Microscopy images

Microscopy images can be processed and loaded into Simbiotics to specify the ini-
tial spatial arrangement of bacteria. This is achieved by using theMicroscopyLoader

class, which is available in the simbiotics.loader package.
Calling the generatePopulation function requires 3 parameters, in the follow-

ing form:

Listing 6: Loading microscopy images into Simbiotics

MicroscopyLoader.generatePopulation(image_file, image_dimensions,

world_dimensions);

image_file is a csv file encoding the microscopy image. image_dimensions
is 3D double array containing the size of the image file in pixels. world_dimensions
is the size the image will be scaled down to in the simulation.

Listing 7: Loading microscopy images into Simbiotics

PopulationEncoding my_population =

MicroscopyLoader.generatePopulation("encoding.csv", new

double[]{1024, 1024, 1024}, new double[]{92, 92, 92});

definePopulation(my_population);

SBML models

SBML models can be embedded in agents in Simbiotics. This is achieved by using
the SBMLModule behaviour class, which is available in the simbiotics.library.behaviour.sbml
package.

Listing 8: Loading SBML models into Simbiotics

SBMLModule my_sbml = new SBMLModule("my_sbml_file.xml", 1, 0.1);
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The SBML module can then be defined as a behaviour and attached to a cell
species definition as such:

defineCellBehaviour(my_sbml, "sbml_metabolism");

defineCellSpecies(new CellSpecies("my_species", Color.BLUE, new

Sphere(1.0), "sbml_metabolism"));
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Outputs

Data exporting

Data exporters output files to the resultsdir defined in the configuration file,
unless their file_path variable is set, in which case that specific exporter out-
puts data to that folder, whilst the results outputs to the main results directory.
Simulations also copy a version of the model used to run the simulation.
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.7 Modelling library

world

2D_world 2D simulation domain
3D_world 3D simulation domain

boundaries

solid solid domain boundary for agents
cyclical cylical domain boundary for agents
no_return no return domain boundary for agents

surface_properties

adhesive adhesive structure on a solid domain boundary

forces

gravity force of gravity on agents (-Y axis force)
brownian force of brownian motions agents (random walk)
friction force of friction on agents (drag force)
interactions_force force of interactions on agents (the defined specific interac-
tions)
collisions force of collisions between only spherical (coccus) agents
collisions_extended force of collisions between only rod-shaped (bacillus) agents
collisions_complete force of collisions between mixed spherical (coccus) and
rod-shaped (bacillus) agents
collisions_hertzian force of collisions modelled as hertzian interaction between
agents
non_specific force of non-specific interactions (van der Waals and electrostatic
appropximation)
dlvo force of non-specific interactions according to DLVO theory
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chemicals

chemical a chemical that can diffuse in the extracellular space
intracellular_only_chemical a chemical that can only exist in an intracellular
compartment

interactions

specific_interation a specific interaction between two binding sites on agents
surfaces

interaction_mechanisms

spring_mechanism a specific interaction is modelled as a Hookian spring form-
ing between the interacting agents

states

state a qualitative intracellular state (boolean)
quantitative_state a quantitative intracellular state (continuous value)

links

state_to_state connect two states, such that state 2 always updates to be state
1’s value
state_to_behaviour connect a state and a behaviour, such that the behaviour’s
activity (on or off) is equal the the states boolean value
behaviour_to_state connect a state to a behaviour, such that the states
boolean value is equal to the behaviours activity variable (on or off)
state_is_external_concentration connect a state (quantitative state) to an
external chemical, such that the states value is equal to the extracellular concen-
tration of that chemical
surface_sensor connect a state to a surface sensor, such that the state is true
if the agent is interacting with a solid boundary
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conditions

general_condition define a custom condition
concentration_threshold check if a chemical concentration in relation to a set
threshold
touched_cell check if the agent is touching a cell of a specific species
world_time check if a certain duration of global simulation time has elapsed
concentration_vs_concentration check the concentration of two chemicals
against each other
has_interactions check if the cell has an interaction of a specific type
touched_surface_with check if the agent is touching a boundary with a spe-
cific surface property

actions

general_action define a custom action
change_state change the value of a state
new_behaviour add a new behaviour module to the agent
remove_behaviour remove a behaviour module from the agent
behaviour_activity set the activity of a behaviour module to be on or off
change_colour change the colour of the agent
kill_cell kill the agent
divide trigger the agent to divide (mitosis)
produce_child trigger the agent to create a child agent
delayed_action do an action after a given duration of time
probabilistic action do an action with a given probability
break_interactions remove all interactions (specific interactions) of a given
type

morphpologies

coccus representation of a coccus (spherical) cell morphology
bacillus representation of a bacillus (rod-shaped) cell morphology
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species

cell representation of a cell agent, which has states, links, behaviours and a
morphology
eps representation of an eps agent, which has a morphology

behaviours

periodic_action an action that occurs periodically
trigger a list of conditions and actions, where once all conditions are met, all
actions are executed
mitosis a cell divides upon reaching twice of its original mass
eps_secretion cells secrete EPS (agents, represented as small spheres) at some
rate
conjugation models conjugation between physically contacting bacteria
cell_adhesion models membrane surface structures and specific interactions be-
tween cells
sbml models intracellular dynamics as SBML models which are solved with Lib-
SBMLsim
differential_equations models intracellular dynamics as sets of ordinary dif-
ferential equations
chemotaxis models chemotaxis of bacteria - run and tumble dynamics ascending
chemical gradients
reporter changes the colour of the cell based on the value of a state
toxicity kills the cell upon it experiencing over a threshold of a specific chemical
membrane models membrane transport of a cell (active or passive mechanisms
can be defined)
random_walk models a random walk of a cell (similar to brownian motion
force)
pressure_death kills the cell upon it experiencing more than a define threshold
of physical pressure
gillespie models intracellular dynamics as a stochastic Gillespie model
constant_growth models a cell growing at a constant rate
boolean_reporter agent changes between two colours based on a boolean state

243



. Appendix A - Simbiotics user guide

boolean_grn models intracellular dynamics as a boolean network
run_tumble models flagellar based run and tumble motility dynamics

initial_conditions

initial_chemical_concentration define an initial chemical concentration at a
position
initial_chemical_quantity define an initial chemical quantity at a position
initial_chemical_concentration_everywhere define an initial chemical con-
centration throughout the whole domain
initial_chemical_quantity_everywhere define an initial chemical quantity
throughout the whole domain
initial_intracellular_chemical_concentration define an initial chemical con-
centration inside cells of a specific species
initial_intracellular_chemical_quantity define an initial chemical quantity
inside cells of a specific species
initial_cell_state_activity define the initial value of a specific state of a
specifc species
initial_cell_position define a cell (agent) at a specific position
initial_population define a well mixed population of cells
initial_population_in_area define a well mixed population of cells within a
specific area (or volume)
initial_population_image define the initial spatial arrangement of cells from
a previous simulation state
initial_population_microscopy_image define the initial spatial arrange-
ment of cells from a processed microscopy image encoding
initial_grid_of_cells define a uniform grid of cells of a specific species

devices

chemostat define a chemostat attached to a domain boundary
bactostat define a bactostat attached to a domain boundary
chemical_pool define a chemical pool at a specific point
chemical_source define a chemical source at a specific point
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chemical_sink define a chemical sink at a specific point
canera define a camera to record the simulation

exporters

sampler samplers collection custom dave from the simulation
geometry_image geometry images (population images) export the spatial ar-
rangement of cells (can be used to initialise models)
timers exports the timers profiling the Simbiotics integrator
microsensor exports the chemical concentration at a given position
positional_cell_chemical exports a spatial description of intracellular chem-
ical quantities (for heatmaps etc)
orientation exports the orientation of agents

schedules

save_and_exit saves all data collection to file and exits the simulation
export_periodically flushes and saves data exporters to file periodically
pipette_event schedules a pipette event (adding chemicals or agents to the
domain)
camera_rotate schedules the camera to rotate at a given rate
camera_pan schedules the camera to pan at a given rate
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Model definitions

Java functions

defineWorldSize

Defining the world size sets the simulation domain dimensions.

void defineWorldSize(double world_size)

(1)

void defineWorldSize(double world_x, double world_y, double world_z)

(2)

Where world_size is the length of a cubic domain. Alternatively one can have
a cuboidal domain, whereworld_x is the length of the domain along the X axis,
world_y the length of the domain along the Y axis, and world_z the length of
the domain along the Z axis.

In Simbiotics, the X axis is right/left, the Y axis is up/down and the Z axis
is back/front, with the positive/negative values being the respective direction for
each axis.

defineBoundary

Defining boundaries sets the behaviour of agent geometries when they interact
with the sides of the cuboidal world domain. Specific boundary behaviours can
be set to particular faces of the domain by specifying the Axis and AxisFace pa-
rameters (2), if no AxisFace parameter is passed (1) then the boundary condition
is applied to both the minimum and maximum faces of the given axis.

void defineBoundary(Axis axis, BoundaryCondition boundary_condition)

(1)

void defineBoundary(Axis axis, AxisFace axis_face, BoundaryCondition

boundary_condition) (2)

Where axis is the target axis (X, Y, Z), axis_face is which face of the cube along
that axis (MIN, MAX) and boundary_condition is an implementation module
describing boundary mechanics.
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definePhysics

Defining the physics solver sets the integration method for calculating how agent
geometries positions change due to forces.

void definePhysics(PhysicsSolver physics_solver)

Where physics_solver is an implementation module of the physics solver.

defineDiffusion

Defining the diffusion solver sets the method used for calculating chemical fluxes
between domain subvolumes.

void defineDiffusion(DiffusionSolver diffusion_solver)

Where diffusion_solver is an implementation module of the diffusion solver.

defineCollisions

Defining the collision solver sets the method used for calculating the forces ge-
ometries which are colliding exert on each other.

void defineCollisions(CollisionSolver collision_solver)

Where collision_solver is an implementation module of the collision solver.

defineChemicalSpecies

Defines a chemical species to be part of the model with given ID and properties.

void defineChemicalSpecies(Chemical chemical)

Where chemical is an implementation module of a chemical, which can be present
in extracellular and intracellular compartments.

defineChemicalInterface

Defines a flux of chemicals at a point position in the domain, which can be
identified with an ID.
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void defineChemicalInterface(ChemicalInterface chemical_interface,

String id)

Where chemical_interface is an implementation module of a chemical interface,
and id is the name of that interface.

defineBindingSite

Defines a binding site which can represent a physical binding location on the
surface of cellular geometries and boundary interfaces.

void defineBindingSite(BindingSite binding_site)

Where binding_site is an implementation module of a binding site.

defineInteraction

Defines an interaction which can represent the physical mechanism between two
binding sites.

void defineInteraction(PhysicalInteraction interaction)

Where interaction is an implementation module of a PhysicalInteraction.

defineCellBehaviour

Defines a behaviour module to be identified by its ID and key, which can then be
bound to cell species definitions to describe cell dynamics.

void defineCellBehaviour(iBehaviour behaviour, String module_id, String

module_key, Boolean active)

Where behaviour is an implementation module of an iBehaviour, module_id is
its unique identifier, module_key is the type of behaviour corresponding to the
Simbiotics library keys, and active is a boolean whether the behaviour is active
(on) or inactive (off).
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defineCellSpecies

Defines a cell species with a particular implementation, such as their spatial
representation, behaviour and state information.

void defineCellSpecies(CellSpecies cell_species)

Where cell_species is an implementation module of CellSpecies.

definePopulation

Defines the initial population size of the cell species, their positions are distributed
normally throughout the cubic domain.

void definePopulation(String species_id, int population_size)

Where species_id is the target species ID, and population_size is the number of
cells .

defineCellAtPosition

Defines a cell of the given species at a position, can also have a unique cell name
to track an individual cell throughout the simulation.

void defineCellAtPosition(String species_id, double[] position)

void defineCellAtPosition(String species_id, double[] position, String

cell_name)

Where species_id is the target species ID, position is the coordinates of the
cell, and cell_name is the unique name of that cell.

defineInitialVelocity

Defines the initial velocity for all cells in at the initial state of the model with
some random deviation.

void defineInitialVelocity(double velocity, double standard_deviation)
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defineDevice

Defines a device which may interact with or probe the model state, indentifiable
by its ID.

void defineDevice(iDevice device, String device_id)

defineExporter

Defines an exporter to write model data to file, it’s identifiable by its ID and has
an optional file path of where to write the data to. If no file path is supplied then
the default results folder as defined in the Simbiotics configuration will be used.

void defineExporter(Exporter exporter, String exporter_id)

void defineExporter(Exporter exporter, String file_path, String

exporter_id)

defineAuxiliary

Defines an auxiliary program which may automate interactions or events in the
model, identifiable by a unique ID.

void defineAuxiliary(iAuxiliary auxiliary, String auxiliary_id)

defineDrawer

Defines a model component to visual for 3D rendering output.

void defineDrawer(Drawer drawer)

defineConstant

Defines a constant for the simulation engine, such as the global "TIME_STEP".

void defineConstant(String id, double value)
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.8 Building new modules

The Simbiotics library can be extended by designing new modules in Java. This is
achieved by meeting the requirements of one of the Simbiotics interfaces. The in-
terfaces are all stored in the same Java package, found in: simbiotics.plugs.interfaces.
The base classes implementing these are found in: simbiotics.plugs.base.

When developed a new module, one may wish to extend one of the base
classes, or for finer control, they may wish to directly implement the interface. For
example, when developing a new module for bacterial behaviour, the Behaviour
class could be extended, or one may implement the iBehaviour interface directly.

We exemplify this through how the Mitosis behaviour is implemented. We
start by overriding the iBehaviour interface, which can be seen below.

public interface iBehaviour extends Serializable, CustomSerializable {

/** Execute (run) the behaviour module **/

void execute();

/** Apply the changes of the behaviour module **/

void apply();

/** Get a copy of the module**/

iBehaviour getCopy();

/** Divide the module (with a given ratio) **/

iBehaviour divide(double ratio);

/** If returns true, this module is copied to the child cells during

division **/

boolean isCopiedWhenCellDivides();

/** Return the agent this module belongs to **/

iAgent getAgent();

/** Set the agent this module belongs to **/
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void setAgent(iAgent cell);

/** Get the probability of this behaviour module being inherited

during division**/

double getInheritanceProbability();

/** Set the probability of this behaviour module being inherited

during division **/

void setInheritanceProbability(double inheritance_probability);

/** Get behaviour module id (String name) **/

String getBehaviourId();

/** Set the behaviour module id (String name) **/

void setBehaviourId(String module_id);

/** Set the behaviour module type (String type) **/

void setBehaviourType(String module_type);

/** Get the behaviour module type **/

String getBehaviourType();

/** Get whether the behaviour module is active (switched on) **/

boolean isActive();

/** Set the behaviour module activity to be on or off **/

void setActive(boolean active);

/** Returns true if the module has an associated volume (biomass) **/

boolean hasVolume();

/** Get the volume of this module **/

double getVolume();

}
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This interface has a set functions which have to be implemented in order for
it to be treated as a valid behaviour module. The base implementation of this
interface is the Behaviour abstact class, which can be seen below:

public abstract class Behaviour implements iBehaviour {

public String behaviour_id = "";

public String behaviour_type = "";

public boolean active = true;

public double inheritance_probability = 1.0;

protected iAgent agent;

/** Behaviour Constructor(s) **/

public Behaviour() {

this(true, 1.0);

}

public Behaviour(String behaviour_type){

this.behaviour_type = behaviour_type;

this.behaviour_id = behaviour_type;

}

public Behaviour(boolean active){

this(active, 1.0);

}

public Behaviour(boolean active, double inheritance_probability){

setActive(active);

setCopyOnDivide(inheritance_probability);

}

/** Execute (run) the cell behaviour - toggled by ’active’ variable

**/

public void execute(){

if(active)

run();

}
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/** Run the module at each iteration **/

public abstract void run();

/** Apply the module at each iteration **/

public abstract void apply();

/** Get a copy of the module */

public abstract iBehaviour getCopy();

/** Get a copy of the module */

public iBehaviour divide(double ratio){

return getCopy();

}

/** Get the cell this module is associated with **/

public iAgent getAgent() {

return agent;

}

/** Set the cell this module is associated with **/

public void setAgent(iAgent cell) {

this.agent = cell;

}

/** Set whether the module is copied on divide **/

public void setCopyOnDivide(double copy_on_divide){

this.inheritance_probability = copy_on_divide;

}

/** Returns true if this module is copied upon mitosis (for child

cell) **/

public boolean isCopiedWhenCellDivides() {

return inheritance_probability > 0;

}
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/** Set the module ID **/

public void setBehaviourId(String module_id){

this.behaviour_id = module_id;

}

/** Set the module type **/

public void setBehaviourType(String module_type){

this.behaviour_type = module_type;

}

/** Get the module type **/

public String getBehaviourType(){

return behaviour_type;

}

/** Get the module ID **/

public String getBehaviourId(){

return behaviour_id;

}

/** Returns true if the module is currently active **/

public boolean isActive(){

return active;

}

/** Set whether the module is currently active or not **/

public void setActive(boolean active){

this.active = active;

}

public double getInheritanceProbability(){

return inheritance_probability;

}
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public void setInheritanceProbability(double inheritance_probability){

this.inheritance_probability = inheritance_probability;

}

public boolean hasVolume(){

return false;

}

public double getVolume(){

return 0;

}

}

This is an abstract class and thus can not be instantiated - it simply pro-
vides the general implementation that most behaviour modules need so that code
doesn’t have to be repeated in those classes. Often this Behaviour class is suffi-
cient to extend, and one can override all the methods in the class as they please -
however at some point it makes more sense to implement the iBehaviour class di-
rectly to reduce any efficiency costs associated with instantiating many instances
of a class with a chain of super constructors.

In the case that the Behaviour class is sufficient to build on top of, it can be
used to specific specific behaviour of an agent. Below we show a Mitosis class
implemented to divide a coccus (spherical) cell upon reaching twice of its original
volume:

public class Mitosis extends Behaviour {

protected boolean divide;

/** Constructor(s) and copy **/

public Mitosis(){

super("mitosis");

setActive(true);

}

public Mitosis getCopy(){

return new Mitosis();
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}

/** Run this cell internal (store results for a synchronous update)

**/

public void run(){

divide = false;

if(agent.getMass() >= agent.getBirthMass() * 2)

divide = true;

}

/** Update all of the cells synchronously **/

public void apply(){

if(divide)

agent.divide();

}

}

And here is an example of a variation of the Mitosis class which implements
a bacillus (rod-shaped) cell dividing upon twice its original length:

public class Mitosis extends Behaviour {

protected boolean divide;

/** Constructor(s) and copy **/

public Mitosis(){

super("mitosis");

setActive(true);

}

public Mitosis getCopy(){

return new Mitosis();

}

/** Run this cell internal (store results for a synchronous update)

**/

public void run(){

257



. Appendix A - Simbiotics user guide

divide = false;

CapsularBody body = agent.getBody();

if(body.getLength() >= 2 * body.getBirthLength())

divide = true;

}

/** Update all of the cells synchronously **/

public void apply(){

if(divide)

agent.divide();

}

}

Please note: neither of these Mitosis class implementations are the one actu-
ally used in the platform, they are simply examples of how a new module can be
built.
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.9 Introduction

Overview

Easybiotics is a graphical user interface (GUI) for the Simbiotics platform. Easy-
biotics allows for the design, simulation and analysis of Simbiotics models via an
easy to use graphical interface which does not require programming experience
to operate. It is a light-weight program developed in Python which has minimal
dependencies.
This document describes how to get and install Easybiotics, as well as some tuto-
rials on how to use it. You can also try Easybiotics in a Virtual Machine
for easy out-of-the-box use, it can be found on the website along with
video tutorials on how to use the software.

https://bitbucket.org/simbiotics/simbiotics/wiki/Home

License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details: http://www.gnu.org/licenses/gpl.html
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Technical overview

Easybiotics is written in Python 2.7, and depends on the Kivy, Matplotlib and
Pandas library.

Terminology

To clarify some of the terminology used in this document, we list some keywords
and their meaning.

Term Meaning
Library module Java classes within the Simbiotics library which describe

model-specific behaviour.
$SIMBIOTICS The main Simbiotics folder, which contains the src folder

Table 4: User manual terminology
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.10 Getting Easybiotics

Downloading and installing

Simbiotics and Easybiotics are distributed together and can be downloaded at
https://bitbucket.org/simbiotics/simbiotics/wiki/Home.

Simbiotics is developed in Java 1.7, and Easybiotics in Python 2.7.

You must have the following packages installed:

• Open JDK >= 6 (GNU General Public Licence + classpath exception) or
Oracle Java SE >= 6 (Oracle Binary Code Licence)

• Python >= 2.7 - (https://www.python.org/)

• Kivy >= 1.8 - (https://kivy.org/)

• Matplotlib >= 1.4.2 - (https://matplotlib.org/index.html)

• Pandas >= 0.17 - (https://pandas.pydata.org/)

And optionally, if you wish to use SBML integration, you must have:

• libSBML - http://sbml.org/Software/libSBML (GNU LGPL)

• libSBMLSim - http://fun.bio.keio.ac.jp/software/libsbmlsim/ (GNU LGPL)

If you already have these dependencies installed, skip to 2.3. Running easybi-
otics. Note that you must have Simbiotics installed to use Easybiotics. If you do
not have Simbiotics installed please refer to the simbiotics_guide.pdf document.

Getting Dependencies

Easybiotics depends on modules from the Kivy, Pandas and Matplotlib libraries,
which can be found here:

261

https://bitbucket.org/simbiotics/simbiotics/wiki/Home


. Appendix B - Easybiotics user guide

[Kivy]
[Pandas]
[Matplotlib]

If you are using a linux system, these can be installed on command line via
aptitude with the following commands:

Listing 9: Getting Easybiotics dependencies via aptitude

sudo apt-get install python-kivy

sudo apt-get install python-pandas

sudo apt-get install python-matplotlib

Running Easybiotics

Simbiotics can be run in multiple ways allowing the user to choose which is most
appropriate for them. Simbiotics can either by run via Easybiotics, by command-
line, or opened in an IDE.

To run Easybiotics in Linux/MAC open a terminal/command prompt, navi-
gate to the $SIMBOTICS directory and run the "start_easybiotics" script. For
example:

Listing 10: Running Easybiotics

cd $SIMBIOTICS

./start_easybiotics

If you are using Windows you must use start the python application with
gui/qSimbiotics.py
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.11 Developing models in Easybiotics

Here we elaborate on the features of Easybiotics and how to use them. First
describing what each part of the GUI is for. Examples of how to use Easybiotics
can be found the in tutorials section of this document, and in the Easybiotics
video tutorials which can be found at

https://bitbucket.org/simbiotics/simbiotics/wiki/Tutorials

Easybiotics provides features to accomplish the following:

1. Develop models

2. Run models

3. Analyse models

4. Render visualisations

Develop models
The model development environment allows for Simbiotics models to be composed
easily. The model specification is represented as an interactive tree structure to
which library modules can be attached.

Run models
Models can be run from inside the model development environment. Models can
be run with optional real time rendering of the simulation domain.

Analyse models
Simulation data can be exported to file by attaching exporters to the model
specification. This data can optionally be visualised in live plots during the
simulation run. The Simbiotics library also contains some analysis modules for
characterisation of the model during run time.

Render visualisations
In addtion to real-time simulation rendering, simulations can be visualised after
run time as 3D scenes. You can create static ’image’ 3D scenes, or animated 3D
scenes composed of a sequence of static scenes.

263

https://bitbucket.org/simbiotics/simbiotics/wiki/Tutorials


. Appendix B - Easybiotics user guide

Overview

Creating a model

Models can be developed in Simbiotics by selecting the "Develop and run mod-
els" on the home screen. You may either create a new model, or load an existing
model. There are a collection of example models which can be loaded directly
from the load screen. Additionally if you select browse and navigate to exam-
ples/models/ you will find some more example models.

We will first go over the basics on model development in Easybiotics. A
tutorial can be found below this section which walks through the development of
a basic model.

Once you have created a new model or loaded an existing one, you will be
presented with the model development screen. The model development screen
has 5 major components: the Filebar, the Config Editor, the Model Editor, the
Display Panel and the Button Panel.

Filebar
The filebar (highlighted in yellow on Figure 3) gives access to functions such as
the Easybiotics settings, handling configuration and model files, running simula-
tions with optional live visualisation, graphs and parameter sweeps, along with
information about Easybiotics.

Config Editor
The configuration editor (highlighted in blue on Figure 3) gives access to the Sim-
biotics platform settings, such as whether to run the simulation with real time
rendering, and how many CPU threads should be created for the simulation.

Model Editor
The model editor (highlighted in green on Figure 3) allows for the manipulation of
a model specification. This includes adding/removing modules, setting the mod-
ules parameters, and connecting modules together to represent the target system.

Display Panel
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The display panel (highlighted in red on Figure 3) has three tabs. The descrip-
tion tab displays details of the selected module. The properties tab allows for
the modification of any parameters of that module. The edit tab allows for the
direct manipulation of the model specification file values.

Button Panel
The button panel (highlighted in orange on Figure 3) has three buttons - to
run the current model, to quicksave the current model, and to go back to the
Easybiotics homepage.

Figure 1: Overview of the Easybiotics modelling interfaces. The file bar is high-
lighted in yellow, the Simbiotics configuration editor in blue, the model specifi-
cation editor in green, the display panel in red, and the button panel in orange.
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Running the model

Models can be run by either clicking the ’Run’ button in the button panel, or by
selecting one of the run options on the filebar.

You may select the amount of RAM that the JVM (Java Virtual Machine)
uses for the simulation by selecting ’Settings - Run Settings’ from the file bar.
Here you can set the initial amount of RAM allocated as well as the maximum
amount of RAM the simulation may use.

The simulation can be run with an optional live rendering. This is set in the
configuration editor, by setting the gui variable to true or false. If using the live
renderer, the Simbiotics GUI is opened, more information can be found in the
Live Visualisation of Simulations section.

Analysing the model

Models can be analysed by attaching exporters to the model specification. Nu-
merous exporters can be defined, where each collects specific data about the
simulation and writes it to file. Graphs may then be defined, which are set to
plot data from the exporters. Graphs can be saved and loaded to/from file for
easy reuse. To run real time graphs during the simulation run, select the ’Run -
Run with live graph plotting’ option from the file bar, and specifying the graphs
which are to be rendered.

Easybiotics also provides a feature to perform parameter sweeps. Similar to
graphs, parameter sweep objects can be defined, which iterate over properties
in the model. All simulations are run for the defined parameter sweep ranges
and their results saved to independent directories. Live graph plotters may also
be attached to parameter sweeps, plotting the data from all simulations on one
graph for easy comparison.

In addition, the library contains numerous analytical tools such as those able
to calculate the mean squared displacement of agents and their velocity autocor-
relation function. There are also some simulated lab tools, such as microsensors
and a spectrophotometer. This allows for probing of the simulated experiment as
would typically be done for the real experiment.

Examples of analysis with the tool are shown in the Easybiotics tutorials
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below.

Rendering visualisations

Visualisations of simulations can be rendered after they have finished executing,
as an alternative to a live visualisation. This can be achieved by attaching a
certain type of exporter, called a geometry_image, to the model specification.
This exporter writes all geometry properties to a file periodically, writing a new
file for each time point. It produces a series of indexed files which can be found
in the results folder you set for the exporter.

Each geometry image file can be rendered independently into an static 3D
scene, which is loaded in the Simbiotics GUI allowing the user to move the camera
around the scene and modify what properties are visualised.

Alternatively, a sequence of geometry images can be loaded into an animated
3D scene. The user may set the delay between the animation frames, and whether
the renderer should skip indexes. The animation renderer also runs a camera to
record the animated 3D scene and convert it into an .avi which can be found in
the $SIMBIOTICS/results folder.

Tutorial 1 - Creating your first model

To create a new model in Easybiotics selected Develop and run models - New
model from the Easybiotics home page, and enter the file name for your model,
then press Create. The modelling interface should then display, showing the
configuration editor on the left, and the model specification editor in the middle.
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Firstly, we need to create a simulation domain, which we call a world. To
do this, right-click on the world node on the model specification tree. This will
display all world modules in the Simbiotics library. For this example, select the
3D_world module, and set the world dimensions to be 50*25*50, then press the
Add button. An example of this can be seen below.

To see that baby in action, hit run (either from the filebar or from the button
bar bottom right). Make sure you have the gui property in the configuration
set to true! The Simbiotics GUI should open, showing the simulation domain
and nothing else. You can rotate the camera by right-clicking and dragging, and
scrolling to zoom in and out. For more information on the Simbiotics GUI, see
the Live visualisation of simulations section nearer the start of this document.

Ok, lets add some cells!

In brief, a cell is considered as an agent (an individual) in the model, and each
agent is represented by a physical geometry in the simulation. In the model
specificaiton, a physical geometry can be created by add a morphology. To do

268



. Appendix B - Easybiotics user guide

this, right click on the morphologies node on the model specificaiton, and select
the coccus (spherical) module. The default parameters are ok, so just press Add.
This process can be seen below.

Next, we need to create a cellular species (a type of agent) which has the
morphology as its geometric shape. To do this, right-click on the species node.
Select the cell module, and in the parameters set the morphology_id to be the
coccus morphology we have just defined. When linking modules in this way, you
either have to type in the id, or can select one of the valid modules you’ve already
defined by the ... drop down menu. Let’s also change the name of this cellular
species, set the species_id to be "my_cell".

Finally, let’s create a population of cells. This can be done by right clicking
on the initial_conditions node and adding an initial_population module. Set the
species_id to be "my_cell", add set the population size to be 50, and press add.

Ok... so the cells aren’t doing much, lets make this more interesting. To set
the colour of the cells, navigate to the colour property of the cell species you
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defined (by clicking on the dropdown icons on the model specification.) Select
the Properties tab in the display panel on the right, it should show the options to
set the RGBA values. Set the colour to whatever you like, we’ll do a nice green
(50, 180, 80, 175).

Also, let’s add some movement to the system. We’ll do this by adding a
friction and brownian module to the forces node with their default parameters.

Now, when you press Run, you should see a population of moving cells which
are the colour you set!

Let’s now add some basic behaviour to the cells to finish off tutorial 1. We’ll
model that the cells have surface appendages that cause them to aggregate. To do
this, we must create a behaviour module, called cell_adhesion. Add this module
to the model specification with its default parameters. We must then add a
property to this cell_adhesion module representing a surface appendage. To do
this, open up the property list for the cell_adhesion module, and right on sites
then add a site called "surface_appendage" as seen below. The inherited boolean
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sets whether any child cell would directly inherit this surface structure, though
for this model it is irrelevant we will not include cell growth.

Next we need to define an interaction_mechanism, which is the sub-model
describing how two surface appendages interact. Add a spring_mechanism, which
describes the interaction as a Hookian spring. This forms a spring connecting the
two interacting geometries according to the springs parameters. For this model,
we can leave the parameters as default.

We must then create an interaction, which associates the surfaces appendages
we defined with the mechanism. Add a specific_interaction module, and set the
partners both to be the "surface_appendage", and the mechanism_id to be the
"spring_mechanism" we defined above.

Finally, we must add the interaction_force module to our forces. This is a
module which includes the physical force generated by interactions to the total
force that a cell experiences. Without this force module, interactions will have
no physical effect.

Ok, almost there! Now we have defined a behaviour module which has a sur-
face appendage, and we have defined an interaction that states if two of those
surface appendages (from two different cells) comes into contact, then the inter-
action mechanism we also defined is used to model that interaction. The only
thing left is to say that our cell species, "my_cell", has this type of behaviour.

To do this do, open up the species definition, and right click on the behaviours
property which is inside the "my_cell" definition, press the + button, and select
the the "cell_adhesion" module from the drop down box, and select Attach.
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Now when you run the model, the cells should begin to aggregate, such as you
see below. You may want to increase the population size so that the aggregation
is more apparent. To render the wire-frame of the interactions, turn off the
rendering of "my_cell" in the Visualisation layers menu of the Simbiotics GUI,
and turn on the "interactions" layer.

This concludes tutorial 1. You can play around with the parameters in the
model, and more information on these parameters can be found in the publications
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surrounding Simbiotics, which can be found in the Related publications section.
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Tutorial 2 - Collecting some data from a model

Here we run through an example of collecting data from a model, including how
to visualise it live during the simulation.

We will illustrate this example through a model of a colony of bacillus (rod-
shaped) cells growing on a surface. We will assume a constant nutrient supply
and thus uninhibited growth. The bacillus cells secrete a chemical which diffuse
out of the cell membrane into extracellular space.

To start, please create a new model, and define the following specification:

1. To world, add a 3D_world which is 50*20*50.

2. To forces, add a collisions_complete module, with a range of 10 and a k
value of 50.

3. To forces, add a friction module, with a constant value of 1.0.

4. To forces, add a interaction_force module.

5. To forces, add a gravity module, with a constant value of 0.2.

6. To morphologies, add a bacillus module with a length of 1.0 and radius of
0.5.

7. To behaviours, add a constant_growth module with a growth rate of 0.025.

8. To behaviours, add a mitosis module.

9. To species, add a cell module with a the bacillus morphology.

10. In the species - modules property, attach the constant_growth and mitosis
modules.

11. To initial_conditions, add an initial_cell_position, setting the species_id
to the cell species you defined, and the position to be x=0.0, y=9.5, z=0.0.
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Press run, and you should see a single bacillus cell at the bottom of the
simulation domain which is growing and dividing.

Next, we will add the module that describes their cell behaviour, specifically
that they synthesize a chemical, and secrete it out of their membrane.

This is done by defining a chemical species. Add a chemical module to the
chemicals definitions with a diffusion_coefficient of 1.0, a degradation_coefficient
of 0.1 and diffusable set to true (ON).

Next, add a synthesizing_grn to the behaviours definitions. Set the chemi-
cal_id to be equal to the chemical you just defined, ensure the velocity_constant
is 1.0 and add the module. Add this new behaviour module to the species, in the
same way that you attached the mitosis and constant_growth modules to the
species.

To check that this works correctly, we can plot the amount of the chemical
in simulation. To do this, we must first collect the data - add a sampler module
to the exporters definitions, with the the file_path set to be "results/". Now we
have a sampler defined, open it up in the model specification and right click on
samples, and add a TotalChemicalQuantity sample, with the chemical_id set to
the chemical you defined, and sample title to be "total_chemical". Add a World-
Time sample, and title it time, and a CellNumber sample with the species_id set
to the bacillus species you defined.

To periodically write the data to file, add an export_periodically module to
the schedules definitions. We can now run the simulation with live graph plotting.
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Click Run on the top file bar, then select Run with live graph plotting. Set the data
file to be the sampler exporter you defined, which is the [file path+exporter id+file
extension]. In our instance, this is results/sampler.csv (the default results folder
is in the $SIMBIOTICS main folder). The graph axes must then be defined, and
they must be one of the column headers (sample titles) in the csv data file. We set
the X axis to be the time data, and on the Y axis we plot both the total_chemical
quantity (scale = molecule number) and the number of the bacillus cell species
(scale = cell number).

We see that as the population of cells is growing at a constant rate, doubling
every 60 units of time (Note: The Simbiotics platform is unit-agnostic, meaning
that whatever units you put in are the units you get out. For more information
on this see the related publications section.) We also see that as their are more
cells, the total rate of production of the chemical increases.

Next, we add the behaviour to the cell describing that the chemical can dif-
fuse out of the cell membrane into the extracellular space. To do this, add a
membrane module to the behaviours definition, leave its parameters as default.
Open up the membrane definition in the model specification, and right click on
the membrane_fluxes property. Add a flux with the chemical_id the chemical
you defined, and the rate to be 0.2. Set poisson to be true (ON), which sets
the solver to take a poisson distributed around the average permeation rate. Set
osmotic to be true, which means that the flux direction is always from high to
low concentrations. Interpolated can be left on false.

Now, we must attach that membrane module to our cell species definition,
in the same way we added cell_adhesion, mitosis and the sythnesizing_grn. To
ensure this works, let’s plot the intracellular and extracellular quantity of the
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chemical over time. To do this, navigate back to the samples defined our sam-
pler in the exporters definitions. Add a TotalIntracellularChemicalQuantity and
a TotalExtracellularChemicalQuantity, with the titles "intra_chemical" and "ex-
tra_chemical" respectively, which record the defined chemical_id. Also, change
the velocity_constant of the synthesizing_grn to 10.0, and set the chemical to
have an degradation_constant of 0.0.

We then plot the total_chemical, intra_chemical and extra_chemical over
time.

277



. Appendix B - Easybiotics user guide

Tutorial 3 - Intracellular dynamics with Gillespie submodels

+ multiple bacterial and chemical species

In this tutorial we will create a 2D model with a static population of bacteria
(species_1). We will model a chemical influx (chemical_1) from the left hand
side (X axis minimum face) and an influx of a seocnd species bacteria (species_2)
from the right hand side (X axis maximum face.) The bacterial species_2 will
have an active motility, called chemotaxis, such that they ascend the chemical
gradient and try find the highest concentration of the chemical. The bacterial
species has an active transport mechanism, taking the chemical in the extra-
cellular space inside the cell. It also has metabolic behaviour transforming the
chemical into a second chemical (chemical_2), this second chemical can diffuse
out of the membrane in the extracellular space. Chemical_2 is toxic to bacterial
species_1 in high concentrations, resulting in cell death.

To start, please create a new model, and define the following specification:

1. To world, add a 2D_world which is 100*100

2. To forces, add a collisions module,

3. To forces, add a friction module, with a constant value of 1.0.

4. To chemicals, define chemical_1 with a diffusion constant of 2.0 and degra-
dation 0.1.

5. To chemicals, define chemical_2 with a diffusion constant of 1.0 and degra-
dation 0.0.

6. To forces, add a friction module, with a constant value of 1.0.

7. To morphologies, add a coccus module with a radius of 0.75.

8. To morphologies, add a coccus module with a radius of 0.5.

9. To behaviours, add a chemotaxis module with the chemical_id set to chem-
ical_1, and interpolated set to true (ON).
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10. To species, create species_1 with the first coccus morphology.

11. To species, create species_2 with the second coccus morphology, and attach
the chemotaxis module to its behaviour list.

12. To initial_conditions, add an initial_population, setting the species_id to
the species_1, and the population size to 50.

13. To devices, add a chemostat with default parameters.

14. Open the chemostat properties in the model specification editor, right click
on fluxes and add a flux of chemical_1 with a rate of 1.0.

15. Right click on the environment_interfaces property of the chemostat, add
set it to be the axis to be X, and the axis_face to be MIN.

16. To devices, add a bactostat with default parameters.

17. Open the bactostat properties in the model specification editor, right click
on fluxes and add a flux of species_2 with a rate of 0.1.

18. Right click on the environment_interfaces property of the bactostat, add
set it to be the axis to be X, and the axis_face to be MAX.

Press run, and you should see a static population of species_1, and species_2
cells coming into the simulation domain from the right hand size (X Max inter-
face), which move around and hunt down the high concentration of chemical_1,
causing them to migrate left to the X Min interface.

To add the membrane and metabolic pathway to species_2, do the following:

1. To behaviours, add a membrane module with default parameters.

2. Open the membrane module properties in the model editor, and add a
membrane_flux of chemical_1, with a flux=0.1, osmotic=false(OFF), pois-
son=true(ON), interpolated=false(OFF).

3. To behaviours, add a gillespie module with default parameters.

279



. Appendix B - Easybiotics user guide

4. Open the gillespie module in the model editor, and add a reaction (right
click on reactions and click +). The id is the reaction name, call it something
like "my_reaction". Set the reactants to be "chemical_1" and the products
to be "chemical_2", with a rate of 0.1.

5. Add the gillespie and membrane modules to the cell species_2 behaviour
definitions.

6. To exporters, add a sampler with the file path set to "results/"

7. Open the sampler in the model editor, and add 3 samples: WorldTime
with title "time", and 2 TotalIntracellularChemicalQuantity modules, one
for chemical_1 called "intra_chemical_1" and one for chemical_2 called
"intra_chemical_2".

If you run the model with live plotting, and run with a custom graph, plot
data file="results/sampler.csv", x="time" and y="intra_chemical_1 AND in-
tra_chemical_2". You should see a similar output to below.

Next, we must add the transportation of chemical_2 across bacterial species_2’s
membrane, with a rate of 0.5 and set as osmotic process (osmotic on, poisson on,
interpolated off). This causes chemical_2 to diffuse into the extracellular space.
We then define a toxicity module in in our behaviour definitions, setting the
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chemical_id to be chemical_2, and the threshold to be 0.01. We must then add
the toxicity module to bacterial species_1’s behaviour list.

Additionally, we’ll add two new samples to our sampler (in exporters). Add
two CellNumber modules, one for species_1 and one for species_2, with their
titles the same as their species_ids. The result should be that after some time
species_1 cells begin to die caused by species_2 cells secreting the toxic chemi-
cal_2 product. Below we plot the cell numbers over time.
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Tutorial 4 - Cellular logic and decision making with Triggers

One way to represent cellular logic is with triggers. Triggers are composed of
conditions and actions. If all conditions are true, then all actions are executed.

As a brief example, we will create a population of cells which may adhere
to a surface with two types of interaction. We will tell the cell to ’differentiate’
by changing colour depending on the dominant interaction it is having with the
surface.

1. To world, add a 3D_world with default parameters

2. To boundaries, add a solid_boundary with axis = Y, axis_face = MIN, property_id =

adhesive

3. To surface_properties, add an adhesivemodule with surface_structures =

structure1 AND structure2

4. To forces, add a collisions, interaction_force, brownian and frictionmod-
ule with default parameters, then add a gravity module with gravity_constant =

0.25

5. To behaviours, add a cell_adhesion module with default parameters - then
add a site with site_id = adhesin (via the model editor drop down menu
of the cell_adhesion behaviour module)

6. To interaction_mechanisms, add two spring_mechanism modules, and set
rate = 50 for both

7. To interactions, add a two specific_interaction modules, the first should
have partner_a = adhesin and partner_b = structure1, withmechanism_id =

spring_mechanism. The second should have partner_a = adhesin and
partner_b = structure2, with mechanism_id = springmechanism0

8. To conditions, add two has_interactionsmodules, the first with interaction_id =

specific_interaction, relation => and value = 1. The second with
interaction_id = specific_interaction0, relation => and value = 1
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9. To actions, add two change_colour modules, set the first one to have
action_id = change_red, and an RGBA value of 100, 0, 0, 0. The second
should have action_id = change_blue, and an RGBA value of 0, 0, 200,
100.

10. To behaviours, add two trigger moudles, for the first set conditions =

has_interactions1, actions = change_red. For the second set conditions =

has_interactions2, actions = change_blue

11. To morphologies, add a coccus module with default parameters

12. To species, add a cell. Set morphology_id = coccus, and in the model
editor attach the three behaviour modules (cell_adhesion, trigger and trig-
ger_0) to the species. Also, set the colour property of the cell to be 80,
100, 60, 100

13. To initial_conditions, add an initial_populationmodule with species_id =

cell and population = 100

The resulting model will be a population of cells which are motile, and when
they stick to the surface they will either turn blue or red, signifying which of the
two interactions is dominant.

The model works as follows: cells may adhere to the Y MIN surface (bottom
domain boundary), this occurs by their adhesin interacting with either structure1

283



. Appendix B - Easybiotics user guide

or structure2 on the boundary. The cells have triggers which check which inter-
action is dominant, and the cell changes colour to indicate this. A trigger consists
of conditions and actions, if all the conditions are true, then all the actions are
executed.

The parameters to note are rate property of the spring_mechanism interac-
tion mechanism module. This is the rate at which that interaction occurs, we orig-
inally set it to 50% for both interactions, therefore we got roughly an equal distri-
bution of red and blue cells. The cell_adhesions property max_surface_bonds
is the maximum number of interactions the cell may have with the surface (do-
main boundary). The default value for this is 3, which is why in the conditions
we check if the number of a given interacton is > 1 (as a cell could have two type
1 interactions and one type 2 interaction, visa versa, or have all 3 interactions
’occupied’ by a single type of interaction.)

You can test out changing these parameters and seeing how the model be-
haviours - you could even say that a given type of interaction has a weak spring_constant
meaning the interaction could be reversed (the spring can break easier due to the
random motion on the cells).

To plot a graph showing the number of red and blue cells can be achieved
by adding a sampler to the exporters definitions, and adding two CellCondition
modules. The first should have conditions = has_interactions1, and set the title
to something like type1, the second should have conditions = has_interactions
and title = type2. Again, you may wish to add a export_periodically module to
the schedules (alternatively press ’a’ on the keyboard to write all buffered results
to file).

Try playing around with the parameters to see what you get, bellow we show
results for a some different rates of the type1 and type2 interactions.

Tutorial 5 - Intracellular dynamics using SBML files

Another way to represet cellular logic/dynamics is through an SBML model. An
SBML model can be loaded as a behaviour - as with all modules, each cell has
its own ’version’ of this model.

Before we start the SBML tutorial, note the following steps when using SBML
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(a) (b) (c)

Figure 20: (a) rate of type 1 = 50, rate of type 2 = 50 (b) rate of type 1 = 25,
rate of type 2 = 75 (c) rate of type 1 = 75, rate of type 2 = 25

files:

1. Each file should only have a single compartment (which represents a cell’s
volume)

2. Any species you want to diffuse in/out of the cell need to be defined in the
Simbiotics model (with the exact same ID!)

3. Those diffusable species will be handled by the Simbiotics membrane trans-
port system that you’ll define, therefore you do not need membrane related
reactions in your SBML model.

4. Remember, you can just use 1 SBML file, and create many unique instances
of it, or you may use many SBML files (to define multiple species)

5. PLEASE CHECK THE SBML FILE VALIDITY. You can use this link .

6. The SBML simulator Simbiotics uses, libSBMLsim, does not handle SBML
events

SBML is integrated into Simbiotics by calling the SBML simulator (libSBML-
sim) to solve each cell’s intracellular dynamics. The SBML simulator is called
every time_step of simulation time (we’ll discuss the parameters below), and
the solver has its own internal sbml_time step, which is solved for the whole
time_step. Simbiotics then integrates the SBML simulator result.
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For this exercise, we will create 2 species of cells using 2 SBML model files.
These files can be found in $SIMBIOTICS/examples/, called "tut5_species1.xml"
and "tut5_species2.xml".

The species 1 SBML model has a reaction which turns chemical A into chem-
ical B, and the species 2 SBML model has a reaction which turns chemical B into
chemical C. The A to B reaction is set to be at a rate double that of the B to C
reaction.

1. To world, add a 3D_world with default parameters

2. To forces, add a brownian and friction module with default parameters

3. To chemicals, add 3 chemical modules, called S1, S2 and S3. All of them
shouldd have diffusable = ON , diffusion_rate = 10 and degradation_rate =

0

4. To behaviours, create a membrane module. Add two membrane_fluxes,
the first should transports S1 inside the cell at a rate of 1.0, and set only
poisson to be ON. The second should transport S2 outside the cell at a rate
of -1.0, and again set only poisson to be true.

5. To behaviours add another membrane module, add a flux that that trans-
ports S2 at a rate of 1.0 and one that transports S3 at a ratio of -1.0. Again,
both should only have poisson set to be ON.

6. To behaviours, add two sbml modules. For the first, set the sbml_file to
examples/sbml/tut5_species1.xml, and the time_step to be 0.1 and sbml_time_step
to 0.01. The second should be the same except its sbml_file should be set
to examples/sbml/tut5_species2.xml. Note: the time_step variable is the
step between the SBML model being solved, and the sbml_time_step is
the internal time step for the SBML solver

7. To morphologies, add a coccus module

8. To species, add two cell species modules. Try and guess what’s next - we’re
going to attach the first membrane and the first sbml module (the ones

286



. Appendix B - Easybiotics user guide

that deal with S1 and S2, to the first cell, and to the second cell we add
the second membrane and sbml modules, which deal with S2 and S3.

9. To initial_conditions, add two initial_population modules, creating 100 of
each of the cell species.

10. To initial_conditions, add an initial_chemicalßquantity, and set it to be
1000 molecules of S1. (These molecules will be placed at the position de-
fined, it’s 0, 0, 0 by default, which is the very center of the simulation
domain).

11. To exporters, add a sampler, and add TotalChemicalQuantity samples
for all 3 chemicals S1, S2 and S3. If you want, you could also add a
TotalIntracellularChemicalQuantity and a TotalExtracellularChemicalQuantity
for each of them too.

12. To schedules, add an export_periodically module.
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Tutorial 6 - Intracellular dynamics using differential equa-

tions

Intracellular dynamics can also be specified using differential equations. The grn
behaviour module is used to do this. Note: despite the name ’grn’ it can be used
to represent things other than a gene regulatory network, for example it may be
used to modify an agents mass (it can be used for biomass growth).

To exemplify use of a differential equation module, we will create a population
of a single bacterial species, in an domain (world) filled with chemical S1. The
cell species can uptake the chemical though its membrane, and consumes it to
both grow in mass and synthesize chemical S2, which it secretes out into the
extracellular space. We’ll set chemical S1 not to degrade in the extracellular
space, and chemical S2 to degrade quite fast in the extracellular space.

You can find the model at "$SIMBIOTICS/examples/models/tut6_equations.json".
We will not go through all the steps of the model building as they can be found
above, rather we’ll focus on the differential equation module.

Create a world set up with a single cellular species in it, and defined the two
chemical species, set S1’s degradation rate to 0.0, and S2’s degradation rate to
0.1. Add a membrane flux so that S1 is transported into the cell at a rate of 1.0,
and S2 out of the cell at a rate of -1.0, both with the poisson sampler set to be
on.

Now, create the grn behaviour module. You must first set the species_list - as
we’ll be working with S1, S2 and modifying the cell’s mass (which is an accessible
property via its ID), we must define those three, separated by a comma:

species_list = mass, S1, S2

Now that we have defined the species, we must add some equations. Right
click on the equations property in the grn module (in the model editor view).
The equation id should be the species you are modifying (either mass, S1 or S2).
The equation field sets the calculation to work out dSi

dT
. It may be an expression

with variables/constants too, for example you may refer to any of the species
in the species_list you just defined. You may also refer to a custom named
variable, for example k, and you must define it in the parameters field, in the
form of variable = value.
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An example can be seen in the figure below of us setting the equations for
this system.

Here are all the values for the grn behaviour module:

1. species_list = mass, S1, S2

2. parameters = max_rate = 0.1, half_sat = 0.01, consumption_rate = 0.1,
synthesis_rate = 0.1

3. Equation 1, id: = mass

4. Equation 1, equation: = max_rate * (S1 / (half_sat + S1))

5. Equation 1, variables: = S1, max_rate, half_sat

6. Equation 2, id: = S1

7. Equation 2, equation: = -consumption_rate * (S1 / (half_sat + S1))

8. Equation 2, variables: = consumption_rate, half_sat, S1

9. Equation 3, id: = S2

10. Equation 3, equation: = synthesis_rate * (S1 / (half_sat + S1))

11. Equation 3, variables: = synthesis_rate, S1, half_sat
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Now create an initial population of the cell species, and add an initial amount
of S1 into the extracellular space. Also, don’t forget to attach the behaviours
you defined to the cell species! (Plus attach some data exporters if you want to
generate some graphs)

You can run the model get a result similar to what we see below. The cells
should stop growing and producing S2 once all of S1 is consumed - the remain-
ing S2 then degrades in the extracellular space. Try playing around with the
parameters, or add another species which consumes S2.
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Tutorial 7 - Live graph plotting

Live graph plotting can be achieved by defining graph objects and attaching them
to a simulation run. The defined graphs can be saved to file and loaded again for
easy reuse.

In this tutorial we’ll reuse the model from Tutorial 4, and build the graph
objects to render our graphs, rather than using the custom graph mode as we did
in Tutorial 4. So, load up that model (a copy of it can be found at examples/-
models/tut4_triggers.json.

To create a graph, click on Graphs on the file bar, and selectCreate/edit graph
objects. Click on Add, and select the sampler exporter. You can name the graph,
in our case we call it interactions (see figures below), then press Select.

Now you have added a graph for that exporter, you can set what X and Y
values you want to plot. Click on the graph in the list view, and it will bring up
the properties on the right hand side. You may set the bold variables. y_ids
are the columns in the data file to be plotted on the Y axis, and x_id is, as you
can guess, is the column to be plotted for the X value. The values for y_ids and
x_id are the sample titles that you wish to plot (the titles become the column
headers in the .csv file which is exporter by the sampler). To see your sample
titles, go back to the model editor view, open the nodes for exporters - sampler
- samples, then you can click on each individual sample, and see/set its title in
the property view.

Note: the x_id should only be one value (one sample title), but the y_ids
may be set to be many values. This is achieved by chaining together sample titles
separated by AND. See the figures below for clarification on this.

For our graph we’ll plot time on the X axis, and for the Y axis we’ll plot type1
AND type2. Once you’ve set the X and Y columns to plot, go back to the model
editor. We can now run a simulation with this graph attached to the run. To
do this, select Run - Run with live graph plotting from the file bar. Now you can
click the + button, and select your graph, then press Attach. You can now run
the model, and you should have a lovely live graph alongside your simulation!
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Tutorial 8 - Parameter sweeps

Parameter sweeps can be conducted. The value of a selected parameter is iterated
across a defined range, and a simulation is run for each value in that range. The
data for each individual simulation is stored in its own subfolder for further pro-
cessing. You can also run live graphs/post rendererd graphs with the parameter
sweep, where each individual simulation data is plotted on the same graph for
easy comparison.

Many parameter sweeps can be defined, and you can set the to run in a combi-
natorial manner to explore the entirity of the parameter space (all combinations of
the attached parameter sweeps are simulated), or alternatively you can run them
indepedently to observe the effect of each indiviudal parameter on the system.

In this tutorial we’ll use the model as we left it after the previous tutorial
(Tutorial 7), so load that up. To create a parameter sweep, click on Parameter
sweeps - Creat/edit parameter sweep objects on the file bar of the model editor.
Same as for the graphs, press Add and select the associated model object. For
parameter sweeps you can only select properties with a numerical value. In this
tutorial we’ll select the rate variable for the spring_mechanism.

Once you have your parameter object defined, click on it in the list view, and
edit the properties which appear on the right hand side. The range property can
take values which match the following forms:

range = [A,B,C,...,Z]
range = [A-Z]

Where A-Z are placeholders for numerical values. And the interval is a nu-
meric value describing the interval between each value when iterating through
the range. If you use the first form then the interval setting is ignored, as each
value (separated by a comma) is iterated through, so you can leave the param-
eter value empty. For this tutorial, we want to set the interaction rate (of type1
interactions occuring) to be 0, then 50, then 100. There are two ways we can do
this, choose either:
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range = [0, 50, 100]
range = [0-100], interval = 50

Now that you have your parameter object and its properties set, you can go
back to the model editor view, and press Run - Run parameter sweep from the
file bar. To attach the defined parameter sweep object to this simulation run,
press the + button and attach your sweep object. You’re now good to go! But
first, lets look at the options we have:

Run each sweep separately? If there are multiple parameter sweep objects
attached to a run, you can either sweep each parameter individually, or you can
run all combinations of all sweeps. (ON runs them separately, OFF runs all com-
binations).

Run all models in parallel? Sets whether to run all simulations at the same
time, or whether to run them sequentially one after another. Be careful if you
run all simulations at the same time (in parallel), as this could consume a lot of
RAM and potentially freeze your machine, so please determine how much RAM
a single simulation consumes before thinking about running many at the same
time. (OFF runs them one after another, ON runs them at the same time)

Run the graphs attached in ’Run with live graph plotting’ If you have
graphs attached then these can also be run with the parameter sweeps. (ON
renders the graphs, OFF doe... forget it, you get the picture)
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Appendix C - Population Dynamics
of Autocatalytic Sets in a
Compartmentalized Spatial World

This appendix presents the publication associated with Chapter 9. The manuscript
shown below was primarily written by Wim Hordijk, for which I developed the
model for.

.12 Introduction

Autocatalysis, i.e., the ability of molecules to catalyse their own synthesis, is a
hallmark of virtually any origin of life scenario, since it is the chemical equivalent
to biological replication—the fundamental feature of living entities to “make more
of themselves”. Yet, such autocatalytic molecules, directly catalysing their own
production, are rare, and it is unlikely that life kick-started with such “selfish”
autocatalytic chemicals. However, autocatalysis can also be obtained at a systems
level, if a chemistry features a set of mutually catalytic molecules in which the
formation of every member is catalysed by other members of the set. Such a set is
then able to collectively catalyse all its constituents, even if none of its members
is a true (i.e., direct, or “selfish”) autocatalyst [92, 114, 163].

The study of such collectively autocatalytic sets (CAS) has revealed that they
are likely to emerge spontaneously in sufficiently diverse chemistries, even under
modest catalytic activity [91], and that they are able to dynamically upconcen-
trate their members in order to maintain themselves. While CAS are able to draw
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resources from potential competitors [90], they have been criticised for display-
ing little to no evolvability [217]. The argument goes that once an autocatalytic
cycle establishes in a random chemistry, there is nothing that destabilises this
cycle in order to make room for the emergence of other autocatalytic cycles, since
the concentration of all involved molecules increases exponentially. Even if a
random chemistry allows for multiple catalytic cycles as hypothetical individual
units of selection, these would eventually just coexist, leaving no room for further
evolutionary adaptation.

It has been suggested that the limited evolvability of CAS could be overcome
by embedding autocatalytic sets into compartments [114, 218]. Such encapsulated
reaction systems are able to draw resources from and potentially release products
back into the environment. Encapsulation with environmental coupling, so the
claim, might reconstitute selection among competing CAS, since different com-
partments can host different active autocatalytic cycles, which can be destabilised
through resource competition and random fluctuations during compartment divi-
sion. As Kauffman, who introduced the concept of CAS, writes [114]: “Theoretical
work and experimental work on CAS both support their plausibility as models
of openly evolvable protocells, if housed in dividing compartments such as di-
viding liposomes.” This intuition has recently been confirmed by computational
investigations that put CAS into flow reactors in order to mimic encapsulation
in semi-permeable compartments [218].

Encapsulated reaction systems have been studied extensively in the origins
of life context under the term protocells [61, 175, 191]. Protocells are simple
metabolisms occurring within compartments (e.g., lipid or fatty acid vesicles)
that have the capacity for growth and self-replication. Potentially equipped with
inheritable chemical “information” they are generally regarded as primitive units
of (limited) evolution (through compositional inheritence), eventually leading to
true open-ended Darwinian evolution. While protocells have not yet been fully
implemented in the laboratory, both theoretical and experimental investigations
have uncovered numerous necessary requirements about the involved chemicals
and their coupling [23, 31, 44, 49, 152, 174].

Related to protocells are models from the realm of the lipid world, where an ex-
plicit covalent metabolism is replaced by conceptually simpler cross-catalytic asso-
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ciation and dissociation dynamics of compartment forming amphiphilic molecules
[189]. It has been demonstrated that even in such lipid models, random network
properties of the constituting molecules can give rise to heredity [189], speciation
[78], and population dynamics [148], although it has been argued whether systems
lacking covalent chemistry are able to undergo full evolution [147, 218].

So far, though, relatively little attention has focused on studying collectively
autocatalytic sets as metabolisms and inheritable information for protocells. A
few studies have shown that such “autocatalytic protocells” indeed have the abil-
ity, in principle, to synchronise their internal metabolism and membrane dynam-
ics, and may evolve [90, 192, 218, 220]. However, these studies on autocatalytic
sets did not explicitly model populations of protocells in a spatial environment.
Here, we make an important first step in this direction by using a recently de-
veloped software tool to simulate the emergence and dynamical behavior of au-
tocatalytic sets in a population of simple compartments that exist in a spatially
explicit world. We present several illustrative initial results, discuss how these
could be relevant in the context of the origin and early evolution of life, and
provide suggestions for further work, in combination with experimental studies.

.13 Background

The concept of autocatalytic sets was originally introduced by Kauffman [111,
112, 113], and subsequently formalised and further developed as RAF theory [91].
An autocatalytic set (or RAF set) is defined as a set R of reactions and associated
molecules that is:

1. Reflexively autocatalytic (RA): each reaction in R is catalysed by at least
one molecule from R itself; and

2. F-generated (F): all reactants in R can be created from some food set F by
using a sequence of reactions from R itself.

The food set F is a set of molecule types that are assumed to be available from the
environment. This notion of autocatalytic sets has been defined mathematically
more rigorously, and an efficient (polynomial-time) algorithm for finding RAF
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sets in general reaction networks has been developed [88, 93, 95]. RAF theory
has been applied extensively to simple polymer-like models of chemical reaction
networks, showing that autocatalytic sets are highly likely to exist at chemically
realistic levels of catalysis, and under a wide variety of model assumptions [88,
90, 93, 156, 199]. Importantly, these results show that autocatalytic sets often
consist of a hierarchy of smaller and smaller autocatalytic subsets, i.e., smaller
subsets of reactions that themselves are RAF sets [94, 95]. Finally, the formal
RAF framework has also been applied successfully to analyse real chemical and
biological reaction networks [89, 200].

Many of these earlier results are based on a simple model of reaction networks
known as the binary polymer model [59]. In this model, molecules are represented
by bit strings up to a maximum length n, with the food set consisting of all bit
strings up to a small length t (usually t = 2, i.e., the monomers and dimers). The
chemical reactions consist of the possible ligations (gluing two bit string together
into a longer one) and cleavages (cutting a bit string into two smaller ones).
Finally, catalysis is assigned randomly, with a fixed probability p that a given
molecule (bit string) catalyses a given reaction (a ligation and its corresponding
cleavage). Figure 26(left) shows an example of a RAF set R, consisting of eight
reactions, that was found in an instance of the binary polymer model with n = 5,
t = 2, and p = 0.0045, with some of its RAF subsets indicated by the coloured
polygones.
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Figure 26: RAF set example. Left: An example of a RAF set as found in
an instance of the binary polymer model. Black dots (labeled with bit strings)
represent the molecule types, and white boxes represent reactions. Solid black
arrows indicate molecules going into and coming out of a reaction, while dashed
gray arrows indicate catalysis. Coloured polygones indicate some of the RAF
subsets (see text). Right: The six closed RAFs (colour coded) and their mutual
subset relationships.

Note that catalysis is considered an “all-or-nothing” feature in this context.
However, (relative) catlaysis rates can also be taken into account , as well as
inhibition, i.e., molecules that prevent reactions from happening [95]. In the
simulations described below, (relative) reaction rates are explicitly used, and in
one instance a form of inhibition is also included.

Recently it was argued that the main RAF subsets of interest, in particular
in the context of the origin of life, are the so-called closed RAF sets, in which all
reactions for which a catalyst is present (given the set of molecule types currently
present in the system) are included [96, 199]. For example, when only food
molecules (monomers and dimers) are present initially, only the reactions within
the yellow RAF subset can proceed catalysed. This yellow subset thus forms the
smallest closed RAF (the “yellow” closed RAF), and is (necessarily) always part
of any larger closed RAF as well.

However, for the three reactions in the red RAF subset, not all catalysts are
present yet when only the yellow subset exists. One of its reactions will have to
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happen uncatalysed to create the required but missing catalyst spontaneously. Of
course, all reactions can happen without a catalyst, but they do so at a lower rate,
which means there is usually some (stochastic) waiting time before this happens.
Once it does happen, though, the red subset comes into existence, with all its
reactions proceeding catalysed. Thus, the yellow and red subsets combined form
another closed RAF (the “red” closed RAF).

Similarly, the blue subset requires any one of its three reactions to happen
spontaneously before the full subset can come into existence. When it does, the
yellow and blue subsets combine to form yet another closed RAF (the “blue”
closed RAF). When the yellow, blue, and red subsets all exist, they form an even
larger closed RAF (the “purple” closed RAF).

Finally, the green subset, which also requires a spontaneous (uncatalysed)
reaction reaction, can form an extension of the blue RAF subset, but only once
the blue subset itself already exists. Thus, the yellow, blue, and green subsets
combined form a closed RAF as well (the “green” closed RAF). When all subsets
(yellow, red, blue, and green, i.e., the full autocatalytic set R) exist, they form
the largest possible closed RAF (the “white” closed RAF).

These six possible closed RAF sets are shown in the diagram in Figure 26(right)
with their respective colours, the combination of RAF subsets they are made up
of, and where an edge between two nodes means that the closed RAF at the lower
end of the edge is a direct subset of the closed RAF at the upper end of the edge.

Earlier it was shown that the autocatalytic set R in Figure 26(left) actually
contains 29 RAF subsets, but that only six of these are closed RAFs (the ones
indicated here) [96]. Therefore, from a dynamical point of view, the other 23 RAF
subsets are of little interest, as they would immediately expand into the larger
closed RAF that they are part of. In other words, RAF subsets that are not
closed are transient, whereas closed RAFs are stable over long time spans, until
some spontaneous but rare reaction happens that allows an even larger closed
RAF to come into existence.

The RAF set R as shown in Figure 26(left) and its six closed RAFs as shown
in Figure 26(right) are used here to illustrate, through computer simulations, the
emergence of different autocatalytic (sub)sets in a population of compartments
that exist in an explicit spatial environment.
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.14 Methods

Figure 27: (A) The cell interactions in the model, showing that cells communi-
cate via diffusable chemical signals. (B) The cell processes in the model. Left
shows that cells have metabolic pathway activity. Right shows that cells have a
membrane transports mechanism allowing chemicals to be transporting in and
out the cell. (C) The extracellular processes in the model are chemical diffusion.
(D) The initial condition of the model - a well mixed population of cells on a 2D
surface. (E) Systems are induced by pipetting chemicals into the center of the
domain.

Simulations were performed with the Simbiotics package [158]. Simbiotics
is a multicellular simulator which represents cells as individual physical entities
embedded in chemical gradients, where each cell can have defined dynamics and
can interact with its environment as well as other cells. The simulation toolkit
provides a versatile set of data collection and analysis tools, and can be easily
extended with user-defined modules and libraries. A more detailed description
of Simbiotics is available elsewhere [158]. Here, we briefly describe the particular
features used in this study.

303



. Appendix C - Population Dynamics of Autocatalytic Sets in a
Compartmentalized Spatial World

We model the simulation domain as a 2D rectangle with periodic boundary
conditions. Chemicals in the environment (e.g. food molecules) are defined as
continuous fields over this rectangle and the usual Fick law is taken to express
their diffusion. For computational purposes, Simbiotics rasterises this space into
a grid of finite sized voxels and integrates the deterministic diffusion and decay
dynamics using a finite difference method. A voxel is a sub-area of the 2D sim-
ulation domain, which stores the chemical quantities which exist there, enabling
for the representation of localised concentrations and chemical fluxes between
neighbouring voxels. An overview of the Simbiotics model can be seen in Figure
27.

A constant flow of monomers and dimers, which we regard as food molecules,
is provided by introducing these molecules at the center of the grid at a given
constant rate, which then diffuse to neighboring grid locations depending on
a given diffusion rate. Molecules diffuse from higher concentrations to lower
concentrations. Food molecules in the environment decay with a given constant
rate which models outflow of the environment. Depending on the inflow, diffusion,
and decay rates, in the absence of any other dynamics, an steady state in the
concentration of food molecules over the entire grid is eventually reached.

We introduce compartments by randomly placing spheres of constant radius
into the space. Compartments are not allowed to overlap and are immotile
throughout the simulation. Each compartment can hold molecules in their inte-
rior. Molecules are allowed to permeate compartment membranes if their lengths
do not exceed a certain threshold. Permeation is proportional to the concen-
tration difference between the compartment interior and the surrounding local
environment (taken as the concentration at the grid cell that the compartment
resides in), the compartment surface area, and a permeation rate constant. The
actual number of molecules permeating the membrane is sampled from a Pois-
son distribution whose mean is the permeation rate. In the following, we allow
bit strings of up to length two (i.e., all food molecules) to permeate membranes,
whereas longer strings are strictly contained within compartments.

Chemical reactions within compartments are based on the reaction network
presented in Figure 26(left), i.e., an autocatalytic set that occurs in an instance
of the binary polymer model. For simplicity, the simulations only consider liga-
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tion reactions. For each such reaction, an uncatalysed and a catalysed instance is
included, but with different rate constants such that the rate constant for the un-
catalysed reaction instance is lower than that of the catalysed reaction instance.
The actual chemical dynamics within each compartment is simulated using Gille-
spie’s stochastic simulation algorithm [72, 73]. A flow diagram of the simulation
algorithm is presented in Figure 28.

initialise model

di�usion

permeation

reactions

t >= T

n = N

n++ t = t + dt

n = 0

exit

yes

no

no

yes

Figure 28: Flow diagram of the simulation algorithm. After initializing the
model with N compartments, the outer loop iterates the system through time. In
each iteration the algorithm first solves for diffusion and decay of molecules in the
environment using a finite difference approximation to the Fick equation. Then,
for each compartment in the simulation. intracompartment molecular counts
are updated by first solving permeation processes, and then running a Gillespie
algorithm within each compartment. The algorithm is stopped after T time units
have been simulated.

Note that we do not simulate chemical reactions in the environment. This
can be justified by assuming that even if some reactions would take place in
the environment, the reaction products would mostly diffuse away and out of
the environment, and no real sustained chemistry would be possible, other than
inside compartments [192].

Figure 29 shows the basic simulation setup at two different time steps. The
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spatial environment consists of a 16x16 grid, with 100 randomly distributed com-
partments (black spheres). Blue spheres indicate the (relative) concentration of
food molecules in each of the grid locations. Faint (transparent) spheres indicate
low concentration, and bright (solid) spheres indicate high concentration (relative
to the grid location with the highest current concentration). Early on during the
simulation (left frame), the food molecules are just starting to diffuse throughout
the grid, while being introduced into the environment at a constant rate in the
center of the grid. Later on during the simulation (right frame), an equilibrium
distribution of food molecules as been reached. Food molecules will also have
entered the compartments, but there is no actual chemistry going on yet (i.e., all
reaction rate constants have been set to zero).

Figure 29: The basic simulation setup. A 16x16 grid with 100 randomly
distributed compartments (black spheres) and concentration of food molecules
(blue spheres) throughout the grid. Left: Shortly after starting the simulation.
Right: After an equilibrium distribution of food molecules has been reached.

In most of the simulations presented below the rates of food inflow, diffusion,
and decay were set such that, once the equilibrium phase has been reached, there
are about five molecules of each food type (i.e., monomers and dimers) within each
compartment when no chemistry takes place. When the reaction rate constants
are set to positive values, though, reactions will happen within compartments
(starting from the food molecules). Over time, the different closed RAFs will
appear inside compartments, and each compartment is coloured according to
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which closed RAF it currently contains (with a molecule count threshold of two),
using a colour scheme as in Figure 26(right). Detailed parameter settings for each
of the simulations are given in Appendix B.

It should be noted here that, since the simulated chemical reaction networks
come from an abstract polymer model, time and volume are arbitrary. In other
words, the time units could, in principle, represent seconds, hours, or even days.
However, what is important here is the relative difference between rate constants
of catalysed and uncatalysed reactions. The absolute magnitude of these rate
constants were chosen such that a single simulation takes just a few minutes,
rather than hours. But the parameters can easily be scaled up or down to change
the absolute time scale. The overall behavior would remain the same, though.

Similarly, molecular quantities are somewhat arbitrary. We have chosen a
threshold of two product molecules to exist before an autocatalytic subset is
considered to be present. The idea behind this is that the first product generally
has to be produced through a spontaneous reaction, but if there are two or more
products, it is highly likely that they have been produced through catalysed
reactions, and that the corresponding autocatalytic subset indeed is present in
full. Such low molecular counts may seem unrealistic, but again, since the units
in the system are arbitrary, these could also be interpreted as, e.g., micromolar
quantities. Moreover, the origin of life most likely did happen in a low molecular-
count scenario.

Each of the simulations described below can be downloaded from http:

//ico2s.org/data/extras/compartments/, which also contains the movies re-
ferred to in the results section.

.15 Results

.15.1 Dynamics of a single compartment

Before presenting results on simulating a population of compartments, we start
by showing the kinds of dynamical behavior that can occur within a single com-
partment. This will help in understanding the subsequent results.

Figure 30 shows the results of two simulations with just a single compartment,
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located at the center of the grid (i.e., where the food molecules flow in). On
the horizontal axis in these plots is time (in arbitrary units), and the vertical
axis shows total number of molecules. The yellow line represents the number of
molecules of type 110 that exist inside the compartment over time. Recall from
Figure 26(left) that this molecule type (bit string) is a product of the yellow RAF
subset, but one that is not used up in any other reaction. Similarly, the red line
represents the number of molecules of type 00100 inside the compartment. This
molecule is produced by the red RAF subset, but not used in any reactions. The
blue line represents the number of molecules of type 11100, produced by the blue
RAF subset. This molecule acts as a catalyst, but not as a reactant in any of the
reactions, and is thus also not used up. Finally, the green line shows the number
of molecules of type 01111, which are produced (but not used up) by the green
RAF subset (although they are also a catalyst).

Figure 30: A single compartment. Left: A simulation run with a single
compartment where the red RAF subset appears first. Right: A simulation run
with a single compartment where the blue RAF subset appears first. Insets: The
sequence of compartment colour changes in the simulations. Numbers indicate at
which time steps during the simulation the respective colour changes happened.

In the simulation that produced the results shown in the plot on the left of
Figure 30, the first molecule of type 110 (a “yellow” molecule) is produced at
time step 23. At the start of the simulation there are not many food molecules
yet, as they only just start flowing into the environment. So, it takes a while
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before the first (catalysed) reactions will actually start happening, once enough
food molecules are present. The second molecule of type 110 is produced at time
step 48, at which point the compartment in the simulation visualization turns
from black to yellow. In other words, once there are at least two molecules of
type 110, the compartment turns yellow, indicating that the yellow closed RAF
(consisting of the yellow RAF subset in Figure 26(left)) is currently present inside
the compartment.

However, for the other RAF subsets (red, blue, and green in Figure 26(left)),
a spontaneous reaction is required first, as explained above. Since these spon-
taneous (uncatalysed) reactions happen at a lower rate than the catalysed ones,
there is an additional waiting time before any of these RAF subsets comes into
existence. In the plot on the left in Figure 30, by chance the red subset comes into
existence first, due to a spontaneous reaction. As soon as at least two molecules
of type 00100 exist inside the compartment (which happens at time step 75 in this
simulation), the compartment turns from yellow to red, indicating that the red
closed RAF (i.e., the yellow and red RAF subsets combined) is currently present
inside the compartment.

Similarly, the blue RAF subset comes into existence after one of its reactions
has happened spontaneously, and as soon as at least two molecules of type 11100
are present (which happens at time step 98), the compartment turns purple,
indicating that the purple closed RAF (i.e., the yellow, red, and blue subsets
combined) is now present inside the compartment. Finally, the green subset
comes into existence (which can only happen once the blue subset exists), and a
second molecule of type 01111 is produced at time step 116, at which point the
compartment turns white, indicating that the white closed RAF (i.e., all RAF
subsets together) is now present. In short, the compartment has gone through the
sequence of colours as shown in the inset in Figure 30(left), where the numbers
underneath the arrows indicate at which time step the change in colour happened.

However, in the second simulation (shown on the right in Figure 30), there is
a different sequence of events. In this case, the blue subset comes into existence
first, then the green one, and finally the red one. So, the compartment goes
through the sequence of colours as shown in the inset of Figure 4(right). Also
note that the time steps of the changes are different between the two simulations,
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showing that it truly is a stochastic process.

In these simulations, the difference between the rate constants for catalysed
and uncatalysed reactions is kept relatively small (about one order of magnitude),
so that the changes in colour actually happen within a reasonable amount of time.
However, in real chemical systems this difference will generally be larger (often
several orders of magnitude [230]), so the waiting times between colour changes
(i.e., new RAF subsets coming into existence) will also be much larger. In fact, in
principle it could even be the case that only the red closed RAF actually comes
into existence, but never the blue one, or vice versa, if the required spontaneous
reaction never happens within the total simulation time.

These simulations confirm the postulated lack of evolvability [217] of this
particular RAF: once an autocatalytic set comes into existence, it continues to
catalyse its members, which are never consumed by future reactions. No matter
the chain of events, the compartment will ultimately display the fully developed
white RAF. If the presence or absence of RAF subsets are taken to be evolution-
ary traits, these traits can never be selected against in evolutionary competition
dynamics. With the basic one-compartment dynamics explained in detail, we can
now move on to populations of compartments.

.15.2 Dynamics of a population of compartments

Using the same parameter values (including the reaction rate constants), we next
ran the same simulation, but with 100 compartments randomly spread out in
the grid. As the one-compartment simulation already suggests, different com-
partments in the population go through different sequences of colour changes at
different times, giving rise to a population of mixed compartment “types” (i.e.,
some with only the yellow closed RAF, some with the red closed RAF, some with
the blue, etc.). Figure 31 shows four snapshots from one such simulation.
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Figure 31: A population of compartments. Four snapshots over time from a
simulation with 100 compartments.

As the figure shows, early on most compartments are still black (i.e., no chem-
istry is going on yet, but some are have already gathered enough food molecules
to have the yellow closed RAF in existence. A little later most compartments
are in the yellow state, and there are also already a few red, blue, or purple com-
partments. This compartment diversity then increases, until finally most com-
partments have turned purple or white, although there are also still several other
colours, including a few yellow ones. A movie of this simulation (for 150 time
units) is provided at the following web page: http://ico2s.org/data/extras/
compartments/, where a copy of the used parameter file can also be viewed or
downloaded.

Szathmáry, Kauffman, and colleagues have shown that such variability is ex-
actly one of the main conditions for autocatalytic sets to be evolvable [218]. Hav-
ing different combinations of autocatalytic subsets (i.e., different closed RAFs)
existing inside different compartments can give rise to competition for resources
between compartments, and new autocatalytic subsets coming into existence in
some compartments, due to rare spontaneous reaction events, give rise to varia-
tion.

These mutations are immediately evident in the movie as the changes in colour
of the compartments. Competition between compartments is less evident, but is
also present. Note that even at the end of the simulation there are still a few
yellow and even one black compartment. Because other compartments already
have larger closed RAFs existing inside them, those other compartments are using
up food molecules at a relatively high rate. Given that molecules are introduced
at a constant rate and then diffuse through the grid, they tend to diffuse mostly
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towards those compartments that use them up at high rates, simply due to the
resulting concentration differences. Therefore, food resources are diverted away
from compartments that do not have much chemistry going on yet (e.g., they may
only have the yellow closed RAF present), and are therefore “starved”, becoming
even less likely to ever go beyond the black or yellow state. A similar type of
competition was shown to exist in principle, in a one-compartment scenario with
two competing RAF subsets, in earlier simulation studies [90].

Note, though, that in the reaction network used in this simulation, only lig-
ation reactions are included, but not cleavage reactions. Therefore, mutations
can only happen in one direction: only new autocatalytic subsets can come into
existence, giving rise to a larger closed RAF existing inside a compartment. As
such, the lack of evolvability observed in the last section is not automatically
remedied by investigating populations of compartments. What would make the
dynamics more interesting is a mechanism for mutations where an autocatalytic
subset is lost.

.15.3 The influence of a toxic element

Suppose that molecule type 00100, produced by the red RAF subset, can spon-
taneously turn into a “toxic” element that catalyses the destruction of molecule
type 11100, which is produced by and acts as a catalyst of the blue RAF subset.
In other words, once the red RAF subset is present, it can suppress the existence
of the blue RAF subset. This way, it is possible to have “mutations” where an
autocatalytic subset is lost. Such an event is illustrated in Figure 32.
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Figure 32: The influence of a toxic element. The production of a toxic
element by the red RAF subset can cause the blue RAF subset to be lost again,
making a compartment change from blue to purple to red (indicated by the white
circle).

The three images in Figure 32 show snapshots of the same area in the grid,
but at different time steps, from a simulation that includes the toxic element, and
where the reaction making up the green RAF subset is left out (for illustrative
purposes). All other parameter values are kept the same as in the previous case.

Note that the compartment indicated by the white circle changes from blue to
purple to red. In the previous simulation this would not have been possible, since
concentrations of long polymers cannot decrease. However, what happened in
this simulation is that the given compartment acquired the blue RAF subset first
(becoming blue), then the red one (becoming purple), but then the toxic element
produced by the red subset destroyed the blue subset, causing the compartment
to change to red. On the other hand, the red subset can also (temporarily) destroy
itself. If all the molecules of type 00100 produced by the red subset turn into
toxic elements, the red subset itself does not exist anymore either, until new 00100
molecules are produced. So, a compartment could also oscillate between yellow
and red. Both of these situations happen in various locations and at various
times in the simulation, a movie of which (for 100 time units) is available on the
mentioned web page.

Another way to see the influence of the toxic element, compared to the base
case from the previous subsection, is to look at the number of compartments of
each type (i.e., colour) over time. Figure 35(left) shows such a comparison for
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two representative simulations for each case. As this plot shows, in the toxic
element case (dashed lines), the number of purple compartments is clearly sup-
pressed, as it is now more difficult to have the red and blue RAF subsets existing
simultaneously.

Taken together, the simulations presented so far demonstrate that popula-
tions of RAF sets allow for competition and selection dynamics and ultimately
for (limited) evolution, if the chemistry allows for molecules of RAF sets to be
consumed. We next showcase some other dynamical features that can occur in
spatially embedded populations of compartmentalised RAF sets.

.15.4 The influence of a permeable inducer

So far, the various compartments do not interact with each other or the envi-
ronment, other than taking up food molecules. In the next simulation, we also
include the secretion of an element produced by the compartments, in particular
one that can induce other compartments to acquire an autocatalytic set (if they
do not already have one).

To illustrate the effect in its simplest form, we use a different chemical reaction
network, shown in Figure 33, than in the previous simulations. This network
also forms a RAF set that could exist in the binary polymer model. For this
simulation, only molecule types 0 and 11 are food molecules. Note that this
RAF set also needs at least one spontaneous reaction to come into existence. As
before, a compartment turns yellow as soon as at least two molecules of type 110
are present.
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Figure 33: A reaction network with an inducer. The reaction network used
to show the influence of an inducer (molecule type 01). As before, dashed arrows
indicate catalysis.

However, note that one of the products of this RAF set, molecule type 01 (not
part of the food set), acts as an additional catalyst for one of the two reactions
that initially need to happen spontaneously. We assume that this molecule can
cross the compartment boundary since it has the same length as one of the food
molecules, and then diffuse (at low rate) through the grid. What can then happen
is that one compartment that already has the RAF set present secretes one or
more molecules of type 01 into the environment, which then slowly diffuse through
the grid and enter another compartment. If this other compartment does not have
the RAF set existing yet, but it has acquired enough food molecules (0 and 11),
the inducer molecule (01) can catalyse the required reaction for the RAF set to
come into existence, rather than having to wait for an uncatalysed reaction.

In other words, molecule type 01 can act as an “inducer” for RAF sets to
come into existence in nearby compartments. This situation is shown in Figure
34, where the blue spheres indicate the concentration of molecule type 01 (outside
of compartments) in each grid location in the environment.
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Figure 34: The influence of a permeable inducer. Three snapshots over
time from a simulation where the RAF set produces an permeable inducer that
can diffuse through the lattice. The blue spheres indicate the concentration of
this inducer in the different grid locations.

In the corresponding movie (available on the same web page again, including
the parameter file), it is clear that black compartments tend to turn yellow prefer-
entially in the vicinity of other compartments that are already yellow, where the
highest concentrations of the inducer are found. The end result is that the yellow
compartments are clustered, rather than distributed homogeneously throughtout
the space.

To show that it is indeed the inducer that causes this phenomenon, we first
performed ten simulations (120 time units each) where the inducer (molecule type
01) is not allowed to cross the compartment membrane. In this case there are
(on average) 16.3 yellow compartments (out of 100) at the end of the simulation.
Then we performed another ten simulations (also 120 time units each) where the
inducer is allowed to cross the membrane (as in Figure 34 and the corresponding
movie). In the latter case there are (on average) 26 yellow compartments at
the end of the simulation. So, there are significantly more yellow compartments
due to the inducer (p-value = 0.0003). Figure 35(right) shows a comparison of
the number of yellow compartments over time between a simulation with and a
simulation without the permeable inducer.
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Figure 35: Compartment counts. Left: A comparison of compartment type
counts between the base case and the influence of a toxic element. Right: A
comparison of yellow compartment counts with or without the inducer.

.16 Discussion

We have presented results of computational simulations of autocatalytic sets
emerging in compartments. As far as we know, these simulations are the first
demonstration of such dynamics explicitly combining (1) collectively autocat-
alytic sets in (2) populations of compartments in (3) a spatial environment. This
provides a significant step forward towards modeling the emergence and evolution
of autocatalytic sets in simple protocells.

Our simulations show that the main requirements for autocatalytic sets to be
evolvable are met when encapsulating them into compartment populations: the
existence of different combinations of autocatalytic subsets (i.e., closed RAFs)
in a population of compartments, giving rise to different “cell types” and com-
petition between them. Mutations in such cell types are caused by occasional
new autocatalytic subsets coming into existence due to rare spontaneous reaction
events, or the loss of autocatalytic subsets due to, e.g., one subset producing a
toxic substance for another subset. This requirement had already been shown to
be satisfied, in principle, in earlier studies [90, 218], but here it is shown for the
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first time in a spatially explicit population setting.

We have also demonstrated that populations of encapsulated autocatalytic
sets can give rise to ecological dynamics that act somewhat orthogonal to evo-
lutionary competition and selection dynamics [228, 229]. As an example of such
phenomena, we have shown how permeable inducers produced in one compart-
ment can trigger the appearance of autocatalytic sets in neighboring compart-
ments. We regard this as an example of population dynamics, and concur that
similar ecological relationships (e.g. mutualism, parasitism, etc.) should also be
observable in spatially coupled populations of RAF sets.

Note, though, that the current simulations cannot yet be considered to rep-
resent true protocells. In particular, there is no coupling between the internal
(autocatalytic set) dynamics and the (fixed) compartment boundary [152]. The
main focus in the current study has been on the population and spatial aspects.
This could, for example, model chemistry in the porous structure of hydrother-
mal vents [150]. However, Simbiotics can also simulate movement, growth, and
division of compartments. Coupling internal dynamics with compartment growth
and division is one of the hallmarks of protocell research [23, 31, 152, 191], and
will be a focus of future work.

Importantly, once implemented, compartment division and the generation of
offspring will allow us to study inheritance (another requirement for evolvability
[90, 218]). When a compartment divides, it will distribute its biomass among its
two offspring cells. Assuming sufficiently high molecular counts, both offspring
cells are likely to contain all the necessary catalysts to continue the chemical
dynamics of autocatalytic subsets that were already present in the parent, without
having to wait for any spontaneous reactions again. However, especially at low
concentrations, it might happen that one or more essential catalysts are missing
in one of the offspring cells, due to stochastic fluctuations at division. In that
case, one or more of the autocatalytic subsets that were present in the parent cell
can be lost, which would provide another way for mutations to happen, as was
already suggested [218].

Finally, although the results presented here are computational simulations
using an abstract chemical reaction network, there are direct links to experimental
systems. For example, recently the emergence and dynamics of autocatalytic
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sets of RNA molecules have been studied in microfluidics [8], which provides an
experimental simulation of compartments. These RNA autocatalytic sets were
created in the lab [216], and have been studied in more detail using the formal
RAF framework [89]. Thus, there is a direct and natural connection between
our simulations and these microdroplet experiments, which we hope to explore
in future work.

Autocatalytic sets have been shown to have a high probability of existence,
also for moderate and chemically plausible levels of catalysis [88, 156]. Further-
more, several experimental autocatalytic sets have been constructed in the lab,
either with nucleotide sequences [120, 196, 216] or with peptides [12]. Finally, they
have been shown, in principle, to be evolvable [90, 218]. Here, we have taken a
first step towards a more realistic demonstration of this by simulating the emer-
gence and dynamics of autocatalytic (sub)sets in populations of compartments in
a spatially explicit environment.

Clearly, this has consequences for how we might think about the origin of
life. If autocatalytic sets have a high chance of emerging spontaneously in simple
compartments (e.g., lipid membranes), and can grow and evolve to become more
complex, this could provide a plausible way for life to have arisen. Further simu-
lation studies along these lines, also in combination with experimental studies as
indicated, seem to be a promising avenue to shine light on this pathway to life.

Parameter Value
Spontaneous rates

c100,c110 0.02
c11100,c111,c010 0.003
c1010,c0111 0.005
c00100 0.001

Catalysed rates
c11100,c111,c010 0.005

c1010 0.03
c00100 0.02
c0111 0.01

Table 5: Model parameters for Chapter 9 Figure 9.5-9.7
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Parameter Value
Catalysed rates

c01111 0.005

Table 6: Modified model parameters for Chapter 9 Figure 9.7

Parameter Value
Spontaneous rates

c110,c011 0.0001
Catalysed rates

c110,c011 0.05
c[011+110 -> 01+1+110] 0.05
c[0+11+01 -> 011+01] 0.5

Table 7: Model parameters for Chapter 9 Figure 9.8

Parameter Value
World size 20 x 20

Compartments 100
Compartment radius 0.5

Voxel size 2.5 x 2.5
Numerical time step 0.01

Table 8: Model parameters for Chapter 9 Figures 9.4-9.10

Parameter Value
Diffusion coefficients
D0,D1,D00,D01,D10,D11 20

D010,D100,D110,D111,D1010,D00100,D01111,D11100 10
Decay rate

K0,K1,K00,K01,K10,K11 0.013
K010,K100,K110,K111,K1010,K00100,K01111,K11100 0

Table 9: Model parameters for Chapter 9 Figure 9.6
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