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Abstract

The fatigue limit state (FLS) often drives the design of offshore wind turbine (OWT) substructures in
European waters. Assessing fatigue damage over the intended design life of an OWT is computationally
expensive, primarily as dynamic structural analyses have to be run for a large number of stochastic wind
and wave loading conditions. This makes structural reliability assessment for the FLS a challenging task.
In addition to evaluating load-induced fatigue damage, simulation-based structural reliability analysis also
requires sampling of random variables that model uncertainties in the capacity of OWT structural compo-
nents. To this aim, we develop and validate a computational framework for OWT fatigue reliability analysis
that relies on Gaussian process (GP) regression to build surrogate models of load-induced fatigue damage.
We demonstrate that the proposed approach can reduce the computational effort required to evaluate FLS
reliability with high accuracy through application to three plausible offshore wind farm sites in Europe. The
sensitivity of various goodness-of-fit metrics to different model assumptions is investigated to further reduce
the computational effort required to perform GP regression/predictions. The results from this study can
provide guidance for practical applications of the proposed framework in OWT projects.
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1. Introduction
Offshore wind energy is a rapidly growing form of electricity generation. This is especially true in Europe,
where a large number of offshore wind farms (OWFs) are due to be installed in the North Sea basin [1].
Bidding for new OWFs is commonly driven by the levelized cost of energy, i.e., the amount of money per
unit of electricity that must be earned over the design life of the assets to cover all the installation and
operational costs. It is therefore important to ensure this value is minimized at the design stage while
maintaining acceptable levels of structural safety, so as not to incur large repair or replacement costs over
the intended design life of the farm.

The design requirements for offshore wind turbine (OWT) substructures are currently specified by prescrip-
tive codes, e.g., the International Electrotechnical Commission (IEC) 61400-3 [2], or the Det Norske Veritas
Germanischer Lloyd (DNVGL) DNVGL-ST-0126 [3]. These codes of practice implement the load-resistance
factor design (LRFD) approach to attain a certain level of structural safety. This is ensured by prescribing
various load cases encompassing the environmental and operating conditions expected to be encountered
during the intended 20-25 year design life of the asset. The uncertainties affecting load-induced structural
demands and structural capacities are accounted for by using partial safety factors that should be (in princi-
ple) calibrated to ensure a desired level of structural safety with consideration of the consequences of failure
in terms of economic losses and risk of human lives [4]. For instance, the current partial safety factors are
intended to provide a yearly probability of failure of 5× 10−4 in IEC 61400-1 and an annual probability of
failure of 10−4 in DNVGL-ST-0126. However, the current set of partial safety factors used in the design of
OWTs is often a combination of those used in the offshore oil and gas industry and those used to assess
onshore wind turbines [5].

An essential step in understanding the suitability of the current code-based partial safety factors or to
promote novel performance-based design and assessment approaches for OWTs (to decide, for instance,
about lifetime extension of ageing OWFs) is to perform an explicit structural reliability assessment of OWT
structural components. To date, most studies have focused on the OWT ultimate limit state (ULS) (e.g.,
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[6], among many others), including the development and use of statistical surrogate models to improve the
computational efficiency of the assessment (e.g., [7]). These studies have utilized fully-coupled time-history
simulations (i.e., modeling the rotor, structure, foundation and control system in a single simulation; e.g.,
[5]), which is considered the state-of-the-art approach in both design and assessment of OWTs [8]. However,
there are very few studies assessing the fatigue limit state (FLS) reliability of OWTs, such as Gintautas
and Sørensen [9]; such FLS often drives the design of OWT substructures in European waters [10]. Such
an assessment should include all the environmental conditions (in terms of acting wind and wave loading
and its variability) that are expected to be encountered during an OWT operation, requiring in the order
of >50,000 time-domain structural simulations [8] for a single OWT. Additionally, the IEC 61400-3 code
requires performing long dynamic analyses to ensures a stable estimation of fatigue damage accumulating
over the OWT intended design life. The large number of environmental conditions combined with the need
for long time-history analyses makes the assessment of an OWT at the FLS computationally expensive and
impedes a full simulation-based structural reliability assessment.

Motivated by the need to improve the computational efficiency in assessing FLS structural reliability of
OWTs, one application of which could be the improved calibration of code-based partial safety factors, this
paper introduces a computational framework for assessing OWT fatigue reliability utilizing a surrogate mod-
eling approach to predict load-induced lifetime fatigue damage. Most installed OWFs across the world use
monopile foundations, and these are the focus of this study. The basics of the fatigue assessment for OWTs
are briefly reviewed in Section 2; a discussion on the challenges in assessing the FLS and the problem state-
ment of this study are presented in Section 3. Then, the proposed computational framework is introduced
in Section 4, including an introduction to Gaussian process (GP) regression. An application, combining
illustrative environmental conditions and a computational model of an archetype OWT, is introduced in
Section 5. The accuracy of different GP modeling assumptions are discussed in Section 6 to guide practical
application of the proposed framework. The number of samples necessary to estimate OWT reliability and
the applicability of a surrogate model trained at one site to others with different environmental conditions
are also evaluated and results of the analysis are critically discussed.

2. Fatigue assessment of OWTs
2.1. Structural simulations
During their design life, OWTs are exposed to highly-variable loading conditions from wind and waves.
Structural assessment of OWTs generally utilizes time-history simulations to capture the fluctuating forces
in a structural component resulting from different environmental conditions [8]. The variable wind and wave
loading is modeled through a long-term and a short-term component [11]. The long-term component cap-
tures the site-specific climate conditions and includes mean wind speed (at a reference height), turbulence
intensity, significant wave height, peak spectral period and wind-wave inflow angle. These variables are
assumed as stationary over a given time window, typically 10-minutes for the wind conditions [12]. In state-
of-the-art analysis approaches [8], short-term fluctuations are captured by generating wind-wave time series
to be input in the time-history structural simulations. Specifically, the fluctuating environmental conditions
are modeled through spectra with parameters depending on the long-term component of the environmental
conditions. For instance, the Kaimal spectrum is frequently used to model wind turbulence [12] and depends
on the mean wind speed and turbulence intensity. To accurately predict the total lifetime fatigue loading,
time-history structural simulations need to be run at every foreseeable combination of environmental con-
ditions. Additionally, in fully-coupled software environments, such as OpenFAST [13], the inverse Fourier
transform is used to convert the environmental spectra into wind-wave time series. These are stochastic as
the phase angle of the transformation is not known in advance and is sampled from an assumed probability
distribution (e.g., uniform) [14]. Consequently, each analysis has to be repeated for every set of environ-
mental conditions in order to produce a stable estimation of the total fatigue damage (where the number
of analysis repetitions is referred to as “seeds”). The underlying process is stationary as a result of the
inverse Fourier transform, and convergence of damage with the use of increasing numbers of seeds has been
investigated by Zwick and Muskulus [15]. In particular, the provisions in IEC 61400-3 [2] require a large
number of structural analyses to model different combinations of the environmental spectral parameters and
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Figure 1: Scatter in the SN-curve when the full distribution of x-axis intersections is utilized. The 2.5th percentile curve
used in structural design is highlighted as the mean curve minus two standard deviations [17].

for the structural analysis to be repeated at each, resulting in the >50,000 simulations mentioned previously.

2.2. Fatigue damage estimation
The output from a time-history structural simulation is used to predict fatigue-damage accumulation by
first extracting stress cycles, for instance by using the rainflow counting algorithm [14]. Subsequently, the
fatigue damage caused by each stress cycle can be estimated using the stress-life approach, where the number
of load cycles to fatigue failure (N) resulting from a constant-amplitude load is a function of the applied
stress range (σr); this relationship is described by an SN-curve [16], shown in Figure 1 and described by the
following equation:

N = Kµσ
−m
r . (1)

In Eq. (1), the m-parameter is the slope of the SN-curve and Kµ is a constant determining the location of the
x-axis intersection. The ratio between the number of applied cycles (n) and the tolerable number of cycles
(N) is assumed “to consume” a fixed proportion of the fatigue life. In the case of stochastic environmental
inputs to each time-history analysis, the loading amplitude varies with time. The composite fatigue damage
can be predicted using Miner’s rule [16], which assumes that the damage caused by individual stress cycles
can be summed, resulting in the following equation:

Dkj =

Ncyc∑
i=1

nkji
Nkji

=
1

Kµ

Ncyc∑
i=1

nkji

σ−mr,kji
. (2)

In Eq. (2), Dkj is the total fatigue damage calculated over all Ncyc stress ranges (each indexed by i) occurring
during a time-history analysis conducted at a set of environmental parameters (indexed by j) and different
seeds (indexed by k). The fatigue damage over the design life (Dkj,life) can be calculated by linearly scaling
Dj from the time-history structural simulation length (Tanalysis) to the intended (i.e., assumed) life of the
OWT (Tlife):

Dkj,life =
Tlife

Tanalysis
Dkj . (3)
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Fatigue damage is also commonly represented through the damage equivalent load (DEL), i.e., the constant-
amplitude stress causing the same fatigue damage as the variable amplitude loading at a reference number
of tolerable cycles (Neq) [11]. This number is typically easier to communicate, as fatigue loading calculated
in terms of total damage can assume very small values.

DELkj,life =

(
Kµ

Neq
Dkj,life

)1/m

. (4)

The total fatigue damage, calculated across a set of structural analyses, is:

Dtotal =
1

Nseed

Nsim∑
j=1

Nseed∑
k=1

Dkj,lifePrj ≈
1

NsimNseed

Nsim∑
j=1

Nseed∑
k=1

Dkj,life. (5)

In Eq. (5), Nsim is the number of fatigue environmental states (i.e., the number of simulated wind and
wave conditions), and Nseed is the considered number of seeds. The composite damage is weighted by
the occurrence probability of each fatigue sea state (Prj). This can be approximated using Monte Carlo
sampling, provided that Dkj,life is evaluated at samples drawn from the joint-probability distribution of
wind and wave conditions.

A given structural component is assumed to fail when the fatigue damage reaches a pre-specified threshold,
typically assumed equal to one. Equivalently, failure in terms of DEL occurs when the equivalent constant
amplitude stress is larger than the SN-curve stress for the selected number of equivalent cycles. For struc-
tures assessed using the DNVGL fatigue code [17], a predicted fatigue failure corresponds to a crack growing
through the thickness of the structures cross-section.

3. Problem statement
3.1. Limit state definition
Assessing whether or not a structural component of an OWT is expected to fail due to fatigue during its
operating life can be achieved by introducing a limit state (or performance) function [18]. In particular,
a fatigue limit state function, G(X), can be defined as in Eq. (6), based on a vector of random variables
X, capturing the uncertainties in load-induced structural demand and structural capacity. Specifically, the
demand term is the fatigue damage incurred over the component intended design life (Dtotal; i.e., Eq. (5))
and the capacity term is the fatigue damage resistance of the component (Xδ):

G(X) = Xδ −XSN (Dtotal,SN1(XStrXSCFXGP )m1 +Dtotal,SN2(XStrXSCFXGP )m2). (6)

Eq. (6) accounts for the fact that a typical SN curve for steel consists of two slopes (m1 and m2), from
which a damage term, Eq.(2), is calculated for each time history.

Significant uncertainty exists also in the prediction of a structural component fatigue (material) properties,
and these are captured as random variables, i.e., the XSN and Xδ terms in Eq. (6). These random variables
are defined following the recommendations of DNVGL [17] and are presented in Table 1. The SN-curve x-axis
intersect (XK) variable is modeled following the guidance in DNVGL [17], which utilizes a single standard
deviation for both slopes of the SN curve. These curves are assumed to be fully correlated following guidance
in the JCSS Probabilistic Model Code [19]. A different modeling choice is to consider larger uncertainty for
the second slope, i.e., using a larger standard deviation for the XK variable corresponding to the second
slope [20]. However, the DNVGL approach is utilized here because it is widely used in the design/assessment
of offshore structures. It should be noted that Eq. (6) was simplified by including the re-weighting of the
SN-curve x-axis intersect (XK) inside the random variable XSN by (1) calculating the reciprocal of XK ; and
(2) evaluating the parameters of this distribution multiplied by a constant (Kµ, for each SN-curve slope).
Additionally, the modeling uncertainty introduced as a result of limitations in the structural analysis are
taken from DNVGL guidance on probabilistic fatigue inspection [21]. In particular, XSCF is the uncertainty
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Table 1: Statistical properties of the random variables modeling the fatigue material behavior. * = the parameter varies
with the SN-curve intersection. ** Quantified during model training, as described in Section 6.1.

Variable Reference Distribution Mean Standard deviation

Tolerable damage (ln(Xδ)) [17] Normal 1.05 0.32
SN intersection (log10(XK)) [17] Normal f(Kµ)* 0.2
SN uncertainty (ln(XSN )) N/A Normal 0.45 0.22
GP uncertainty (XGP ) ** N/A Normal 0.998 0.01
Stress concentration factor uncertainty (XSCF ) [21] Normal 1 0.12
Mechanical model uncertainty (XStr) [21] Normal 1 0.05
SN slope 1 (m1) [17] Deterministic 3 N/A
SN slope 2 (m2) [17] Deterministic 5 N/A
SN slope 1 intersection (Kµ1) [17] Deterministic 1011.61 N/A
SN slope 2 intersection (Kµ2) [17] Deterministic 1015.35 N/A

due to the stress calculation and XStr models uncertainty resulting from the structural analysis. The
modeling uncertainty due to the use of a surrogate model for computing fatigue damage is captured by
the XGP variable, which is described in Section 6.1. These are multiplicative factors that act on the stress
calculation and therefore are raised to the power of the relevant SN-curve slope. Other work, such Velarde
et al. [22], include additional random variables such as wave loading uncertainty, which could be modeled
as an additional multiplicative factor in the limit state equation introduce above.

The main challenge in assessing fatigue reliability for OWTs is the computation of the Dtotal terms (for each
SN-curve slope) in the fatigue limit state function. As discussed in Section 2.1, a large number of structural
simulations are typically required to accurately assess fatigue damage and this is combined with the com-
putational expense of fully-coupled time-history simulations. Even when the large number of simulations
required by IEC 61400-3 is performed, there are still various simplifying assumptions contained within the
specification of load cases. For instance, the IEC code allows one to consider discrete 2m/s-wide bins for
the mean wind speed and use of a single combination of wave parameters for each bin, which is a strong
simplification as the environmental parameters vary continuously within bins [10].

3.2. Dealing with the large number of simulations
In practice, the large computational burden required to assess the FLS can be reduced by either making the
analysis more computationally efficient, or by reducing the number of simulations to be run, using:

• Load-case reduction;

• Simplified mechanical models, based on frequency-domain simulations;

• Surrogate models, also commonly referred to as metamodels.

Load-case reduction mitigates the computational burden of evaluating the FLS by combining those load
cases which produce similar outputs. This approach was first developed for application to OWTs by Kühn
[23] and extended by Damgaard et al. [24] to encompass multi-directional environmental conditions. A set
of 2,000 load cases were reduced by a factor of 10, with a reported error of less than 1% in terms of DEL [24].
Häfele et al. [25] found that similar reductions were possible for an OWT located at a different North Sea
site, suggesting that the number of load cases can be reliably reduced. However, the computational burden
for FLS assessment remains large as the full set of load cases need evaluated to calibrate the reduced set.

Replacing an expensive aero-elastic dynamic model with a simplified mechanical model results in simulations
running much faster, enabling the evaluation of a large number of environmental load cases. These techniques
have been applied to OWTs using frequency-domain calculations, which are summarized comprehensively
by Baltrop [14] and Tempel [26]. Kühn [23] and Tempel [26] developed early approaches, where analysis of
the fatigue damage caused by wind and waves was carried out separately. Similarly Yeters et al. [27] and
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Ziegler et al. [28] developed variants based on decoupled frequency-domain models. This approach has been
applied in FLS reliability assessment by Marquez-Dominguez and Sørensen [29], Dong et al. [30] and Oest et
al. [31] for different OWT components. Muskulus and Schafhirt [32] developed a fatigue reliability model for
OWTs on jackets substructures. Their study included uncertainty in both the environmental loading (e.g.,
wind and waves) and material properties. However none of these approaches can include a fully-coupled
dynamic simulation, which is considered the state-of-the-art technique in OWT project certification [8].

Surrogate models approximate complex systems attempting to mimic their behavior yet remaining com-
putationally cheap to evaluate. In other words, a surrogate model is nothing but a model of a model: it
constructs a relationship between the design variables and corresponding responses using relatively few,
intelligently-chosen sampling points. The original complex model is effectively replaced by a transfer func-
tion. Different surrogate models have been used to represent the outputs from complex structural analysis
packages for OWTs. This includes using linear surrogate models to assess onshore wind turbines, using
piece-wise fitting to represent nonlinearities in the response. Both Toft et al. [33] and Zwick and Muskulus
[34] developed surrogate models using this approach, where a separate model was fit for each mean wind
speed bin. However, the additional non-linearity in an OWTs response due to wave loading [8] means that
fitting separate surrogate models may not be feasible. Complex linear surrogate models can capture a larger
range of behaviors and may be able to better represent complex simulators, such as the output from a
time-history OWT simulation. One highly-flexible type of surrogate model is a regression built on the use
of a GP, which provides an adaptable and localized surrogate modeling approach. GP regression has been
proven capable of addressing reliability calculations in problems with nonlinear limit state functions and
large number of model parameters. For instance, in the case of OWTs, Huchet et al. [35] found that a GP
model could estimate fatigue damage using four environmental parameters (mean wind speed, wind-wave
direction, significant wave height and peak spectral period), and reported a low modeling error of around
4.4%. Similarly, Teixeira et al. found that a GP was suitable for modeling fatigue damage, represented by
the mean wind speed and turbulence intensity [36]. A different approach was applied by Häfele et al. [37]
who used a GP regression to represent post-processed fatigue damage against different geometrical param-
eters in an optimization procedure for OWTs on jacket substructures. Hence, GP regression represents a
feasible approach for modeling fatigue loads on fixed OWT and to be used in FLS reliability assessment of
OWTs, as proposed in this study. The basics theory supporting GP regression is provided in Appendix A;
interested readers should refer to Rasmussen et al. [38] for a broader view on GP theory and discussions on
underlying hypotheses.

4. Methodology
4.1. Considered environmental variables
A GP surrogate model can be used to estimate the fatigue damage (Dkj ; Eq. (2)) at a set of environmental
conditions; estimates of Dkj can then be used to rapidly compute the total lifetime fatigue damage (Dtotal;
Eq. (5)). This allows one to evaluate efficiently the limit state function of Eq. (6), without requiring a time-
history analysis for each sample of the environmental conditions. However, the GP surrogate model must
be trained against all the environmental conditions that are important for predicting the OWT response.
Hübler et al. [39] applied a four stage sensitivity analysis starting with 100 variables (covering wind, waves,
soil and geometrical properties) and ranked the 14 which had the greatest impact on the FLS response. For
an OWT on a monopile substructure, mean wind speed (Vw), peak spectral period (Tp), significant wave
height (Hs), wind direction (θwind) and wave direction (θwaves) were the main variables identified by the
study, and were not ranked in order of importance. Then, soil properties, marine growth thickness, pile
dimensions and water depth were found to be important. Turbulence intensity (Ti) was not on the final
list of important variables, but has been consistently highlighted as a critical environmental quantity in
studies of onshore wind turbines [33, 40]. Brandt et al. [41] conducted a global sensitivity analysis for an
OWT on a jacket substructure and identified similar main environmental variables to Hübler et al. [39], but
reported that the FLS was insensitive to θwind, θwaves and yaw error. It should be noted that the ranking
of variables in a global sensitivity analysis may not provide the same results as a sensitivity analysis for
fatigue damage based on structural reliability estimates; however, a global sensitivity analysis does indicate
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which parameters are crucial for the prediction of fatigue damage and therefore should be included in the
surrogate model definition.

This study models the environmental variables that have been consistently identified as important by various
studies; in particular, Vw, Hs and Tp together with Ti, θwind and θwaves are included. They are distributed
according to site-based measurements, see Section /refsec:SiteEnv for details.

In addition, the fatigue damage is calculated by using six random seeds which are selected using a random
number generator for each sample of the environmental conditions. This approach follows the guidance in
IEC 61400-3 [2], which recommends 60-minute simulations (as each analysis is 10 minutes in length).

4.2. Calculation framework
The FLS reliability can be computed by using the computational framework proposed in Figure 2. The first
step of the framework involves fitting a GP surrogate model to realizations of fatigue damage computed
using a set of time-history analyses. To this aim, a random design of experiments (DoE) is used to select
combinations of the environmental variables and seeds at which to evaluate fatigue damage. After generating
the training sample (for which a sensitivity study is presented in Section 6.1), structural simulations are run
on a high-performance computing cluster (HPCC), and fatigue damage is estimated using the calculation
described in Section 2.2. The GP surrogate model is developed by firstly specifying a kernel, and then by
fitting its parameters to the training data. The kernel defines the spatial relationship between fatigue damage
at different input values (i.e., environmental conditions). This finally results in a predictive distribution used
to estimate the output (i.e., fatigue damage) for any arbitrarily-selected input vector not included in the
training dataset for which the output is wanted. The predictive distribution depends on the parameters of
the kernel (referred to as hyperparameters in the remainder of this text) and a noise term (σn) which is
used to model seed variability. In fact, OpenFAST produces different prediction of fatigue damage at the
same input variable location because of the stochastic loads produced from using different random seeds
(described in Section 2.1), and this introduces noise into the GP model. These parameters are selected
to minimize the log marginal likelihood [38] using a quasi-Newton optimizer, which iterates from a set of
assumed, initial conditions to the optimal combination of parameter values. The overall goodness of fit
can be assessed using the metrics described in Section 4.4. Some background theory on GP regression is
provided in Appendix A and different kernel options adopted in this study are described in Section 4.3.

The total fatigue damage, Eq. (5), can be evaluated numerically by using plain Monte Carlo sampling
[42] using the surrogate model predictions and the probability distributions describing the environmental
conditions at a given site. The limit state function of Eq.(6) includes both segments of the SN curve and
a surrogate model can be fit to each independently. In practice, if low stress ranges are observed, the term
related to the first segment of the SN curve may be neglected.

Finally, FLS reliability can be assessed using the limit state function (Eq.(6)) and any structural reliability
technique [18]. Specifically, importance sampling [42] is employed in this study due to the low probabilities
of failure involved in the considered problem. In particular, the tolerable damage, the SN-curve intersec-
tion and the modeling uncertainties (i.e., the stress concentration factor uncertainty, the uncertainty in the
mechanical model and the uncertainty due to the surrogate modeling of fatigue damage) are all modeled as
random variables, as discussed above. The other structural parameters, such as geometry, are considered
as deterministic as their variability is assumed small in comparison to the material properties [19]. The
implementation of these steps is described in greater detail with reference to an illustrative OWT structure
in Section 5.

4.3. Considered GP surrogate model
Different assumptions concerning the form of the GP surrogate model can be tested, as described by Ras-
mussen and Williams [38], including: (1) the Kernel type, for which popular choices include squared exponen-
tial (SE), general exponential, Matern (including the 3/2, 5/2, and generalized variants), and the rational
quadratic; and (2) basis function on which the GP model is fit (e.g., none, linear function or quadratic
function).
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Figure 2: Proposed computational framework for FLS reliability assessment of OWTs. The variables have been defined
in Section 2.2.

The kernel function defines the relationship between points in the input space (x; i.e., the considered
environmental variables) of the GP model. The kernel parameters are referred to as hyperparameters
because they apply equally to all entries in the covariance matrix and can be estimated from the training
data using maximum likelihood estimation [38]. For instance, the SE kernel assumes that response estimates
vary smoothly with changing inputs; however, it has been noted that this may not be suitable for representing
complex physical processes and real-world applications [43]. The Matern kernel can model functions that
are not infinitely smooth; it is defined as:

kMT (x,x′) = σ2
f

21−ν

Γ(ν)

(√
2ν(x− x′)(x− x′)T

l

)ν
Kν

(√
2ν(x− x′)(x− x′)T

l

)
, (7)

where Γ(·) is the gamma function, Kν is the Bessel function of the second kind, and σ2
f , l and ν are the

kernel hyperparameters. The l parameter defines the length scale over which the GP-model output varies.
The ν parameter determines the mean-squared differentiability of the GP predictions. Two commonly used
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variants are the 5/2 (kMT,5/2) and 3/2 (kMT,3/2), the latter being defined as:

kMT,3/2(x,x′) = σ2
f

(
1 +

√
3
(
x− x′

)(
x− x′

)T
l

)
exp

(
−

√
3
(
x− x′

)(
x− x′

)T
l

)
(8)

The kernel functions considered in the study are of automatic relevance detection type [38], meaning that
they allow different length scales for each input dimension. The parameter values are calibrated to the
training data using the maximum likelihood method.

4.4. Considered metrics for assessing the goodness of fit of the GP surrogate model
The accuracy of different GP surrogate models is quantified and compared using various metrics:

• The normalized root mean squared error (NRMSE), which is the root mean squared error normalized

by the mean of the test observations (E(y)); i.e., NRMSE =

√
E
(
y − ŷ

)2
/E(y), where ŷ is the the

GP surrogate model prediction for Dkj and y is the observed Dkj value at same location, computed
using structural analysis.

• The coefficient of determination (R2) which estimates the overall goodness of fit [44].

• The coverage probability of the 50%, 90% and 95% prediction intervals (hereafter simply called cov-
erage), which is the proportion of test samples falling within a considered set of confidence intervals.
This metric can identify whether the GP model introduces large modeling uncertainty, as, if this is
the case, the standard deviation in the GP prediction would become much larger than that of the
validation data, resulting in a large coverage.

• The ratio between the lifetime fatigue damage (Dtotal) predicted using the GP surrogate model and
that computed for the validation set observations - therefore quantifying the overall error in the
estimation of the total fatigue damage due to the surrogate modeling of Dkj .

These metrics are all assessed using an independent validation set of analyses comprised of 1,000 samples,
as discussed in the following sub-sections. The accuracy of the proposed GP surrogate model was also
confirmed by assessing the NRMSE and coverage metrics using a leave-one-out-cross-validation approach,
where the error is sequentially evaluated for a GP model fit by using each sample in the training set except
one. Results from this second validation approach are not presented for the sake of brevity.

5. Illustrative application
5.1. Site and environmental conditions
This study uses environmental data measured by three met masts which are part of the FINO project to
record environmental conditions in the North and Baltic Seas. This raw data was processed into probability
distributions by Hubler et al. [45] who discretized the data into bins and fit a series of conditional distri-
butions to each bin. The resulting distributions are used in this study. The FINO masts are located in the
German North Sea (FINO1 and FINO3) and the Danish sector of the Baltic Sea (FINO2) as indicated in
Figure 3. Each site has between 7 and 13 years worth of continuously recorded environmental data.

The FINO3 met mast is the main focus of this study; it has a water depth of 22m (the site depth varies
between 22m and 30m). The dependencies between the considered environmental parameters are visible by
plotting the conditional probability distributions for the FINO3 site. Figure 4 and 5 show the discrete bins
into which the continuous environmental variables were segmented; the distribution types are summarized
in Table 2. Similar distributions were provided for the FINO1 and FINO2 sites [45], but are not shown here
to save space. The distribution of wave angle is not plotted as it is dependent on three variables.
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Figure 3: Location of the three FINO met-mast sites (left). Territorial waters are shown with a dashed line and exclusive
economic zones (EEZ) using a double-dashed line. A image of the NREL 5MW OWT with the main elevations (right).

5.2. Fatigue damage calculation
5.2.1. Structural model
The 3-bladed National Renewable Energy Laboratory (NREL) 5MW OWT on monopile substructure [46] is
used as the reference structure in this study, with the main elevations shown on Figure 3 (right). This turbine
has a 126m diameter rotor and the monopile has a 6m diameter with a constant 0.06m wall thickness, while
the tower has a tapered section with the diameter decreasing linearly from 6m at the bottom to 3.87m at
the top. The turbine is operational between mean wind speeds 3m/s to 25m/s and the rated rotor speed is
12.1rpm.

The steel used for the monopile has an elastic modulus of 210GPa, a Poisson ratio of 0.3 and a density
of 7850kg/m3. The tower has the same material properties except that the steel density was increased (to
8500kg/m3) to incorporate the additional weight of secondary steel. The full set of dimensions and material
properties used to model this OWT are detailed by Jonkman et al. [46].

Table 2: Probability distributions used to model environmental conditions at the FINO3 site showing the conditional
dependencies, the distribution parameters are defined by Hubler et al. [45].

Parameter Variable Distribution Dependencies

Mean wind speed Vw Weibull N/A
Turbulence intensity Ti Weibull; Gamma Mean wind speed
Significant wave height Hs Gumbel; Weibull Mean wind speed
Peak spectral period Tp Bimodal Gumbel Significant wave height
Wind direction θwind Non-parametric KDE Mean wind speed
Wave direction θwave Non-parametric KDE Significant wave height; Wind direction

11



(a) Mean wind speed.
(b) Turbulence intensity dependent on mean wind
speed.

(c) Significant wave height dependent on mean wind
speed.

(d) Peak spectral period dependent on significant
wave height

Figure 4: Probability distributions of environmental conditions at the FINO3 met mast. The mean of each distribution
is identified by an ’x’, the 0.05 and 0.95 quantiles by a circle, and the mode by a red line. The normalized values are
calculated such that the highest value mode occurs at a value of 1.
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Figure 5: Density functions of wind angle dependent on the mean wind speed, increasing wind speed is indicated by
lighter colored line. Normalized so that the maximum mode has a value of 1.

5.2.2. Load calculation
The fatigue loading on the illustrative OWT structure due to different environmental conditions is calculated
in the time domain using the aero-hydro-elastic wind turbine simulation package OpenFAST [13]. The mean
wind speed and the turbulence intensity are used in the Kaimal spectrum, which defines the frequency content
of turbulent wind [47]. The spectrum is subsequently converted into stochastic time series (using the inverse
Fourier transform). The mean and turbulent wind speed components are summed and used to calculate wind
loading on the OWT blades using the blade element momentum theorem [11]. Similarly, the significant wave
height and peak spectral period are used in the JONSWAP wave spectrum [47], which defines the energy of
different wave amplitudes within a stochastic sea state. Individual wave amplitudes are converted into wave
kinematics (water particle velocities and accelerations) using Airy wave theory and are summed to evaluate
the entire sea-state. Structural wave loads are evaluated using Morrison’s equation [47]. The wind and
wave direction are combined into a single parameter, the misalignment (θmis), by taking advantage of the
symmetry of the monopile sub-structure. Only the misalignment between wind and wave loading matters
for calculating the fatigue damage, as the loads can be rotated around the monopile cross section in a post-
processing phase to account for the absolute angle of loading. The below mudline foundation significantly
influences the structural response in the dynamic analysis of OWTs [48]. In this paper, the foundation is
modeled using the apparent fixity (AF) method [49], with the fixity length selected to match the natural
frequency between the AF supported OWT and an OWT with a linear-elastic foundation model. The soil
properties were taken from Damgaard et al. [24]. Individual analyses of 11-minute length are conducted
and the first minute is deleted to remove transient effects [15].

In a post-processing step, the mudline bending moment time-series is extracted and converted into stresses.
Assuming that the stresses in the wall of the monopile behave in-plane (with no bending moments), a mem-
brane stress calculation can be used [50]. This avoids the need for complex finite-element analysis and can
be implemented using a simple set of membrane stress equations.

5.2.3. Fatigue damage
Fatigue damage is calculated for a single weld located at the mudline. The weld is a transverse butt weld
with no weld toe grinding, and assessed using a DNV class E [17] SN curve which assumes the weld is
protected from corrosion by cathodic protection. The DNV SN curves [17] are bi-linear in the log scale.
Fatigue damage is estimated at 12 locations equally distributed around the mudline cross-section, with the
largest value extracted for use in the fatigue life calculation. The results are presented in terms of DEL
calculated using 107 reference cycles. It should be noted that the proposed GP models are assessed in terms
of DEL only for numerical convenience, and this is converted back into damage for evaluating the limit state
of Eq. (6).
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Table 3: Input range of each environmental variable in the GP model.

Variable
Lower
bound

Upper
bound

Criteria

Vw 4 24 Range of Vw where the OWT is operational
Ti 0.01 0.18 The upper limit is two standard deviations above the mean Ti of

the lower Vw bin; the lower limit is selected above 0 (for turbulence
spectrum equation).

Hs 0.01 7 The upper limit is two standard deviations above the mean Hs of
the largest Vw bin; the lower limit is above 0 (for wave spectrum
equation).

Tp 1 15 The upper limit is the mode of 2nd peak in the largest Hs bin.
θmis 0 180 Full range of misalignments, given the symmetry of the OWT.

The stress time history is copied 35 times, generating a six-hour long time series. This mitigates against
observed increases in predicted fatigue damage with increased analysis length which are due to the effect
of open cycles in the rainflow counting algorithm [45], as the ratio of open to closed cycles is reduced by
duplicating the stress time history. The fatigue damage is calculated assuming a design life of 20-years, a
typical figure for OWTs [8].

5.3. Training and validation data sets
A training set is used to fit the surrogate model and a validation set is used to assess the overall goodness
of fit of the proposed surrogate model for the FINO3 site. Additionally, for the FINO1 and FINO2 sites,
validation sets are also generated. The number of dimensions in the input vector is five and matches the
number of parameters in the environmental model subtracting the simplification that the wind and wave
angle can be combined into a single variable, θmis, because of the axisymmetric cross section of the monopile.

The single training and three validation data sets are each made of 1,000 realizations of the environmental
conditions drawn randomly from the relevant site-specific probability distributions of the environmental
conditions (as discussed above). Then the fatigue damage is calculated at each using six random seeds
which are selected using a random number generator for each sample of the environmental conditions. This
approach follows the guidance in IEC 61400-3 [2], which recommends 60-minute simulations (as each analysis
is 10 minutes in length) and results in 6,000 structural simulations.

In a pre-processing stage, the site-specific conditional distributions are truncated to prevent unrealistic envi-
ronmental conditions. This is achieved by modifying the limits of the uniformly distributed random numbers
to produce acceptable ranges of the environmental conditions values. The mean wind speed is truncated
to values occurring between 3m/s and 25m/s, conditions in which the turbine is operational [46]. This
means that only operating wind and wave conditions are captured in this illustrative application, and that
extreme conditions, where the OWT is in its shut-down state, are neglected. Additionally, the significant
wave height (at low mean wind speeds) and peak spectral period are both represented by extreme value
distributions which support negative values. However, numbers less than zero are not permissible as inputs
into the spectral equations which are used to generate generating environmental conditions, described in
Section 5.2.2.

6. Results and discussion
6.1. Proposed surrogate model
This section starts by assessing the accuracy of the proposed GP surrogate model. In particular, the Matern
3/2 kernel is selected in this study as it represents a popular and practical choice for applications related to
both onshore and offshore wind turbine. Its flexibility stems from the variable smoothness of the resulting
GP predictions, as described in Section 4.3. This allows one to better capture the fact that most real-world
problems are not infinitely smooth (as assumed for instance by the squared-exponential kernel). In addition,
both the considered Matern 3/2 kernel and the more complex generalized Matern kernel lead to very similar
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Figure 6: GP-predicted vs observed DEL values based on the GP surrogate model with the Matern 3/2 kernel kernel. The
line shows the result of a simple linear regression fit to the data and the shaded areas show the 95% confidence intervals.

model performance, i.e., a NRMSE of about 0.15 and R2 of about 0.94, in both cases. The Matern 3/2
kernel has also the advantage of being practically implemented in many commonly used software packages
such as Matlab. A plot of predicted vs observed DEL values based on the GP surrogate model with the
Matern 3/2 kernel kernel is shown in Figure 6 (note that only half of data points are plotted to improve the
clarity of the figure and they were selected randomly).The corresponding kernel parameters and goodness-of-
fit metrics are listed in Table 4. The lifetime damage values show very high accuracy compared to the scatter
in Figure 6; this is partly due to an averaging effect when considering all the environmental conditions (in
fact, as 47.6% of the samples are above the 1:1 trendline and 52.4% are below it). These findings are in very
good agreement with those of Slot et al. [51], who used a Matern 3/2 kernel to represent fatigue loads on
an onshore wind turbine, and Häfele et al. [25] who found a Matern 5/2 kernel to be best for representing
joint fatigue loads for a OWT on jacket substructure.

The computational burden required to run 6,000 dynamic structural simulations is large. In practice, this
sample size may be infeasible on a standard workstation. Moreover, GP surrogate models need to take
into account the whole set of training data each time they are used for predictions. This means that the
computational cost of each prediction scales with the number of training samples. Generally, it is not clear
in advance whether reducing the number of samples or seeds will have a greater impact on the accuracy of
the GP surrogate model. The number of seeds will affect the number of analyses at a specific set of input
environmental conditions and may affect the coverage metrics (as the scatter at each input point will be
defined better). Reducing the number of samples will affect the sampling quality over the considered input
conditions, which should, in turn, effect the NRMSE.

Different numbers of random samples and seeds are tested by drawing 1, 000 sets (an appropriate sample for
evaluating scatter in the sample mean [52]) of bootstrapped samples from the full set of validation results
(1, 000×6). The resulting goodness-of-fit metrics are assessed for these reduced analysis sets and the results,
presented in Figure 7, suggest that both the number of samples and seeds can be reduced without a large
impact on the NRMSE and the coverage. A combination of 300 samples and two seeds (300 × 2) will be
used in the rest of this study because this provides a good trade off in terms of NRMSE and lifetime fatigue
damage accuracy.

Additionally, the accuracy of the proposed GP surrogate model was further confirmed using the bootstrap
samples in Figure 7. The mean and standard deviation of the ratio between the observed on predicted
damage values were evaluated to be 0.998 and 0.01 respectively. These parameters were used to define the
XGP in Eq.(6). A Normal probability model is assumed for XGP .

Finally, the lifetime damage predictions in terms of DEL and Dtotal are also compared against the obser-
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Table 4: Kernel parameters and goodness of fit metrics for different kernel functions at the FINO3 site. The σn parameter
refers to the noise added to the GP that accounts for seed-to-seed variability (see Eq. (11)).

No Samples 1000*6 300*2
Gaussian Proccess
type

Matern 3/2 kernel Matern 3/2 kernel

σf 9.681 15.261
Length scale (Vw) 1.394 1.492
Length scale (Ti) 6.694 20.966
Length scale (Hs) 2.266 2.347
Length scale (Tp) 1.195 2.752
Length scale (θMis) 4.446 8.478
σn 2.092 2.110
NRMSE 0.154 0.163
R2 0.942 0.935
Coverage:

95% 0.923 0.943
90% 0.890 0.911
50% 0.572 0.584

Table 5: Comparison between the lifetime fatigue damage computed using the validation sets across the different FINO
sites and the predictions from the GP model fit to the FINO3 site with a Matern 3/2 kernel. The errors are computed by
dividing the validation set value (observation) by the relevant GP value (prediction).

FINO1 FINO2 FINO3

DELtotal
GP 300x2 12.625 12.181 13.723
Validation 12.458 11.995 13.745

Dtotal
GP 300x2 7.95E-04 6.64E-04 1.21E-03
Validation 7.44E-04 6.15E-04 1.22E-03

Ratio
DELtotal 0.987 0.985 1.002
Dtotal 0.936 0.926 1.008

vations for independent validation sets, allowing a direct comparison between the surrogate model and the
structural analysis results for different sites. The results for the FINO3 site, shown in Table 5, demonstrate
that the proposed surrogate model produces predictions of lifetime fatigue damage similar to the observa-
tions computed using structural simulations. The GP model error is lower than that reported by Huchet et
al. [35] who found a 4.43% error between an adaptive Kriging algorithm and aero-elastic analyses in terms
of damage. Similarly, small model error (using the EN 1990 method) was found by Slot et al. [51] in the
case of onshore wind turbines, using aero-elastic simulations with 4 seeds and 100 environmental samples
(although it should be noted that different environmental conditions were simulated).

6.1.1. Different sites
The GP surrogate model predictions using the FINO3 training set are compared with the observations from
the validation sets from the FINO1 and FINO2 sites in Table 5. This indicates that, while the accuracy of the
prediction decreases when the GP model trained at FINO3 is validated against fatigue damage computed
at other sites, the observed errors are not large. This is confirmed in Table 5 where it can be seen, for
instance, that the error is below 2% in terms of DEL for the FINO1 site. As the environmental probability
distributions change between the sites, a reduced accuracy of the GP surrogate model is observed when
considering the FINO2 data. This is visible by comparing the Tp parameter from all sites; the FINO1 and
FINO3 distributions are broadly similar while the FINO2 distribution is more peaked, i.e., Figure 8.However,

16



it should be noted that if this assumption was to be tested in practice, the site water depth should also be
explicitly modeled as an additional variable within the proposed surrogate model.
6.2. Fatigue reliability analysis
FLS reliability is finally assessed using the importance sampling approach [42], in combination with the limit
state function defined in Eq. (6). The GP surrogate model with Matern 3/2 kernel trained using 300 × 2
samples is used to evaluate damage - as it combined one of the most accurate and practical kernel functions
with an appropriate number of samples/seeds, as discussed previously. It is worth noting that the computed
damage values by OpenFAST were all found to lie within the second segment of the SN curve; consequently,
the fatigue damage prediction is only based on a GP model considering the second slope of the SN curve.
In Eq. (6), the 20-year damage estimates are computed by sampling from the site joint distributions of the
environmental conditions and evaluating numerically Eq. (5) using a Monte Carlo integration with 1× 106

samples, using the upper and lower boundaries in Table 3 (i.e., same intervals as used in the DoE sample).

The finite sample of the GP is associated with some error which is assessed by rerunning the integration
1,000 times for each site using the mean function of the GP conditioned on the OpenFAST observations with
1M samples. The full GP distribution was also sampled at the FINO3 site. The resulting distributions of
fatigue damage are shown in Figure 9. A normal probability distribution is fit to the empirical distributions
and this assumption is confirmed using the Anderson-Darling normality test at a 5% significance level. The
resulting distribution of the lifetime fatigue damage are comparable as shown in Figure 9 and the coefficient
of variation in the empirical distribution increases from 3.37% in the mean function of the GP to 3.95%
in the full GP-distribution case. In the subsequent analysis fatigue damage is predicted using the normal
distribution of fatigue damage predictions.

The mean values of lifetime damage calculated for the respective sites are 6.70× 10−3 (FINO1), 8.30× 10−3

(FINO2) and 8.69 × 10−3 (FINO3). The similarity between fatigue damage using the FINO1 and FINO3
met masts is consistent with the findings in Section 6.1 due to similar environmental conditions between the
two sites. However, the damage predicted at the FINO2 site is lower than that at the others site primarily
as a result of lower significant wave heights [45].

The probability of failure is finally evaluated using importance sampling. Limit state samples calculated
over the life of the structure are plotted in Figure 10, which also shows the best fit Gumbel distribution.

The resulting probability of failure over a 20-year design life is 3.940×10−6, which corresponds to an annual
probability of failure of 9.005× 10−7, using the relationship defined by Velarde et al. [22]. The relationship
between these values over time is shown in Figure 11. Comparing this value to code target reliability levels
seem to suggest that the NREL 5MW located at the FINO3 site has a highly conservative level of safety.
IEC 61400-1:2019 recommends a probability of failure of 10−4. However, the NREL 5MW has not been
specifically designed for the FINO site-conditions and therefore a direct comparison between calculated and
code-based failure rates is only illustrative.

The Gumbel distribution has a CoV of 0.319, indicating the high uncertainty introduced by the random
variables in the limit state. In particular, within the limit state equation, the two random variables Xδ

and XSN act against each other. Modeling the SN curve as random increases capacity (as the design curve
is conservative), whereas modeling tolerable damage as random reduces capacity (because the median of
random variable is below one).

7. Conclusions
This paper presented a novel application of Gaussian process (GP) regression to assess fatigue reliability of
offshore wind turbines (OWTs) using site-specific environmental conditions and advanced dynamic structural
analyses. This is especially important as fatigue is often the limit state driving structural design of OWTs
in European waters. The approach can also be used to calibrate code-based partial safety factors to be
used in the design of OWTs. The proposed approach allows the rapid evaluation of monopile fatigue
damage without requiring computationally-expensive time-history analyses to be run for each sample of
the site-specific environmental conditions. This allows, in turn, a fast yet accurate estimation of fatigue
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failure/reliability of OWT structural components.

The sensitivity of various goodness-of-fit metrics to the number of structural analysis samples has also been
investigated to further reduce the computational effort required to perform GP regression/predictions in
practical applications. The use of the efficient GP surrogate model for fatigue damage prediction allowed
a comprehensive assessment of FLS structural reliability for an archetype OWT at three sites in Europe,
considering all the relevant random variables modeling uncertainties in load-induced fatigue demands and
structural capacity of the OWT substructure. In particular, it was shown that the considered random
variables, particularly those related to modeling uncertainties, can cause large scatter in the fatigue limit
state function, introducing a coefficient of variation of about 30%.

The annual probability of failure for the illustrative OWT structure was found to be ≈ 1 × 10−6. Other
OWTs with different nominal properties could be similarly assessed as the approach taken in this paper
is flexible, potentially reducing the conservatism in OWT design and assessment. Situations where the
turbine is not operational, such as wind speeds above and below the operating range, can be assessed by
fitting a similar GP regressions to models representing those conditions. For instance, assessing OWTs on
jacket substructures would require multiple welds to be assessed in order to evaluate system reliability of a
structure with redundancy. Additionally, higher values of the probability of failure are expected if different
random-variable models/statistics are used for each slope of the SN curve in Eq.(6), e.g., [20]. However, for
illustrative purposes, it was decided to use the single random variable approach to be consistent with the
DNVGL code [17].

Extending the fatigue calculation to other sites in European waters demonstrated that a surrogate model
developed for a single site may be usable at other locations characterized by similar environmental conditions.
This suggests that further computational savings would be possible if a representative GP surrogate model
is developed for a OWT model which is used across multiple nearby locations.

It is finally worth noting that the accuracy of/computational effort required by plain Monte Carlo sampling
and importance sampling to generate the random DoE used in this study and to solve the limit state equation
was found acceptable (also given the relatively small number of random variables involved in the analysis
and their statistics). However, the use of adaptive sampling in the surrogate model development, leveraging
on adaptive training input to focus on the failure region of the limit state function, could further increase
the computational efficiency of the proposed framework. Results from this study can provide guidance for
practical applications of the proposed framework in OWT projects.
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A. Gaussian process regression
From a general, high-level perspective, the complex aero-hydro-elastic simulation to derive OWT structural
response (e.g., in terms of component stress) can be considered as a “black box” (or a “simulator”) which
takes a vector of unique inputs (x) and produces an output/target (y) described by the relationship y =
f(x). This simple equation form means that the simulator can encompass a wide range of specific analysis
procedures and assumptions. Metamodels, and specifically GP regression in this study, aim to mimic the
behaviour of the complex system (the simulator) by predicting the value of the target variable(s) given a
combination of the input variables. In other words, a statistical model is adopted to surrogate the relation
f(x) between inputs and output such that it is possible to make predictions for any input vector while
remaining computationally cheap to evaluate. In a GP regression, f(x) is regarded as a realized value of a
gaussian process, describing the distribution of functions f(x), rather than scalars or vectors.

The marginalization property of a GP allows a practical, finite-dimensional, model to be extracted from the
infinite-dimensional process. When it is conditioned on training data, i.e., pairs of input variables x and
function values y (collected in the matrix X and the vector y, respectively), the GP reduces to a multi-
variate Gaussian distribution. Consequently, estimates of the functions values (ŷ) corresponding to a new set
of input variables (x̂) can be obtained by drawing samples from the obtained conditional distribution [38].
This multivariate conditional Gaussian distribution is fully defined by a mean vector (µx̂) and a covariance
matrix (Σx̂):

Pr
(
ŷ|x̂,X,y

)
∼ N (µx̂,Σx̂) (9)

µx̂ = kx̂,X

(
kX,X + σ2

nI
)−1

y (10)

Σx̂ = kx̂,x̂ −Xx̂,X

(
kX,X + σ2

nI
)−1

kX,x̂ (11)

where σ2
n models the variability in the function value at an input location and the identity matrix I assigns

noise to the diagonal terms in the covariance matrix. The full covariance matrix k is partitioned:

k =

[
kX,X + σ2

nI kX,x̂

kx̂,X kx̂,x̂

]
. (12)

Each entry is defined by evaluating a kernel function at the corresponding training or test input. The form of
the kernel function is variable and encodes assumptions about the spatial correlation between the response
at different input locations.

The form of the conditional Gaussian distribution given in Eq. (9) assumes the unconditioned GP has a
constant mean equal to zero. If prior information is known, this assumption can be altered, e.g., fitting the
GP to an underlying linear function to capture trends in the data [38].

GP regression is also applied under the name kriging in the field of geostatistics [43]. Two types of GP
model are relevant for this work: prediction using the conditional mean function (simple kriging) and using
the full GP to model uncertainty in the predictions (standard or universal kriging).
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(a) 50% coverage. (b) 90% coverage. (c) NRMSE.

Figure 7: Impact of different combinations of samples and seed on the GP goodness-of-fit metrics; these estimates were
generated by taking the mean of 1,000 bootstrap samples drawn from the full set (1,000×6) of random samples.

Figure 8: Probability distribution of Tp parameter across the FINO1 (left), FINO2 (middle) and FINO3 (right) sites.

Figure 9: Empirical distributions of fatigue damage calculated for the three FINO sites (in block gray). The FINO3 site
calculation was also run using the fully probabilistic GP with results shown in gray lines and the best-fit normal distribution
in black.
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Figure 10: Empirical distribution of the Monte Carlo limit state evaluations with a Gumbel distribution fit using MLE.
The limit state evaluated using the mean SN curve and design SN curve with a damage threshold of 1 are also shown.

Figure 11: Probability of failure increasing with time.
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