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Abstract

The Global Positioning System (GPS) is a widely used timing, naviga-

tion and positioning system. However, its performance can be signifi-

cantly degraded by the effects of the various sources of noises due to a

highly dynamic multipath environment, signal blockage or attenuation

due to ionospheric perturbation. Therefore, the aim of this research

is to enhance the GPS signal acquisition and tracking ability to mit-

igate these effects. Furthermore, it is desirable to provide continuous

and consistent positioning information under GPS-denied environments

with assistance from multi-sensor data fusion techniques. In this thesis,

a novel GPS signal acquisition approach for very dense multipath envi-

ronments, using a low cost innovative dual polarization patch antenna

attached to GPS receiver, is implemented. This reduces the acquisition

processing time significantly compared to the conventional serial search-

ing approach. Furthermore, it successfully acquires extra satellites in a

dense multipath environment.

Furthermore, the GPS signal carrier tracking loop has been considered as

one of the most important links in order to demodulate the navigation

data frame. An innovative carrier tracking loop is also proposed that

comprises two approaches, namely, the adaptive Kalman filter and the

adaptive unscented Kalman filter, dynamically integrated with a third

order phased locked loop respectively. The proposed two-carrier tracking

loops are compared against the conventional carrier tracking loop and

the results prove that the proposed approach is more robust and accu-

rate. The carrier tracking performance employing this novel approach is

improved, especially in highly dynamic and low CNR environments.

Finally, in order to integrate GPS and the sensors, GPS, IMU (iner-

tial measurement unit) and LiDAR are combined for data fusion. A

novel line feature extraction and mapping algorithm was designed for



LiDAR navigation with a low complexity that resulted in faster feature

extraction. This was followed by an innovative integration scheme that

combined GPS, IMU and LiDAR, which resulted in continuous, precise

positioning data for vehicular communication, even when GPS signals

are not available, in a harsh multipath environment.
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Chapter 1

Introduction

1.1 Introduction

Precise and accurate location and navigation has been in demand throughout mankind’s

history. As can be seen in Figure 1.1, the earliest navigation approaches date back

to around 3000BC, where for around 2000 years they observed the sun, stars, or

landmarks in order to decide the direction and the distance. The compass was a

revolutionary navigation device, invented in 206 BC, and after more than 1000 years,

the compass is still used in sailing navigation and even today the digital compass

is still familiar in many transportation systems as an aiding tool. In recent history,

when the US launched 11 satellites in the period between 1978 to 1985, satellite

based navigation schemes started to play a more dominant role in navigation. Now

there are more than 100 satellites in space at any one time that aim to provide

navigation, location and timing services anytime and anywhere. Nowadays, many

applications depend on location and navigation such as aviation, sailing, road trans-

portation and construction. As is almost always the case, opportunity comes hand in

hand with challenge, this is the best era for navigation technology development and

precise and accurate navigation performance is in demand more than ever before.

In this section, the background and the motivation of this research are provided

such as the importance and the challenge of satellite navigation signal acquisition

and tracking to GPS navigation. Furthermore, due to the limitation of satellite nav-

igation, the importance of multisensor data fusion is also presented. The overview

of the current approaches and their drawbacks are also discussed in this section.

Finally, the outline of this thesis will be presented at the end of this section.
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Figure 1.1: Evolution of Navigation

1.2 Background

Calculating the total number of vehicles in the world is an inexact science, however

based on factory analysis, this number reached 1.2 billion in 2014 and is growing

rapidly. By 2035, this number is estimated to be in excess of 2 billion. Because

of the large number of vehicles on the road traffic systems become inefficient and

dangerous. According to British Local Government Association (LGA) statistics,

UK drivers waste an average of 31 hours during rush hours in a year at a cost of

1168 GBP to each motorist [1]. A road traffic injuries report from the world health

organization indicated that in each year more than 1.25 million people die because

of road traffic accidents, and these road traffic accidents cost around 3% of their

gross domestic product [2].

As the economy and populations are growing in the world, the requirement of

vehicles is irreversible. Therefore, an efficient and secure traffic management system

is needed. Intelligent traffic systems (ITS) in a big picture sense aims to build a

sustainable and efficient transportation system. This was initialised by Japan and

carried on by the US in the 1980s and now it is considered by the entire world [3].

Vehicle-to-Vehicle(V2V) communication is considered as the most important part

within ITS, and consistent and precise position information is the primary concern

for V2V communication. Technically, satellite based navigation systems can provide

position and navigation services under any circumstance.

The first satellite based navigation system, GPS was initialised by the US in

1973 and then Russia, European union, China, India, and Japan launched their own

region or worldwide satellite based navigation system one after another. Now 32 GPS

satellites are operating in space, which is the most complete operational navigation

system. The performance of GPS can be degraded by multipath and Doppler effects,
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and furthermore the availability of the GPS signal can be significantly diluted by

surrounding buildings, overhead bridges, or even thick tree canopies. Therefore,

an efficient and robust GPS receiver is essential for improving GPS positioning

performance.

For a GPS receiver, successfully acquiring and consistently tracking the satellite

signal is the first condition of obtaining the navigation message. In an urban envi-

ronment, GPS signal strength could easily be reduced, therefore, sensitivity to weak

satellite signals is a major concern. Furthermore, aiming to provide compensatory

positioning information when GPS signal is unavailable, multisensor data fusion

techniques become the optimal solution.

Common multisensor navigation for vehicles include GPS, inertial navigation

sensors (INS) or inertial measurement units (IMU), magnetometer and LiDAR (light

detection and ranging).

• GPS is a satellite based navigation system, where at least 4 satellites need to be

successfully acquired and tracked in order to obtain 3D location information.

The US government commits to the broadcast GPS signal accuracy being

±7.8m with 95% probability. With a dual frequency method(L1+L2 or L1

+L5 frequency band) and augmentation system, GPS receiver can estimate

the delay which generated by the ionosphere, the accuracy in the short term

can reach to the centimeter level and in the long term measurements could

reach to the millimeter level.

• IMU is an inertial measurement sensor that normally contains a gyroscope and

an accelerometer. Gyroscopes can measure the angular velocity based on the

inertial frame. Accelerometers are used to measure the specific force. Three

gyroscopes and accelerometers are combined in an IMU in order to obtain 3

dimensional angular velocity and specific force.

• INS is the combination of the IMU measurement and mechanisation. Instead

of the raw measurement of IMU, INS provides velocity, position, and attitude

information.

• Magnetometers are used to measure the earth magnetism to provide the di-

rection information, a compass is a type of magnetometer.
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• LiDAR, also known as a laser scanner, is commonly used in surveying. It

measures the distance and the angle between the object and the sensor.

1.3 Literature Review

Studies of improving the performance of the GPS stand alone receiver have been

concidered for decades and many researchers have attempted to design an efficient

signal acquisition scheme and a robust signal tracking loop to enhance the signal

processing ability of the GPS receiver. [4] proposed a Fast Fourier Transform (FFT)

based acquisition approach to increase the acquisition speed of the receiver. This

method is efficient when used in a high Signal to Noise Ratio (SNR) environment.

However, in a low SNR environment, this method is not effective since the FFT

result is not sensitive to low SNR signals. In contrast, [5] presented a serial search

approach in the time domain, which is sensitive to weak signals but the computional

cost is high. Furthermore, in urban environments, the satellite signal reflection is

unavoidable, and generates the multipath effect and degrades the accuracy of the

pseudorange measurement. The most common multipath mitigation approach is

to reject the reflected signal through hardware design. Conventional GPS anten-

nas are designed to reject the reflected signal and receive the directed signal only.

Nevertheless, nowadays people have realized the reflected signal is not completely

without use. In [6] a dual polarization antenna is used to mitigate the mulitpath

effect. A study reported in [7] implements a sensing method using the reflected

signal. These two studies proved that the reflected signal could be implemented in

real applications.

In GPS signal tracking procedures, there is a trade off between the tracking ac-

curacy and the tracking ability [8], where greater tracking bandwidth can tolerate a

higher Doppler frequency shifted signal but it is not sensitive to low strength signals.

In contrast, a smaller tracking bandwidth is sensitive to the weak signals, but the

tracking ability is reduced and it is not capable of tracking signals in highly dynamic

environments. In vehicular communication, accurate tracking results and greater

tracking bandwidth are required, therefore, aided tracking loop has been proposed

in [9]. Kalman filters have been widely implemented in aided carrier tracking loops.

Unlike the conventional carrier tracking loop, where the parameters of the loop filter

are predefined, Kalman filter based carrier tracking loops [9] use the Kalman gain
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to dynamically adjust the loop bandwidth according to the different circumstances.

This approach can mitigate the trade off between the tracking accuracy and the

tracking bandwidth. However, Kalman filters are restricted by the linear model,

as in reality a nonlinear model is ubiquitous. Kalman filter based carrier tracking

loops are inaccurate in some highly dynamic environments when the system model

is highly nonlinear. Therefore, [10] and [11] implemented Extended Kalman Filters

(EKF) instead of a conventional Kalman filter to aid the carrier tracking loop. In

EKF based carrier tracking loops, a Jacobian matrix is implemented to linearise the

nonlinear model. EKF based carrier tracking loops are more accurate compared to

the KF based carrier tracking loop, however the computational cost of the Jacobian

matrix is high. In order to reduce the computational cost, an unscented trans-

form based Kalman filter also known as Unscented Kalman Filter (UKF) approach

is proposed in [12]. Instead of linearising the nonlinear model using the Jacobian

matrix, UKF linearise the distribution of the nonlinear model using an unscented

transform. UKF can achieve an accuracy equal to the second order Taylor series

expansion. However, as an open loop [12], UKF based carrier tracking loop is not

sensitive to low Carrier to Noise Ratio (C/No) signal.

In a particular environment, such as tall trees, canopies, bridges or tunnels, GPS

signals can be totally blocked or seriously degraded. Stand alone GPS receivers

cannot provide any position or navigation information. Therefore, to mitigate these

challenges, multisensor data fusion has been implemented in navigation applica-

tions. [13] [14]and [15] proposed the implementation of Inertial Navigation Sensors

(INS) to compensate information when GPS signals are unavailable. In [16], an

unscented Kalman filter is implemented to aid carrier tracking loop through IMU

measurement. In [17] and [18], odometer and digital compasses are also imple-

mented to aid INS/GPS in velocity and direction error correction. Furthermore,

in [19], LiDAR is used to provide location information for indoor or GPS denied en-

vironments. Considering intergation approaches, the loosely and tightly integration

approaches are the two major types of integration schemes, which will be discussed

in detail in the following chapter. Kalman filter is the most common integration

filter for both loose and tight integration. In [20], a standard Kalman filter was used

to integrate GPS, INS and LiDAR for indoor navigation application. [17] and [18]

implemented an extended Kalman filter and unscented Kalman filter respectively

for INS/GPS loose integration. [15] used extended Kalman filter to linearise the
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nonlinear pseudorange function to integrate IMU and GPS. [21], [22] [23] and [24]

and [18] were used an unscented transformation instead of a Jacobian matrix to

linearise the non-linear function and integrate IMU GPS and other sensors. Re-

search results indicate that Kalman filters can achieve an optimal fusion result for

linear models and unscented Kalman filters are superior to extended Kalman filter

for nonlinear models. Furthermore, having additional sensors integrated with GPS,

achieves a better performance.

1.4 Objectives

Due to the precise positioning requirement of vehicular communication. This thesis

contributes to three aspects to improve the navigation performance in challenging

environments. 1) Designing and implementing a modified serial search acquisition

approach through a low cost dual polarization antenna to improve the acquisition

ability of the stand alone GPS receiver. Then designing two efficient and robust

carrier tracking approaches for highly dynamic environments and minimising the

trade off between tracking ability and tracking accuracy to improve the tracking

ability of the GPS stand alone receiver. 2) Designing an efficient and cost friendly

multisensor data fusion approach which include GPS, IMU and LiDAR for vehicular

communication in challenging environment.

• In order to improve the performance of a stand alone GPS receiver, the existing

acquisition approaches are investigated. To improve the acquisition ability for

urban environments, a low cost dual polarization patch antenna is proposed

and designed.

• To compare and analyze the conventional FFT based and serial searching based

acquisition approach, a novel modified serial searching acquisition approach

has been implemented and attached to the low cost dual polarization path

antenna.

• To evaluate the pros and cons of the conventional phase lock loop and the

KF based carrier tracking loop. An efficient and robust carrier tracking loop

is required to minimise the trade off between tracking accuracy and tracking

ability.
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• To investigate the mathematical model of carrier tracking loop and the lim-

itation of Kalman filter. A adaptive Kalman filter and adaptive unscented

Kalman filter based carrier tracking loop are proposed and implemented to

improve the tracking performance.

• To evaluate the current multisensor integration schemes and analyze the char-

acters of different navigation sensors. Then a low cost LiDAR aided dynamic

integrated IMU/GPS navigation system is implemented.

• To compare the proposed approaches against existing methods, a hardware

attached software testing platform is designed. Experiments are processed in

a challenging outdoor environment.

1.5 Thesis Outline

This thesis is organized in six chapters.

Chapter 1 briefly introduces the background and the motivation of vehicular

communication and the integrated navigation. Investigation and comparison of the

existing GPS acquisition and tracking approach as well as the multisensor data

fusion technique are also demonstrated in this chapter. At the end of this chapter,

the objectives and the contributions are presented.

Chapter 2 starts from the the GPS signal structure and its processing algorithm.

Then the overview of coordiate frames and their basic transform algorithm are also

presented. Finally the error model of the IMU and the navigation mechanics of IMU

and LiDAR are introduced.

Chapter 3 proposes a low cost dual polarization patch antenna and a modified

serial searching acquisition approach. Through the modified serial search acquisition

approach and the left hand polarization antenna, extra satellites signal can be suc-

cessfully acquired in a very dense multipath environment. Furthermore, to evaluate

the performance of the proposed patch antenna and the modified serial searching

acquisition approach, a field experiment is conducted, and the results are analysed

in this chapter.

Due to the requirement of greater tracking bandwidth and better tracking accu-

racy, chapter 4 presents two novel carrier tracking loops, hybrid KF integrated 3rd

order PLL carrier tracking loop and adaptive UKF integrated 3rd order PLL carrier
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tracking loop respectively. Meanwhile, in this chapter, the details of PLL, Kalman

filter, unscented transform and adaptive filter are presented. To compare and anal-

yse the proposed tracking approaches, an experiment is designed and presented in

this chapter.

Chapter 5 describes the design and development of multisensor data fusion in

integrated navigation. This integrated navigation scheme implements a dynamic

federate Kalman filter to dynamically integrate GPS, IMU, Magnetometer and Li-

DAR. Furthermore, a novel line extraction scheme has also been presented in this

chapter to improve the efficiency of the LiDAR processing. The performance is

analysed and compared through a field experiment.

Chapter 6 draws conclusion of this research and its findings, and recommenda-

tions for future work are made.

1.6 Publications Related to the Thesis

1. Ahmed, A., Tiwari, R., Shah, M.A. and Yin, J., 2016, July. GPS receiver

phase jitter during ionospheric scintillation. InMechanical and Aerospace En-

gineering (ICMAE), 2016 7th International Conference on (pp. 605-608).

IEEE.

2. Yin, J., R. Tiwari, and M. Johnston. ”Low-cost dual polarized GPS antenna

for effective signal acquisition in multipath environment.”Navigation Confer-

ence (ENC), 2017 European. IEEE, 2017.

3. Yin, J., R. Tiwari, and M. Johnston. ”Adaptive Carrier Tracking for Vehic-

ular Communication under High Dynamic Environment.”Navigation Confer-

ence (ENC), 2018 European. (Conference Digital Library)

4. Yin, J., Tiwari, R. and Johnston, M., 2018. Robust GPS Carrier Tracking

Model using Unscented Kalman Filter for a Dynamic Vehicular Communica-

tion Channel. IEEE Access.
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Chapter 2

System and Overview

2.1 Introduction

In this chapter, the structure of the GPS receiver and the generic GPS RF signal

are reviewed. The structure of the GPS code and message are studied. To obtain

the GPS navigation message, the schemes of GPS signal acquisition and carrier

tracking are important, therefore several relevant acquisition and tracking schemes

are reviewed in this chapter. Meanwhile, to implement multisensor data fusion

technique on precise positioning, the background information of the relevant sensors

are reviewed, such as IMU and LiDAR operational algorithm and their navigation

mechanization.

2.2 GPS Receiver Outline

There are three parts within a GPS receiver, namely the RF front-end, baseband

signal processing and navigation algorithm. The RF front-end works as the first part,

it collects all in viewed GPS satellites signal and removes the noise and implement

analog to digital conversion. Due to the Doppler effect which can cause carrier signal

phase shift, and this phase shift is unpredictable, the local oscillator down grade the

received signal to intermediate frequency (IF) signal instead of based band signal [8].

2.2.1 GPS Receiver RF Front-End

The center frequency of a GPS receiver front-end is usually set to be 1575.42 MHz

corresponding to the GPS L1 band. Then the collected signal will be down grade
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to IF signal since the IF signal is more desired than baseband signal. The received

signal center frequency will be converted to be 1.2. The GPS L1 band signal is

1575.42 MHz and has bandwidth of 2 MHz. Based on the Nyquist law, the sampling

frequency should be at least twice of the bandwidth, as there is no ideal filter, it is

usually recommended to choose 2.5 times of the bandwidth in order to mitigate the

filter roll off effect [25]. Therefore, 5 MHz is chosen for GPS L1 band.

2.2.2 GPS Signal Format

In a received GPS signal, there are two types of code are modulated, namely PRN

(pseudorandom-noise) code and navigation code respectively. The following sections

are briefly introduced these two types of code.

2.2.2.1 PRN code

Binary phase shift keying (BPSK) is known as one of the most popular sample

modulation scheme in digital communication. BPSK encode the carrier signal to

either ’as it’ or 180◦ in difference. The extension scheme of the BPSK is called direct

signal spread specturm (DSSS), a DSSS signal is consisted of navigation code, PRN

code and RF signal. This DSSS signal is named PRN wave, since the frequency of

the PRN code is much higher than the navigation code. Each satellite uses unique

PRN code (C/A code for civil and P code for military) to implement CDMA. In

this project, only C/A code is used. C/A code stands for coarse acquisition code

which belong to the family of gold pseudorandom noise code. One advantage of

the gold code is the strong autocorrelation and cross correlation properties. C/A

code generator contains two 10 bit liner feedback shift registers(LFSR), two LFSRs

feedback taps are defined by the generator polynomials as Eq.(2.1):

G1(X) = 1 +X3 + x10

G2(X) = 1 +X2 +X3 +X6 +X8 +X9 +X10
(2.1)

Two generators generates pseudorandom codes with a length of 210− 1 = 1023 bits,

all bits are initialled to be 1. A simplified autocorrelation function of a C/A code

can be presented as Eq.(2.2) :

Rca(τ) =

∫ ∞
∞

CAi(t)CAi(t+ τ)dt, (2.2)
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where CAi is the C/A code for the ith satellite and τ is the time shift. The autocor-

relation function is used to synchronize the received C/A code and the replica code.

Meanwhile, cross correlation with any two C/A does are minimal for any phase, the

ideal cross-correlation as below:

Rij(τ) =

∫ ∞
∞

CAj(t)CAi(t+ τ)dt = 0 (2.3)

where CAi and CAj are the CA code from different satellite, however due to the

different delays and Doppler offsets, cross correlation value is not zero. Due to these

characteristics, C/A code play a significant impotent role in GPS signal acquisition

and tracking. The detail of GPS signal acquisition and tracking will be presented

in the next two chapters.

2.2.2.2 Navigation message and RINEX format

Navigation message is 1500 bits long with 5 subframe in 300 bits each. Each sub-

frame contains 10 words with 30 bits each, the last 6 bits of each word are used of

parity check with Hamming code is employed. First two words of each subframe are

TLM and HOW, fixed preamble 8 bits 10001011 in TLM never change [8].

As GPS position solution is determined by range between the obtained satellites

and the receiver in three dimension [8]. Range measurement play an impotent role

in GPS positioning, and the time, pseudotrange and phase information in RINEX

filter are used to calculate a precise range measurement. RINEX stands for Receiver

Independent Exchange Format was developed by University of Berne for easily ex-

change GNSS data from different GNSS receivers of different manufactures. Up

till now two major versions of RINEX have been developed and published, namely

version 2.x and version 3.x [26]. In RINEX file time, phase, and range are three

fundamental quantities which need to be defined.

• Time: Time measurement is the receiver time of the received signal and it is

identical for measurement of phase and range.

• Pseudo-Range: Pseudo-range (PR) is the distance between the receiver antenna

to the satellite antenna. The reason of naming pseudo range is because of the

distance contains the clock offset and atmospheric delay.

• Phase: Phase is the carrier-phase measured in whole cycles. Phase can be con-
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verted to range using the frequency and the light of speed in vacuum. Further-

more, phase measurement is more accurate than pseudo range measurement,

thus, phase measurement can be used as precise positioning.

RINEX file contains three ASCII file types, which are the observation file, the

navigation file and the Meteorological data file respectively [27]. Each file contains a

header section and a data section. As Figure 2.1 presented, observation file contains

all the information of GNSS observation values such as satellite system identifier,

(G for GPS, R for GLONASS, E for Galileo and C for BeiDou), pseudo range mea-

surement in meter, phase circle measurement and signal strength. The navigation

file is presented as Figure 2.2 presented, it contains the almanac and ephemeris in-

formation of the satellites in order to calculate the space position of each satellites.

2.2.3 Source of Inaccurate

GPS receiver normally needs to receive 7 to 8 satellites to provide a location infor-

mation with an accuracy of ±10m. With less than 4 satellites, the GPS receiver will

not be able to provide any position information. As with positioning, the accuracy

of GPS is depended on many factors, and these factors are the motivation of our re-

search. In the following sections, several main inaccurate source of GPS positioning

are reviewed.

2.2.3.1 Satellites and Receiver clock error

On of the major inaccuracy sources is the clock bias between the GPS receiver

and the GPS satellites. GPS device use the distance between the satellites and

the receiver to calculate the user position. Within 1 nanosecond of satellite time

inaccuracy can cause 30 centimeters of error in positioning. To mitigate the effect of

the clock error, beside a very precise atomic clock is equipped on GPS satellite, the

ground monitor station need to calculate the accumulated error and update the time

error to the satellites. Even though, the clock error is still retain a few nanosecond

and will cause about 1 meter inaccurate.

Furthermore, it is not practical to install a precise atomic clock to GPS receiver as

it is installed to the satellites. Normally, a GPS receiver could have a few milliseconds

clock drift within a second. To mitigate the effect of receiver drift, a common method

is to use a reference satellites to estimate the clock drift of the receiver. Therefore,
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Figure 2.1: RINEX Observation File
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Figure 2.2: RINEX Navigation File
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four satellites are the minimum requirement to provide 3D location information, as

three for positioning and one for time reference.

2.2.3.2 Multipath Effect

When the satellites signal transmit from the satellites to the receiver, not only the

direct signal are received. In addition to the directed signal, reflected signal from

building, ground or trees are received by the receiver as well. These delay reflected

signal can generate the uncertainty of the time which travel from the satellites to

the receiver and dilute the positioning accuracy.

2.2.3.3 Weak Signal

GPS satellites is approximate 22 thousand kilometers away from the receiver. The

received signal is typically as weak as −125dBm to −130dBm. This weak signal is

a challenge to the GPS device, partial black or reduce the signal strength can cause

the GPS device fail to lock the satellites. In the ideal environment, C/No of the

received signal is around 37dB −Hz to 45dB −Hz, the receiver tracking C/No is

25dB − Hz and the acquisition is 35dB − Hz, since acquisition is less sensitive to

tracking. New method in [28], can reach the C/No as lower as 15dB −Hz, but the

computational cost has been significantly increased.

2.2.3.4 Doppler Effect

Relevant movement between the GPS satellites and the receiver can generate Doppler

effect. Doppler effect can generate maximum 5kHz due to the satellite motion (when

satellite move toward or away from the receiver), meanwhile receiver motion can also

generate Doppler effect in 1.46Hz per 1Km/h [8]. Doppler effect value and sign de-

pend on angle between signal line of vector and motion vector. Receiver oscillator

offset can also generate Doppler effect in 1.575KHz/ppm, typical oscillator offset

is ±1 ppm to ±3 ppm. The total Doppler shift is roughly ±10 KHz, therefore the

GPS receiver needs to search 20 KHz band for visible satellite signal. Typically, the

entire frequency searching range is divided into 41 band and each band is 500Hz.
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2.3 Reference frames

In positioning and navigation system, different sensors are located and measured

in the different reference frames. Navigation system required the transformation

of measurement and computed quantities from one frame to another. Therefore,

several coordinate frames are used in this work will be reviewed in this section.

2.3.1 Earth Center Inertial Frame

Earth center inertial (ECI) frame is a reference frame which is applied in Newton’s

law. ECI frame is defined either in stationary or moving in a constant velocity.

GNSS satellites location and velocity are defined in this frame.

• Center is at the mass of the earth

• zi axis alongside with the Earth spin axis

• xi axis points toward to the vernal equinox

• yi completes the right-hand coordinate system

2.3.2 Earth Center Earth Fixed Frame

Earth Center earth fixed (ECEF) frame rotates relative to ECI frame in 7.292115×

10−5rad/sec denote as σ [29].

• Center is at the mass of the Earth

• ze axis along side with the Earth spin axis

• xe axis points toward to the Mean meridian of Greenwich.

• ye axis completes the right handed coordinates system.

2.3.3 Local Frame

Local frame is refereed as East-North-Up (ENU) frame which serve as the represen-

tation of the attitude and velocity when the vehicle is on or near the earth surface.

• Center is at the center of the reference frame

• Z axis (Up) point upward along the ellipsoid normal
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• x axis (East) point toward to the geodesic East

• y axis (North) point toward to the geodesic North

There three reference frames are demonstrated as Figure.2.3.

Figure 2.3: ECI, ECEF and Local frame

2.3.4 Body Frame

In navigation application, the aim is to determine the position and the velocity base

on the various sensors which attached on the platform, and this platform is referred

as a body frame

• Center is at the center of the sensor.

• z axis is point upword refer as the yaw

• x axis is toward to right of the move object refer as the pitch

• y axis is toward to the frond of the moving object refer as roll
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Figure 2.4: Body Frame

2.3.5 WGS84

The world geodetic system 1984 is defined and maintained by the United States

National Geospatial-Intelligence Agency (NGA). All the GPS measurement results

is based on WGS84.

• Center is a the center of the mass of the Earth.

• h denotes the attitude above the reference ellipsoid

• ϕ denotes the latitude

• λ denotes the longitude

2.4 Coordinate Frame Transformation

As we mentioned before, coordinate frame transformation play an impotent role in

navigation system since different sensors operate under different reference frame. A

vector transform from one frame to another frame can use direction cosine, Euler

angle and quaternion. All of these methods are required rotation matrix which is

named transformation matrix or direction consin matrix (DCM).
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2.4.1 Transformation between ECI and ECEF

The transformation from ECI frame (denote as i-frame) to ECEF frame (denotes as

e-frame), is to rotate i-frame by ωe degree about z-axis as Figure 2.5 illustrated. ωe

is the magnitude of the earth rotation. The rotation matrix is denoted as

Re
i =


cosωet sinωet 0

−sinωet cosωet 0

0 0 1

 (2.4)

where t is the time since the reference epoch. The transformation from e-frame to

i-frame is the inverse matrix of Re
i .

Figure 2.5: ECI to ECEF frame

2.4.2 Transformation between ENU and ECEF Frame

The transformation from ENU frame to e-frame contains two steps. First, ENU

frame rotate ϕ−90 degree around its x-axis. In the second step, ENU frame rotates
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−90− λ degree around its z-axis. The rotation matrix can be expressed as

Re
ENU =


cos(−90− λ) sin(−90− λ) 0

−sin(−90− λ) cos(−90− λ) 0

0 0 1




1 0 0

0 cos(ϕ− 90) sin(ϕ− 90)

0 −sin(ϕ− 90) cos(ϕ− 90)


(2.5a)

Re
ENU =


−sinλ −cosλ 0

cosλ −sinλ 0

0 0 1




1 0 0

0 sinϕ −cosϕ

0 cosϕ sinϕ

 (2.5b)

Re
ENU =


−sinλ −sinϕcosλ cosϕcosλ

cosλ −sinϕsinλ cosϕsinλ

0 cosϕ sinϕ

 (2.5c)

Then the transformation from e-frame to ENU frame is

Re
ENU = (RENU

e )T (2.6)

In contrast, the position vector in ECEF frame can be defined as

P = [ϕ, λ, h] (2.7)

The rate of position change can be expressed as

ϕ̇ =
vn

Rm + h

λ̇ =
ve

(Rn + h)cosϕ

ḣ = vu

(2.8)

where Rm is the radii of curve in Meridian and the Rn is the Prime vertical. vn, ve

and vu are the velocity in ENU frame. Figure 2.6 illustrated the detail of the

transformation from ENU frame to ECEF frame.

2.4.3 Transformation between ENU and Body Frame

This rotation matrix of the transformation from Body frame(b-frame) to ENU frame

can be defined by a series of three plane rotation. In this research we use φ represents
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Figure 2.6: ENU to ECEF

roll, θ represents pitch and ψ represents yaw. The rotation matrix is defined as

RENU
b =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1


T 

1 0 0

0 cosθ sinθ

0 −sinθ cosθ


T 

cosφ 0 −sinφ

0 1 0

sinφ 0 cosφ


T

(2.9a)

RENU
b =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1




1 0 0

0 cosθ −sinθ

0 sinθ cosθ



cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 (2.9b)

RENU
b =


cosψcosφ− sinψsinθsinφ −sinψcosθ cosψsinφ+ sinψsinθcosφ

sinψcosφ+ cosψsinθsinφ cosψcosθ sinψsinφ− cosψsinθcosφ

−cosθsinφ sinθ cosθcosφ


(2.9c)

The value of Roll, Pitch and Yaw can be calculated as

φ = −tan−1[
RENU
b (3, 1)

RENU
b (3, 3)

] (2.10a)

θ = −tan−1

 RENU
b (3, 2)√

[RENU
b (1, 2)]

2
+ [RENU

b (2, 2)]
2

 (2.10b)

ψ = −tan−1[
RENU
b (1, 2)

RENU
b (2, 2)

] (2.10c)
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2.5 Attitude Mechanization

The Transformation from ENU frame to body frame can be calculated by the

inverse of rotation matrix RENU
b .

RENU
b = (Rb

ENU)T (2.11)

2.4.4 Transformation between ECEF and WGS84

The transformation from ECEF to WGS84 is presented as below Eq.(2.12) [29]


x

y

z

 =


(Rn + h)cos(φ)cos(ϕ)

(Rn + h)cos(φ)sin(λ)

[Rn(1− e2) + h]sin(ϕ)

 (2.12)

2.5 Attitude Mechanization

Attitude estimation is about estimating the attitude in the body-frame respect to

the n-frame. The common methods are Euler Angel, Direct cosine Matrix and

Quaternion [30].

2.5.1 Euler Angle

The most common way to express the attitude of the rigid body is the euler angle,

since it is easy to use and understand. A vector (x,y,z) rotate in a fixed coordinate

can be considered as a combination of the three rotation around three axis. First it

rotate ψ angle around z-axis, the rotation matrix Cb
n(ψ) can be represented as

Cb
n(ψ) =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (2.13)

Then rotate θ angle around y-axis, the rotation matrix Cb
n(θ) can be expressed as

Cb
n(θ) =


cosθ 1 −sinθ

0 1 0

sinθ 0 cosθ

 (2.14)
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2.5 Attitude Mechanization

Then rotate φ angle around x-axis, the roation matrix Cb
n(φ)

Cb
n(φ) =


1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 (2.15)

The integrated rotation matrix Cb
n(φ, θ, ψ) = Cb

n(φ) · Cb
n(θ) · Cb

n(ψ) in matrix form

Cb
n(φ, θ, ψ) =


cosψcosθ cosθsinψ −sinθ

cosψsinφsinθ − cosφsinφ cosφcosψ + sinφsinψsinθ cosθsinφ

sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ


(2.16)

while φ, ψ, θ are refer as roll, yaw and pitch.

Euler angle is the most simple and intuitive approach, however, there is a limi-

tation of Euler angle, when θ angle is 90◦,

Cb
n =


0 0 −1

cosψsinφ− cosφsinψ cosφcosψ + sinφsinψ 0

sinφsinψ + cosφcosψ cosφsinψ − cosψsinφ 0



=


0 0 −1

sin(φ− ψ) cos(φ− ψ) 0

cos(φ− ψ) −sin(φ− ψ) 0


(2.17)

Roll φ and Pitch ψ angle are equivalent. This is called gimbal lock.

2.5.2 Direction Cosine Matrix

Considering a vector a = {−→a 1,
−→a 2,
−→a 3} rotate from n-frame to body-frame then,

the rotated vector b =
{−→
b 1,
−→
b 2,
−→
b 3

}
, the rotation process can be expressed as


−→
b 1

−→
b 2

−→
b 3

 =


C11 C12 C13

C21 C22 C23

C31 C32 C33



−→a 1

−→a 2

−→a 3

 (2.18)
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2.5 Attitude Mechanization

where Cij is the direction cosine matrix, and the three elementary rotation matrix

respect to the first second and third rotation axis can be expressed as Eq.(2.19)

C1(θ1) =


1 0 0

0 cosθ1 sinθ1

0 −sinθ1 cosθ1



C2(θ2) =


cosθ2 0 −sinθ2

0 1 0

sinθ2 0 cosθ2



C3(θ2) =


cosθ3 sinθ3 0

−sinθ3 cosθ3 0

0 0 1



(2.19)

Given pitch, roll and yaw, then direction cosine matrix (DCM) can be expressed in

C1C2C3 =


1 0 0

0 cosφ sinφ

0 −sinφ cosφ



cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ



cosψ sinψ 0

−sinψ cosψ 0

0 0 1



=


cosψcosθ cosθsinψ −sinθ

cosψsinφsinθ − cosφsinφ cosφcosψ + sinφsinψsinθ cosθsinφ

sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ


(2.20)

DCM can avoid gimble lock, but DCM need multiple sine and cosine computation,

the compuation cost is very high.

2.5.3 Quaternion

Quaternion parametrization is less initiative compare to Euler angle, but the quater-

nion approach is a preferred implementation approach since it is lack of singularity

and trigonometric functions compare to the Euler angle approach in the integration

routine and small number of parameters compare to the DCM approach.

A quaternion is defined as a combination of a scale q0 and a vector q = (q1, q2, q3);

q = q0 + q = q0 + q1i+ q2j + q3k (2.21)
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2.5 Attitude Mechanization

The relationship of the i, j and k are introduced as Eq.(2.22)

i2 = j2 = k2 = ijk

ij = −ji = k

jk = −kj = j

ki = ik = j

(2.22)

There are four ways to represent quaternion.

• In vector combination form, quaternion Q can be expressed as

Q = q + q (2.23)

• In complex number form,

Q = q0 + q1i+ q2j + q3k (2.24)

and its conjugate is

Q∗ = q0 − q1i− q2j − q3k (2.25)

• In triangle form,

Q = cos
θ

2
+ ucos

θ

2
(2.26)

where u is the unit vector.

• In matrix form,

Q =


q0

q1

q2

q3

 (2.27)

2.5.3.1 Quaternion Addition and Deduction

Considering quaternion q add quaternion p, quaternion p is denoted as

p = p0 + p1i+ p2j + p3k (2.28)
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2.5 Attitude Mechanization

Adding two quaternions acts component wise, quaternion p±q is presented as below

q ± p = (q0 ± p0) + (q1 ± p1)i+ (q2 ± p2)j + (q3 ± p3)k (2.29)

2.5.3.2 Quaternion Multiplication

The product of a vector a and a quaternion q are presented as

aq = aq0 + aq1i+ aq2j + aq3k (2.30)

The product of two quaternions p× q are presented as

q × p = (q0 + q1i+ q2j + q3k)× (p0 + p1i+ p2j + p3k)

= (q0p0 − q1p1 − q2p2 − q3p3) + (q1p0 + q0p1 + q3p2 − q2p3)i

+ (q2p0 + q0p2 + q1p3 − q3p1)j + (q3p0 + q0p3 + q2p1 − q1p2)k

(2.31)

Wrote in matrix form

q × p =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 −q0 −q1

q3 −q2 q1 q0




p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

 (2.32)

From Eq.(2.32), we can see the first column of the matrix q and p are the quaternion

q and p themselves and the fist row are the conjugate of the quaternion q and p,

the lower 3× 3 matrix is the core of the quaternion q and p product [31].

2.5.3.3 Quaternion Division-Inversion

If P×R = 1, then quaternion R is the inversion of quaternion P, denotes as P = R−1

or R = P−1. Base on the norm rule,

P × P ∗ = (P0 + P1i+ P2j + P3k)× (P0 − P1i− P2j − P3k)

= P 2
0 + P 2

1 + P 2
2 + P 3

3

= ‖P‖

(2.33)
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2.5 Attitude Mechanization

Since,

P × P ∗

‖P‖
= 1 (2.34)

the inversion of quaternion P is

P−1 =
P ∗

‖P‖
(2.35)

2.5.3.4 Quaternion Rotation

Consider a frame a align with a frame b, then frame a rotates θ degree base on

vector E. Quaternion b represents the transformation matrix.

b =

 cos θ
2

Ecos θ
2

 (2.36)

The unit quaternion b has the normalirity property that ‖b‖ = 1.

Cosidering the v = Cb
az represents the coordinate z in frame a, v is the coordinate

z which represents in frame b. Quaternion v and z are represent as

qv =

0

v

 (2.37)

qz =

0

z

 (2.38)

In quaternion matrix

qv = bqzb
∗

qv =


b0 −b1 −b2 −b3

b1 b0 −b3 b2

b2 b3 b0 −b1

b3 −b2 b1 b0




b0 b1 b2 b3

−b1 b0 −b3 b2

−b2 b3 b0 −b1

−b3 −b2 b1 b0


0

z

 (2.39)
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2.5 Attitude Mechanization

The product is

b× b∗ =


1 0 0 0

0 b2
0 + b2

1 − b2
3 − b2

2 2(b1b2 − b0b3) 2(b1b3 + b0b2)

0 2(b1b2 + b0b3) b2
0 − b2

1 + b2
3 − b2

2 2(b2b3 − b0b1)

0 2(b1b3 − b0b2) 2(b0b1 + b2b4) b2
0 − b2

1 − b2
3 + b2

2

 (2.40)

Therefore, the transformation matrix Cb
a can be simplified as

Cb
a =


b2

0 + b2
1 − b2

3 − b2
2 2(b1b2 − b0b3) 2(b1b3 + b0b2)

2(b1b2 + b0b3) b2
0 − b2

1 + b2
3 − b2

2 2(b2b3 − b0b1)

2(b1b3 − b0b2) 2(b0b1 + b2b4) b2
0 − b2

1 − b2
3 + b2

2

 (2.41)

Converting the quternion back to the Euler angle, the φ, θ, ψ

φ = atan2(2(b2b3 − b0b1), 1− 2(b2
1 + b2

2)

θ = sin−1(2(b1b3 − b0b2))

ψ = atan2(2(b1b2 − b0b3), 1− 2(b2
2 + b2

3)

(2.42)

2.5.3.5 Quaternion Derivative

As mentioned before, a quaternion can be represented in triangle form as

Q = cos
θ

2
+ ucos

θ

2
(2.43)

Within ∆t time, the change of the quaternion ∆t can be expressed as

∆Q = cos
∆θ

2
+ ω̂sin

∆θ

2
(2.44)

This change can be considered as rotating about the instantaneous axis ω̂ = ω
‖ω‖ ,

with ∆θ angle. Therefore, Eq.(2.44) can be expressed as

∆Q = cos
‖ω‖∆t

2
+ ω̂sin

‖ω‖∆t

2
(2.45)

since ∆θ = ‖ω‖∆t.
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2.6 IMU Mechanization

The rotation quaternion at time t+ ∆t, Q(t+ ∆t) can be expressed as

Q(t+ ∆t) = ∆QQ(t) (2.46)

From Eq.(2.45) and Eq.(2.46), the difference of quaternion within ∆t time can be

represented as

Q(t+ ∆t)−Q(t) = (cos
‖ω‖∆t

2
+ ω̂sin

‖ω‖∆t

2
)Q(t)−Q(t)

= −2sin2‖ω‖∆t

2
Q(t) + ω̂sin

‖ω‖∆t

2
Q(t)

(2.47)

Skip the higher order [32], the derivative of quaternion Q,can be expressed

Q̇ = lim
∆t→0

Q(t+ ∆t)−Q(t)

= ω̂ lim
∆t→0

sin‖ω‖∆t
2

)

∆t
Q(t)

= ω̂
d

dx
sin(
‖ω‖∆t

2
)|t=0Q(t)

=
1

2
ω(t)Q(t)

(2.48)

The last part of Eq.(2.48) is commonly used in quaternion update algorithm.

2.6 IMU Mechanization

As the IMU name presented, the measurements of the IMU are angular velocity and

specific force. These measurements contain huge amount of noise and earth gravity,

therefore the measurement of IMU cannot use directly, a series of algorithms are

required to obtain the navigation information [33]. These series of algorithms is

named as IMU mechanization.

2.6.1 IMU Measurement Model

The acceleration f̃ b and the angular velocity ω̃ can be measured by IMU, and the

results are presented as Eq.(2.49b)

f̃ b = f b + ∆f b (2.49a)

ω̃ = ωbib + ∆ωbib (2.49b)
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2.6 IMU Mechanization

where ∆f b and ∆ωbib represent the error of specific force and inertial relative angular

rate measurement. If there is no error in IMU measurement, which is impossible in

reality, the relationship between the position ṙn and the velocity vn are presented

as below

ṙn = D−1vn (2.50)

where ṙn is in navigation frame which contains φ is the latitude, λ is the longitude,

and h is the height above the earth surface;

D−1 =


1

Rm+h
0 0

0 1
(Rn+h)cosα

0

0 0 −1

 (2.51)

where Rm and Rm are the radii of curvature in the meridian and prime vertical and

computed as Eq.(2.52)

RM =
a(1− e2)

(1− e2 · sin2ϕ)3/2

RN =
a

(1− e2 · sin2ϕ)1/2

(2.52)

where a = 6378317.0m and e = 0.0818 are the semi-major axis length and the

eccentricity of the WGS-84 ellipsoid [34].

The velocity model can be expressed as Eq.(2.53)

v̇n = RENC
b (f b − ba)− (2ωnie + ωnen)vn + gn (2.53)

v̇n = [vN , vE, vD] is the platform velocity, RENC
b is the transformation matrix from

body-frame to local-frame and Rb
ENC for vice versa. f b is the specific force measured

by accelerometer; ωnie and ωnen are the Earth turn rate in local-frame and the turn

rate of the local-frame with the respect to the Earth;

ωnie =
[
0 σcosφ σsin(φ)

]T
(2.54)

The local frame rotate rate respect to ECEF frame ωnen can be obtained as

ωnen =
[
−vn
RM+h

vE
RN+h

vEtanφ
RN+h

]
(2.55)
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2.6 IMU Mechanization

where g is the local gravity vector, ba is the drift of the accelerometer. Attitude

mechanization ωbnb can be expressed as below Eq.(2.56)

ωbnb = ωbib −Rb
ENC(ωnie + ωnen)bg (2.56)

ωbib is the body angular rate measured by gyroscopes expressed in the b-frame, bg is

the drift of the gyroscope.

In our project, the IMU provides the measurements of accelerometer and gyro-

scope in 6 degree of freedom. Through these measurements, the orientation of the

IMU can be estimated using Kalman filter. The orientation results are presented as

Figure 2.7.

Figure 2.7: Orientation Estimation

2.6.2 INS Error Model

There is no doubt that IMU measurement contains error and these errors drift the

IMU navigation results. Since the IMU error could be accumulated with time, the

IMU error propagation model need to work alongside with the system motion model

in order to further correct the error. The following sections analysis the error model

of IMU measurement.
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2.6 IMU Mechanization

2.6.2.1 Position Error Model

The relationship between geodetic coordinate change and velocity can be expressed

as Eq.(2.57) 
φ̇

λ̇

ḣ

 =


VN

RM+h

VE
cos(φ)(RN+h)

−VU

 (2.57)

Position change φ, λ, h are represent Longitude Latitude and Height respectively.

Velocity are in NEU frame. Since Eq.(2.57) is a nonlinear function, Eq.(2.57) can

also be simplified as

Ṗ = fp(P, v)

˙̂
P = fp(

˙̂
P, ˙̂v)

(2.58)

The parameters with ffl̂ represent the measurement value. Linearised Ṗ around
˙̂
P ,

and neglected the higher order, the rest is presented as Eq.2.59)

Ṗ = fp(P̂ , v̂) + FrrδP + Frvδv + Frεε (2.59)

Therefore, position error can be formulated as

∆P = FrrδP + Frvδv + Frε + δε (2.60)

Detail of matrix Frr, Frv, Frε are demonstrated as below.

Frr =


0 0 −v̂n

(RM+h)2

v̂esin(ϕ̂)

(RN+ĥ)cos(ϕ̂)2
0 −v̂e

(RN+ĥ)2cos(ϕ̂)

0 0 0

 (2.61a)

Frv =


1

(RM+ĥ)
0 0

0 1

(RN+ĥ)cos(ϕ̂)
0

0 0 −1

 (2.61b)

Frε =


0 0 0

0 0 0

0 0 0

 (2.61c)
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2.6 IMU Mechanization

2.6.2.2 Velocity Error Model

The velocity change under geographic frame can be estimated as Eq.(2.62) present

˙̂
V n
e = fn − Pfn + R̂n

b∆f b + gn − δgn − (ω̂nen + 2ω̂nie)V̂
n (2.62)

Subtract Eq.(2.62) − Eq.(2.53),and linearised the result, the velocity error can be

expressed as

δV̇ = FvrδP + FvvδV + Fvεε−Rn
b δf

b (2.63)

where P = ε(×), and the Fvr, Fvv and Fvε can be expressed as

Fvr =


2σ(Vusinϕ+ VNcosϕ) + VEVN

(RN+h)cos2ϕ
0 VEVU

(RN+h)2
− VEVN tanϕ

(RN+h)2

−2σVEcosϕ−
V 2
E

(RN+h)cos2ϕ
0

VRN
VU

(RM+h)2
+

V 2
Etanϕ

(RN+h)2

−2σVEsinϕ 0 − V 2
E

(RN+h)2
−

V 2
RN

(RM+h)2
+ 2g

R+h


(2.64a)

Fvv =


VN tanϕ
RN+h

− VU
RN+h

2σsinϕ+ VEtanϕ
RN+h

−2σcosϕ− VE
RN+h

−2σsinϕ− 2VEtanϕ
RN+h

− VU
RM+h

− VN
M+h

2σcosϕ+ 2VE
RN+h

VN
RM+h

0

 (2.64b)

Fvε =


0 fU −fN
−fU 0 fE

fN −fE 0

 (2.64c)

2.6.2.3 Attitude Error Model

From Eq.(2.56), the attitude error model can be expressed in linear model as the

Eq.(2.65) presented below:

ε̇ = R̂n
b (δωbib − δωbin) (2.65)

The following steps aim to linearise the Eq.(2.65) with respect to δP, δV and δε and

the gyro sensor error δωbib,

The inertial rotation represent in body-frame with respect in n-frame can be

expressed as

ωbin = Rb
nω

n
in (2.66)
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2.7 LiDAR Mechanization

The derivation of δωbin can be formed as Eq.(2.67),

δωbin = R̂b
n(δωnin − Pω̂nin) (2.67)

Substitute Eq.(2.67) to Eq.(2.65),

ε̇+ ω̂ninε = −δωnin +Rn
b δω

b
ib (2.68)

since δωnin = ωnin − ω̂nin, after Taylor expansion

δωnin = [
∂ω̂in
∂ε̂

,
∂ω̂in

∂V̂
]

 δε
δV

 (2.69)

Therefore, finally,

ε̇ = FεP δP + FεV δV + Fεεδε+ R̂n
b δω

b
ib (2.70)

Where

Fεr =


0 0 − VN

(RM+h)2

σsinϕ 0 VE
(RN+h)2

−σcosϕ− VE
(RN+h)cos2ϕ

0 VEtanϕ
(RN+h)2

 (2.71a)

Fεv =


0 1

RM+h
0

− 1
RN+h

0 0

− tanϕ
RN+h

0 0

 (2.71b)

Fεε =


0 σsinϕ+ VEtanϕ

RN+h
−σcosϕ− VE

RN+h

σsinϕ− VEtanϕ
RN+h

0 VN
RM+h

σcosϕ+ VE
RN+h

VN
RM+h

0

 (2.71c)

2.7 LiDAR Mechanization

LiDAR transmit and receive the light signal to measure the distance and angle

between the sensor and surrounded obstacles. Obviously, these collected data cannot

be used in navigation directly. A series of navigation algorithms are required to

process scanning and matching technique [20] which is the common technology in

LiDAR navigation. The following sections introduce the relevant theories of LiDAR

navigation.
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2.7 LiDAR Mechanization

2.7.1 Polar Coordinates and Euclidean Coordinates

The distance and angle which measured by LiDAR are expressed in polar coordinate

(ρ, α). To convert the polar coordinate to euclidean coordinate,the relationship

between the polar coordinate and the euclidean coordinate can be expressed as

x = ρ× cosα (2.72a)

y = ρ× sinα (2.72b)

Figure 2.8 also present the relationship between the polar coordinate and euclidean

coordinate.

Figure 2.8: Polar Coordinate and Euclidean Coordinate

2.7.2 LiDAR Navigation Mechanization

Unlike the satellite based absolute navigation, the LiDAR navigation is a relative

navigation. This relative navigation approach is demonstrated as Figure 2.9, the blue

squares represent the location of the LiDAR sensor at time i and i+ 1 respectively,

the position of the perpendicular intersection point in Cartesian coordinate can

be expressed as (xi, yj) corresponding to LiDAR measurement is (ρi, αi). At time

i+ 1, the position of the perpendicular intersection point in Cartesian coordinate is

(xi+1, yj+1) with corresponding Polar coordinate (ρi+1, αi+1).
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2.7 LiDAR Mechanization

Figure 2.9: LiDAR Operation Diagram

As Figure 2.9 shows, the feature 1 and feature 2 are the extracted line feature

from the surround obstacle which are considered as the reference location. The

position change of LiDAR sensor from time i to time i + 1 is equal to (∆x,∆y)

in Cartesian coordinate. The perpendicular distance difference between the same

feature to the LiDAR sensor ∆ρ from time i to i+ 1 is expressed as Eq.(2.73)

∆ρ = ρi − ρi+1

= a+ b
(2.73)

where

a =
∆x

sinα
(2.74a)

b = ∆ρ− a (2.74b)

As Figure 2.9 illustrated, ∆y can be expressed as Eq.(2.75),

∆y = a · cosα +
b

cosα
(2.75)

Substitute Eq.(2.74) into Eq.(2.75), Eq.(2.75) can be represented as Eq.(2.76)

∆y =
∆x

sinα
· cosα + (∆ρ− ∆x

sinα
) · 1

cosα
(2.76)
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2.8 Summary

Finally we have the relationship between the relative Cartesian coordinate (∆x,∆y)

and the Polar coordinate (∆ρ,∆α)

cosαsinα∆y = −sin2α∆x+ sin∆ρ

∆ρ = cosα∆y + sinα∆x
(2.77)

The azimuth difference can be expressed as

∆α = αi+1 − αi (2.78)

In relative positioning, at least two non-collinear line features are required for the

displacement vector estimation. The measurement matrix can be denoted as

z =


ρi(1)− ρi+1(1)

. . .

ρi(n)− ρi+1(n)

 (2.79)

where n represents the total number of the extracted line in one scanning circle.

The transient matrix H can be expressed as

H =


cos(αi)(1) sin(αi)(1)

. . .

cos(αi)(n) sin(αi)(n)

 (2.80)

Then in the matrix form, if there are n number lines can be extracted, the LiDAR

navigation equation can be expressed as Eq.(2.81)


ρi(1)− ρi+1(1)

. . .

ρi(n)− ρi+1(n)

 =


cos(αi)(1) sin(αi)(1)

. . .

cos(αi)(n) sin(αi)(n)


∆x

∆y

 (2.81)

2.8 Summary

This chapter introduced the structure of the GPS receiver and signal. As a BPSK

modulated signal, a better understanding of the characteristics of the modulated

code and message can benefit the design of an efficient acquisition and tracking

approach. Furthermore, several GPS inaccurate sources have been discussed and
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2.8 Summary

evaluated in order to avoid or reduce the error and inaccuracies which are generated

by these sources. In addition, to design a robust and efficient multisensor integrated

navigation scheme, several sensors and their related theory are reviewed, such as the

concepts of different coordinate frames and their transformation algorithms, IMU

navigation mechanization and its error model, relevant navigation theory and Line

feature extraction for LiDAR navigation. All this relevant information and theory

will feature in the following chapters.
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Chapter 3

Effective Signal Acquisition

through Low-cost Dual Polarized

GPS antenna

3.1 Introduction

As mentioned before, a 50 bps navigation code and a pseudorandom code are mod-

ulated on a 1575.42 MHz L1 band carrier frequency. The civilian pseudorandom

codes are called Coarse and Acquisition (C/A) codes and the frequency is 1.023

MHz. Benefiting from the C/A codes high correlated characteristic, even when the

transmission distance between the receiver and the satellites is more than 22,000

km, the receiver still can distinguish each individual satellite signal.

The GPS L1 band signal is a right hand circular polarized(RHCP) electromag-

netic(EM) wave. Conventional GPS antennas could collect this EM wave in order

to allow the receivers to process the acquisition and tracking, eventually decoding

the navigation message and calculating the user location. However, in a very dense

multipath environment, the RHCP EM wave could become the LHCP EM wave

after several occurrences of reflection. Normally, the anti-multipath antenna are

designed to reject the reflected signal to reduce the multipath effect, however this

method could reduce the quantity of the acquired satellites. As we mentioned in the

previous chapter, the more satellites signal received, the better positioning accuracy

can be achieved. Therefore, acquiring more satellites is the main concern to improve

the positioning performance especially under the harsh environment.
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3.2 Acquisition Approaches

It is intuitive that in a very dense multipath environment, when the RHCP

signal is rare, a LHCP signal become sufficient. Simply rejecting the LHCP signal

is not an efficient method to obtain better performance in multipath environments.

Studies such as [35] [7], thus successfully implement a LHCP signal in sensing and

altimetry, have proved that LHCP signal is not completely useless. Therefore, using

LHCP signal to provide aiding information when direct signal is not strong is an

optimal and efficient approach. To collect the LHCP signal, a dual polarization

patch antenna is designed. The dual polarization patch antenna is low cost and

able to collect both direct and reflected signals. Furthermore, implementation of

the software based GPS receiver [36] can provide an excellent research platform for

investigating the performance of the dual polarization patch antenna with the novel

acquisition approach. The acquisition approach is the first step of the GPS baseband

signal processing and the condition of the navigation message decoding. A sensitive

and efficient acquisition approach can benefit the performance of the GPS receiver.

In this chapter, several conventional GPS signal acquisition approaches have been

reviewed, e.g., serial searching, and FFT based parallel searching. Furthermore,

after comparing and analyzing the existing acquisition approach, a modified serial

searching approach and a dual polarization antenna are designed and implemented

in order to acquire the weak signal in a very dense multipath environment.

3.2 Acquisition Approaches

Within GPS signal processing, acquisition is the primary and crucial process to

coarsely estimate the code phase and Doppler frequency band. The performance of

the GPS receiver is highly depended on the speed and the accuracy of the acqui-

sition result. The following sections will review and evaluate several conventional

acquisition approaches and propose a novel acquisition approach named modified

serial searching acquisition approach.

3.2.1 Signal Serial Searching Acquisition

GPS acquisition is a processing of 3D searching include 41 frequency searching band,

32 sequence of C/A code, and 1023 chips within a C/A code. Serial searching is the

most simplest and straightforward acquisition algorithm. A non-coherent correlator
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3.2 Acquisition Approaches

is used since the phase of the received signal is random. As the Figure 3.1 illustrate,

first of all, the received IF signal will multiply the replicated CA which is generated

by the local generator [5]. Local CA code generator creates 32 sequence of CA code

correspond to 32 satellites from 0-1022, total is 32736 code. Then the local oscillator

generate two local carrier frequency signal with 90◦ difference. The incoming IF

signal xt mix with the replica C/A code and the local carrier frequency signal to

generate I and Q component. Afterwards the I and Q signal will be integrated for

a specific length of time. Typically, the integration length is 1 ms to correspond 1

C/A code length.

Figure 3.1: Generic serial searching Acquisition

Normally, the Doppler shift is roughly ±10KHz, therefore the receiver must

search in 20KHz band for visible GPS signal in order to cover all the Doppler

shift. The optimal Doppler frequency searching bin size is 500Hz this gives total 41

different frequencies to be searched for a band of 20KHz. Next step of serial search-

ing acquisition is integration and squaring, integration perform sum function of all

points corresponding to the length of the processed data. Squaring is introduced

to obtain the signal power. Finally the I and Q components are sum together. If

the replica code is well aligned with the incoming code, the result will significantly

higher than the others. The serial searching result R can be presented as Eq.(3.1)

R =
K−1∑
j=0

(

(j+1)NL−1∑
t=jNL

x[t] · CA[t] · cos[Ωt]

2

+

(j+1)NL−1∑
t=jNL

x[t] · CA[t] · sin[Ωt]

2

)

(3.1)

where t represent th tth sample, L is the total samples within one period of C/A code.
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3.2 Acquisition Approaches

N represents the total number of the period need to be integrated. Serial searching

acquisition is a deep and complete searching approach, thus it is very sensitive to

weak signal however the computation cost is high since it needs to search all 41

frequency band and 2046 code total in 83886 unit.

3.2.2 Parallel Frequency Space Search Acquisition

In [37], a parallel frequency searching approach has been presented. Instead of

searching 41 frequency band one by one, this fast Fourier transform (FFT) based

parallel searching approach can search all 41 band in one time. As Figure 3.2

presents, the IF signal xt perform correlation process with the replica C/A code, the

correlation result will process a Fourier transform, therefore the correlation result

in time domain become frequency strength in frequency domain.

Figure 3.2: Parallel Frequency Space search Acquisition

If the incoming signal has a well align with the local generate PRN code, the

outcome signal will become continuous and have a distinct peak in magnitude. The

accuracy of the determined frequency depends on the length of the DFT.

3.2.3 Parallel Code Phase Search Acquisition

Parallel frequency space search reduce the 41 × 2046 combinations to 1 × 2046

combinations via Fast Fourier transform. However, it is obviously that the amount

of code phase dimension is larger than frequency dimension, therefore reduce the

number of code searching can significantly improve the acquisition speed.

As the Figure.3.3 presents, digitized IF signal will be multiplied by a local os-

cillator generated carrier signal with 90◦ phase shifted. Therefore, the input sig-

nal xt represent in discrete form is x(n), the complex form can be expressed as

x(n) = I(n) + jQ(n), then the FFT of this input signal need to be computed, the

FFT result multiply with the complex conjugate of CA code. This is because of
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3.2 Acquisition Approaches

Figure 3.3: Parallel Code phase search Acquisition

the process of autocorrlation in time domain is equivalent to the process of multi-

plication in frequency domain. Finally, the product of income signal and PRN code

conjugate will convert back to time domain by Inverse Fast Fourier transform. In

one PRN code and 41 frequency band, phase of CA code does not need to be shifted,

therefore, the replica PRN code can be stored and reused in different frequency.

The equivalence of autocorrelation and Fourier transform is presents as Eq.(3.2-

3.4) The correlation value z(n) of two periodic sequence number x(n) and y(n) are

presented as Eq.3.2:

z(n) =
1

N

N−1∑
m=0

x(m)y(m− n) (3.2)

Based on the discrete Fourier transform

Xm =
N−1∑
n=0

xne
−2πjnm/N (3.3)

The result of correlation value z(n) perform DFT

Z(k) =
N−1∑
n=0

zne
−2πjnm/N

=
1

N

N−1∑
m=0

x(m)y(m− n)e−2πjnm/N

=
1

N

N−1∑
m=0

x(m)e−2πjnm/N

N−1∑
m=0

y(m− n)e−2πjnm/N

=
1

N
X(K)Ȳ (K)

(3.4)

In Eq.(3.4) X(k) and Y (k) are and DFFT result of x(n) and y(n), and Ȳ (k) is the
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3.3 A Modified GPS Serial Searching Approach

conjugate value of complex number y(n). Equation 7 proves the correlation value

of two sequences in time domain equal the product of these two sequence’s DFT

value in frequency domain. Vice versa, product of two DFT values X(k)Ȳ (k) equal

the correlation value z(n) in time domain. Once the receiver obtain the value z(n)

through inverse Fourier transform, then the rest parts are the same as serial search

approach.

The computational time of parallel code phase search approach is significantly

reduced compared to the previous two approach [38], however code phase search-

ing approach needs to perform two times of Fourier transform algorithm for every

frequency band search. In order to reduce the computational time, two methods

can be deployed: first the CA code is not changed if it is from the same satellite,

therefore the Fourier transform value and its conjugate value can be stored in re-

ceiver. Second, input IF signal is constant no matter which frequency band needs

to be searched, therefore the Fourier transform result multiply the carrier signal is a

constant as well, this result can be shared by different satellite PRN code searching

within same frequency band.

3.3 A Modified GPS Serial Searching Approach

After comparing and analysing the pros and cons of the parallel searching and se-

rial searching acquisition approaches, a modified serial searching based approach is

proposed in order to acquire low strength GPS signals. Furthermore, a dual polar-

ization patch antenna is designed in order to acquire left hand polarization signal.

As we have discussed previously, serial searching acquisition is simpler to implement

and more sensitive to weak signals, but the computational cost is relatively higher

compare to FFT based parallel searching. Therefore, we propose a step jumping se-

rial searching acquisition method to reduce serial searching computation cost while

still retaining sensitivity to weak signals.

In our proposed algorithm, the input signal x[n] is sampled at fs Hz and cor-

related with the locally generated replica C/A code, unlike the conventional serial

searching processing which every single bit need to be processed, a sliding step size

i is implement to reduce the computation cost. This is mathematically given as
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3.4 Dual Polarization Patch Antenna Design and Testing

Eq.(3.5),

R2 [m] =

(K−1)N/i∑
j=0

([

(j+1)NL−1+ij∑
n=ij+1

x[n]ReCA[n]cos(2πfc)]
2

+[

(j+1)NL−1+ij∑
ij+1

x[n]ImCA[n]sin(2πfc)]
2)

(3.5)

The input signal x[n], which range is identified from x[1] to x[NL] to perform the

correlation process with the same length replica C/A code. Unlike the conventional

serial searching approach, in step jumping method, if the beginning sample is not

found in the first range then the input signal jumps to the next range from x[ji+ 1]

to x[NL + ji]. Due to the C/A code high correlative property, the correlation

results will retain the same even a reasonable size i of bits is skipped. Therefore

the the computation cost can be reduced i times compare to the conventional serial

searching method. A higher step size can reduce the computation cost but the

sensitivity will be effected at the same time. In order to mitigate this trade off, the

maximum step value needs to be carefully chosen. The beginning of the C/A code

could be missed if the step size value exceed the number of the samples in one chip.

Due to the chip rate of the C/A code being 1.023MHz, the maximum step i equals

fs
1.023×106

. An experiment which aims to compare processing time was conducted

with a sampling frequency fs equal to 8MHz, meaning the maximum step value

was 8. The comparison results are illustrated in Figure 3.4 and the step jumping

method with a step value equal to 5 and 8 are much faster than conventional serial

searching, especially when the number of periods N is more than 1. Therefore, the

step jump searching reveals a significant advantage compared to conventional serial

searching when N is a higher value. Figure 3.5 and Figure 3.6 demonstrate the C/A

code correlation result of PRN 4, the results indicate that the with a significantly

improve the processing time, the results still retain the same.

3.4 Dual Polarization Patch Antenna Design and

Testing

To adopt the GPS signal acquisition under a very massive multipath environment,

we propose a dual polarization attach to collect both direct and reflect GPS signal,
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Figure 3.4: Processing Time Comparison

Figure 3.5: Acquisition Results from Conventional Approach

Figure 3.6: Acquisition Results from Step Jumping Approach
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a dual polarization patch antenna is designed and tested in the following sections.

3.4.1 Patch Antenna Design

As we know, a directly received GPS signal is a right hand polarization electrome-

chanical (EM) wave. However, after several times of reflection, GPS signal may

become left hand polarization, especially under a very dense multipath environ-

ment. Conventional GPS antenna is a RHCP antenna which aims to reject LHCP

signal to reduce the multipath effect. Therefore, in order to improve the acquisition

ability of the GPS receiver under a multipath environment, a dual polarization an-

tenna is proposed and designed. To reduce the antenna cost, this dual polarization

antenna is designed as a patch antenna.

A patch antenna, also known as a microstrip antenna, to ensure the transmission

wave is available, a matched load needs to be added at the end of the microstrip

antenna [39]. To avoid the dual polarization interference effect, the technical param-

eters of the designed patch antenna need to be carefully selected. Since the designed

antenna aims to collect the GPS L1 band, its center frequency 1575.42 MHz is one

of the concern to the designed patch antenna. In another word, the frequency range

of the patch antenna need to correspond to the center frequency of the GPS L1

band.

The Voltage standing wave ratio(VSWR) is another crucial parameter, in which

decided by reflected coefficient. To an antenna, a small amount of the energy will

be reflected when EM waves are transmitted from one medium to another. The

ideal value of VSWR is 1, means that the reflection coefficient is zero and there is

no reflection from the antenna. The value of VSWR can be obtained as Eq.(3.6)

Eq.(3.6)

V SWR =
1 + |Γ|
1− |Γ|

(3.6)

FR4 is a typical PCB material which is commonly used as a substrate in patch

antennas. FR4 is a low cost and general material with permittivity εr of is 4.7 and

its thickness is 1.55 mm [40]. The sizes of the GPS patch antenna are calculated
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using Eq.(3.7) and Eq.(3.8)

W =
c

2fr

√
2

εr + 1
(3.7)

L = Leff − 2∆L (3.8)

where W and L are the width and length of the patch antenna, εr is the permittivity

of FR4 which is equal to 4.7, c is the velocity of light, fr is the resonate frequency,

∆L is the length of the radiation slots and Leff is the length of the radiation defined

as Eq.(3.9) presented

Leff =
C

2fr
√
εeff

(3.9)

where εeff is the effective electric constant that can be calculated as below

εeff =
(εr + 1) + (εr − 1)

√
1+12h
W

2
(3.10)

h is the thickness of the substrate and it is given as 1.55 mm. Since the electric

constant has been calculated, radiation slots can also be obtained by [41].

∆L = 0.412h
(εeff + 0.3)(W

h
− 0.264)

(εeff − 0.258)(W
h

+ 0.8)
(3.11)

Since we are designing a dual polarization antenna, both LHCP and RHCP antenna

are attaches on the same substrate, the interference from each individual antenna

need to be considered and minimized. To reduce the interference effect from two

antennas, one wavelength distance from one patch antenna center to another center

is required.

Furthermore, the GPS signal is EM wave, to reduce the patch size and enhance

the bandwidth, each patch antenna need to truncate a corner [42]. The truncated

size ∆S and truncated length l are dependent on the patch size S and Q-factor
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which can be calculated use Eq.(3.12) and Eq.(3.13)

∆S| = S

2Q
(3.12)

l = L

√
∆S

S
(3.13)

where Q is the unloaded quality factor of the patch and associate to cavity mode

14 [43].

Q =
C
√
εr

4frh
(3.14)

Through the calculations, the parameters of the patch antenna is listed as Table 3.1

The technique drawing of the patch antenna is presented as Figure 3.7

Table 3.1: Parameter of Patch Antenna
Width 55.8mm
Length 46mm
Truncated Size 19.4mm
Truncated Length 3.9mm

Figure 3.7: Antenna Technique Drawing

3.4.2 Patch Antenna Testing

To evaluate the performance of this designed patch antenna, a Miscowave CST

studio is used. The testing results indicated that the designed patch antenna is
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suitable for GPS L1 band LHCP and RHCP signal. The S11 indicates the amount

of the power is reflected from the antenna. And this is also known as reflection

coefficient Γ. As Figure 3.8 Figure 3.8 and Figure 3.9 Figure 3.9 indicate that the

antenna radiates best at around 1.575 GHz and S11 is -30 dB. And rest of them will

radiate nothing.

From the Figure 3.10 and Figur. 3.11 and their enlarged view Figure.3.10(B)

and Figure 3.11(B),the VSWR is 1.06 for RHCP and 1.07 for LHCP.

One of the most important parameter for antenna design is the antenna radiation

main lobe and side lobe. As Figure3.12 presents, the far field polar chart, the main

lobe magnitude of RHCP is 7.18 dB and the side lobe is -18.8 dB and the main

lobe magnitude of LHCP is 7.17 dB and the side lobe is -18.8 dB. This is proof

that this dual patch antenna is suitable for GPS L1 band direct and reflected signal

collection.

Figure 3.8: S parameter of RHCP signal

The simulation results has confirmed that this dual polarization patch antenna is

suitable for the GPS L1 band and its reflected signal. Thus, the technique drawing

of the patch antenna is presented as Figure 3.7 manufactured antenna is shown in

Figure 3.13. In order to test the performance of the antenna, especially for reflected

LHCP signal acquisition, a field test will be performed, a very dense multipath

environment is chose to collect LHCP signal.
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Figure 3.9: S Parameter of LHCP signal

Figure 3.10: VSWR of RHCP signal

Figure 3.11: VSWR of LHCP signal
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Figure 3.12: Left Hand Far Field Polar Chart vs Right Hand Far Field Polar Chart

Figure 3.13: Passive Patch Antenna
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3.5 Experiment Setup and Results Analysis

In order to implement GPS raw data collection, a USRP based GPS receiver is

implemented and compared against a commercial GPS receiver as Figure 3.14 pre-

sented. The USRP receiver is consisted of a self designed dual-polarization patch

antenna and a USRP. The USRP is used as a radio frequency front-end device. In

our experiment, the USRP 2930 is chose, as the operation frequency is from 500

Hz to 2.2 GHz. Therefore, it is sufficient to process 1575.42 MHz GPS L1 band

signal. The results are compared with a NovAtel GNSS stationary receiver which is

attached by a Leica AC1203+ GNSS antenna. To obtain the same time error, the

USRP based receiver is synchronized with NovAtel receiver.

Figure 3.14: Connection Diagram

3.5.1 Experiment Setup and Location

The experiment was conducted in the center yard of Merz Court in Newcastle Uni-

versity as Figure 3.15 and Figure 3.16 demonstrated, this location is surrounded by

tall buildings and considered as a very dense multipath environment. Under this

kind of environment, directed GPS signal is much less than reflected signal. Due

to the rapidly movement of the satellites, the different elevation angles play a sig-

nificant role on the performance of acquisition. In order to test the reliability of

the proposed acquisition approach, the experiment was undertaken for 3 successive

days at the same time 12:40 pm to acquire the same satellites at uniform elevation

angle. The GPS signal was recorded by both USRP based receiver and NovAtel

commercial receiver.

The sampling frequency is set to be 5MHz since the C/A code is 2.045 MHz.
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Figure 3.15: Experiment location

Figure 3.16: Experiment Environment and Data Collection

54



3.5 Experiment Setup and Results Analysis

The center frequency is set to be 1575.42MHz corresponding to L1 band signals.

The USRP based front-end collects the broad band signal and down-convert to

intermediate frequency (IF) without any resolution lost, the received LHCP IF signal

is collected and plotted in the time and frequency domain as Figure 3.17 and Figure

3.18 present. The IF signal appears as noise because of the high noise level. From

Figure 3.18 we can see the center frequency of the IF signal is at 1.25MHz, so based

on the aforementioned Doppler effect, the Doppler searching domain 1.25MHz ±

10kHz will be sufficient.

Figure 3.17: Raw IF GPS signal in Time Domain

Figure 3.18: Raw IF GPS signal in Frequency Domain
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3.5.2 Acquisition result Comparison and Analysis in Multi-

path Environment

Acquisition results comparison are analyzed based on the commercial GPS receiver

and USRP based receiver respectively. Consequently, the NovAtel GNSS receiver

GUI (Graphic User Interface) in Figure 3.19 shows that only one satellite has suc-

cessfully been acquired through the LHCP patch antenna under such an extreme

environment.

Figure 3.19: NovAtel GUI

Commercial GNSS receivers such as NovAtel, commonly implement FFT based

parallel searching acquisition method to reduce the processing time, however under

such an extreme environment, the received signal strength is lower than the noise

level, the FFT output is obvious and cause the acquisition result fail. Nevertheless,

step jumping serial searching method belong to the family of the serial searching

can adopt in this scenario, since serial searching acquisition approach is sensitive to

the low C/No signal.

The acquisition results of the raw data processing are presented in Figure 3.20-

3.23. With the help of step jumping serial searching method, not only RN No. 9

has been successfully acquired, PRN No.7 also been acquired. The Figure 3.22 and

3.23 have presented the beginning of the code the is 3481 with frequency 1.2545

MHz. The acquisition result prove the advantages of the step jumping method and

the superior performance compare to the commercial receiver.

The modified GPS signal acquisition approach through a dual polarization patch

antenna has been introduced, the experiment results have proved the superior perfor-
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3.5 Experiment Setup and Results Analysis

Figure 3.20: Acquisition matrix output from PRN 9

Figure 3.21: Acquisition matrix output from PRN 7

Figure 3.22: Code Phase Diagram
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Figure 3.23: Doppler Frequency Shift Diagram

mance compare to the commercial receiver. The proposed method is more efficient

to weak signal acquisition and can provide compensate signal source to aid GPS

positioning

As we know, at least 4 satellites are successfully acquired, the GPS receiver can

obtain a 3D location information. But in urban environment, this is a challenging

condition, since multipath effects and low C/No are the frequently faced challenges,

and degrade the GPS receiver performance. To mitigate these challenges, a dual

polarization patch antenna with a step jump serial searching approach have been

proposed and implement, as the experiment results indicate with the proposed so-

lution, extra satellites signal can be successfully acquired. As the first step of GPS

signal processing, acquisition is essential and critical, success acquire the extra GPS

signal can significantly improve the performance of the GPS performance.

3.6 Summary

First, this chapter introduced the procedure of several GPS signal acquisition ap-

proaches and summarized their advantages and disadvantages. Furthermore, the

main challenge of the GPS signal acquisition has also been analysed. Based on the

analysed result, a dual polarization patch antenna with step jumping serial search-

ing approach has been proposed to acquire GPS signal under a massive multipath

environment.

The analysed results indicated that the signal strength is one of the main chal-

lenges in an urban environment. To overcome the low C/N signal which is col-
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lected by the patch antenna in an urban environment, a step jumping acquisition

approach is proposed to enhance the sensitivity to weak signals. Simulation and

field experiment results indicated that with the step jumping acquisition approach,

the acquisition speed is much faster than the conventional serial searching method

and benefits from the new acquisition approach. The USRP based GPS receiver is

more sensitive than the commercial GPS receiver and more suitable in a challenging

environment.
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Chapter 4

Robustness Kalman Filter Based

GPS L1 Band Carrier Tracking

Approaches

4.1 Introduction

The carrier tracking loop in a GPS receiver is considered to be an important process

but also the weakest link since signal loss of lock can occur in a variety of situations.

Due to the superior noise rejection and lower steady-state error, a third-order PLL

(Phase Lock Loop) is recommended in this research project. However, as mentioned

before the trade off between the tracking ability and the tracking accuracy can not

be neglected for a conventional third-order PLL. On a vehicular communication

channel, both greater tracking bandwidth and better tracking accuracy are required

in order to successfully lock the carrier signal in a harsh environment.

Aided carrier tracking approaches have been proposed recently, such as the im-

plementation of a Kalman filter (KF) [9], extended Kalman filter (EKF) [10,11,44] or

unscented Kalman filter (UKF)-based carrier tracking loops [12], in order to improve

the carrier phase tracking ability.

Through a comparative study of KF, EKF and UKF [45], in this chapter we

propose two novel and robust carrier tracking methods by dynamically integrating

the adaptive Kalman filter, the unscented Kalman filter and the third-order PLL

using a decentralized information sharing technique. The proposed approach utilizes

the linear system model to reduce the computational cost and due to the equivalence
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4.2 Carrier Tracking Loop

of the third order PLL and Kalman filter based carrier tracking loop which has been

studied in [46–48], the proposed approach dynamically integrates these two tracking

loops to obtain an optimal tracking result.

4.2 Carrier Tracking Loop

Once the GPS signal has been successfully acquired, receiver has only roughly esti-

mated the parameters of the frequency and code phase. Thus, the signal tracking

play an impotent role in the next step. The main purpose of signal tracking is to

refine these value in order to demodulate the navigation message and obtain the

measurement of pseudorange, phase and time. To perfectly track and demodulate

one specific GPS signal, GPS receiver needs to generate a replica carrier frequency

signal and a series of pseudorandom code to synchronize with the incoming IF signal.

However, due to the relevant movement between the GPS receiver and the satellite

as well as the offset of the receiver and satellites clock, the frequency and phase of

the income signal may change frequently and unpredictably.

The aim of the carrier tracking loop is to generate a replica carrier signal and

synchronize its frequency with the incoming GPS signal in order to peel the carrier

signal through the low pass filter and convert the IF signal back to baseband signal.

As we mentioned before, satellite and its receiver are relevant moving, therefore

the GNSS receiver receives the signal frequency fr is not equal to the satellite emit

signal frequency f , the received GNSS signal frequency is f+fd , and this fd is called

Doppler frequency shift. Base on electromagnetic propagation theory, fd equal:

fd =
υ

λ
cosβ =

υ

c
fcosβ (4.1)

where β is the incidence angle between the receiver moving direction and satellite

income signal. When receiver moves toward to the satellite incoming direction, β is

greater than zero, then the received signal frequency is higher than transmit signal

frequency, otherwise the received signal frequency is lower.

To generate the replica carrier signal, GPS receiver does not generate a con-

stant frequency signal, but generate every replica frequency signal by different time

through carrier tracking loop. Carrier tracking loop adjusts the frequency and phase

of the local signal generator in order to synchronize with the transmit signal. There-
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4.2 Carrier Tracking Loop

fore, the generated replica signal is dynamic synchronize with the income signal.

There are two types of carrier tracking loop, if the carrier tracking loop can

check the phase difference between replica carrier signal and the income signal then

adjust the replica signal phase in order to synchronize replica signal and income

signal, this approach is called phase lock loop (PLL). If the carrier tracking loop

check the frequency difference between replica carrier signal and the income signal

and adjust the replica carrier signal frequency, this approach is called frequency lock

loop (FLL).

4.2.1 Phase Lock Loop

This research work is more focus on the PLL instead of FLL, since PLL outperform

FLL the measurement accuracy [49]. In general, PLL is an electrical control loop

which can generate a periodic signal and adjust its output signal phase in order to

synchronize with the input signal.

Figure 4.1: Generic PLL Diagram

Figure 4.1 illustrates that a generic PLL consist a phase discriminator, a phase

filter and a digital control oscillator (DCO). To the system, a input signal ui (t)

with angular frequency ωi and phase θi and the output signal uo (t) with angular

frequency ωo and phase θo can be expressed in time domain as Eq.(4.2) presents

ui (t) = Uisin (ωit+ θi)

uo (t) = Uocos (ωot+ θo)
(4.2)

where, Ui and Uo are the attitude of the input and output signal. As mentioned

before, PLL aims to synchronize uo(t) and ui(t) by adjusting the phase of Ui. In
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4.2 Carrier Tracking Loop

order to detect the phase difference between ui(t) and uo(t), phase discriminator can

be simply treated as a multiplier. The result ud(t) is represented as Eq.(4.3)

ud(t) = ui(t)uo(t)

= UiUosin(ωit+ θi)cos(ωot+ θo)

= Kd {sin [(ωi + ωo)t+ θi + θo] + sin [(ωi − ωo)t+ θi − θo]}

(4.3)

The gain of the phase discriminator Kd is presented as below,

Kd = Kd =
1

2
UiUo (4.4)

when PLL is stable angular frequency ωo is very close to ωi, the first part of Eq.(4.3)

can be expressed as Eq.(4.5)

fH = sin [(ωi + ωo)t+ θi + θo] (4.5)

FH is a high frequency signal and the second part is a low frequency signal as eq.(4.6)

fL = sin [(ωi − ωo)t+ θi − θo] (4.6)

The loop filter is a low pass filter, since the output signal ud(t) contains both high

and low frequency component and only the low frequency component is desire, the

output signal ud(t) with be filtered by a Loop filter to remove the high frequency

component. The the filtered output signal uf (t) contains only the low frequency

part of ud(t)

uf (t) = KdKfsin(θe(t)) (4.7)

coefficient Kd is the gain of loop filter and the phase error θe(t) equals θi− θo, when

the loop is stable, ωi − ωo is close to zero, phase is very close as well, then Eq.(4.7)

can be expressed as below .

uf (t) ≈ KdKfθe(t) (4.8)

The output signal uf (t) will work as a input signal to the digital control oscillator.

DCO hereby generates a periodic signal uo(t), the variance of this periodic signal
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relate to uf (t), the relationship is demonstrated as below

dωo(t))

dt
= Kouf (t) (4.9)

where Ko is the gain of DCO. θo(t) is the instant angular frequency of DCO. Inte-

gration of angular frequency based time is the the phase variance. The initial phase

of DCO signal uo(t)

θo(t) =

∫ t

0

dωo(t)

dt
dt = Ko

∫ t

0

uf (t)dt (4.10)

4.3 Signal Model and Third order PLL Model

The generic carrier tracking loop has been presented in the previous section. In this

section, the complex mode of the received GPS signal will be reviewed, furthermore,

the structure of third order PLL is also introduced.

4.3.1 Complex Model of GPS Signal

Unlike Eq.(4.2), the received GPS signal ui at time t can be formed as (4.11) with

navigation and C/A code are added.

ui(t) = AN(t)C/A(t−τ)cos[(ωc + ωd)t+ φi] + n(t) (4.11)

where A is the signal amplitude, N is the navigation bits, C/A(t−τ) is the coarse

acquisition code with delay τ . ωc is the intermediate frequency of the carrier signal,

ωd is the Doppler frequency shift and n(t) is the noise.

The local oscillator generates replica in-phase (I) and quadrature (Q) carrier

signal in prompt time can be represented as (4.12), the I and Q carrier signal is in

90◦ difference as Eq.(4.12) presents .

i(t) = cos[(ωrc)t+ φr]

q(t) = sin[(ωrc)t+ φr] (4.12)

meanwhile

ωrc = ωc + ω̂d (4.13)
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where the ωrc is the replica carrier radian frequency, ω̂d is the replica Doppler fre-

quency shift, φr is the replica phase in radians. The local replica signal is multiplied

by the incoming signal ui and accumulated with time T in order to generated cor-

related signal, this processing can be presented as below.

I = AN(t)Λ(t− τ)sinc(∆ωcT )cos(∆φ) + n

Q = AN(t)Λ(t− τ)sinc(∆ωcT )sin(∆φ) + n
(4.14)

where ∆ωc and ∆φ are frequency and phase differences between the local oscillator

and the incoming signal respectively and Λ(t − τ) is the correlation result. If the

carrier tracking loop successfully locks the incoming signal, the difference between

the frequency and the phase is approximately equal to zero, then I component

contains the navigation message and noise, and the Q component contains the noise

only.

Under a dynamic environment, the average phase difference within an integration

time is not a constant value, as Eq.(4.15) presented

∆φ̄ = ∆φ0 +
T

2
ωd +

T 2

6
ωa (4.15)

the average phase difference equal the summation of ∆φ0, ωd and ωa, namely, the

carrier phase difference, Doppler frequency shift, and Doppler frequency shift rate

respectively.

4.3.2 Model of Third order Phase Lock Loop

As we mentioned, the aim of the PLL is to generate replica carrier signal with same

phase and frequency. In the discrete time format, the state model [φ, ωd, ωa]
T in

conventional third order PLL can be presented as Eq.(4.16)


φ̂

ω̂d

ω̂a


t+1

=


1 T 0

0 1 T

0 0 T



φ̂

ω̂d

ω̂a


t

+


bwn

aw2
n

w3
n

×∆φt+1T (4.16)

where φ̂ is the phase of the replica carrier signal, and Doppler frequency shift ω̂d

and shift rate ω̂a are corresponding to the estimation of velocity and acceleration.
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A Laplace transformed of the loop filter F(s) can be expressed as

F (s) =
1

K
(b3ωn +

1

s
a3ω

2
n +

1

s2
ω3
n) (4.17)

The z transform is implemented to evaluate the loop filter in discrete form. A

bilinear transform is implemented to transform the loop filter from S domain. The

transferred loop filter F(z)can be represented as

F (z) =
1

K
(b3ωn +

Ts
2

1 + z−1

1− z−1
a3ω

2
n +

T 2
s

4
(
1 + z−1

1− z−1
)2ω3

n) (4.18)

Block diagram Figure 4.2 represents the discrete 3rd order phase lock loop, the loop

filter which presents in the red dish block is associate with the

As Figure 4.2 presents, b, a and wn are the fixed parameters of the low pass filter

whose values are decided by the tracking bandwidth [50]. As previously mentioned,

due to the trade off the performance of the phase lock loop is highly dependent on

the noise bandwidth Bn as Eq.(4.19) present.

Bn =
(a3b

2
3 + a2

3 + b3)

4(a3b3 − 1)
(4.19)

Parameters a3 and b3 are decided by the nature frequency in radiance ωo the rela-

tionship is showed as Eq.(4.20)

a3ω
2
o = 1.1ω2

o

b3ωo = 2.4ωo

(4.20)

The small noise bandwidth means less noise can enter to the loop filter, therefore

the tracking performance can be accurate. However the smaller noise bandwidth

is not efficient for high dynamic signal tracking. Past experience has demonstrated

that 18 Hz is the widest noise bandwidth for 3rd order PLL under stable and all

dynamics conditions [51]. In general, the performance of the PLL can be measured

by the variance of the phase jitter as Eq.(4.21) [50].

σ2
PLL = σ2

thermal + σ2
∆φ (4.21)

where σPLL is the total phase jitter which is consisted of the thermal noise σthermal

66



4.3 Signal Model and Third order PLL Model

Figure 4.2: Third Order Phase Lock Loop Block Diagram

and the input variance σ∆φ. The thermal noise jitter can be computed as

σt =
180

π

√
Bn

C/No

(1 +
1

2TC/No

) (4.22)

where Bn is the tracking bandwidth, C/No is the carrier to noise ratio and T is the

integration time, in our case, we choose 0.001 s. As study [52] presented, the input

variance σ∆φ can be calculated by the summation of the correlated sources σcorr and

the dynamic stress error θe as (4.23a) and (4.23b) demonstrate,

σ∆φ =
√
σ2
corr +

θe
3

(4.23a)

σ2
corr = σ2

oci + θ2
A (4.23b)

where σoci is the oscillator phase error which can be calculated by (4.24) [50], and the

Allan deviation of the third order PLL σA can be obtained as (4.25) in radians [53].

θoci =
360fL

2π

√∫ fmin

fmax

S2
oci

P (fm)

f 2
m

dfm (4.24)

where fL is equal to 1575.42 MHz which corresponds to the GPS L1 band, S2
oci is

the oscillator vibration sensitivity of ∆f/fL per g as a function of fm, and fm is the

random vibration modulation frequency in Hz. P (fm) is the power curve of random

vibration in g2/Hz and g is the gravitational acceleration.

θ2
A = 2π2f 2

L1(
π2h−2

3ω3
n

+
πh−1

3
√

3ω2
n

+
h0

6ωn
) (4.25)
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where fL1 is the L1 band carrier frequency, and ωn is the natural frequency. The

value of h0, h−1, h−2 are listed in Table (4.1) [54].

Table 4.1: Allan variance parameters for various clocks
Osicallator type h0(Hz) h1(Hz) h2(Hz)
Crystal 2× 10−19 7× 10−21 2× 10−20

Ovenized Crustal 8× 10−20 2× 10−21 4× 10−23

Rubidium 2× 10−20 7× 10−24 4× 10−29

As we discussed above, the error of the correlated source is induced by the local

oscillator which has only been minorly effected by the relative movement. The

transient response of the third order PLL corresponding with relative movement

such as step, acceleration and jerk can be mainly characterized by dynamic stress

error.

θe = 0.4828
d3R/dt3

B3
n

(4.26)

where d3R/dt3 is the maximum LOS jerk dynamics. As (4.26) presents, the third

order PLL is sensitive to jerk and dynamic stress error is decided by tracking band-

width.

4.3.3 Standard Kalman Filter Algorithm

Kalman filter uses prier information to obtain the optimal estimate value in lin-

ear model [55]. Kalman filter has been widely used in navigation and data fusion

applications. The dynamic linear state model can be expressed as

xt = Fxt−1 + nt−1 (4.27)

State matrix xt at time t contains the term of interests, F is the state transition

matrix, nt−1 is the system noise with 0 mean and covariance matrix is Q, denote as

n ∼ (0, Q). The measurement model

zt = Hxt + vt (4.28)

where zt is the measurement value at time t, H is the transfer matrix, vt is the

measurement noise with 0 mean and the covariance matrix is R, denote a v ∼ (0, R).

Two major processes in Kalman filter, which are prediction and update. In

68



4.3 Signal Model and Third order PLL Model

prediction step:

x̂t|t−1 = Ftx̂t−1|t−1 (4.29a)

p̂t|t−1 = FtPt−1|t−1F
T
t +Q (4.29b)

P is the variance associate with true value xt and the estimate value xt|t−1 can be

expressed as.

Pt|t−1 = E[(xt − xt|t−1)(xt − xt|t−1)T ] (4.30)

In the update step, measurement value will be implement to calibrate the estimate

value as Eq.(4.31)

x̂t|t = x̂t|t−1 +Kt(zt −Htx̂t|t−1) (4.31)

Then variance matrix P and Kalman gain can be obtained as Eq.(4.32) and Eq.(4.33)

Pt|t = Pt|t−1 −KtHtPt|t−1 (4.32)

K = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1 (4.33)

This section clearly indicates that the performance of the Kalman filter is highly

depend on the measurement value integrity and the accuracy of the prier information

R and Q.

4.3.4 Kalman Filter based Carrier Tracking Loop

Kalman filter based carrier tracking loops have been widely deployed in GPS carrier

tracking loops, as [48] present, the structure of Kalman filter is equivalent to 3rd

order PLL. However, the conventional loop filter has a static tracking bandwidth,

unlike the conventional third order PLL, the bandwidth of a Kalman filter based

carrier tracking loop can be adjusted by the Kalman gain. Therefore, the carrier

tracking loop get rid of the limitation of having a fixed bandwidth requirement.

The discrete time Kalman filter based carrier tracking loop state model can be

represented as Eq.(4.34).
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
∆φ̂

ω̂c

ω̂a


t+1

=


1 T T 2

2

0 1 T

0 0 1




∆φ̂

ω̂c

ω̂a


t

−


T T 2

2

0 0

0 0


 ωNCO,t
ωa,NCO,t

ωNCO,t + wt (4.34)

Comparing the state matrix in the KF based carrier tracking loop [∆φ̂, ω̂c, ω̂a]
T

against the state matrix in the 3rd order PLL [φ̂, ω̂c, ω̂a]
T , the output of the phase

difference ∆φ is the only different vector. ωNCO,t is the local oscillator Doppler

frequency shift and wt is the state noise with wt ∼ (0, Q). As (4.15) presented, the

measurement model in matrix form can be modelled as

∆φ̄ =
[
1 T

2
T 2

6

]
∆φ

ωc

ωa

− [T2 T 2

6

] ωNCO,t
ωa,NCO,t

+ vt (4.35)

where ∆φ is the phase difference between the incoming signal and the local oscillator

which can be obtained through the phase discriminator. vt is the measurement noise

denoted as vt ∼ (0, R). Comparing Figure (4.2) and Figure (4.4), within the KF

based carrier track loop, the Kalman filter works as the loop filter in the third order

PLL with time-varying parameters, since the parameters K1, K2, K3 can be adjusted

through Kalman gain varying.

According to [56], the equivalent noise bandwidth of Kalman filter can be ob-

tained as Eq.(4.36).

Bn =
C3

4
+

C2
1

4(C2C3 − C2)
(4.36)

where

C1 =
2πK3

T

C2 = 2πK3 +
2πK2

T

C3 =
TπK3

3
+ πK2 +

K1

T

(4.37)

In [57], the equivalent noise bandwidth of the Kalman filter based phase lock loop can

be obtained by Kalman gain. The vectors within the Kalman gain matrix represent

the relative uncertainty between the measurement and the estimation value. As

Eq.(4.36) shows, the bandwidth of the KF based carrier tracking loop is decided by
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the Kalman gain instead of a predefined parameters. As Figure 4.3 presented, the

variance of the noise bandwidth and the Kalman gain is positive correlation. To

address the variation of the Kalman gain, a square root value of the Kalman gain

vector is used to represent the equivalent Kalman gain, As Figure 4.3 present, the

noise bandwidth start from a large value in order to tolerant the Doppler frequency

shift meanwhile the Kalman gain start from a greater value. After several times of

iteration, the Kalman gain retain to a stable and small value and the noise bandwidth

narrow down and retain to a small value in order to process fine tracking.

Figure 4.3: Bandwidth adjusted based on Kalman Gain

Kalman filter based carrier tracking loops can self adjust the tracking bandwidth

in order to obtain an optimal tracking performance. However the performance of the

Kalman filter is not only decided by the tracking bandwidth but also dependent on

the prior information accuracy. without a precise prior information, the estimated

results from the Kalman filter can be significantly degraded.

4.4 Adaptive Kalman Filter Integrated Third Or-

der PLL Based Carrier Tracking Loop

4.4.1 Adaptive Kalman Filter

In general, the prior information of Kalman filter is defined by rule of thumb. Nev-

ertheless, this prior information is not precise and accurate especially under high

dynamic environment. Therefore, the inaccurate prior information could lead to the
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Figure 4.4: Kalman filter Based Carrier Tracking Loop Block Diagram

performance of the Kalman filter being degraded. To overcome this challenge, adap-

tive Kalman filter has been proposed and implemented in many applications [58] [59].

In this project, we are inspired by the concept of the adaptive Kalman filter, a

self estimating the measurement noise covariance Kalman filter has been implement

to replace the conventional loop filter. In this project, the system noise covariance Q

has been properly defined in [44]. The measurement noise covariance R is estimated

through measurement update as Eq.(4.38) present,

x̂t|t = x̂t|t−1 +K(z −Htx̂t|t−1) (4.38)

where x̂t|t is corresponded to [∆φ̂, ω̂c, ω̂a]
T
t|t which are the posterior estimation of

phase difference, carrier frequency and carrier frequency acceleration.

and x̂t|t−1 is the prior estimation at time t − 1, K is Kalman gain, and z is a

measurement value which corresponds to ∆φ̄. The innovation sequence denotes as

ξ can be expressed as Eq.(4.39)

ξ = z −Htx̂t|t−1

= Htxt + Vt −Htx̂t|t−1

= Ht(xt − x̂t|t−1) + Vt

(4.39)

A study [60] has proved that the covariance of the innovation sequence ξ is
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independent from time and it is approximate to its sample covariance Ct as Eq.(4.40)

presents

Ct ≡ E
{
ξtξ

T
t−τ
}

Ct =
1

N

N∑
t=τ

ξtξ
T
t−τ

(4.40)

where τ represents τ time back from t, N represents the number of sample points.

The estimated covariance Ĉt can be obtained as Eq.(4.41)

Ĉt = (zt −Htx̂t|t−1)(zt −Htx̂t|t−1)T (4.41)

Substituting the measurement model into the innovation sequence, ξ can be ex-

pressed as Eq.(4.42)

ξ = Hxt + vt −Hx̂t|t−1 (4.42)

Substituting Eq.(4.42) into Eq,(4.41), the estimated covariance Ĉ can be expressed

as Eq.(4.43)

Ĉt = E
{

(H(xt − x̂t|t−1) + vt)(H(xt − x̂t|t−1) + vt)
T
}

= HE
{

(xt − x̂t|t−1)(xt − x̂t|t−1)T
}
HT + E

{
vtv

T
t

} (4.43)

where x̂t|t−1 is the predicted value of xt. The variance of the prediction x̂t|t−1 and

xt is given as (4.44)

Pt|t−1 = [E(xt − x̂t|t−1)(xt − x̂t|t−1)T ] (4.44)

Substitute Eq.(4.44) in to Eq.(4.43), then Eq.(4.43) can be rewritten as

Ĉt = HPt|t−1H
T +R (4.45)

Finally, measurement noise covariance R is estimated as Eq.(4.46) recursively.

R̂ =
1

N

N∑
i=k

ξiξ
T
i−k −HtPt|t−1H

T
t (4.46)

In a time-invariant system, the covariance of the innovation sequence Ĉt can be

obtained through measurement value updates. The matrix Pt|t−1 can be defined by
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the Kalman filter and the processing covariance Q.

4.4.2 Dynamic Integrated Kalman Filter and Phase Lock

Loop

Adaptive Kalman filters can get rid of the prior information inaccuracy issue, how-

ever in vehicular environments, acceleration and jerk scenarios occur more often and

critically. Simply use Kalman filter to replace loop filter, the performance of the

carrier tracking loops is degraded. Therefore, in this paper we proposed a novel car-

rier tracking approach which dynamically integrates a Kalman filter and third order

PLL since third order PLLs are particularly sensitive to jerk. The decentralized

information sharing technique is used as the integration scheme.

The decentralized information sharing technique has been widely used in data

fusion applications. The value of the information sharing factor can be obtained by

the eigenvalues and the eigenvectors from the covariance matrix of each subsystem

[61], therefore, the information sharing factor can represents the stability of each

subsystem.

Figure 4.5 presents a block diagram of dynamic integrated carrier tracking loop

using adaptive Kalman filter and third order PLL. Unlike the conventional Kalman

filter based coarse to fine carrier tracking scheme, the proposed approach contains

Kalman filter and 3rd order PLL working in parallel, the output of the phase dis-

criminator is treated as the input of both the loop filter and the adaptive Kalman

filter, then the filtered results are integrated by an information sharing block and

feed back to the numerical control oscillator.

Figure 4.5: Generic Dynamic Integrated Carrier Tracking Loop
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Since the sharing weight is decided by the stability (or covariance) of each sub-

system the covariance matrix of the ith subsystem Pi can be decomposed as Eq.(4.47)

Pi = `Λi`
T , (4.47)

where Λi = diag {λi1, λi2, ...., λin} and λi1....λin are the eigenvalues of Pi. In

order to avoid negative values of λ, `, the eigenvector of P , can be replaced by P T
i Pi

therefore

P T
i Pi = `′Λi

′(`′T ) (4.48)

therefore, Λi
′ = diag {λ2

i1, λ
2
i2, ...., λ

2
in}.

Finally, the information sharing factor βi can be expressed as Eq.(4.49)

βi =
1

N − 1

∑N
j=1 trΛj − trλi∑N

j=1 trΛj

(4.49)

where N is the total number of subsystems and j = 1, 2, 3, ..., N . As Eq.(4.49)

presents, a greater value of βi relates to a more stable estimated subsystem that

will take more weight on information sharing and have a larger impact on the entire

system.

In our system, the covariance of the Kalman fitler based subsystem PKF can

be obtained directly. The covariance of the third order PLL can not be obtained

directly, therefore, the covariance of the PLL can be calculated use Eq.(4.21), since

the covariance of the PLL equal to the variance of the phase jitter.

PPLL =


σPLL 0 0

0 σPLL 0

0 0 σPLL

 (4.50)

4.5 Adaptive Unscented Kalman filter integrated

3rd Order PLL

Adaptive Kalman filter can self estimate the measurement noise covariance, how-

ever the linear model requirement is still a significant limitation of Kalman filter.

Therefore, in this section, we proposed a adaptive unscented Kalman filter based

carrier tracking loop to get rid of the linear model restriction.
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4.5.1 Unscented Transform

It is an intuitive that to approximate a function’s distribution is easier than its arbi-

trary nonlinear function [62]. The one of the most popular approach to approximate

a distribution is called unscented transform (UT).The UT uses the calculated mean

and variance of a random variable to propagate through a nonlinear function [63].

The UT processing is demonstrated as Figure 4.6, sigma points which are selected

via the mean and variance capture the high order information of the distribution

as expressed in the solid circle of Figure 4.6. Through the nonlinear propagation,

the accuracy of the approximation can achieve up to the 2nd order (Taylor series

expansion) of nonlinearity as expressed in the dash circle [64] [65].

The UT process start from calculating the mean and variance of the random

variable. A random variable x with L dimensions has mean and covariance represent

as x̄ and Px presented as (4.51).

x̄ = E[x]

Px = E[(x− x̄0)(x− x̄0)T ]

(4.51)

Meanwhile a matrix X with L dimensions needs 2L+ 1 of sigma vectors Xi to form

its distribution, which are presented as Eq.(4.52):

Xi = x̄; for i = 0

Xi = x̄+ (
√

(L+ λ)Px)i; for i = 1, ..., L

Xi = x̄+ (
√

(L+ λ)Px)i; for i = L+ 1, ..., 2L

(4.52)

where λ is a scaling parameter and can be obtained using Eq.(4.53)

λ = α2(L+ κ)− L (4.53)

where α decides the spread of the sigma points around x̄, and α is usually a small

positive value like 0.001 and κ is another scaling parameter that is normally set to

zero [66]. After propagating the sigma vectors Xi through the nonlinear function

f(x) we obtain the results as yi

yi = f(Xi); i = 0, ..., 2L. (4.54)
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The mean and covariance of the transformed output yi can be obtained by a weighted

mean and covariance as Eq.(4.55) [64]:

ȳ =
2L∑
i=0

Wm
i yi

Py =
2L∑
i=0

W c
i [(yi− ȳ)(yi− ȳ)T ]

(4.55)

Where Wi represents the weights of each transformed vector. And their values can

be calculated using Eq.(4.56) [64]

Wm
i = λ/(L+ λ) i = 0

W c
i = λ/(L+ λ) + (1 + α2 + β) i = 0

Wm
i = W c

i = 1/2(L+ λ) i = 1, ....2L

(4.56)

where β is equal to 2 [64] since we consider our model to have a Gaussian distribution

as studied in [10].

Figure 4.6: Procedure of Unscented Transform
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4.5.2 Adaptive Unscented Kalman Filter and Implementa-

tion

The unscented Kalman filter is based on an expansion of the unscented transform.

In the unscented Kalman filter based carrier tracking loop, the unscented Kalman

filter is used to track the phase of the incoming carrier signal directly [12]. The

phase of the incoming signal which is effected by Doppler shift can be represented

as Eq.(4.57),

Φ = φc + ∆tωd +
∆t2

2
ωa +

∆t3

6
ωj (4.57)

The state model of UKF based carrier tracking loop is formed as Eq.(4.57), in the

matrix form Eq.(4.57) can be represented as Eq.(4.58a,4.58b).

~xt = A~xt−1 + ∆tωnco + noise (4.58a)
φc

ωd

ωa

ωj


t

=


1 ∆t ∆t2

2
∆t3

6

0 1 ∆t ∆t2

2

0 0 1 ∆t

0 0 0 1




φc

ωd

ωa

ωj


t−1

+ ∆tωNCO + diag(Wt) (4.58b)

A =


1 ∆t ∆t2

2
∆t3

6

0 1 ∆t ∆t2

2

0 0 1 ∆t

0 0 0 1

 (4.58c)

The state matrix ~x has four vectors which are ~x = [φc ωd ωa ωj]
T , φe is the

carrier phase, ωd represents the Doppler frequency, ωa is the first order of the Doppler

frequency change rate and ωj is the second order of the Doppler frequency change

rate. A is the state transition matrix, ∆t is the time interval, ωNCO is the phase

shift of the numerical control oscillator, Wt represents the processing noise with zero

mean and its covariance is denoted as Q, Wt ∼ (0, Q). The incoming GPS signal

are represents in I and Q form, after passing a low pass filter the high frequency

components have been removed, the low frequency component are presented as
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Eq.(4.59):

Ip,t = AD(t)[cos((φc + ∆tωd +
∆t2

2
ωa +

∆t3

6
ωj)]

Qp,t = AD(t)[sin((φc + ∆tωd +
∆t2

2
ωa +

∆t3

6
ωj)]

(4.59)

Directly using Ip and Qp as the measurement matrix vector can cause polarity

reversal, thus in order to avoid polarity reversal of the navigation data, Ip and Qp

need to treated as Eq.(4.60)

I2
p,t −Q2

p,t = A2D(t)2cos(2Φ)

2Ip,tQp,t = A2D(t)2sin(2Φ)

(4.60)

where Φ is the phase of carrier signal. The normalized amplitude can be obtained

through Eq.(4.61)

A2
t D

2
t =

t∑
i=t−n

(I2
p,t +Q2

p,t)/n (4.61)

where n is the coherent integration time. Finally, the measurement matrix z can be

represented as

z =

 Iz
Qz

 =

 I2
p,t −Q2

p,t

2Ip,t ×Qp, t

 (
t∑

i=t−n

(I2
p,t +Q2

p,t)/n)−1

=

cos(2Φ)

sin(2Φ)

+ diag(Vt)

(4.62)

where the measurement noise, Vt ∼ (0, R), has zero mean and covariance R.

Starting from the estimated mean value of the state matrix E(x̂t−1) and the

variance matrix Pt−1 at time t−1. Nine sigma points (i = 1, ..., 9) are selected using

Eq.(4.52) since our state matrix x = [φc ωd ωa ωj]
T contains 4 vectors. These 9

points are mathematically expressed as Eq.(4.63.1) and then the covariance matrix

Pt−1|t−1 is updated as in Eq.(4.63.2).

Substituting the output x̂it|t−1 into the measurement model equation h(·) as in

Eq.(4.64a), h(·) is a nonlinear trigonometric function presented in Eq.(4.62). The

weighted mean output value with respect to state and measurement models can be

calculated as (4.63.3) and (4.64b). These values are used to obtain the covariance

matrix Pȳȳ and Px̄ȳ, which are the covariance of the measurement function approx-
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imation and the covariance of the state and measurement function approximation.

Prediction stage and measurement stage are presented as Eq.(4.63) and Eq.(4.64).

Prediction stage:

x̂it|t−1 = Ax̂it−1|t−1 + ∆tωnco (4.63.1)

Pt|t−1 = APt−1|t−1A+Q (4.63.2)

x̄t|t−1 =
2L∑
i=0

Wm
i x̂

i
t|t−1 (4.63.3)

Measurement stage:

γt|t−1 = h(x̂it|t−1) (4.64a)

ȳt|t−1 =
2L∑
i=0

Wm
i γt|t−1 (4.64b)

Pȳȳ =
2L∑
i=0

W c
i [(γi,t|t−1 − ȳt|t−1)(γi,t|t−1 − ȳt|t−1)T ] +R (4.64c)

Px̄ȳ =
2L∑
i=0

W c
i [(x̂i,t|t−1 − x̄t|t−1)(γi,t|t−1 − ȳt|t−1)T ] (4.64d)

Kt = Px̄ȳP
−1
ȳȳ (4.64e)

Pt = Pt|t−1 −KtPȳȳK
T
t (4.64f)

x̄t|t = x̄t|t−1 +Kt(yt − ȳt|t−1) (4.64g)

where x̄t|t is the state matrix which contains optimal mean vectors of the carrier

signal parameters at time t and these mean vectors can be used to select sigma

points for t+ 1 time estimation.

Like the Kalman filter, the unscented Kalman filter will also suffer performance

degradation if the prior information is mismatched with the real system. In our

system, due to the linear processing model, the processing noise covariance Q could

be recursively updated using the covariance matching method [67].

In the measurement update process, the covariance of the innovation sequence

ξt, has proved to be independent of time and is approximated from its sampled
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covariance [60], as given by Eq.(4.65a-c).

ξt = yt − ȳt|t−1 (4.65a)

Ct ≡ Cov (ξt) (4.65b)

Ct =
1

N

N∑
t=k

ξtξ
T
t−k, (4.65c)

where k represents a delay of length k from t and N is the number of samples. In

the state processing model, the processing noise wt can be represented as Eq.(4.66)

wt−1 = xt − A(xt−1). (4.66)

The Kalman filter estimation equation can be written as Eq.(4.67)

xt − xt−1 = Kt(yt − ȳt|t−1) (4.67)

In our application, xt and xt−1 are represented by their mean values, x̄t and x̄t−1.

Therefore, combining Eq.(4.66) and Eq.(4.67)

wt−1 = x̄t − x̄t−1 = Kt(yt − ȳt|t−1). (4.68)

To estimate the innovation sequence covariance, the processing noise covariance can

be obtained as Eq.(4.69)

Qt−1 = KtCtK
T
t . (4.69)

In a time-invariant system with a high sampling frequency, variation within suc-

cessive epoch is very small, therefore the successive variation of the Kalman gain

element is small enough, thus Kt ≈ Kt−1

Qt−1 = Kt−1CtK
T
t−1. (4.70)

4.5.3 Dynamic Integration structure

Benefiting from the strong capability of the nonlinear model’s tolerance, the un-

scented Kalman filter could replace the phase discriminator and loop filter to di-

rectly track the carrier signal phase. However, this type of carrier tracking loop
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works as a quasi open loop, an open loop could have a higher noise level compared

to a closed loop. Therefore, a simple UKF based carrier tracking loop has a strong

tracking ability but less sensitive to low C/No signal. To mitigate the noise level

in an AUKF-based carrier tracking loop, we implement a conventional third-order

phase lock loop and join the AUKF in parallel.

In our approach, the adaptive unscented Kalman filter and third-order PLL are

considered as two independent subsystems. The covariance matrix PAUKF can be

obtained directly from AUKF processing and a standard Kalman filter needs to be

implemented to estimate the processing covariance PPLL of the third-order PLL. As

mentioned in the previous section, covariace matrix P represents the stability of the

system.

The integrated carrier tracking scheme in Figure.4.7 demonstrated two subsys-

tems. The adaptive unscented Kalman filter algorithm that recursively estimates

the processing noise covariance can track the incoming carrier signal in parallel with

a third-order PLL and integrate the results using the information sharing factors. As

Figure 4.7: Procedure Diagram of the Proposed Approach

aforementioned, in order to avoid polarity reversal, the block named Polarity Rever-

sal Remove performs the process as Eq(4.60), then the processed I and Q component

are worked as the measurement input to the adaptive Unscented Kalman filter.
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4.6 Experiment Setup and Results Analysis

In order to test the proposed carrier tracking approach, a field experiment is con-

ducted to compare and analyze the tracking performance from the adaptive Kalman

filter based Carrier tracking Loop and the proposed dynamic integration tracking

scheme. The GPS raw data is collected from the real environment and post pro-

cessed by MATLAB 2016b.

4.6.1 Robust GPS Carrier Tracking Loop using Hybrid Adap-

tive Kalman filter

4.6.1.1 Experiment Set up and Location

The experiment is setup as Figure 4.8 and conduct at the Devonshire Building car

park, Newcastle University, UK as shown in Figure 4.9. This location is surrounded

by buildings which can generate multipath effect and the open parking area is con-

venient for maneuvering a trolley. The experiment is undertaken for 3 consecutive

days. A USRP (2nd component in the figure) and a Leica AX1203+ GNSS antenna

(1st component in the figure) works as a front-end, the received center frequency

is set to be 1575.42 MHz corresponding to the L1 band. The RF signal is down-

converted to a baseband signal by the USRP and is then sampled at 5MHz. The

recorded data type is a 16 bit integer, and this is the only option available from the

USRP. Because of the large data type, 16-bits data is converted to be 8 bits. The

baseband signal is then up-converted to an IF band at 2.5 MHz without any loss

of signal characteristic and up-sampled at a rate of 10 MHz. An external precise

atomic clock, the Symmetricom CSAC SA.45s (3rd component in the figure), is used

to provide a 10 MHz time source since the USRP uses a generic (TXCO) oscilla-

tor [68] and is not suitable for a highly dynamic environment. In order to simulate

a non-stationary environment, all devices are powered by two 12V batteries (7th

component in figure) and place on the trolley. The tracking bandwidth is set to be

18 Hz which is the threshold value to retain a stable third order PLL. Under such a

tracking bandwidth, the conventional 3rd order PLL contains a high level of noise,

this will be further analysed in Figure 4.10 in the next section.
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Figure 4.8: Experiment Setup

Figure 4.9: Experiment Location
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4.6.1.2 Results and Analysis

Starting from a modified serial searching acquisition approach [69], 18 s of GPS

raw data has been processed in order to allow a sufficient amount of data to be

compared. As mentioned in the previous section, in a conventional 3rd order PLL

the noise level is very high. As Figure 4.10 presents the C/No in conventional 3rd

order PLL is only around 10 dB.

C/No is an important parameter since it can characterize the GPS receiver per-

formance. The higher C/No indicates a better phase estimation and location deter-

mination. The C/No estimation in this experiment uses the Narrowband-Wideband

power ratio method [70]. Considering the AKF based carrier tracking loop and the

dynamic integrated tracking approach, the initial C/No is all around 23 dB, due to

the reduced signal strength the C/No is reducing for the two approaches, however

the decline rate of the proposed approach is slower compared to the AKF based

approach. After 4 s, the C/No from the proposed approach start to increase and

achieve approximately 25 dB which is around 10 dB higher than AKF based ap-

proach and 15 dB higher than conventional 3rd order PLL. Furthermore, this result

proves that the proposed dynamic integrated tracking approach can meet the vehic-

ular communication requirement, since vehicular communication is often faced with

the GPS signal strength degradation challenge.

Figure 4.10: Carrier to Noise Ratio

GPS uses a binary phase shift keying (BPSK) modulation scheme, the optimal

demodulation results will present a constant value in I and 0 in Q. As Figure 4.11
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presents, neither AKF based carrier tracking loop nor conventional 3rd order PLL

can filter the noise effectively, since Q component still contains a constant value.

In contrast, the proposed method can significantly reduce the noise level, and make

the demodulation possible.

Figure 4.11: Discrete Scatter Comparison

Furthermore, the superior noise rejection performance can also be proved in the

output of the phase discriminator as Figure 4.12 illustrated. As Figure 4.12 shows,

after a few seconds, the output of the phase discriminator from the proposed method

has been significantly reduced compared to the other two approaches. The output

of the phase discriminator is approximate to be zero. Meanwhile, as Figure 4.13

presents, the phase variance in the proposed approach is stable and retain to a very

small value.This proves that the proposed approach is more stable and robust. All

the superior performances above are due to the novel dynamic integrated structure,

the proposed carrier tracking approach can self adjust the weight of the AKF and

third order PLL due to their variance. The more stable subsystem carries more

weight within the entire tracking system.

The phase lock indicator presented in Figure 4.14 indicates the locking status

of the carrier tracking loop. The optimal value is 1 or close to 1. This indicator

results are mainly compared with the AKF based carrier tracking approach since

conventional 3rd order PLL has a less significant result. The comparison result shows

that in the first few seconds the two carrier tracking loops struggle to successfully

lock the incoming signal, however after 2s the dynamic integrated carrier tracking

loop starts to recover from the fluctuation, and retains the success eventually. The
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Figure 4.12: Phase Difference Comparison

Figure 4.13: Phase variance
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lock indicator has a strong relationship with the navigation message decoding.

Figure 4.14: Phase Lock Indicator Comparison

The decoded navigation message is demonstrated in Figure4.15, it shows that the

proposed approach can successfully demodulate the navigation message, in contrast

the 3rd order PLL and the AKF based carrier tracking loop fails to demodulate the

navigation message due to the high noise level.

Figure 4.15: Navigation Bits Comparison

4.6.2 Robust GPS Carrier Tracking Model using Unscented

Kalman Filter

In this tracking approach, we process 5s GPS raw data which is efficient and suffi-

cient to test the performance of the proposed approach. The tracking bandwidth is
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set to 12Hz, which is a relatively large bandwidth for a third-order PLL. Figure4.16

presents the phase lock indicator(PLI) comparison results between AKF based car-

rier tracking loop and the proposed approach. As can be seen in Figure4.16, both

tracking approaches can lock the carrier signal successfully in general, but it can also

be seen that the proposed method outperforms the AKF-based approach overall.

Figure 4.16: Phase Lock Indicator Comparison at Bandwidth 12 Hz

Due to the binary phase shift keying (BPSK) modulation used in GPS signals,

the demodulated constellation map of the I and Q components are presented as

Figure 4.17.

Figure 4.17: Processed I and Q at Bandwidth 12 Hz

As mentioned before, an ideal constellation map of BPSK, all the points have a

constant value in the I component and 0 value in the Q component. In Figure4.17,

all approaches can successfully demodulate both the I and Q components, however

the Q component in the proposed method has a smaller variation compared to the
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AKF based PLL, which means the noise level from the proposed method is lower

than the AKF based PLL. This can also be proved in Figure4.18, where the output of

the phase discriminator from the proposed approach is smaller than the AKF-based

PLL. The phase variances from these two approaches are presented as Figure4.19.

The phase variance from the AKF-based PLL approach is on average 1.5 however

the phase variance of the proposed AUKF dynamically integrated 3rd order PLL

method has an average less than 1.

Figure 4.18: Phase Difference at Bandwidth 12 Hz

Figure 4.19: Phase variance Comparison at Bandwidth 12 Hz

As aforementioned, the sharing factor which is obtained form the convince matrix

and it decides the sharing weight, the adaptive unscented Kalman filter and the third

order PLL. The variation of two sharing factors are presented in Figure4.20, at the

very beginning the sharing factor from the third order PLL β1 is very high and the

third order PLL dominates the entire loop because the adaptive unscented Kalman
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filter needs to recursively estimate the covariance and reach a steady state. Then the

sharing factor of the AUKF-based subsystem β2 increases dramatically and starts to

dominate the carrier tracking loop. Once the noise level reduces to a relevant level,

β2 tends to decrease and the tracking loop will be handed over to the third-order

PLL.

Figure 4.20: Decentralized Information Sharing Factors (β) at Bandwidth 12 Hz

Carrier-to-noise ratio (C/No) is an important parameter for describing the GPS

receiver performance, where a higher C/No indicates a better phase estimation

and location determination. The C/No estimation in this experiment uses the

Narrowband-Wideband power ratio method [70]. The Comparison of C/No within

these two methods are presents as Figure 4.21, the proposed method shows an im-

provement of 1.5 dB at the beginning, and 1 dB on average. The proposed approach

does not show a significant improvement due of the relatively low tracking band-

width.

The tracking bandwidth was increased to 13 Hz in order to increase the tracking

range and improve the dynamic tracking capability. As Figure 4.22 presented, the

AKF-based PLL has difficulty in locking the incoming signal phase and eventually

loses the lock, yet the proposed adaptive unscented Kalman filter dynamically inte-

grated third-order PLL can still retain the lock. As Figure 4.23 demonstrates, the

constellation map for the AKF-based PLL struggles to distinguish the I and Q com-

ponents because of the high noise level, however, the proposed tracking approach

can still distinguish I and Q components clearly.

The output of the phase discriminator and phase variance are presented in Figure
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Figure 4.21: Carrier to Noise Ratio Comparison at Bandwidth 12 Hz

Figure 4.22: Phase lock Loop Indicator Comparison at Bandwidth 13 Hz

Figure 4.23: Processed I and Q at Bandwidth 13 Hz
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4.24 and Figure 4.25 respectively. Under a larger tracking bandwidth, the AKF

based PLL contains a relatively higher noise level, the high noise level from the

output of the phase discriminator makes the AKF-based PLL carrier tracking loop

unstable. However, the proposed approach has significantly better performance

compared to the AKF-based PLL approach because of the dynamic integration

structure. The information sharing factors are present in Figure 4.26.

Figure 4.24: Phase Difference Comparison at Bandwidth 13 Hz

Figure 4.25: Phase Variance Comparison at Bandwidth 13 Hz

Comparing Figure 4.26 to Figure 4.20, the over all trends are similar, which

proves the third-order PLL is more sensitive in this integrated system. However,

the AUKF-based tracking loop is more robust and this explains why β2 dominates

the integrated system at most times. Furthermore, it is clear to see that the sharing

factor in the AUKF-based tracking loop β2 has a decreasing trend for both 12 Hz

and 13 Hz tracking bandwidths, but the decreasing rate of β2 under 13 Hz is lower
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than 12 Hz, which means under a greater tracking bandwidth or higher noise level

scenario, the AUKF tracking loop needs a longer time to process in order to track

Doppler shift parameters and reduce the noise level. Unlike 12 Hz, under a 1 3Hz

Figure 4.26: Decentralized Information Sharing Factors (β) at Bandwidth 13 Hz

tracking bandwidth the proposed approach has a significant improvement compared

to the AKF-based carrier tracking loop, C/No has been improved 6 dB on average

as Figure 4.27 illustrates. Comparing Figure 4.27 and Figure 4.21, C/No from the

AKF based carrier tracking loop has dropped by up to 7 dB due to the increased

tracking bandwidth, however this does not affect the proposed approach equally.

The proposed approach exhibits a strong capability to maintain the C/No. As

shown in Figure 4.28, the navigation message from the AKF-based carrier tracking

loop contains a higher level of noise and eventually loses the lock as in Figure 4.22.

In contrast, the proposed approach can still demodulate the navigation message

successfully.

4.7 Summary

The carrier tracking loop is considered as the most important link in GPS signal pro-

cessing and this chapter introduced the generic structure of the GPS carrier tracking

loop. The robust and accurate carrier tracking loop can improve the performance of

the GPS receiver in order to successfully decode the navigation message. To achieve

this, this chapter presented two novel Kalman filter based carrier tracking loops to

enhance the carrier tracking ability for GPS signal processing. An AKF uses dy-

94



4.7 Summary

Figure 4.27: Carrier to Noise ratio Comparison at Bandwidth 13 Hz

Figure 4.28: Navigation bits at Bandwidth 13 Hz
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namically integrated with a 3rd order PLL carrier tracking loop. The AKF replaces

the conventional loop filter in order to dynamically adjust the tracking bandwidth

based on the Kalman gain. Furthermore, a novel parallel connection structure has

been implemented in this carrier tracking loop, in order to take the advantages of

the 3rd order PLL to further reduce the noise level to improve the tracking accuracy.

An AUKF integrated third order PLL based carrier tracking loop has also been

proposed. This approach take the unscented transform to linearise the carrier signal

phase model so that the adaptive unscented Kalman filter can track the phase of

the incoming signal directly. In this structured AUKF works as an open loop, which

is more dynamic but the noise level is relatively high in open loop, thus the parallel

connected 3rd order PLL is implemented to reduce the noise level generated by the

greater tracking bandwidth. These two approaches can improve the tracking ability

and retain the tracking accuracy.

The field experiment results indicate that, in a highly dynamic environment,

the performance of the dynamic integration scheme is superior to the conventional

Kalman filter based tracking loop. Furthermore, it benefits from the adaptive scheme

and nonlinear approximation and the AUKF based carrier tracking loop has a sig-

nificant improvement in highly dynamic and low C/N environments.
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Chapter 5

LiDAR Aided IMU/GPS

Integration Navigation

5.1 Introduction

Chapters 3 and 4 have proposed and implemented several methods to improve the

GPS receiver acquisition and tracking ability. However, in a challenging environ-

ment, a GPS receiver alone is not capable of providing accurate and continuous

positioning information. The common strategy to obtain a consistent and contin-

uous precise positioning is to integrate GPS and INS [71]. In general, there are

two main types of GPS/INS integration schemes. Directly integrating GPS position

information with the INS output is named loosely couple [13] [72]. Loosely coupled

integration is easy to implement and each sensor works independently, so if one

sensor fails, another sensor can still operate and provide navigation information.

However, the GPS receiver is required to successfully acquire and track at least four

satellites to provide position information, and without a sufficient number of satel-

lite the integration procedure will be terminated. Therefore, the availability of this

type of integration is restricted by the GPS availability. Unlike loose integration,

tight integration requires only the pseudorange and the pseudorange rate of change

from the GPS receiver to provide information for INS [23] [24] [15], and this type

of integration is more robust compared to loose integration. However, the model of

tight integration is nonlinear, linearising the model can increase the computational

cost.

Furthermore, in a GPS signal blocked environment, INS has to work alone to
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provide the dead reckoning and attitude estimation [73] [74], a high cost tactical level

INS can provide accurate position informations only for a short time, over a long

period and the drift of INS can cause the error to increase. Therefore, an alternative

sensor is required to reduce the INS drift in a GPS blocked environment. [17] and [18],

proposed a digital compass and odometer to provide aiding information such as

direction and velocity. However, unlike GPS receivers, these sensors can only provide

aiding information in one aspect, so reference position information is required when

GPS service is denied.

The LiDAR sensor scans the surrounding obstacles and measures the distance

and angle between the obstables and the sensor. The simultaneous location and

mapping (SLAM) scheme that provides the relative position can work as an alter-

native sensor when GPS signal is denied. LiDAR aided navigation system [75] has

been successfully implemented for indoor navigation. In an indoor environment, due

to the building structures, the feature is unitary and the light interference is weak,

therefore, the performance of LiDAR is optimal. However, in the outdoor environ-

ment, the building feature, vehicle feature and pedestrian features are combined,

so a particular feature is more difficult to extract. Furthermore, the light source

outdoors varies and multiple light sources can generate interference and increase

the LiDAR sensor measurement noise. [19] and [20] implement a hybrid matching

algorithm and extended Kalman filter on LiDAR aided navigation system outdoors.

Nevertheless, in both approaches, there is only one central integration filter and the

robustness and the performance of the entire system can be degraded if any of the

integrated sensors has poor performance.

To mitigate the aforementioned challenges and provide optimal positioning re-

sults we propose and implement a low cost 2D LiDAR aided GPS/IMU integration

system, using modified feature extraction and a mapping scheme to obtain pre-

cise and continuous navigation information. Furthermore, in order to improve the

robustness of the integrated navigation system, a novel dynamically integrated fed-

erated Kalman filter based integration scheme is proposed and implemented. A

standard Kalman filter refers to a centralized filter, whereas federated Kalman filter

refers as a decentralized filter. Unlike a standard Kalman filter which processes all

the data in one step, a federated Kalman filter is a two stage filter. The first stage

of the decentralized filter is to estimate the optimal results from the local data and

filter, the second stage is to fuse each individual estimated results through a master
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filter to achieve the global best results. Different from the other decentralized filters,

federated Kalman filter contain a information sharing process. Through this process,

the overall filter reduces the computational cost and increases the robustness.

5.2 General Line Extraction Schemes

In a LiDAR navigation processing, the extracted feature is used to provide the

reference navigation and the lines are employed for the feature representation. Lines

are the most common and repeatable features in urban environment. Identical line

feature from two successive circular scans can be used to provide relative positioning

information. Many line extraction algorithms have been proposed using range and

angle data from the LiDAR measurement. In this section several common line

feature extraction methods are reviewed.

5.2.1 Split and Merge

One of the most popular line extraction is called Split and Merge which is initial

from computer vision for robot localization methods [76]. A success implementation

in present the algorithm of Split-and-Merge as follow: start from a group of scanned

points, the size of this group is predefined as N . Then fit a line from the current

group to the next group, and calculate the distance from the point p to the next

group. If the distance is less than a predefined threshold value, consider these two

groups of data as a whole and fit a line to the next group of data. If the distance

is greater than the predefined value, split these two groups at point p. Until all the

points are checked, merge the collinear segments [77] .

5.2.2 Line Tracking

Line tracking is a simple line extraction approach which was proposed in [78]. Ini-

tially from the first 2 points and fit a line, join the third point and calculate the line

parameters. If the line parameters are satisfied the predefined condition, join the

next point and calculate the line parameters with the new point joined. If the line

parameter is not satisfied the predefined condition, consider this point as a break

point or the new point of the next line. Within this approach, the minimum size of

a line need to be concerned base on the feature environment.
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5.2.3 Random Sampling Consensus

Random sampling consensus also known as (RANSAC), is a generic segmentation

method and can be used in many applications, and easy to implement [79]. Similar to

Line tracking approach, start from two point and fit a line through these two points.

Then calculate the distances of the other points to this line. Create a subgroup,

if the number of the subgroup is large enough, recompute the line parameters and

store this line.

5.3 LMS Based Line Tracking Approach

After reviewing the above line extraction scheme, we propose a line tracking based

feature extraction approach. Since this type of line extraction is more efficient and

easy to implement. The output of the LiDAR scanner is a group of the measurement

of range and angle from the scanner to the obstacle. These measurements are

denoted as ρ and α which are correspond to polar coordinate. The relationship

between the Polar coordinate and Cartesian coordinate is expressed as Eq.(5.1).

ρ = x̄cos(α) + ȳsin(α) (5.1a)

α =
1

2
tan−1(

2 ·
∑N

i=1(x̄− xi) · (ȳ − yi)∑N
i=1(ȳ − yi)2 −

∑N
i=1(x̄− xi)2

) (5.1b)

x̄ =
1

N

N∑
i=1

xi (5.1c)

ȳ =
1

N

N∑
i=1

yi (5.1d)

where x and y are the coordinates of the scanning point in Cartesian coordinate, N

is the total scanning points in a line. The line feature extraction starts from creating

a line by joining the first two scanning points. The parameters of this line can be

calculated using least mean square (LMS) [77].

Each successive scanning point is then joined to the line until either the Euclidean

distance DE between the new point to the line is greater than a threshold value or

the standard deviation of the line σl with the new point is greater than the predefined

threshold.

DE = ρ− xicos(α)− yisin(alpha) (5.2)
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5.3 LMS Based Line Tracking Approach

where the standard devision of the distance between the scanning point to the

extracted line is calculated as Eq.(5.3)

σl =

√∑N
i=1 ρ− xicos(α)− yisin(α)

N − 1
(5.3)

This new joined point is consider as either a break point or the first point of the

new line.

5.3.1 Line Mapping

It is important to identify a line in one scan is corresponded to the next scan in order

to estimate the relative position and attitude of the LiDAR scanner. To address this

identical lines, study [80] proposed to estimate the location of the intersection point

regarding to the perpendicular line and the extracted line to identify the identical

lines. However the computational cost of this method is high, in a very dense feature

environment, this method is not efficient. Therefore, to reduce the computational

cost and increase the processing speed, in this project, we map the corresponding

lines using the least square criterion.

The extracted line feature is considered as a linear function. ajnxi + bjnyi + c = 0,

where n and i represents the number of scanning circle and the number of points

attached on jth the line. The perpendicular distance between the scanning point

and the extracted line can be obtained as

dni,j =
ajxi + bjyi + c√

a2 + b2
(5.4)

Total distance D

Dn
j =

S∑
i=1

ajxi + bjyi + c√
a2
j + b2

j

(5.5)

where S is the total point in a line. Since the line is extracted by the LMS, the total

distance of the attach point to the line is a unique value and retain the same within

two scans. Therefore, if the criteria is |Dn+1
j −Dn

j | ≤ Dthreshold, then the two lines

which are extracted in two times are considered as the same one.
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5.4 Quaternion Based IMU Attitude Mechanization

5.4 Quaternion Based IMU Attitude Mechaniza-

tion

Another sensor in our integration scheme is the IMU. The measurement of IMU

is based on the body-frame, however the orientation of the platform is in n-frame.

The transformation of the reference frame is the key component of attitude mecha-

nization. In general, there are three transformation method which are Eular angles,

Direct Cosine Matrix(DCM) and Quaternion [81]. In this project, we use quaternion

based transformation method because of its computational efficiency and gimbal-

lock avoidance. A quaternion Q can be defined as Eq.(5.6)

Q = q0 + q1i0 + q2j0 + q3k0 (5.6)

The rotation matrix from body-frame to n- frame Cn
b can be obtained as Eq.(5.7)

[82] [83].

Cn
b =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 − q2

3

 (5.7)

Denote rotation matrix Cn
b as

Cn
b =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (5.8)

The attitude Pitch, Roll and Yaw can be obtained from quaternion matrix as

Eq.(5.9) [84]

Pitch(Φ) = sin−1(T32)

Roll(Θ) = tan−1(−T32

T33

)

Y aw(Ψ) = tan−1(
T12

T22

)

(5.9)

The gyroscope is used to measure the angular velocity, to integrate the angular

velocity can obtain the attitude information, however the external force and gravity
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5.4 Quaternion Based IMU Attitude Mechanization

can significantly dilute the attitude estimation. Therefore, accelerometer which can

measure the external forces is required. In our application, beside gyroscopes and

accelerometer, a magnetometer is also implemented in order to provide azimuth

aided information.

5.4.1 Quaternion From Gyroscope Reading

To implement Kalman filter, a state model is required, in our approach, the atti-

tude quaternion is chosen as the sate vector, state matrix Q = [q0, q1, q2, q3] can be

model as Eq.(5.10) [85] [86] [87], Eq.(5.10) is the first order of quaternion kinematic

equation.

Qt =
Ts
2

Ω(ω)Qt−1 (5.10)

where ω is the angular velocity measured by the gyroscope.

ω =


ωx

ωy

ωz

 (5.11)

Ω× is the skew-symmetric matrix of the angular velocity presents as Eq.(5.12)

[Ω×] =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0

 (5.12)

Where Ts is the time interval. Eq.(5.10) is commonly used as a state model in

Kalman filter or Extended kalman filter [86] [88].

5.4.2 Quaternion From Accelerometer Reading

The output of the accelerometer could be used as the measurement value as research

[84]. The output of the accelerometer measurement is denoted as a = [axayaz]
t,

through the rotation matrix Eq.(5.7), the acceleration can be expressed as

Cn
b ·


0

0

1

 =


ax

ay

az

 (5.13)
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expanding the multiplication, the Eq.(5.13) can be expressed as

2(q1q3 + q0q2) = ax

2(q2q3 − q0q1) = ay

q2
0 − q2

1 − q2
2 − q2

3 = az

(5.14)

In Eq.(5.14), it is obviously that the number of the solution is infinity, to avoid this

problem, we choose q3 = 0, since the vehicle runs on the ground, we can consider the

upper velocity is zero. Then the simplified equation can be expressed as Eq.(5.15)

present.

2q0q2 = ax

−2q0q1 = ay

q2
0 − q2

1 − q2
2 = az

(5.15)

To solve the above equations, we use the shortest path quaternion formulation [89],

the result can be obtained as Eq.(5.16) present

q =



√
az+1

2

− ay√
2(az+1)

ax√
2(az+1)

0


(5.16)

5.5 Dynamic Federate Kalman Filter Approach

As we mentioned before, IMU cannot provide an accurate navigation result for a

long period in GPS denied environment, due to the error accumulation. The IMU

error propagation model need to work alongside with the system motion model in

order to further correct the error.

A 15 states vector which contain the errors of position δrxyz, velocity δvxyz,

attitude εxyz and the bias of accelerometer δba and gyroscope δbg are denoted as

below:

x = [δrxyz δvxyz δεxyz δba δbg] (5.17)

As discussed in Section 2.6.2, the error model is used as a dynamic system model

as Eq.(5.18)
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

δṙ

δv̇

δε̇

δḃa

δḃg


t

=



Frr Frv Frε 03 03

Fvr Fvv Fvε Cn
b 03

Fεr Fεv Fεε 03 Cn
b

03 03 03 βba 03

03 03 03 03 βbg


·



δr

δv

δε

δba

δbg


t−1

+


Cn
b 03 03 03

03 Cn
b 03 03

03 03 I3 03

03 03 03 I3

 ·

ηa

ηg

ηba

ηbg



(5.18)

The differences of position, velocity and attitude between GPS, IMU and LiDAR

are used in measurement model. The measurement value can be classified in two

types which are IMU measurement and LiDAR measurement respectively.

The IMU measurement

zIMU =

rIMS − rGPS
vIMU − vGPS

 (5.19)

The LiDAR measurement

zLiDAR =


rLiDAR − rIMU

vLiDAR − vIMU

εLiDAR − εIMU

 (5.20)

It is an intuition that in the open environment, LiDAR extracted feature is rare but

the GPS performance is the optimal. Under this scenario, GPS and IMU measure-

ment are the mainly integrated. In the contrast, in the narrow environment, GPS

performance is degraded, but the LiDAR feature is sufficient, then the IMU/LiDAR

integration dominates the entire integration system.

The proposed integration scheme is inspired by this intuition, two federated

Kalman filters are connected in parallel as in Figure 5.1 presented.

In time update:

xt = Ftxt−1 (5.21)
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Figure 5.1: Integrated Federate Kalman Filter

where x is the interest state vector, F is the transient control matrix. The variance

of the prediction x̂t|t−1 and xt is given as Eq.(5.22)

Pt|t−1 = [E(xt − x̂t|t−1)(xt − x̂t|t−1)T ] (5.22a)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (5.22b)

Q is the system process noise covariance can be obtained by the bias of the gyroscope

and the accelerometer Q = diag(δbg, δba).

The IMU/GPS integration measurement equation is as Eq.(5.23)

z(IMU,t) = HIMU
t xt

HIMU
t =

I3×3 0 0 0 0

0 I3×3 0 0 0

 (5.23)

The IMU/LiDAR integration measurement equation is as Eq.(5.24)

z(LiDAR,t) = HLiDAR
t xt

HLiDAR
t =


I3×3 0 0 0 0

0 I3×3 0 0 0

0 0 I3×3 0 0

 (5.24)

The measurement update is processed as Eq.(5.25), and the covariance matrix Pt|t
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can be updated as Eq.(5.26)

x̂t|t = x̂t|t−1 +K(z −Htx̂t|t−1) (5.25)

Pt|t = Pt|t−1 −KtHtPt|t−1 (5.26)

where K is the Kalman gain. As in Eq.(4.44a) present, the value P represents the

uncertainty of each federated Kalman filter. In our proposed dynamic integration

technique, this P value is used to decide the weight of each subsystem.

The proposed dynamic integration filter is consisted in two subsystems. The

covariance matrix of subsystem iIMU/GPS and iIMU/LiDAR can be estimated in each

federated Kalman filter. The more stable subsystem will take more sharing in the

integrated system. The integrated results need to feed back to the IMU and LiDAR

measurement to correct their measurement results.

5.6 External Direction Aiding

The Yaw error which is generated by the IMU mechanization could be updated by

the external sensor. Digital compass, magnetometer are the common sensors for

direction measurement. In this project, we adopt a magnetometer to provide extra

direction aiding. The IMU attitude error has been modelled as Eq.(5.27)

δωnin = [
∂ω̂in
∂ε̂

,
∂ω̂in

∂V̂
]

 δε
δV

 (5.27)

The error of Yaw δΨ can be obtained by partial derivative of Eq.(5.27)

δΨ̂ =
∂Ψ̂

∂εE
δεE +

∂Ψ̂

∂εN
δεN +

∂Ψ̂

∂εU
δεU (5.28)

The difference of the yaw measurement which obtained from IMU and magnetometer

is equal to Eq.(5.29)

δΨ̂ =
[
ΨIMU −ΨMag

]
= H · δx (5.29)

where

H =
[
01×6

∂Ψ̂
∂εE

∂Ψ̂
∂εE

∂Ψ̂
∂εE

01×6

]
(5.30)
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where

∂Ψ̂

∂εE
=

T̂12T T̂32

[T̂22]2 + [T̂12]2

∂Ψ̂

∂εN
=

T̂22T̂32

[T̂22]2 + [T̂12]2

∂Ψ̂

∂εU
=
T̂22T22 + T̂12T12

[T̂22]2 + [T̂12]2

(5.31)

The magnetometer measure the local magnetic field, and the orientation can be

estimated by the direction of the magnetic field. Through the output of the magne-

tometer (xmag, ymag, zmag) the orientation Ψ can be obtained as Eq.(5.32) [90].

ΨMag = atan2[−ymag · cos(Θ) + zmag · sin(Θ),

x · cos(Φ) + y · sin(Φ)sin(Θ) + z · sin(Φ)cos(Θ)]
(5.32)

5.7 Experiment Setup and Results Analysis

To compare and analyse the proposed solution, several experiments are conducted.

The following sections present the detail of the experiment and the analysis of the

experiment results.

5.7.1 Experiment Setup

The connection diagram and the experiment set up are presented as Figure 5.3 and

5.2. A low cost 360 degree 2D LiDAR (the 1st component in the figure) is used to scan

the surrounded obstacles and measure the distance and the angle between the sensor

and the obstacles. Its scanning frequency can reach to 5.5Hz with 6 meters scanning

range. A USB 2.0 connector provide the connectivity to the data stream and power

supply. The distance measurement resolution of this 2D LiDAR is ≤ 5mm in no

more than 1% of the distance measurement and the angle measurement resolution is

≤ 1◦. The GPS data is collected by an active antenna attach a Septentrio PolaRX5

GPS receiver (the 2nd and the 3rd component in the figure), the Septentrio PolaRX5

is a multi-constellation and multi-frequency reference receiver. In order to reduce

the error which is generated by time misalign, a uniform time resource is required.

The 1 PPS output port of the GPS receiver can work as a time reference in order to

provide a precise time synchronization for GPS receiver and the other sensors. The
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rigid body data is obtained from a xsens IMU (MTi-10) (the 4th component in the

figure). This low cost IMU contains three gyroscopes , three accelerometers and a

magnetometer which can provide 9 degree of freedom rigid body information. The

in-run stability of the gyroscope and the accelerometer are 18◦/h and 15µg , the

bias error of the gyroscope and the accelerometer are 0.2◦/h and 5mg receptively.

The total RMS noise of the magnetometer is 0.5mG with the resolution is 0.25mG.

The sampling frequency of the IMU in this experiment is set to be 200 Hz. In order

to simulate the vehicular environment, all the devices are placed on a trolley.

Figure 5.2: Experiment Setup

Figure 5.3: Connection Block Diagram
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5.7.2 Synchronization Design

5.7.2.1 GPS Receiver and IMU Synchronization

As mentioned in the previous section, the 1PPS output port of the GPS receiver

can work as a time reference in order to synchronize the IMU. The connectivity

of the time synchronization is introduced in this section. Firstly, a CA-MP2-MTi

and a CA-USB-MTi connectors are required, CA-MP2-MTi connector allow the full

control of IMU (MTi-10) and hardware synchronization option. The lead of CA-

MP2-MTi is presented as Figure 5.4 and its pin allocation is illustrated as Table

5.1 [91]

Figure 5.4: CA-MP2-MTi

Table 5.1: CA-MP2-MTi Pin Allocation
Function Wire colour CA-MP2 Fischer pin No. Molex pin No.
GND Black 1 2
RS232 Tx Yellow 2 4
RS232 Rx Grey 3 5
Vin(4.5-30V) Red 4 1
SyncIn Blue 5 7
SyncOut Pink 6 9
ClockSync Brown 7 8
USB DP(D+) Green 8 3
USBDM(D-) White 9 6
Shielding SH SH N/A

The CA-USB-MTi connection diagram is illustrated as Figure 5.5, it provide
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the connectivity for the MTI-10 and the external device synchronization and power

supply by PC USB port.

Figure 5.5: USBConnection

5.7.2.2 LiDAR Sensor Synchronization

Regarding to the LiDAR sensor time synchronization, the measurement of the Li-

DAR sensor contains a time tag from the PC using NTP(Network Time Protocol).

Although the LiDAR sensor synchronization is not as precise as GPS/IMU, the low

measurement frequency and data sampling frequency could reduce the effect which

is caused by time misalign. In the experiment, as Figure 5.6 present, within a time

interval of the LiDAR measurement, we calculate the instantaneous location which

could align the results of the IMU/GPS measurement.

Figure 5.6: Multisensor Synchronization
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5.7.3 Test Route and Scenario Design

The testing trajectory is carefully designed in order to evaluate the performance of

the integrated system. To obtain the best location information, the testing route

starts from an open view area where the GPS receiver can obtain the optimal per-

formance. Therefore, the integration performance is mainly decided by the GPS

receiver and the IMU coupling results, since LiDAR cannot obtain a sufficient lo-

cation information. Then to evaluate the LiDAR aiding results, the following two

scenarios need to be concerned. As Figure 5.7 presented, scenario 1 presents a tra-

jectory which the trolley pass from an open view environment to a satellite signal

deny environment and the scenario 2 presents a very narrow sky view which can

generate a very dense multipath environment. These two scenarios are common

to vehicular communication under urban environment which can degrade the GPS

receiver position.

Figure 5.7: LiDAR Navigation

It is an intuition that under a unban environment the performance of the GPS

positioning is poor. However, the LiDAR sensor can extract sufficient number of

line features and operate as a GPS alternate. Figure 5.8 and Figure 5.9 present the

data cloud from two successive times of LiDAR scanning. Feature 1,2,3 represent

the identical lines from two scans. LiDAR sensor process relative navigation using

these identical lines.
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Figure 5.8: Line Feature extraction From 1st scan circle

Figure 5.9: Line Feature extraction From 2nd scan circle
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5.7.4 Experiment Results and Analysis

The data from each individual sensor are collected and stored in a laptop for post

processing. A MATLAB R2017a is used for data processing and analysing.

5.7.4.1 Location Results and Accuracy

The position results in this experiment are compared between LiDAR aided IMU/GPS

based on Kalman filter and LiDAR aided IMU/GPS based on the proposed dynamic

integration scheme respectively. Kalman filter based approach is a conventional mul-

tisensor data fusion scheme and widely used in various of applications, within this

approach, Kalman filter works as a central filter to fuse the data from different

receivers.

The experiment results mainly evaluate and compare the positioning consistency

and accuracy. Figure 5.10 presents the number of satellites being tracked. In the

beginning of the experiment, in an open view environment, the number of tracked

satellites is 18 then the number decreased since the receiver enters to a building area.

In the worst situation, the number of the tracked satellites is zero that would deny

the positioning service completely. Due to this problem, the multisensor technique

for positioning is essential.

Figure 5.10: Number of Tracked Satellites

Figure 5.11 and Figure 5.12 present the longitude and latitude comparison results

between two integration schemes and the reference. As the figures presented, the

GPS receiver alone cannot provide a continuous measurement due to the signal
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blockage and attenuation. Under this circumstance, the IMU corrected information

is provided by LiDAR. With two integration approaches, the comparison results

indicate that the dynamically integrated approach can obtain a better performance

in general especially when GPS signal is not available. As the comparison results

indicate the performance of the integration results are not consistent due to the

change of the environment. This change is illustrated in Google map plot.

Figure 5.11: Longitude Results Comparison

Figure 5.12: Latitude Results Comparison

Figure 5.13 presents the 2D trajectory on Google map. As the figure presents

the experiment start in front of the Merze court where considered as an open view

environment. Under this scenario LiDAR sensor cannot achieve an optimal per-
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Figure 5.13: Trajectory Comparison

formance since the surrounded obstacles are further than the maximum scanning

distance, therefore the LiDAR sensor contributes more noise than aiding informa-

tion. Therefore, the IMU/GPS integration results should take more weight in the

entire system and reduce the influence of the LiDAR. However, the conventional

integrated Kalman filter uses the central filter and treat all sensor equally, this

structure is less dynamic when the performance of one sensor is significantly poor.

It is clear to see that the overall integration results of Kalman filter based ap-

proach contain a systematic error which cause the results retain a constant bias

from the reference trajectory, this systematic errors are mainly generated by each

sensors. The results from the Kalman filter based approach indicate that the overall

performance is not ideal in the beginning and the first part of the experiment espe-

cially when the trolley enters to a GPS signal denied environment. However, this

approach can achieve a better performance in the last part of the experiment, this

prove that the Kalman filter need a long time to converge the filtering results.

In contrast, the proposed integration scheme can overcome this challenge. The

sharing factors within the proposed approach which are corresponded to each indi-

vidual subsystem. These factors could minimize the contribution which made by the

less stable subsystem in order to improve the entire system and reduce the system-

atic error which generated by the unstable sensor. LiDAR sensor could normally

achieve a better performance since the extracted features are sufficient when the

system is operating under a GPS signal denied environment. Under this scenario,

we prefer the LiDAR/IMU integration could take more percent and reduce the effect
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of GPS receiver. The result figures show that the proposed method could retain the

positioning results in a relevant high accurate level especially when the satellites sig-

nal is completely lost. The experiment results indicate that the trees and buildings

can affect the performance of the GPS receiver. At the last part of the experiment,

the position accuracy drops significantly because of the tall buildings, the H shape

of the tall building is the major challenge to the low elevation satellites signals, as it

could block the low elevation satellites signals and dilute the accuracy of positioning

The standard deviation σ evaluate the accuracy of the position estimation be-

tween two algorithm. Within an epoch, smaller σ indicates the smaller vibration

of the estimation results. In order to obtain an accurate standard deviation value,

the epoch is one fifth of second. Figure 5.14 and Figure 5.15 represent the standard

deviation of X and Y estimation with respect to two approaches.

Figure 5.14: Standard Deviation of X

The comparison results show that the Kalman filter based approach has a rele-

vant high variance within an epoch however the dynamic integrated approach gains

a smaller σ which can indicate the proposed approach is more stable and accu-

rate compare to the Kalman filter based approach. Figure 5.16 and Figure 5.17

present the position error status, namely meters and RMSE between two integration

approaches regarding to the reference. The results indicate that the proposed ap-

proach is superior than the conventional Kalman filter based approach with respect

in accuracy and resilience. Furthermore, the performance of the dynamic integrated

approach is more robust compare to the conventional Kalman filter based method

since the error increasing rate is much lower when the environment change.
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Figure 5.15: Standard Deviation of Y

Figure 5.16: Error in Meters
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Figure 5.17: RMSE

5.8 Summary

This chapter presented a novel multisensor data fusion approach for continuous

and accurate positioning. To efficiently use LiDAR navigation, several conventional

LiDAR line extraction schemes have been reviewed and evaluated. Based on the

comparison results a efficient line extraction approach is proposed and implemented

for LiDAR navigation. This LMS based line feature extraction approach can sig-

nificantly reduced the LiDAR processing time and improved the efficiency of the

integration process.

To compare and analyse the performance of the novel approach against the con-

ventional approach, a field experiment was conducted in Newcastle university. The

experimental trajectory contains open an view environment, GPS signal blocked

environment and narrow view environment. The field experiment results indicated

that with the help of the dynamic integration scheme, the performance has been

improved compare to the conventional Kalman filter based integration scheme. Due

to systematic errors, the Kalman filter based approach contains a constant bias,

and this bias takes time to be mitigated by the Kalman filter. This shows that the

Kalman filter requires take time to converge. Nevertheless, the novel method can

successfully provide an accurate, continuous and robust navigation approach in a

challenging environment. These advantages proved that this new approach is more

adaptive to vehicular communication applications.
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Chapter 6

Conclusion and Future Works

GPS is a major satellite based navigation and positioning system and plays an impor-

tant role in many applications. In vehicular communications, the precise, accurate,

and continuous positioning and navigation information is in high demand. In urban

environments, the low signal strength and the very dense multipath environment

can significantly degrade the performance of GPS receivers or even deny the service

completely. Furthermore, a highly dynamic environment is another challenge for

the carrier tracking loop of GPS receivers, since the Doppler frequency shift will be

increased.

To overcome these challenges, we proposed several novel methods in this thesis.

To improve the acquisition ability of GPS signal processing, this thesis proposed a

modified serial searching acquisition approach through a low cost dual polarization

patch antenna to acquire LHCP GPS L1 band signals. The experimental results

indicate that through this method extra satellites can be acquired in a very chal-

lenging environment. Furthermore, after successfully acquiring the GPS signal, two

novel Kalman filter based carrier tracking loops are designed and implemented.

In order to obtain accurate and continuous positioning and navigation informa-

tion, multiple sensors are required including a GPS receiver, IMU, and LiDAR. With

three sensors, IMU and LiDAR require a series of algorithms to extract the position

information. In order to reduce the computational cost of LiDAR mechanization, a

novel line feature extraction approach has been proposed and implemented for Li-

DAR navigation. Then, a robust dynamic federated Kalman filter based multisensor

integration approach is proposed and implemented at the end of this project.
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6.1 Conclusion

This thesis firstly presented a novel step jumping serial searching acquisition method

and designed a very low cost dual polarization patch antenna. Through simulation

and field experiments, the results demonstrated that the novel searching approach

is faster to the conventional approach and the acquisition results are superior than

the commercial GPS receiver attached to an active antenna. The comparison results

showed that the low cost dual polarization patch antennas that aim to collect the

reflected LHCP GPS signals can be successfully implemented on both commercial

GPS receivers and software based receivers. In the software GPS receiver, with the

help of the step jumping serial searching acquisition method, the receiver is more

sensitive to weak signals compared to the commercial GPS receiver which normally

uses an FFT based parallel searching acquisition method.

Experimental results proved that the step jumping serial searching acquisition

method can successfully acquire extra satellites via LHCP signals. The benefit of

this novel acquisition method and antenna is to increase the total number of the

acquired GPS satellite signals from both RHCP and LHCP antennas in order to

improve the positioning accuracy under a very dense multipath environment.

In addition to designing and implementing a novel and efficient acquisition ap-

proach, this thesis also made a contribution to the carrier tracking loop design. The

proposed carrier tracking loops consisted of a 3rd order PLL dynamically integrated

with an adaptive Kalman filter and a 3rd order PLL dynamically integrated with an

unscented Kalman filter. Firstly, the experiment compared the proposed 3rd order

PLL integrated adaptive Kalman filter based carrier tacking loop against the con-

ventional adaptive Kalman filter based carrier tracking loop in different aspects. The

results indicated that the proposed tracking approach is superior in self adjusting

and low C/No signal tracking. As the experimental results show, the C/No has been

improved significantly compared to the conventional approach. Furthermore, for a

large tracking bandwidth, the noise level of the output of the phase discriminator

has also been reduced and that leads to the proposed tracking approach obtaining

a better tracking accuracy.

To overcome the linear model requirement, an adaptive unscented Kalman fil-

ter and 3rd order PLL dynamically integrated carrier tracking loop is presented.

As a quasi open loop, the unscented Kalman filter has a strong tracking ability
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and makes the entire carrier tacking loop more robust. The parallel connected 3rd

order PLL guarantees the tracking accuracy. Similar experiments were conducted

and compared against an adaptive Kalman filter aided 3rd order PLL and the com-

parison results prove that the proposed approach can improve the carrier tracking

capability. The carrier tracking trade-off issue between tracking bandwidth and ac-

curacy has been tackled using the proposed approach and the field test confirmed

that it can achieve a greater tracking range and still maintain the high accuracy.

Comparison results indicated that this unscented Kalman filter integrated 3rd order

PLL approach is more stable and robust with respect to phase variance and phase

discriminator output. Phase variance comparison results showed that the proposed

approach has a better steady-state response. Moreover, the phase discriminator

output comparison results indicated that the proposed approach has a better noise

rejection ability. This could also be observed in the C/No comparison.

For LiDAR navigation, the line feature extraction and mapping are the most

important techniques. To improve the efficiency of the feature extraction, the the-

sis proposed a LMS based line extraction and mapping technique. Meanwhile, a

GPS receiver, IMU and LiDAR integrated navigation system is designed by using

a dynamically integrated federate Kalman filter approach. A field experiment is

conducted to investigate the performance of the proposed approach. Experiment

results indicated that the proposed GPS/INS/LiDAR navigation approach has a

superior performance in terms of robustness and resilience. Via the dynamic in-

formation sharing factor within the proposed positioning approach, two subsystems

can switch dynamically according to their performance, and because of this dynamic

switching, the entire system can achieve more optimal results and provide precise

and continuous navigation information.

In vehicular communication, especially in an urban scenario, the road condition

can change rapidly and these changes can affect a particular sensor. Therefore, a

robust and efficient multisensor navigation system is required. The proposed nav-

igation method is reliable, robust and efficient. It can self adjust the contribution

percentage of each subsystem and benefit the entire system to obtain precise con-

tinuous and consistent position and navigation information.
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6.2 Future Work

The proposed modified serial searching approach is a member of the serial searching

family, therefore, the processing speed is slower than parallel searching although it is

more sensitive to a low SNR signal. However, in vehicular communication or highly

dynamic environments, a rapid response and re-acquisition is equally important.

The future work should focus on designing a more efficient acquisition approach and

still retaining the same sensitivity level.

As we know, a highly dynamic environment can generate a strong Doppler effect

and degrade the performance of the carrier tracking loop. INS or IMU can measure

the inertial parameter and estimate the Doppler effect. With prior information of

the Doppler effect, the performance of the carrier tracking loop can be significantly

improved, therefore, the future research should also focus on the INS aided carrier

tracking loop design.

Position information like latitude and longitude from the GPS receiver is re-

stricted by the number of visible satellites. With less than 4 visible satellites, the

GPS receiver will not be able to provide positioning information. However, instead

of using positioning information, pseudorange, which is a distance measurement

between the satellite and the receiver, is available even when there is only one satel-

lite. By fusing the GPS pseudorange measurement with IMU and LiDAR one can

achieve a more robust and accurate positioning result. Furthermore, besides GPS,

IMU, and LiDAR, a cellular signal is another valuable location source which can

provide a relevant position. Now, the world is entering an era of 5G, the cellular

link will be more reliable and fast, and future research could also focus on the fusion

of cellular signals for positioning and navigation.

For research purposes, in this project, all the collected data and algorithm im-

plementations are achieved via post processing. Future research could focus on real

time processing platform design and implementation.
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