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Crossbar arrays are a popular solution when implementing systems that have array-like architecture.
With the recent developments in the field of neuromorphic engineering, crossbars are now routinely
used to implement artificial neural networks or, more generally, to perform vector–matrix multiplica-
tion in hardware. However, the interconnect resistance present in all crossbars can lead to significant
deviations from the intended behaviour of these structures. In this work, we present badcrossbar—
an open-source tool for computing currents and voltages in such non-ideal passive crossbar arrays.
Additionally, the package allows to easily visualise currents and voltages (or other numerical variables)
in the branches and on the nodes of these structures.
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1. Introduction

In the most general definition, crossbar arrays are structures
ith m inputs and n outputs producing a 2D grid of m × n in-
ersections. The inputs are applied to the conductive lines which
re referred to as word lines. The outputs are obtained from the
onductive lines which are referred to as the bit lines. Devices are
laced at the intersections of the word and bit lines, as shown in
ig. 1A.
Even in their early implementations, crossbar array appli-

ations ranged from simple control of the flow of signals [1]
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to performing mathematical operations [2]. The matrix-like ar-
rangement of crossbar arrays’ devices makes them natural can-
didates for some linear algebra operations. Specifically, crossbar
arrays are capable of computing vector–matrix products. This can
be achieved by employing analogue two-terminal devices with
variable conductance, such as memristors [3].

Fig. 1B shows circuit diagram of a crossbar array (with crossbar
devices depicted as memristors). Word and bit line segments
bounded by neighbouring nodes (depicted as black dots), like
crossbar devices, can have resistance. However, if the resistance
of these segments (which we will refer to as interconnects) is
negligible, then the output currents (depicted as I1, I2, . . . in
Fig. 1B) of a crossbar array are a product of a vector of applied
voltages and a matrix of crossbar devices’ conductances. Cross-
bar arrays performing this function are usually referred to as
dot-product engines (DPEs).
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Fig. 1. The structure of crossbar arrays. (A) Physical configuration of word lines, bit lines and crossbar devices. In the usual approach, voltages are applied on one
nd of the word lines, while one end of the bit lines is grounded. (B) Circuit diagram of a memristive crossbar array. Nodes are depicted as black dots.

With the development of memristive devices [3,4], practical
mplementations of DPEs became more realisable. Because mem-
istive devices are capable of gradual conductance change [5],
emristive crossbar arrays can be used to encode matrix entries.
lthough conductances can only be positive, it is possible to
ncode negative numbers by using pairs of memristors [6,7].
ecause of the flexibility, DPEs are now often used for in-memory
omputing, most notably—in the implementation of memristive
eural networks [8]. However, such systems are still often limited
y the non-ideal nature of crossbar arrays—non-negligible resis-
ance of interconnects can significantly affect the performance.

Computing currents and voltages in crossbar arrays is es-
ential to understanding their behaviour under non-ideal con-
itions. So naturally, there have been careful analyses of line
esistance effects in passive crossbar arrays in the past [9]. How-
ver, to the best of our knowledge, there are no open-source
ontext-independent tools available to analyse line resistance
ffects in crossbar arrays. For example, being able to compute
utput currents of a crossbar array when multiple sets of inputs
re applied would be useful in simulations of memristive neural
etworks [10]. Computing node voltages or currents in other
ranches than the output ones would be useful in the analysis of
ine resistance or sneak-path currents. Serb et al. have examined
he issue of accurate readout of the resistive state of devices
ithin selectorless crossbar arrays and concluded that the line
esistance is significant even for smaller crossbars (12 × 12) [11].
dvanced mapping or compensation schemes have been pro-
osed to mitigate the issue [12]. Additionally, our simulation tool
ould supplement the analysis of various effects, such as defects
f crossbar devices (and their mitigation), that have been well
tudied in the past [13–15].
Furthermore, visualising the distribution of currents and volt-

ges in a crossbar array can provide additional insight. Although
he devices in crossbar arrays are arranged in a matrix-like fash-
on, they do not paint the complete picture. In addition to the
evices, there are word- and bit-line branches, that all together
orm 3 × m × n unique branches (see Fig. 1B) through which the
urrents flow. Also, there are 2 × m × n unique nodes, each of
hich can be associated with a voltage value. Visualising currents
nd voltages (or any other numerical variables) in the branches
nd on the nodes of the crossbar array can help understand the
ature of these structures.

. Problems and background

To set up equations to solve for the currents and voltages in
ircuits containing only passive elements requires just Kirchhoff’s

current law (KCL) and Ohm’s law. In the specific case of crossbar
arrays, the relevant equations can be set up easily for arbitrary
number of word lines, m, and arbitrary number of bit lines, n, due
to simple architecture of these arrays. Most circuit simulators use
nodal analysis (or its variants) to analyse circuits and it has been
applied to crossbar arrays in the past [9]. However, we will briefly
explain this method.

If interconnect resistances are non-zero, then there are 2 ×

m × n unknown node voltages one has to solve for, as shown
in Fig. 2A. One can solve for these voltages by applying KCL to
currents (shown in Fig. 2B) flowing into/out of a particular node.
For the case of m, n > 1, we can set up KCL equations for a word
line node and a bit line node at the intersection of ith word line
and jth bit line using Eqs. (1)a, b and (1)c, d, respectively.

IWL(i,j) − IWL(i,j+1) − ID(i,j) = 0 for j < n (1a)

IWL(i,j) − ID(i,j) = 0 for j = n (1b)

ID(i,j) − IBL(i,j) = 0 for i = 1 (1c)

ID(i,j) + IBL(i−1,j) − IBL(i,j) = 0 for i > 1 (1d)

Using Ohm’s law, we can express currents using node voltages,
applied voltages, conductances of the interconnects along the
word lines, GWL, conductances of the interconnects along the bit
lines, GBL, and conductances of the devices, G(i,j). By doing that
and rearranging, we get Eq. (2)a–f.(

2GWL + G(i,j)
)
VWL(i,j)

−GWLVWL(i,j+1) − G(i,j)VBL(i,j)
= GWLVi for j = 1 (2a)(

2GWL + G(i,j)
)
VWL(i,j)

−GWLVWL(i,j−1) − GWLVWL(i,j+1)

−G(i,j)VBL(i,j)

= 0 for 1 < j < n (2b)

(
GWL + G(i,j)

)
VWL(i,j)

−GWLVWL(i,j−1) − G(i,j)VBL(i,j)
= 0 for j = n (2c)(

GBL + G(i,j)
)
VBL(i,j)

−G(i,j)VWL(i,j) − GBLVBL(i+1,j)
= 0 for i = 1 (2d)(

2GBL + G(i,j)
)
VBL(i,j)

−G(i,j)VWL(i,j) − GBLVBL(i−1,j)

−GBLVBL(i+1,j)

= 0 for 1 < i < m (2e)

(
2GBL + G(i,j)

)
VBL(i,j)

−G(i,j)VWL(i,j) − GBLVBL(i−1,j)
= 0 for i = m (2f)
2
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Fig. 2. Labelled circuit diagrams of a crossbar array with m word lines and n bit lines. (A) Voltages at the nodes on the word (in orange) and bit (in blue) lines. (B)
urrents flowing through devices (in green) and interconnects along the word (in reddish purple) and bit (in sky blue) lines. It is assumed that word line currents
low to the right, bit line currents—down, and device currents diagonally down to the right. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

Because the left-hand sides of Eq. (2)a–f can be expressed as
inear combinations of node voltages, VWL(i,j) and VBL(i,j), one can
et up Eq. (3).

V = I (3)

here G is a coefficient matrix containing conductances, V is a
ector (or a matrix, if more than one set of voltages is applied) of
ode voltages, and I is a vector (or a matrix) of constants which,
n this context, is known currents.

One can solve for node voltages V using conventional linear
lgebra methods. Branch currents can then be computed by ap-
lying Ohm’s law. In a special case where either one type of
he interconnects, or both, have zero resistance, the number of
nique nodes is reduced. In that case, one has to apply KCL
o compute unknown currents through the perfectly conductive
nterconnects because it is not possible to apply Ohm’s law across
lements with zero resistance.

. Software framework

The badcrossbar package is implemented in Python 3. This
rogramming language was chosen due to its popularity, intuitive
yntax and availability of open-source packages. Specifically, it
eatures packages such as numpy or scipy that enable efficient
anipulation of vectors and matrices necessary for computing
urrents and voltages in crossbar arrays. It is true that Python is
n interpreted language which might result in slower computa-
ion when compared to compiled languages. However, numpy and
cipy are written mostly in C [16], so there may be only a small
ecrease in performance due to pure Python code—these two
ibraries handle the heaviest computations in badcrossbar. Fi-
ally, it is important to note that Python is widely used nowadays,
specially among machine learning researchers. numpy arrays
mployed by badcrossbar are easy to convert to data structures
sed by the most popular machine learning frameworks, such as
ensorFlow or PyTorch that are often utilised when simulating
rossbar-based neural networks.

3.1. Software architecture

badcrossbar contains two sub-packages:
badcrossbar.computing and badcrossbar.plotting. The
former implements computation of currents and voltages in
crossbar arrays described by parameters passed to function bad-
crossbar.compute(). The latter is used to colour branches and
nodes of those arrays according to the values that are passed
to functions badcrossbar.plot.branches() and badcross-
bar.plot.nodes().

3.2. Software functionalities

3.2.1. Computing
badcrossbar.compute() computes currents and voltages

in a crossbar array. As an input, it requires applied voltages,
resistances of the crossbar devices and resistances of the in-
terconnects. Interconnect resistance can be specified separately
for the interconnects along the word and bit lines, or a single
value can be provided for both types of interconnects. bad-
crossbar.computing employs nodal analysis and so most of
the computation time is spent on computing node voltages. How-
ever, if one does not intend to use all the branch currents and
node voltages that the sub-package is capable of computing,
optional keyword arguments can be used to return None instead
of voltage values and some of the current values in order to
save memory (savings in time are usually minimal). Finally, op-
tional keyword arguments can be used to control the messages
that are shown during various computing stages. A complete
description of the arguments can be found in the docstrings of
badcrossbar.compute().

The output of badcrossbar.compute() is a named tuple
with fields voltages and currents. Both of the fields are
named tuples themselves. voltages has fields word_line and
bit_line that contain node voltages on the word and bit lines,
respectively (visualised in Fig. 2A). currents has fields device,
word_line and bit_line that contain currents flowing through
devices, word line interconnects and bit line interconnects, re-
spectively (visualised in Fig. 2B). It additionally has a field output
3
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hich contains the output currents as a 2D array. It represents
ssentially the same information as the currents in the last
ow of currents.bit_line, just in a more convenient format.
ssuming a crossbar with m word lines, n bit lines and p sets of
pplied voltages, all the computed voltages and currents, except
or the output currents, will be arrays of shape m×n if p = 1 and
arrays of shape m× n× p if p > 1. Output currents, on the other
hand, will always be arrays of shape p × n.

3.2.2. Plotting
Functions badcrossbar.plot.branches() and badcross-

bar.plot.nodes() accept either individual arrays associated
with different types of branches or nodes, or named tuples (usu-
ally produced by the function badcrossbar.compute()) con-
taining currents and voltages. Although the most likely variables
to be plotted using these functions are currents and voltages, the
arrays that are being passed can be associated with any type of
numeric variables. Importantly, a large number of optional key-
word arguments allows to modify the produced diagrams. Widths
of the wires, devices or nodes, the colour scheme of the colour
bar, and other elements of the diagram can be changed. Because
the functions produce vector diagrams (in PDF), they can be easily
modified in any vector graphics manipulation program. Thus, the
optional keyword arguments that are provided mostly allow to
modify parameters that would be difficult to change once the di-
agram is produced. A complete description of the arguments can
be found in the docstrings of badcrossbar.plot.branches()
and badcrossbar.plot.nodes().

4. Implementation and empirical results

4.1. Computing

When computing currents and voltages in a crossbar array,
there are three major steps in the process. Firstly, it is necessary
to fill the matrices G and I (referred to as arrays g and i in code
to comply with Python naming conventions), as seen in Eq. (3).
This is done by firstly initialising the empty arrays (g also using
sparse representation) and then efficiently populating them using
Eq. (2)a–f. Once that is done, the two arrays are passed to func-
tion linalg.spsolve() of scipy.sparse sub-package, which
solves for matrix V (v in code). Finally, the array v is reshaped
into a convenient form and the currents are then computed by
applying Ohm’s law in every branch. The second step is usually
the most time-consuming part of the computing process.

Fig. 3 shows the median time needed to compute currents and
voltages in square crosssbars of shape n × n. We see that above
certain time threshold, the curves become linear; given log–log
scale of the graph, this suggests that with large enough inputs
median time, t , increases as a power of n. That is in agreement
with the theory on solving systems of linear equations [17].

We also find that there is usually an optimal number of voltage
sets that should be supplied at a time. For example, in the case
of Fig. 3, supplying a 1,000 sets of applied voltages at once would
result in faster computation than supplying them in 10 separate
batches (each of size 100). However, supplying 10,000 sets at
once would result in slower computation than supplying them in
10 separate batches (each of size 1,000). These trade-offs are most
likely related to memory management and optimal configurations
might thus vary from machine to machine. Because of this, we
did not optimise this particular aspect of our software and left
the choice to individual users.

4.2. Plotting

The plotting functions are implemented using cairo graphics
library. All the elements (branches, nodes, colour bar and the la-
bels) are drawn one after another with the setup being described
using optional parameters as mentioned in sub- Section 3.2.2. Al-
though cairo is available on all major operating systems (Linux,
MacOS, Windows), it might be more difficult to install on Win-
dows. Because of that, the badcrossbar package is built so that
the computing sub-package could be used independently from
the plotting sub-package, i.e. without installing it.

5. Illustrative example

Suppose we wanted to compute branch currents in a crossbar
array over multiple sets of inputs and then plot their average
values over all those sets of applied inputs. The following piece
of code computes branch currents and node voltages in a 3 × 5
crossbar array over four sets of applied voltages. It then plots
average branch currents over those four sets of inputs. When
executed, this code produces a PDF file named ‘‘Example.pdf’’; its
contents are shown in Fig. 4.

import badcrossbar

# Applied voltages in volts.
applied_voltages = [[1.5, 4.1, 2.6, 2.1],

[2.3, 4.5, 1.1, 0.8],
[1.7, 4.0, 3.3, 1.1]]

# Device resistances in ohms.
resistances = [[345, 903, 755, 257, 646],

[652, 401, 508, 166, 454],
[442, 874, 190, 244, 635]]

# Interconnect resistance in ohms.
r_i = 0.5

# Computing the solution.
solution = badcrossbar.compute(

applied_voltages , resistances , r_i)

# Plotting average branch currents over all
# sets of inputs.
# We also set a custom filename and label of the
# colour bar. Because all of the arrays passed are
# 3D, they will be averaged along the third axis
# automatically.
badcrossbar.plot.branches(

currents=solution.currents ,
filename=’Example’,
axis_label=’Average current (A)’)

More examples can be found in the examples folder in the
GitHub repository of badcrossbar package. Additionally, folder
tests contains a number of tests that check the correctness of
the results by comparing them with equivalent circuits simu-
lated in Qucs circuit simulation software. Tests include both a
conventional configuration, as well as a special case—a cross-
bar consisting of only a single device. Finally, there are tests
that validate the outputs or behaviour of some of the individual
functions.

6. Impact

badcrossbar is the first open-source Python package for
analysing line resistance effects in resistive crossbar arrays. The
package is able to compute voltages and currents in a matter
of seconds or minutes even with relatively large crossbar arrays
and large number of applied inputs. This will be especially use-
ful in simulating crossbar-based neural networks, where such
computations are necessary to accurately evaluate the outputs
4
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Fig. 3. Performance of computing currents and voltages in crossbar arrays. The
median time (out of 10 for every data point) is shown for crossbars of shape
n × n for various numbers of sets of applied voltages.

Fig. 4. The output of a PDF file produced by badcrossbar.plot.branches()
hen given multiple sets of currents in different branches of the crossbar array.
ecause arrays contain data from multiple sets of applied voltages, average
alues over all sets are plotted.

f these structures and where large numbers of inputs have to
e tested [10]. Additionally, the plotting functionality may help
isualise physical variables and discover trends, such as where in
rossbar arrays current decreases tend to be the most severe. We
elieve that this package will be useful in both the simulations
nd the design of crossbar arrays.

. Conclusions

We present a Python package for computing currents and
oltages in crossbar arrays, as well as plotting them (or any
ther numerical variables) on these structures. The use of numpy

enables easy integration with a wide range of packages, while
the use of vector graphics in produced diagrams allows to modify
them using external programs. In the future, we plan to give users
more control over how voltages are applied across crossbar arrays
and to allow to specify the resistances of individual interconnects.
Furthermore, we plan to add more options for specifying plotting
behaviour, as well as to allow to export to other formats, e.g. TikZ.
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