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a b s t r a c t 

Quantification of brain morphology has become an important cornerstone in understanding brain structure. Measures of cortical morphology such as thickness and 

surface area are frequently used to compare groups of subjects or characterise longitudinal changes. However, such measures are often treated as independent from 

each other. A recently described scaling law, derived from a statistical physics model of cortical folding, demonstrates that there is a tight covariance between three 

commonly used cortical morphology measures: cortical thickness, total surface area, and exposed surface area. We show that assuming the independence of cortical 

morphology measures can hide features and potentially lead to misinterpretations. Using the scaling law, we account for the covariance between cortical morphology 

measures and derive novel independent measures of cortical morphology. By applying these new measures, we show that new information can be gained; in our 

example we show that distinct morphological alterations underlie healthy ageing compared to temporal lobe epilepsy, even on the coarse level of a whole hemisphere. 

We thus provide a conceptual framework for characterising cortical morphology in a statistically valid and interpretable manner, based on theoretical reasoning 

about the shape of the cortex. 
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. Introduction 

Since magnetic resonance imaging has become widely available, the

uantification of brain morphology has become a standard tool. Differ-

nces in brain morphology between a control and a comparator cohort

re often reported for many processes in health and disease. Alterations

n brain morphology, however, may be non-specific; many processes

ppear to be associated with similar changes. For example, in healthy

geing, many studies report a thinning of the cortex as the predomi-

ant characteristic (e.g. Bajaj et al., 2017; Hutton et al., 2009 ). Sim-

larly, many brain disorders (e.g. bipolar disorder Hibar et al., 2018 ,

chizophrenia van Erp et al., 2018 , temporal lobe epilepsy Whelan et al.,

018 , and Alzheimer’s disease Dickerson et al. ) also feature cortical thin-

ing as the predominant cortical alteration compared to controls. Such

bservations can lead to naïve conceptualisations, e.g. that the biolog-

cal processes determining cortical thickness are particularly “fragile ”,

r that certain brain disorders are the result of “premature ageing ”. In

his study, we demonstrate that such concepts are inferences based on

 univariate view of the brain morphology data. When considering a
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ultivariate view, accounting for covariance, the alterations in differ-

nt processes can be shown to be more specific and distinct. 

One such multivariate view of brain morphology data has been pro-

osed in the context of quantifying cortical folding. Based on a statistical

hysics model describing cortical folding, Mota et al. predicts that corti-

al thickness 𝑇 , cortical (pial) surface area 𝐴 𝑡 , and exposed surface area

 𝑒 should be tightly linked by a scaling law 𝐴 𝑡 

√
𝑇 = 𝑘𝐴 

5∕4 
𝑒 , where 𝑘 is

 constant. The exposed surface area is often described as the area of

he cortex that is visible on the outside. This equation has been derived

ased on the assumption that the cortex is a tissue of finite thickness

hat folds in a way that balances compressive mechanical forces with the

mperative that it must be self-avoiding. The resulting scaling law has

een confirmed by empirical data across mammalian species ( Mota and

erculano-Houzel, 2015 ), individual humans ( Wang et al., 2016 ), and

ven across different lobes of the same brain ( Wang et al., 2019b ). This

caling implies a tight covariance of the three morphological variables,

hereby changes in one variable must be balanced by changes in the

ther variables. Conceptually, this means that, for example, if cortical

hickness and total surface area are specified (by, e.g., the specifics of

arious neuroproliferative pathways during development), then its ex-
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a  
osed area and volume follow as a physical consequence. More suc-

inctly, cortical morphology variables are not independent of each other

nd cannot vary freely. 

The practical implication of the scaling law is that the three morpho-

ogical quantities of cortical thickness, cortical surface area, and cor-

esponding exposed surface area should not be treated independently

hen assessing brain morphology. Independent comparisons of these

uantities may result in incorrect conclusions when not accounting for

he covarying morphological features. For example, comparing corti-

al thickness between two groups without accounting for differences in

urface area and exposed area (morphological covariates) would be as

aive as comparing an Alzheimer’s group against a control group with-

ut accounting for group differences in age (a biological covariate). 

Is there then a more systematic way of analysing cortical morphol-

gy that accounts for the covariance between morphological variables?

he scaling law itself provides a natural way forward. In mathemati-

al terms, the scaling law provides the first component of a “principal

omponent ” decomposition of the three morphological variables. We

how how to generate two further well-motivated components, so that

ll three are independent of each other and can be used to specify cor-

ical morphology. We will demonstrate this principle and show that the

ffects of brain disorders (temporal lobe epilepsy in our example) that

ppear morphologically similar to ageing in naive univariate analyses

re actually distinct, if the full set of new independent components are

aken into account. 

. Methods 

.1. Data and demographics 

To study the alterations associated with ageing, we used T1

nd T2 weighted MRI brain scans from the Cambridge Cen-

re for Ageing and Neuroscience (Cam-CAN) dataset (available at

ttp://www.mrc-cbu.cam.ac.uk/datasets/camcan/ Shafto et al. (2014) ;

aylor et al. (2017) ). Cam-CAN used a 3T Siemens TIM Trio System with

 mm isotropic voxel size (for more details see Shafto et al., 2014; Tay-

or et al., 2017 ). From the Cam-CAN dataset we retained 644 subjects

hat successfully completed preprocessing (recon-all – see next section)

ithout errors. From these subjects we selected all subjects between 23

nd 27 years old (inclusive) as our reference cohort, and all subjects be-

ween 33 and 37 (inclusive) as the comparison cohort. This resulted in

4 subjects in the reference cohort and 56 subjects in the comparison co-

ort. Note that in Supplementary Data, we show results for more groups

rom the Cam-CAN dataset to demonstrate robustness of the results. 

To study the alterations associated with temporal lobe epilepsy

TLE), we used the same subjects (patients and controls) as in

aylor et al. (2018) and focused on the T1 weighted images. This dataset

as obtained on a 3T GE Signa HDx scanner (General Electric, Wauke-

ha, Milwaukee, WI) using a coronal T1-weighted volumetric acquisition

ith 170 contiguous 1.1 mm thick slices (matrix, 256 × 256 ; in-plane res-

lution, 0 . 9375 × 0 . 9375 mm), for more details see Taylor et al. (2018) .

he TLE dataset included 53 patients with TLE (comparison cohort) and

0 controls (reference cohort). The control cohort spans an age range

f 19-64 years, and the TLE cohort spans an age range of 19-67 years.

ote that the TLE dataset is never directly compared to the CamCAN, we

nly perform comparisons within datasets and obtain effect sizes within

atasets. 

.2. Data processing 

The MR images of both datasets were first preprocessed by the

reeSurfer 6.0 pipeline recon-all , which extracts the grey-white matter

oundary as well as the pial surface. These boundaries were then quality

hecked and manually corrected where needed. Next, the relevant quan-

ities (pial surface area, cortical thickness, and exposed surface area)

ere extracted from the FreeSurfer output files and assembled into one
able (code is available in Wang and Ludwig (2019) ). Note the exposed

urface area is obtained as part of the LGI pipeline ( Schaer et al., 2008 )

n FreeSurfer (?h.pial-outer-smoothed). In the following, the analysis is

lways hemisphere based, as in our previous work ( Mota and Herculano-

ouzel, 2015; Wang et al., 2016 ). We did not perform a more region-

lised analysis in the main results, which is also possible ( Wang et al.,

019b ), as we wish to demonstrate the principle of independent mor-

hological variables rather than describe the exact nature of morpho-

ogical changes in a particular process. Future work using the princi-

le demonstrated here can be directly extended to include regionalised

easures, as we show in Suppl. Text S3 and discuss later. 

.3. Scaling law analysis, and new morphological measures 

Throughout the paper, we use a log-space representation of all

ariables to allow expressing products of power laws as linear com-

inations. We also chose variables that have all dimensions of area

 𝐴 𝑡 , 𝐴 𝑒 and 𝑇 2 ), to allow an easier interpretation of the combination

f variables. In this representation, each cortex corresponds to a point

n three-dimensional space with coordinates 𝑝 = { 𝐴 𝑡 , 𝐴 𝑒 , 𝑇 
2 } , and the

caling law log 𝐴 𝑡 + 

1 
4 log 𝑇 

2 = log 𝑘 + 

5 
4 log 𝐴 𝑒 defines the plane close to

hich most cortices are situated. By isolating the parameter 𝑘, we ob-

ain 𝐾 = log 𝑘 = log 𝐴 𝑡 − 

5 
4 log 𝐴 𝑒 + 

1 
4 log 𝑇 

2 , which is the projection of 𝑝

long �⃗� = {1 , − 

5 
4 , 

1 
4 } . In short, 𝐾 = 𝑝 ⋅ �⃗�. We have previously hypothe-

ised that the near invariance of 𝐾 is a tension/pressure that is applied

o the cortical tissue ( Mota and Herculano-Houzel, 2015; Wang et al.,

016 ). We thus call 𝐾 the tension term. Note that 𝐾 is almost constant

or a homogeneous adult cohort of human subjects ( Wang et al., 2016 ),

nd varies little across species ( Mota and Herculano-Houzel, 2015 ). 

Remarkably, 𝐾 is a dimensionless quantity. This means that if two

ortices are isometrically scaled versions of one another (i.e., same

hape, different size), they will have the same 𝐾 value. Mathematically,

sometric scaling means all areas, 𝐴 𝑡 , 𝐴 𝑒 , and 𝑇 2 , are multiplied by a

ommon numerical factor. This corresponds to movement perpendicular

o �⃗� in the direction ⃗𝜄 = {1 , 1 , 1} , the projection to which yields the so-

alled isometric term 𝐼 = 𝑝 ⋅ �⃗�. For a third and last element of our new set

f orthogonal vectors, we use the cross-product of ⃗𝜅 × �⃗� = ⃗𝜎 = { 3 2 , 
3 
4 , − 

9 
4 } ,

he direction that is perpendicular to both ⃗𝜅 and ⃗𝜄. The resulting projec-

ion 𝑆 = 𝑝 ⋅ �⃗� is the corresponding shape factor. 

The scalar value 𝐼 captures all the information about the size of the

tructure. Changing 𝐼, while keeping the other parameters constant, cor-

esponds to isometrically shrinking or expanding a shape. One can think

f the term 𝐼, calculated for any particular shape, as a measure of size

hat carries no information about shape. 

Conversely, the plane �⃗� × �⃗�, henceforth called the isometric plane,

arries only information about shape, and is not affected by size or

hanges in overall scaling. Any direction in this plane corresponds to

he logarithm of a dimensionless parameter (mathematically, the sum

f its vector coefficients is zero). 

In our definition of the new components, �⃗�, �⃗� and ⃗𝜄 have different

ength (as opposed to having unit length). This is not problematic in our

nalysis, as we standardise (z-score) all subjects relative to the reference

roup in log space of 𝐾, 𝐼, and 𝑆. However, future application may want

o use normalised vectors. 

.4. Age and sex correction 

In order to investigate the effect of temporal lobe epilepsy alone,

ithout the confounding effects of age and sex, we linearly regress out

he effect of age and sex from all three log-transformed morphological

ariables cortical thickness, cortical surface area, and exposed surface

rea. We do this by deriving the linear regression coefficients from the

ontrol cohort, and applying them to both the control and the patient

ohorts. Interaction between age and sex was not modelled. 

To study the effect of ageing, we used two groups within a small

ge range (23–27 years old vs. 33–37 years old). Thus, we did not per-

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/


Y. Wang, K. Leiberg, T. Ludwig et al. NeuroImage 226 (2021) 117546 

f  

c

2

 

e  

c  

b  

m  

H  

m  

h  

b  

b  

b  

t  

d

 

i  

m  

t  

t

 

c  

w  

m

 

o  

b  

c  

b

2

 

o  

C

 

c  

T

3

3

 

d  

i  

e  

p  

s

 

p  

r  

r

 

a  

c  

i  

b  

p  

b

3

m

l  

B  

r  

(  

(  

b  

m  

t  

a  

a

 

r  

{  

a  

0  

m  

H  

p

t

 

i  

i  

p  

a  

d  

c  

t  

t  

t  

𝜌  

v

 

o  

c  

d  

𝐼  

a  

a  

o

 

c  

i  

i  

m  

s  

i  

f  

t  

a  

a  

a

3

m

 

v  

s  

i  

i  

s  
orm the age correction, but only a sex correction by performing a mean

entering for both sexes independently. 

.5. Statistical analysis 

To statistically compare the effects of ageing and temporal lobe

pilepsy, we standardise all quantities relative to the respective control

ohort and report all effects in terms of effect sizes. This was achieved

y converting all measures in all subjects to z-scores relative to the

ean and standard deviation of the respective reference/control cohort.

ence, all quantities reported are in terms of z-scores. To measure the

ean difference between the reference cohort and the comparison co-

ort (older ageing group or TLE cohort), we show the distribution of

ootstrapped means (over 100 resampling iterations) of the z-scores for

oth groups as violin plots. Note that as we are using a distribution of

ootstrapped means, the mean of this distribution should be very close

o zero in the reference groups, but may not be exactly zero in all cases

ue to the stochastic nature of bootstrapping. 

To measure average effect between groups (termed 𝑑 in the follow-

ng), we then form the difference between the average bootstrapped

eans (of reference vs. comparison groups). Note that 𝑑 is positive if

he comparison group (older age group, or TLE) has a higher mean value

han the reference group, and vice versa . 

As we were interested in group effects of ageing and TLE, we fo-

used our attention on the group mean estimation. The bootstrapping

as applied as a data-driven method to obtain a more representative

ean group effect that was not driven by few outliers. 

We also report p-values for statistical significance in the comparison

f groups, only with the purpose to be consistent with previous studies,

ut not for subsequent use (e.g. to select features). All p -values are cal-

ulated using the Wilcoxon ranksum test on the raw data (i.e. not the

ootstrapped means). 

.6. Data availability 

Code for extraction of raw cortical measures can be found on Zen-

do Wang et al. (2019a) and Github: https://github.com/cnnp-lab/

orticalFoldingAnalysisTools . 

Data underlying the figures in this paper and the corresponding

ode can be found on Github: https://github.com/cnnp-lab/2020Wang _

LEFoldingHemi 

. Results 

.1. Morphological changes in TLE appear to be the same as in ageing 

In many diseases, average cortical thickness is the most consistently

ecreasing variable relative to controls. Temporal lobe epilepsy (TLE)

s no exception. In our data ( Fig. 1 ), average cortical thickness of the

ntire ipsilateral hemisphere (cortical ribbon) is substantially reduced in

atients relative to controls ( 𝑑 = −0 . 71 , 𝑝 = 0 . 0008 ). Total and exposed

urface areas do not appear substantially altered ( |𝑑| < 0 . 3 , 𝑝 > 0 . 05 ). 
The same patterns of alteration are observed in the healthy ageing

rocess. In our cross-sectional data, cortical thickness is substantially

educed in older subjects ( 𝑑 = −0 . 69 , 𝑝 = 0 . 00004 ), while surface areas

emain relatively unaltered. 

Given these parallel alterations in brain morphology, a non-critical

nalysis might liken a disease conditions such as TLE to the ageing pro-

ess in terms of whole-brain morphology. However, we will demonstrate

n the following section that this would be an erroneous conclusion

ased on raw and, in this case, less informative measures of brain mor-

hology, analysed in a univariate manner, neglecting the covariance

etween these measures. 
.2. The universal scaling law describes covariance of raw morphology 

easures 

Any given cortex can be represented as a point in the log 𝐴 𝑡 × log 𝐴 𝑒 ×
og 𝑇 2 space ( Fig. 2 A,B), which has units of area in all dimensions.

y plotting the TLE control cohort in this way, it is evident that the

aw morphological measures 𝐴 𝑡 , 𝐴 𝑒 , and 𝑇 covary tightly in this space

 Fig. 2 ). When superimposing the plane described by the scaling law

 log 𝐴 𝑡 + 

1 
4 log 𝑇 

2 = 𝛼 log 𝐴 𝑒 + log 𝑘, where 𝛼 is theoretically predicted to

e 5 4 ), we can see that it fits well to describe the covariance of the raw

orphological measures ( Fig. 2 A,B,C). Both the TLE control, as well as

he patient group follow this scaling law ( 𝛼 slope 95% CI 1.1548 - 1.4260

nd 0.9665 - 1.2827, respectively). Note that because of age-correction,

ll controls align on the plane described by log 𝑘 = 𝐾 = 0 . 
In other words, the scaling law provides a decomposition of the

aw morphological measures: The normal vector to the plane is

1 , −1 . 25 , 0 . 25} ( Fig. 2 D) where the first, second, and third dimensions

re 𝐴 𝑡 , 𝐴 𝑒 and 𝑇 2 , respectively. By calculating 𝐾 = log 𝐴 𝑡 − 1 . 25 log 𝐴 𝑒 +
 . 25 log 𝑇 2 we can obtain a value for 𝐾 for every cortex from their raw

orphological measures 𝐴 𝑒 , 𝐴 𝑡 and 𝑇 . Based on our model ( Mota and

erculano-Houzel, 2015 ), 𝐾 can be interpreted as tension/pressure ap-

lied to the cortical tissue ( Wang et al., 2016; 2019b ), we thus call 𝐾

he tension term. 

Change along the vector {1 , 1 , 1} , corresponding to isometric scal-

ng (i.e. changing 𝐴 𝑡 , 𝐴 𝑒 and 𝑇 2 by the same proportion, thus stretch-

ng/shrinking the brain in all direction equally) is perpendicular to the

revious normal vector. We choose this to be the second component

s it has a direct interpretation, and it is also independent of 𝐾 in our

ataset (Pearson’s 𝜌 = 0 . 09 , 𝑝 = 0 . 45 across the TLE controls). Again, it

an be calculated as 𝐼 = log 𝐴 𝑡 + log 𝐴 𝑒 + log 𝑇 2 (isometric term) from

he raw morphological variables. It can be understood to carry informa-

ion about the size of the cortex only, without containing any informa-

ion about shape. Indeed, we found 𝐼 to be highly correlated (Pearson’s

≥ 0 . 9 ) with several metrics of brain volume, particularly grey matter

olume. 

The third perpendicular vector is the cross-product of the two previ-

us ones is { 3 2 , 
3 
4 , − 

9 
4 } . We will call this the shape term, and again we can

alculate it as 𝑆 = 

3 
2 log 𝐴 𝑡 + 

3 
4 log 𝐴 𝑒 − 

9 
4 log 𝑇 

2 . Again, 𝐾 and 𝑆 are in-

ependent (Pearson’s 𝜌 = 0 . 02 , 𝑝 = 0 . 85 across the TLE controls). While

only carries information about size, 𝐾 and 𝑆 only carry information

bout shape. This also means that for the same 𝐾 (which is the case for

ll healthy human adults of the same age ( Wang et al., 2016 )), 𝑆 is the

nly term that describes any changes in shape. 

Here, the choice of 𝐼 and 𝑆 did not follow a data-driven principal

omponent analysis. Instead, we choose directions predicted by the scal-

ng law and that can be interpreted in biological terms, as our intention

s to provide an illustrative demonstration of a set of new independent

orphological variables. For completeness, we present results using a

tandard PCA in Supplementary Text 1. We note that PCA found a sim-

lar principal direction to 𝐾 with a small (30 degree) difference. We

urther observed similar results upon analysing the data projected onto

his PC (TLE and ageing processes differ in their direction of change),

lbeit with much smaller effect sizes (d = 0.15 in TLE and d = -0.15 in

geing). Results in projections onto other PCs do not differ between TLE

nd ageing. 

.3. The universal scaling law defines a new set of independent 

orphological measures 

To provide an intuitive understanding of the new morphological

ariables, we provide a schematic illustration of the variables on a 2D

hape (a circular sinusoidal ribbon with 8 folds) in Fig. 3 . Note that this

s not a mechanistic simulation of how the brain folds, but rather only

ntended to provide a visual way of understanding the new coordinate

ystem 𝐾, 𝐼 and 𝑆. We can intuitively parametrise this circular sinu-

https://github.com/cnnp-lab/CorticalFoldingAnalysisTools
https://github.com/cnnp-lab/2020Wang_TLEFoldingHemi
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Fig. 1. Morphology changes in TLE appear sim- 

ilar to those in healthy ageing. (A) Morphology 

changes in TLE in the ipsilateral hemisphere com- 

pared to a control cohort measured as z-scores. Vi- 

olin plots show the distribution of bootstrapped 

mean z-scores. Age and sex correction was per- 

formed before the comparison. (B) Morphology 

changes in healthy ageing comparing a younger 

and older group of adult subjects, measured as z- 

scores relative to the younger subject group. Violin 

plots show the distribution of bootstrapped mean 

z-scores. Sex correction was performed before the 

comparison. (A & B) All morphological measures 

are in terms of a whole cortical hemisphere and log- 

scaled before analysis. Each hemisphere was treated 

as a separate datapoint. ∗ denotes statistical signif- 

icance at 𝑝 < 0 . 05 . Beeswarm plots with raw data 

points are presented in Supplementary Data. 
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oidal ribbon with the overall radius of the circle, the amplitude of the

inusoid, and the thickness of the ribbon to describe changes in 𝐴 𝑒 , 𝐴 𝑡 

nd 𝑇 , respectively. We then demonstrate how such changes map onto

he new morphological variables 𝐾, 𝑆 and 𝐼 . 𝐼 corresponds to a mea-

ure of size, as expected. It increases with the thickness of the ribbon

s well as the overall circle radius, for a constant sinusoid amplitude. 𝑆

ncreases with a combination of overall radius and amplitude of the si-

usoid, but decreases with thickness of the ribbon. Finally, 𝐾 increases

ith thickness and sinusoid amplitude, but decreases with overall ra-

ius. 

.4. The scaling law derived morphological measures show differences 

etween TLE and ageing 

Equipped with the new measures 𝐾, 𝑆, and 𝐼, we now re-examine our

nitial observation that the morphological alterations in TLE resemble

hose of ageing. Fig. 4 shows that both ageing, and TLE are associated

ith similar alterations in 𝑆 and 𝐼 with a similar effect size (decrease

n 𝐼 with 𝑑 ≈ −0 . 4 , and an increase in 𝑆 with 𝑑 = 0 . 24 and 𝑑 = 0 . 48 ).
owever, TLE is associated with an increase in 𝐾 compared to controls

 𝑑 = 0 . 35 ), whereas ageing is clearly associated with a strong decrease

n 𝐾 ( 𝑑 = −0 . 74 ). In other words, in terms of the tension term, brain

orphological differences in TLE differ from changes that occur during

ealthy ageing. 

.5. Outlook: trajectories of disease and ageing processes 

We can additionally visualise the average effects from Fig. 4 as data-

oints in the three-dimensional space of spanned by 𝐾 × 𝑆 × 𝐼, in terms

f effect sizes in each of those three independent variables. In other

ords, each process/condition (ageing, TLE) can be understood as an

lteration in 𝐾, 𝑆, and 𝐼 relative to controls/reference. By placing the

eference at the origin of this space {0 , 0 , 0} , one can visualise the effect

f each process a datapoint corresponding to their effect in 𝐾, 𝑆 and 𝐼 .

Fig. 5 shows the control/reference as a point at the origin. Ageing

nd TLE are represented as two separate datapoints in this space, and

learly separated by the 𝐾 component. In such a representation it be-

omes clear that both processes/conditions must have followed a trajec-

ory (indicated by dashed lines in Fig. 5 ) that links the control condition

ith the disease or ageing “end points ”. These trajectories could in the-

ry follow any path, and are not restricted to particular parts of the
pace, as the variables are independent. The conceptual advance of this

aper is to construct such a space where the axes are independent. This

ow allows for an unbiased study of disease trajectories ( Jensen et al.,

014 ) on an individual, or group level. Clustering of trajectories now

ill reflect shared disease mechanisms, rather than unaccounted covari-

nce between variables. 

. Discussion 

With TLE and ageing as examples, we show limitations of using and

nterpreting morphological measures in a univariate manner. To account

or the existing covariance between morphological variables, we suggest

sing new independent variables/measures. These independent mea-

ures clearly demonstrate that although TLE appears morphologically

imilar to the ageing process, these two processes are in fact distinct

n terms of their morphological alterations. Thus, our example demon-

trates that simple univariate analyses are unable to disambiguate the

wo processes, while our proposed change of coordinates could distin-

uish them. 

Although we used a whole-hemisphere approach in our main fig-

res, parallel arguments also hold for region-specific changes. We used

he whole-hemisphere analyses to demonstrate the principle that co-

arying morphological measures need to be accounted for; however, we

cknowledge that ageing and disease processes should not necessarily be

implified to a whole-hemisphere view when trying to understand their

iological mechanisms. Indeed, we previously showed that the scaling

aw also holds for lobes/areas of the same brain ( Wang et al., 2019b ).

his means that local measures of 𝐾, 𝑆 and 𝐼 can be derived, based on

ocal measures of cortical thickness, total and exposed surface area. In

uppl. Text S3, we show that 𝐾, 𝐼, and 𝑆 generally vary in a similar man-

er in different lobes as the whole hemisphere. We further note that, for

xample, the increase in 𝐾 for TLE is most strongly seen in the tem-

oral lobe. Thus, we demonstrate that our principle of using indepen-

ent components of brain morphology, such as 𝐾, 𝐼, and 𝑆, still holds

or regional analyses. To ensure that future work can apply our prin-

iple to different regions of the brain, we also made our MATLAB code

vailable ( https://github.com/cnnp-lab/CorticalFoldingAnalysisTools ),

ncluding the processing of regionalised measures. 

As an alternative to parcellating the brain into discrete regions, it is

n theory also possible to derive a point-wise/voxel-wise estimate of 𝐾, 𝑆

https://github.com/cnnp-lab/CorticalFoldingAnalysisTools


Y. Wang, K. Leiberg, T. Ludwig et al. NeuroImage 226 (2021) 117546 

log At

log Ae

lo
g

 T
2

0.1

-0.1

0

0

-0.1
-0.1

0.1
0

log At
log Ae

lo
g

 T
2

-0.1 -0.1

0
0

0.1

0.1-0.1

0

0.1

A B

log At

log Ae

lo
g

 T
2

3

-3

0

0

-2
-3

3
0

2

-0.08 -0.04 0 0.04 0.08
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

log Ae

lo
g

 A
t+

0.
25

*l
o

g
 T

2

K=(1,-1.25,0.25)

I=(1,1,1)

S=(1.5,0.75,-2.25)

C
D

Slope=1.25

K=log At-1.25*log Ae+0.25*log T2

Fig. 2. Universal scaling law describes the covariance of the raw morphological measures. (A) Three raw morphoplogy measures span a 3D space, where each 

cortex is a data point (black dots). Here we used the control group in the TLE dataset as an example for the purpose of illustration. The data points align with the 
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nd 𝐼 on the cortical surface. In the first instance, similar principles as

he derivation of the local gyrification index ( Schaer et al., 2008 ) could

e followed. Furthermore, methods accounting for the spatial scale and

ize of the brain, such as suggested in Rabiei et al. (2017) may be addi-

ionally beneficial. Such point-wise estimates may help in the discovery

f covert local abnormalities in future. 

TLE and ageing differ most in the tension term 𝐾 in our analysis.

hile ageing is associated with a decrease in 𝐾 (in agreement with pre-

ious work ( Wang et al., 2016; 2019b )), TLE is associated with an in-

rease in 𝐾 compared to controls. In the theoretical derivation of the

caling law, 𝐾 appears as a term proportional to stresses acting per-

endicularly on the cortical grey matter surface ( Mota and Herculano-

ouzel, 2015 ). We have previously speculated this term to represent a

ressure applied to the outside of the cortical tissue, and tension pulling

rom inside of the cortex ( Bayly et al., 2014; Essen, 1997; Franze, 2013;

ota and Herculano-Houzel, 2015; Wang et al., 2016; Xu et al., 2010 ).

hese speculations are currently untested and future work is required.

e conclude here that there are a range of pathological processes at

ork in different brain conditions. Our proposed methods may help elu-

idate these processes in future, and provide biological and biophysical
ontext for data-driven observations. v  
In the scaling law, we consider the variables of cortical thickness,

ortical surface area, and exposed surface area. Other morphological

ariables such as cortical volume or intracranial volume are additional,

requently-used quantities. In particular, intracranial volume is often

sed as a covariate to account for “brain size ”. However, these volume

ariables may well hold additional information not captured in the scal-

ng law (see e.g. Wierenga et al., 2014 ). Additional metrics, such as cur-

ature measures, are also often used to quantify brain morphology. To

emonstrate that our principle also generalises to such a wider set of

orphological variables, we performed a data-driven Principal Compo-

ent Analysis in Suppl. Text S2. We could demonstrate, similar to 𝐾, 𝐼

nd 𝑆, that TLE and ageing display similar effects in some components,

ut differ substantially in other components. At present, it is less clear

ow those components can be interpreted, unlike 𝐾, 𝐼 and 𝑆. We ex-

ect future studies, combining data-driven and mechanistic approaches

o shed more light on the interpretation of these directions/components

n brain morphology. 

Our work has some conceptual parallels with and distinctions from a

ew established neuroimaging analysis approaches. One highly related

pproach is the study of brain allometry. Typically, brain allometry in-

estigates how a morphological variable changes with the size of the
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rain ( de Jong et al., 2016 ). Brain size is often captured by total brain

olume, or intracranial volume, or hemispheric volume. For example,

t has been shown that cortical surface area scales allometrically with

rain size, as opposed to isometrically ( Toro et al., 2008 ). Accounting

or allometry also revealed in an example that localised morphologi-

al changes (in univariate analysis) could indeed be underpinned by a

lobal effect ( Toro et al., 2009 ). Allometric scaling has also been de-

cribed in cortical folding metrics in the past in an empirical manner

 Germanaud et al., 2014; 2012 ). These empirically described allometric

caling laws account for existing covariance of the data, and represent

n important step forward in the understanding of brain morphology.

owever, there is an important conceptual distinction to our theoreti-

ally derived scaling law. The allometric scaling laws describe associa-

ions with growth or size of the brain specifically, whereas the universal

caling law, more generally, describes associations between three mor-

hological variables not exclusively or specifically measuring brain size.

he scaling law further embodies a hypothesised mechanism of how the

hape of the brain arises as a result of physical forces. Our work here

as highlighted the importance of considering multiple covarying mor-

hological variables in general, rather than only considering brain size

s the independent variable. 
Apart from covariance of morphological quantities, our work is also

elated to measures of “fractal dimension ” of the brain shape (see e.g.

adan and Kensinger, 2016 ). Indeed, a natural way in which such a uni-

ersal scaling law could arise would be if cortices were self-similar (in

 statistical sense) down to some fundamental length scale proportional

o cortical thickness, approximating a fractal with fractal dimension 5/2

see Wang et al., 2016; Wang et al., 2019b ). This is in the same range

s recent reports of the empirically measured fractal dimension ( Madan

nd Kensinger, 2016; 2017 ). However, this is just an indication, not

roof, of the hypothesized self-similarity. Future studies will have to

emonstrate that the brain actually approximates a fractal object, by

.g. relating the scaling of a single cortex undergoing a process of iter-

ted coarse-graining versus the scaling of different cortices. If confirmed,

hen additional concepts from fractal geometry could further enhance

ur analysis and understanding of the brain’s folded shape. 

Another prominent approach that is also concerned with the covari-

nce of morphological quantities is the so-called “structural covariance

nalysis ” ( Alexander-Bloch et al., 2013 ). In that approach, the covari-

nce is measured between different regions of the brain in terms of one

orphological measure (e.g. cortical thickness), essentially assessing

hich regions change together across subjects. The popular approach is
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Fig. 4. Morphological changes in K differ in 

TLE compared to healthy ageing. (A) Morpho- 

logical changes in 𝐾, 𝑆, and 𝐼 in the ipsilat- 

eral hemisphere in TLE compared to a control co- 

hort measured as z-scores relative to controls. Vi- 

olin plots show the distribution of bootstrapped 

mean z-scores. Age and sex correction of original 

morphological measures was performed before the 

comparison. (B) Morphological changes in healthy 

ageing comparing a younger and older group of 

adult subjects, measured as z-scores relative to the 

younger subject group. Violin plots show the distri- 

bution of bootstrapped mean z-scores. Sex correc- 

tion of original morphological measures was per- 

formed before the comparison. (A & B) All mor- 

phological measures are in terms of a whole cor- 

tical hemisphere. Each hemisphere was treated as 

a separate datapoint. ∗ denotes statistical signifi- 

cance at 𝑝 < 0 . 05 . Beeswarm plots with raw data 

points are presented in Supplementary Data. 
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Fig. 5. Trajectories of morphology changes in health and disease. Visual- 

ising the changes in ageing and TLE (same data as Fig. 4 ) in the 2D projection 

into 𝐾 and 𝑆 as trajectories from the origin. We chose to show a 2D projection 

of 𝐾 × 𝑆 × 𝐼 space for simplicity. Both ageing and TLE process have been cen- 

tered according to their respective control group. The respective datapoints are 

derived from the corresponding 𝑑 values in each component from Fig. 4 . Dashed 

lines indicate possible (hypothesised) trajectories. Note that trajectories can in 

theory move in any direction in this space, as the axes are now independent. 

Shared trajectories would reflect true shared mechanisms of brain morphology 

change. 
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o then understand the covariance as a matrix that describes a network,

nd compare these networks between groups. These co-relationships be-

ween brain regions can also be non-linear, and manifold learning tech-

iques have been applied to elucidate them (see e.g. Valk et al., 2020 ).

he independent variables 𝐾, 𝑆 and 𝐼 may be more advantageous in

erms of its reliability and comparability ( Carmon et al., 2019 ) for struc-

ural covariance analysis. 

A related approach has been termed “morphometric similarity ”, in

hich for a single subject, the covariance between brain region is de-

ived based on their similarity across a range of morphological measures

 Seidlitz et al., 2018 ). Again, non-linear variants of this approach have

lso been formulated (for example on the similarity of morphometric

istance matrices Soussia and Rekik, 2018 ). However, note that both
ypes of approaches are concerned with covariance between brain re-

ions, rather than covariance between morphological measures. We en-

isage that a comprehensive framework for cortical morphology would

ncompass both aspects in the future, and manifold learning approaches

see e.g. Aljabar et al., 2011; Gerber et al., 2009 ) may aid efforts in terms

f data-driven discoveries. 

Finally, we proposed the notion of “trajectories ” in morphological

pace (spanned by independent variables), building on related previous

ork (e.g. Young et al., 2018 ). A key implication of such trajectories

s that different brain processes (or disorders) may cluster in terms of

heir trajectories, or share parts of their trajectories, potentially indicat-

ng shared drivers/pathways/modulations ( Jensen et al., 2014; Taylor

t al., 2020 ). Especially with a comprehensive region-specific and cross-

egion analysis of cortical morphology we expect clusters of directions

o emerge. On an individual subject level, our approach may also help

o develop more sensitive and specific biomarkers. Moreover, current

fforts to relate morphological alterations to genetic alterations (e.g.

eidlitz et al., 2019 ) may help to develop an atlas of principal trajecto-

ies, and shed light on potential corresponding biological mechanisms. 

In summary, our work represents a significant conceptual advance

y contributing independent cortical morphology measures that can be

nterpreted without being hampered by other unaccounted morphologi-

al covariates. Using these independent measures we demonstrated that

emporal lobe epilepsy, which appeared to resemble premature ageing

n terms of cortical morphology, is in fact characterised by distinct mor-

hological changes from ageing. The same principle may resolve some

f the existing confusion in the literature regarding morphology alter-

tion in other brain conditions and processes. In future, we hope that

ystematic studies of brain morphology can be associated with the un-

erpinning biological mechanisms, applied on a regional basis in cross-

ectional and longitudinal studies to become a useful tool in biomarker

evelopment and understanding the brain in health and disease. 
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