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LysR-type transcriptional regulators (LTTRs) comprise one of the largest families of transcriptional regulators in bacteria and
control gene expression of various ﬂ of' metabolic, virulence and physiological ﬁmons. LTTRs typically form homotetramers
and require an inducer molecule(s) to activate the transcription of target genes. The N-terminal region of LTTRs contains a
binding domain (DBD) with the winged helix-turn-helix motif that specifically binds the promoter region of target genes. The
C-terminal region of LTTRS is connected to the DBD by a linker helix and forms the regulatory domain (RD) that contains a
binding pocket for inducer molecules. Crystal structures of several LTTR family members together with their bioche analyses
have provided a potential mechanism for the initial process oftrmscriptimctivation by LTTRs. First, helix a3 of the winged
helix-turn-helix motif in DBD is supposed to distinguish the recognition binding site (RBS) in the promoter region, resulting in
complex formation through interactions between two DBDs in the tetrameric LTTR and Formation of this complex seems to
enalmlteractions between the other two DBDs in the LTTR tetramer and the activation binding site (ABS) in the promoter region.
The binding of the tetrameric LTTR to both the RBS and ABS causes the promoter DNA to adopt a bent structure because the four
DBDs in the tetrameric LTTR are arranged in a V- d manner at the bottom of the LTTR. Interaction of an inducer molecule(s)
with the RD seems to cause a quaternary structural change of the LTTR that relaxes the bending angle of the prumr DNA with a
concomitant shift of the bound DBDs at the ABS. These events facilitate recruitment of RNA polymerase to its binding site in the
promoter region, which overlaps with the ABS for LTTR.

Kevwords: Bacteria, chlorocatechol, LysR—type transcriptional regulator, transcription

1. IPBRduction variety of the function of the regulated genes.

LysR-type transcriptional regulators (LTTRs) represent one
of the largest families of prokaryotic transcriptional regl.m
(Henikoff et al., 1988), and functional orthologues are also found
in archaea (Sun and Klein, 2004) and in chloroplast of a red alga
(Minoda et al., 2010). LTTRs regulate transcription of genes
that code for proteins that have diverse functions, including
adation of aromatic compounds, biosynthesis of amino acids,
synthesis of virulence factors, CO,fixation, N -fixation, antibiotic
resistance, cell division, quorum sensing and oxidative stress
responses (reviewed in Maddocks and Oyston, 2008 and Schell,
1993). Table 1 shows several examples of LTTRs to show the

LTTRs were iitially defined in 1988 by Henikoff et al. They
found primary structure similarities in bacterial transcription
proteins, AmpR, LeuO, LysR, IlvY, CysB, NodD, MetR and
TfdO, and designated these proteins as LysR family members.
LTTRs typically consist of ~300 amino acids and bind their target
promoters as homotetramers (Akakura and Winans, 2002b; Feng
et al., 2003). An LTTR located on the promoter must bind to an
inducer molecule(s) to activate transcription. Some LTTRs are
known to be present as a dimer or octamer (Parsek et al., 1994;
Sainsbury et al., 2009); however, these examples are relatively

rare. Primary sequence analysis and biochemical studies suggest
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that LTTRs are composed of two domains: a DNA binding domain
(DBD) and a regulatory domain (RD) (Schell, 1993).

DNase | footprinmnalyses have revealed that LTTRs bind to
an approximately 60 bp region of the promoter DNA curmmding
to ca. —80 to —20 upstream of the transcriptional start site in the
absence of the inducer (Fig. 1) (Wek and Hatfield, 1988; Fisher
and Long, 1989; Ogawa et al., ]999)_ binding region of the
promoter can be divided into two parts: the recognition binding site
(RBS) and activation binding site (ABS). The RBS has an inverted
repeat structure and lwcmened repeat sequences are interrupted
by several nucleotides (Huang and Schell, 1991; Toledano et al.,
1994; Porria et al., 2010, MacLean et al., 2011). DNA sequence
comparison of various promoters for LTTRs revealed a consensus
sequence of RBS, the T-N;—A motif (Figs. 1 and 2). The region of
~ 60 bp covered by LTTRs in the promoter containing presumably
the RBS and ABS has been confirmed for the following examples:
vy { and Hatfield, 1988), NodD (Fisher and Long, 1989),
OxyR (Storz et al., 1990; Toledano et al., 1994 PR lik et al., 1995a),
NahR (Huang and Schell, 1991), OccR (Wang E, 1992; Akakura
and Winans, 2002b), CatR (Parsek et al., 1994), ClcR (McFall e al.,
1997b), GevA (Jourdan and Stauffer, 1998), CbnR (O, et al.,
1999), AphB (Kovacikova and Skorupski, 2001), CysB %m
et al., 2004), YtxR (Axler-DiPerte et al., 2006), ArgP (L.aimm
and Gowrishankar, 2007; Minh et al, 2018), AtzR (Porria et al.,
2007), PcaQ (MacLean et al., 2008), ToxR (Kim @_, 2009),
NAC (Rosario et al, 2010) and ThnR (Rivas—Marin et al., 2016).
Gel mobility shift and DNase I footprinting results indicate that
LTTRs form stfIe¥Rr interactions with the RBS than with the
ABS (MacLea [., 2008; Pomia et al., 2010). Although LTTRs
interact wveakly%)e ABS, this site is essential for transcriptional
activation (Tover et al., 2000; Porria ef al., 2010). In the ABS, the
binding site of an LTTR shifts from site-1 to site-2 upon 1
binding (or upon receiving an environmental signal) (Bundy er al.,

2002; McFall, etal., 1997b; Devesse et al., 2011; Porraa etal., 2013).
Binding of an LTTR to promoter DNA causes DNA bending, whose
angle is generally relaxed when an inducer molecule(s) binds to
the LTTR. After relaxation of this DNA mjng, RNA polymerase
seems to be recruited to the promoter site to activate transcription.

Since the molecular mechanism of transcriptional activation
remains a central issue in biology, many studies have been performed
in the field of LTTRs. Although full details of the transcription
activation mechanism by LTTRs ains elusive, crystal structures of
LTTRs and biochemical studies on the basis of the crystal structures
have revealed parts of the transcription activation mechanism by
LTTRs. In this review, we have summarized studies of LTTRs on the
basis of their tertiary structures.

2, (.’bnR: of the representative models for LTTRs

CbnR is a member of the LTTR family (Ogawa and Miyashita,
1999; Ogawa et al., 1999) and one of the best-characterized
LTTRs. In 1999, Ogawa et al. identified CbnR as a positive
regulator for ebnABCD genes (Ogawa et al., 1999) in Cupriavidus
necator NH9. ebnABCD genes encode a series of en 8
involved in the ortho-cleavage pathway of chlorocdBihols. ChnR
forms a tetramer in solution andaeracts with the RBS and ABS
in the chnd promoter region. cis, cis-Muconate or Z-chloro-
cis, eis-muconate serves as an inducer of CbnR. In §Z8chnA
promoter region, the RBS spans the region —76 to —49 upstream
of the transcription start site of the chnd gene (Fig. 1). The RBS
is presumed to be necessary for anchoring CbnR to the promoter
region with its 5 bp inverted repeats (TTACG-N~CGTAA) (N:
nucleotide). The inverted repeats of RBS in the chnd promoter
contain the consensus T-N,—A motif for LTTRs (the conserved T
and A are underli
region —44 to —19 upstream of the transcription start site of the

in the above sentence). The ABS spans the

chnA gene and overlaps with the —35 and —10 elements, which are

-

-7 35 -10
- T- Ny,- A

TTITTTRESTTTTT )

;o -70 /s s

= ebnA
ABS ranseriptional
\‘\ ,"30 "\\ Start g

Fig.1 Schematic diagram of the chnA promoter regions that are protected from mlse 1 dlgestlon by CbnR. +1, transcription
start site (dashed circles show locations that are masked by CbnR). The —35 and —10 regions of the chnd promoter are
shown (Ogawa et al., 1999). Vertical arrows indicate hyper-sensitive DNase I digestion regions.
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RNA polymerase binding sites (Fig. 1). Notably, binding of CbnR
t the ABS and RBS of the chnd promoter is likely to cause
a bending of the promoter DNA by 78°. The binding angle was
estimated by circular permutation gel shift analysis. Upon inducer
binding, the bend angle is relaxed to 54°. While similar degrees
of bend angles and relaxation upon inducer bindimlznfe been
reported for other LTTR-binding promoter regions (McFall et al.,
1997a; van Keul al., 1998; Minh et al., 2018), analysis of the
tetrameric DntR by small angle X-ray scattering (SAXS) suggests
that the bend angles obtained by circular permutation gel shift
results could be underestimates (Lerche ef al., 2016). Considering
biochemical analyses of other LTTRs, the relaxation of the bend
angle in the CbnR-DNA complex might be accompanied with a
shift of CbnR ing in the ABS (Fig. 2) (Ogawa et al., 1999).
Although such a shift of the binding site in ABS was not observed
@he CbnR system, we presume this shift takes place because it
has been observed in other LTTRs (Ogawa et af.@g}.

CbnR is the first example for whic@e crystal structure
of a full-length LTTR was determined (Muraoka et al., 2003).

Therefore, ChnR has been a representative model to study the
molecular mechanism of transcription acti n by LTTRs.
Mutational analyses of CbnR was performed on the m of its
crystal structure (Moriuchi et al. 2017). Furthermore, the crystal
structure of the DBD of CbnR (hereafter CbnR(DBDmmmplex
with promoter DNA has been determined (Koentjoro et al., 2018).
The crystal structure of the CbnR(DBD)-DNA complex revealed
the molecum'uechanism of the sequence specificity of CbnR
{Koentjoro et al., 2018). In this report, we frequently use the
crystal structure of CbnR as a representative model of LTTRs.

3. Overall and subunit structures of CbnR and other LTTRs
ale first tertiary structure describing structural features of’
an LTTR was the crystal structure of the RD of CysB (hereafter
CysB(RD)) (Tyrrell et al., )_ The CysB(RD) structure is a
homodimer and each domain i1s composed of two subdomains. The
crystal slructmf CysB(RD) provides information about the inducer
binding site. Although the crystal structure of CysB(RD) provided
a valuable structural base for biochemical analysis of LTTRs,

©2018 Reviews in Agricultural Science
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several questions 1 ined red: (1) the arrang; t of the
four subunits in the tetrameric LTTRs; (2} the mechanism of DNA
bending by an LTTR upon interaction with the promoter DNA; (3)
the mechanism of specific interactions between an LTTR and the
RBS/ABS; (4) the mechanism of the conformational change of the
RD upon inducer binding; and (5) the quaternary structural changes
of the LTTR upon inducer binding. These are critical questions for
understanding the functional mechanism(s) of LTTRs. Some of these
questions have been answered using structural information of LTTRs
obtamed after the CbnR structure was solved, whereas some of these
q s remain elusive.

The ﬁrmystal structure of a ﬁ.lll—lengtha'l'R was determined
for CbnR (Muraoka et al., 2003). Full-length CbnR forms a tetramer
in the crystalline state (Fig. 3(A)). Since several biochemical studies
m.ved that LTTRs are typically homotetramers in solution (Bundy
et al., 2002; Jovanovic et al., 2003; Jang et al., 2018), the tetrameric
structure of ChnR represents a model quaternary structure of various
LTTRs. The quatemary structure of tetrameric ChnR is unique among
tetrameric proteins; the tetramer of CbnR does not have the 222 point
group symmetry, which is a typical point group found in tetramenc
proteins. In CbnR, the ubunits in the tetramer do not have the
same conformation but adopt two distinct confo s, compact
and extended forms (Fig. 3(B)). The CbnR tetramer can be described
as a dimer [Gf@limers that assembles via two distinct dimerization
interfaces (Muraoka er al., 2003; Ezezika ef al., 2007b; Monferrer
et al., 2010; Devesse et al., 2011; Jo et al., 2015). The first dimer
interface is located between two linker helices (residues 39-89; see
below). This interaction forms a DBD dimer, in which two DBDs
are related by a local two-fold axis. In the DBD dimer, one subunit
adopts the compact conformation, whereas the other dimer adopts the
extended conformation. The second interface is located between RDs
(Fig. 3(A)). The interaction between two RDs makes a dimer of RDs,
resulting in the formation of a dimer of the DBD dimers (tetrameric
CbnR). This unique architecture of CbnR is shared among other
tetrameric LTTRs. BenM, TsaR, DntR and OxyR were md to form
essentially the same tetramer in the crystalline state (Ruangprasert
et al., 2010; Monferrer et al., 2010; Devesse et al [EENl; Jo et al,
2015). Four DBDs in the tetrameric CbnR arrange in a V-shape at
the bottom of the CbnR tetramer (Fig. 3(A)). This likely explains
the DNA bending observed in the ChnR-promoter DNA complex.
Interestingly, CrgA adopts a homo-octamer (Sainsbury et al., 2009)
with the RDs forming a dimer interface of the dimeric CrgA. MetR,
CatR, IlvY and NodD3 have also b@&ffldentified as dimers in solution
by biochemical analysis (Maxon ef al., 1990; Parsek ef al., 1994;
Fisher and Long, 1993; Bender, 1991).

The crystal structure of ChnR revealed that the subunits of
CbnR are composed of two domains and one linker h(Fig.
4). Residues 1-58 of CbnR forms the DBD, which has a winged

helix—turn-helix (wHTH) motif. The linker helix (residues 59-89)
connects the DBD to the RD and RD is composed of residues 90—
291 (Fig. 4). RD is responsible for interactions between subunits
emcnstraled in the crystal structure of CysB(RD) and 1s likely
to be mvolved in the recognition of the inducer (Muraoka et al.,
2003; Dangax’., 2015; Ruangprasert ef al., 2010).

Several crystal structures of full-length LTTRs have also been
reported, namely AphB (PDB ID: 3T1B), ArgP (PDB ID: 31SP),
BenM (PDB ID: 3KIN), CrgA (PDB 1D: 3HHG), DntR (PDB 1D:
SAES), MetR (PDB 1D: 4AB6), OxyR (PDB ID: 4X6(md TsaR
(PDB 1D: 3FXQ). These structures confirmed that the crystal
structure of CbnR is a repr tative of the tetr ic LTTRs.

3.1 Structure of the DNA binding domain (DBD)

The DBD ms high amino acid sequence similarity for
f the LTTR family (Fig. 5) {Schell 1993).
Functional roles of amino acids involved in DNA binding have
been analyzed by mutations of NahR (Schell and Sukhordfmn,
1989), OxyR (Kullik et al., 1995b; Zaim and Kierzek, 2003), GevA
(Jourdan and Stauffer, 1998), CysB (Lochowska et al., 2001),
CrgA (Deghmane and Taha, 2003), OxyS (Li and He, 2012) and

R (Moriuchi ef al, 2017). The DBD of LTTRs contains three
helices (w1, a2 and and two [-strands and adopts the so-
called wHTH motif (Muraoka et al., 2003; Sainsbury et al_, 2010;
Monferrer er al., 2010; Zhou et al., 2010; Lerche er al., 2016). The o
3 helix is referred to as t@cognition helix because it recognizes
specific DNA sequences by inserting into the major groove of the
DNA. A deep cleft forms between the ¢l and a3 helices, which
is a favored structural feamto facilitate packing into DNA via
hydrophobic interactions (Alanazi et al., 2013; Koentjoro em,
2018). Two wHTH motifs from the DBD dimer bind to pseudo two-
fold symmetric DNA operator sequences such that eachmnomer
recognizes a half site (Laishram and Gowrishankar, 2007; Alanazi et
al., 2013; Koentjoro et al., 2018).

proteins that are me

32 Interaction between LTTR(DBD) and promoter DNA

Details of the DBD-DNA interaction have been analyzed using
crystal structures of LTTR DB[m complex with their target
DNA. High sequence similarities of the amino acid sequences of
the DBDs of LTTRs and the promoter DNA sequences suggest a
conserved mechanism of promoter Im recognition by the DBDs
of LTTRs. Nonetheless, variation in the amino acid sequences
of the DBDs of LTTRs appears to be required for recognition
of distinct DNA promoter sequences (MacLean et al., 2008;
Lénneborg and Brzezinski, 2011). Currently, crystal structures
of BenM(DBD)-DNA and CbnR(DBD)-DNA complexes have
been determined (Fig. 6). Comparative analysis of these crystal
structures revealed several differences between CbnR(DBD) and
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conformation. Helix a3 is the recognition helix (gray) (B). Structure of the DBD dimer. DBDs in the dimers are related
by a two-fold rotational axis. The linker helix forms a dimer interface. In the DBD dimer, one subunit has a compact
conformation and the other adopts an extended conformation. Dimerization of the DBD dimer to form a tetramer occurs
through interactions of the RD. (C) Hypothetical model of the quaternary structural change. Left: the close conformation
of the tetrameric LTTR. In the closed form, «-helices in the RD interact with each other (left). A conformational change
to the RD occurs upon inducer binding. The small conformational change around the inducer binding cleft (IBC)
transmitted in the RD seems to result in the loss of the helix-helix interaction found in the closed conformation. The loss
of the helix-helix interaction is supposed to induce a relatively large quaternary structural change and the formation of an
open conformation. In the open conformation of LTTR, the distance between the two @3 recognition helices at both edges
of the tetrameric CbnR is closer than that in the closed form. Fig. 3(C) was reproduced from Monferrer et al., (2010) Mol.
Microbiol. 75: 1199-1214 with minor modification of omitting intermediate state.

(B) Head to head dimer of CbnR

Extended form of monomer  Compact form of monomer

clin
RD
&

Open form of tetrameric LTTR

>

BenM(DBD) in the interaction with their specific DNA sequences.
The overall structures of the two complexes were, however, found
to be quite similar. In addition, three nucleotides out of four in each
of the inverted repeat sequences are conserved between RBSs for
CbnR and BenM; the nucleotide sequence of the inverted repeats
of the RBS for CbnR is TTAC-N~GTAA and that for BenM
is ATAC-N,—GTAT (the conserved T and A for most LTTR-
regulated promoters are underlined, and differences in the two
inverted repeats are shown in bold type). Despite these similarities
in the DBD and RBS, CbnR could not bind to the RBS recognized
by BenM. Surprisingly, a single amino acid difference at residue
33, Thr33 in CbnR and Ser33 in mw, explains their promoter
sequence selectivity on the basis of the crystal structures of the
complexes of DBD and DNA (Koentjoro er al., 2018).

Interaction between the DBD and DNA was analyzed by
mutations of the DBD and the ]moter sequence. Interestingly,
the length of the spacer sequence between the RBS and ABS affect
the DNA binding activity of the LTTR in the absence of an inducer.
Normally, the spacer length between the RBS and ABS is 3-6 bp
(Sainsbury et al., 2009; Li and He, 2012). Analysis by deletion
and insertion of nucleotides in the spacer region revealed that the
distance between the RBS and ABS is critical to the strength of the
interaction with tetr. ic LTTRs (Tover et al., 2000; Minh et al,,
2018). ArgP is a LTTR protein thgulates arginine transport in
Escherichia coli and is essential for transcriptional maticm of
the argO promoter (Zhou et al., 2010). Increasing the length of the
spacer sequence between the RBS and ABS of the argO promoter
region resulted in a deficiency of transcription of argO (Minh et al.,

o
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"‘-.__DNA-Binding Domain (DBD){E Regu]atory Domain (RD)
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II \:[
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Fig4 Structure of the ChnR subunit (PDB ID: 11Z1). A cartoon model (top) and schematic drawing presenting the domain
composition (bottom) are shown. The ChnR subunit is composed of the DNA binding domain (DBD) with the winged
helix-turn-helix motif, the linker helix that is involved in dimerization, and the regulatory domain (RD) that has an
inducer binding site
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Fig.5 Structure-based amino acid sequence alignment of LTTR family bers. The alig t was performed by PROMALS.
Amino acids are colored according to PSIPRED secondary structure predictions. The sequences of BenM and CbnR are
shown in black. For the other pmtein sequences, amino acids located in @-helices and fS-strands are colored red and blue,

o

respectively, and indicated as “h"” and “¢” on the bottom line of the figure, respectively.
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subunit B §

4y,

a3 helix

subunit A
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Fig.6 Crystal structure of the complex of CbnR(DBD) and RBS DNA (25 bp) (PDB ID: 5XXP). CbnR(DBD) binds to RBS DNA
as a dimer. The DBDs of subunits A and B in the dimer are colored in green and blue, respectively, and linker helices
of subunits A and B are colored in yellow and cyan, respectively. The arrows indicate a3 helices inserted into the major

srooves of DNA.

J

2018). Thus, the distance between the RBS and ABS is likely to be
critical for transcription activity.

3.3 Regulatory domain (RD)

mThe RD of LTTRs has an inducer binding cavity (IBC) and is
presumed to play a critical role in the confumonal change of the
LTTR tetramer upon inducer binding (Choi ef al., 2001; Maddocks
and Oyston, 2008; Quade er al., 2011; Park er al., 2017). The RD
from CysB was the first crystal structure solved of a RD (Tyrell et
al., 1997). Subsequently, crystal structures of RDs of LTTR family
members with inducer molecules bound (or adopting an inducing
state ccnfarmalhzwe been reported. These include OxyR (Choi
et al., 2001; Jo et al., 2015), DntR (Smirnova et al., 2004; Lerche
et al., 2016), BenM and CatM (Ezezika ef al., 2007a; Crzm et
al., 2009) and TsaR (Monferrer 2010). The RD is composed of two
subdomains, RD-1 and RD-IL The two si
two crossovers that form the IBC. RD-I consists of a five-stranded
B—ml with three a-helices surrounding this 3-sheet structure. RD-
11 contains a five-stra -sheet that is strongly twisted and four o
-helices (Fig. 4) (Tyrell et al., 1997; Muracka et al., 2003; Monferrer
etal., 2010; Quade et al., 2011; Park et al., 2017). Structural studies
of BenM, OxyR, PcaQ, RovM, AphB and DntR have led us to
hypothesize that inducering {or environmental change) to
the RD of LTTR causes a conformational change in the RD that is
propagated throughout the tetrameric LTTR and changes the bend

ins are connected by

angle mw promoter DNA (Kovacikova and Skorupski, 2001;
Bundy et al., 2002; Smirnova et al., 2004; Quade et al., 2011; @eﬁ‘
al., 2012; Jo et al., 2015) However, while crystal structures of OxyR
(Choi et al., 2001; Jo et al., 2015), BenM (Ezezika et al., 2007a)
and DntR (Devesse ef al., 2011) have revealed conformational
changes of the RD upon inducer binding, conformational changes
of tetrameric full-length LTTR upon inducer binding have not been
observed in the crystal.

The functional si@¥@icance of the RD was also analyzed
by mutation analysis (Kullik ef al., 1995a; Cebolla et al., 19‘3@
Lochowska et al., 2001; Akakura and Winans, 2002a; Dangel et
al., 2005; Craven et ai., 2009; Lang and Ogawa, 2009; Taylor et al.,
2012). For example, our group performed a mutational study using
CbnR (Moriuchi ef al., 2017). Of the eight mutations to CbnR(RD),
three mutations (Phe98Ala, Lys129Ala and Phe202Ala) appear to
directly affect inducer binding, and this observation is corroborated
by a study of BenM, in which the corresponding residues are
known to interact with the cognate inducer molecule (Ezezika et al.,
2007a). Interestingly, we obtained two constitutive active mutants,
Argl99Ala and Val246Ala, which activated transcription without
the inducer. The amino acid exchanges in these mutants appear
to induce a structural change that mimics the change caused by
inducer binding. These results indicate that conformational changes
in the RD are important in activating transcription.

nz
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34 Transition from closed to open form of tetrameric LTTRs

Protein—protein inleracti(@re important for the assembly
of tetrameric LTTRs (Bundy et al., 2002; Ezezika et al., 2007b;
Sainsbury ef al., 2009; Knapp and Hu, 2010; Ruangprasert ef
al., 2010; Devesse et al., 2011). Residues located at the interface
regions of RDs (Fig. 3(A)) are responsible for the formation of
tetramers. In particular, interactions betwmtwo DBD dimers
are critical for formation of the tetramer (Muraoka et al., 2003;
Ezezika et al., 2007b; Ruangprasert et al., 2010).

Although no quaternary structural changes of LTTRs upon
binding an inducer have been observed in crystal structures, some
crystal structures of LTTRs suggest a transition of the quaternary
structure of tetrameric LTTR from a closed to open form upon
binding an inducer (Monferrer et al., 2010; Lerche et al., 2016). In
the closed form, there are interactions between two « helices from
two RD-II subdomains (two @V helices from two distinct RD-
11) that are related by a two-fold a@)pun inducer binding, local
conformational changes in the RD (Ezezika et al., 2007a; Devesse et
al., 2011; Park et al., 2017) seem to disrupt helix-helix interactions
ing to a structural change to the open form (Fig. 3(C)) (Choi
DYR!., 2001; Monferrer et al., 2010; Devesse et al., 2011). This
conformational change could possibly be medi y the flexibility
of the RD. These changes appear to occur in TsaR (Monferrer et
al, 2010), ArgP (Zhou et al., 2010) and DntR (Devesse et al., 2011).
These conformational changes are supposed to cause a shift of the
binding site in ABS, resulting in tive contact of LTTR with the
o C-terminal domain (-CTD) of RNA polymerase on the promoter
(Chugani et al., 1997; Fritsch et al., 2000; Lochowska et al.. 2004).

Since there are helix-helix interactions (V-arV interactions)
between two RD-1I subdomains in the tetrameric CbnR (Fig. 3(C),
left panel), the crystal structure of CbnR can be considered to be
a closed form. In contrast, as there are no corresponding helix-
helix interactions in tetrameric TsaR, the structure of TsaR is an
open form. Thus, the tetrameric CbnR is assumed to represent an
inducer-free non-activating state, whereas tetrameric TsaR is an
active state (Monferrer et al., 2010). Notably, a SAXS experiment
successfully observed a corresponding change of the quaternary
structure of DntR between the inducer-free and inducer-bound
states (Lerche et al., 2016).

4, Slidirmimcr model for transcriptional activation of LTTR

The sliding dimer model has been pmposcdxplain the
scheme of transcriptional activation by LTTR (van Keulen et
al., 2003; Porria et al., 2007; Monferrer et al., 2010; Lerche et
al., 2016). Transcriptional activation by LTTR should begin with
interactions with the RBS using two a3 helices in a DBD dimer of
the tetrameric LTTR. After the LTTR—RBE&raction, the other
DBD dimer in LTTR should bind the ABS (Sainsbury et al., 2009;

Ruangprasert et al., 2010; Zhou et al., 2010; Alanazi et al., 2013;
Rivas—Marin ef al., 2016) to form the tetrameric LTTR-DNA
complex. The order of binding, from RBS to ABS, is reasonable
because the affinity between the DBD and RBS is significantly
stronger than that between the DBD and ABS. Since the four
DBDs in the LTTR tetr
reasonable to postulate that the interaction between tetrameric
LTTR and promoter DNA causes bending of the DNA in
accordance with the arrangement of the four DBDs. This LTTR-
DNA complex without inducer is considered to be a resting state
and seem to adopt the closed form of the tetrameric LTTR.

Inducer molecule binding to the IBC in the RD seem to

arrange in a V-shape manner, it is

trigger a quaternary structural change of the LTTR tetramer (Fig.
3(C)), resulting in the open form of the tetrameric LTTR on the
promoter. The change in the quaternary structure of tetrameric
LTTR is proposed to result in the rearrangement of the DBDs,
leading to a relaxation of DNA bending. In this process, DBDs
interacting withthe ABS shift on the promoter and change the
interactiite from site-1 to site-2 of the ABS (Fig. 2). Since site-
1 of the ABS overlaps with the 35 box of the promoter, the shift
of the binding site emieslhe —35 box to enable RNA polymerase
binding (Monferrer ef al., 2010; Ruangprasert et al., 2010; Devesse
et al., 2011). The change of the ABS recogmn site has been
demonstrated in studies of OxyR (Toledano et al., 1994), OccR
m.ng et al., 1992), ClcR (McFall et al., 1997b) AtzR (Porria
et al., 2010) and DntR (Lerche et al,, 2016). In the sliding dimer
mecism, the change of the angle of bent DNA accompanied
with a quaternary structural change of the tetrameric LTTR would
be a critical step. Afier release of the —35 box for RNA polymerase
binding, a complex involving LTTR, sigma factor and RNA
polymerase would form on the promoter to initiate transcription.

5. Conclusions

In this review, we discussed how tertiary structures of
LTTRs have provided valuable insight into the interaction of
LTTRs with promoter DNA and aided our understanding of
the mechanism of the initial step of transcriptional activation
by LTTRs. Initiation of transcriptional activation is a multistep
process that consists of a series of conformational changes of
LTTRs, promoter DNA and their complexes. Although structural
and biochemfBfl analyses have revealed that relaxation of DNA
bending shift of the binding site on the ABS are critical
steps for recruiting RNA polymerase to the promoter DNA, other
important features of initiation of transcriptional activation remain
poorly understood. Details of the quaternary structural changes
of LTTRs upon inducer binding and structural details describing
relaxation of the DNA bending angle can be analyzed with
high-resolution tertiary structures. Furthermore, the molecular
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mechanism of transcriptional initiation is a critical question that
could be answered based on the tertiary structure of the initiation
complex. For future tertiary structure analysis, not only X-ray
crystallography but also cryo-electron microscopy will play an
important role. These are challenging structural problems that will
be tackled in the near future.
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