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The precision of Stage IV cosmic shear surveys will enable us to probe smaller physical scales than ever
before, however, model uncertainties from baryonic physics and non-linear structure formation will
become a significant concern. The k-cut method—applying a redshift-dependent l-cut after making the
Bernardeau-Nishimichi-Taruya transform—can reduce sensitivity to baryonic physics; allowing Stage IV
surveys to include information from increasingly higher l-modes. Here we address the question of whether
it can also mitigate the impact of making the reduced shear approximation; which is also important in the
high-κ, small-scale regime. The standard procedure for relaxing this approximation requires the repeated
evaluation of the convergence bispectrum, and consequently can be prohibitively computationally
expensive when included in Monte Carlo analyses. We find that the k-cut cosmic shear procedure
suppresses the w0wa CDM cosmological parameter biases expected from the reduced shear approximation
for Stage IVexperiments, when l-modes up to 5000 are probed. The maximum cut required for biases from
the reduced shear approximation to be below the threshold of significance is at k ¼ 5.37 hMpc−1. With
this cut, the predicted 1σ constraints increase, relative to the case where the correction is directly computed,
by less than 10% for all parameters. This represents a significant improvement in constraints compared to
the more conservative case where only l-modes up to 1500 are probed [A. Blanchard et al., (Euclid
Collaboration), arXiv:1910.09273], and no k-cut is used. We also repeat this analysis for a hypothetical,
comparable kinematic weak lensing survey. The key parts of code used for this analysis are made publicly
available.
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I. INTRODUCTION

Cosmic shear—the distortion of the observed ellipticities
of distant galaxies resulting from weak gravitational lensing
by the large-scale structure of the Universe (LSS)—is a
powerful tool to better constrain our knowledge of dark
energy [1].1 Current weak lensing surveys [3–5] perform
precision cosmology competitivewith contemporary cosmic
microwave background surveys. Upcoming Stage IV [1]
cosmic shear surveys such as Euclid2 [7], the Nancy Grace
Roman Space Telescope3 [9], and the Rubin Observatory4

[11] will offer greater than an order-of-magnitude leap in
precision over the current-generation surveys [12].
Additionally, they will be able to probe smaller scales than
previously possible (see e.g., [13]).

As a result of these improvements, we face new
challenges. One such issue is the small scale sensitivity
problem. This refers to the fact that the cosmic shear signal
is sensitive to poorly understood physics at scales below
k ¼ 7 hMpc−1 [14]. Nulling has previously been sug-
gested as a potential solution [15]. An approach that has
shown promise in addressing this issue is to first apply the
Bernardeau-Nishimichi-Taruya (BNT) nulling scheme
[16], and then take a redshift-dependent angular scale
cut. This technique is known as k-cut cosmic shear [17].
Using k-cut shear to alleviate the small scale sensitivity

problem, we can push our analyses to include smaller and
smaller angular scales. For example, an appropriate k-cut
would allow us to readily achieve the “optimistic” case for a
Euclid-like survey; where e.g., the inclusion of angular
wave numbers of up to l ¼ 5000 [13] would be achievable.
However, at these scales, two theoretical assumptions cease
to be valid; the reduced shear approximation, and the
assumption that magnification bias can be neglected [18].
The latter of these is a selection effect, and could potentially
be addressed via a process like metacalibration [19,20],
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in particular a “selection response.” On the other hand,
relaxing the reduced shear approximation requires the
explicit calculation of the convergence bispectrum, which
could be prohibitively computationally expensive for Stage
IV experiments [18] and requires a theoretical expression
for the poorly understood matter bispectrum, including
baryonic feedback. In this work, we demonstrate how the k-
cut method preserves the reduced shear approximation for a
Stage IV survey even at high-l. Specifically, we examine
the case of a Euclid-like experiment, as forecasting spec-
ifications for such a survey are readily available [13]. This
procedure bypasses the need for the expensive computation
of three-point terms, at the price of weakening cosmologi-
cal parameter constraints. We also repeat this analysis for a
hypothetical Tully-Fisher kinematic weak lensing sur-
vey [21,22].
This work is structured as follows: we begin by present-

ing the theoretical formalism, in Sec. II. We first review the
standard, first-order cosmic shear power spectrum calcu-
lation; including the contribution of noncosmological
signals from the intrinsic alignments of galaxies (IA)
and shot noise. Then, we discuss the formalism for relaxing
the reduced shear approximation, as well as giving an
overview of the BNT transform and k-cut cosmic shear.
The Fisher matrix formalism, used to predict the cosmo-
logical parameter constraints that will be inferred from
upcoming experiments, is then detailed. In Sec. III, we
explain our modeling specifics and our choice of fiducial
cosmology. Lastly, in Sec. IV, we present our results. We
compare the cosmological parameter biases resulting from
making the reduced shear approximation for two different
matter bispectrum models; showing that the correction
calculation is robust to the choice of model. Using the most
up-to-date of these models, we then demonstrate how a
range of k-cuts affect the predicted cosmological parameter
constraints and the biases from making the reduced shear
approximation.

II. THEORY

In this section, we first review the standard cosmic shear
angular power spectrum calculation. Contributions from
IAs and shot noise are also described. Then, we explain
how the reduced shear approximation can be relaxed. Next,
we detail the BNT nulling scheme and k-cut cosmic shear
procedure. Finally, the Fisher matrix formalism is outlined.

A. The first-order cosmic shear power spectrum

Weak lensing distorts the observed ellipticity of distant
galaxies. This change is dependent on the quantity known
as reduced shear, g:

gαðθÞ ¼ γαðθÞ
1 − κðθÞ ; ð1Þ

where θ is the source’s position on the sky, γ is the shear, a
spin-2 quantity with index α, and κ is the convergence.
Shear is the component of weak lensing which causes the
anisotropic stretching that makes circular distributions of
light elliptical, and convergence is the isotropic increase or
decrease in the size of the image. In the weak lensing
regime, jκj ≪ 1, so it is standard procedure to make the
reduced shear approximation:

gαðθÞ ≈ γαðθÞ: ð2Þ

The convergence in tomographic redshift bin i is
given by:

κiðθÞ ¼
Z

χlim

0

dχ δ½SKðχÞθ; χ�WiðχÞ: ð3Þ

It is a projection of the density contrast of the Universe, δ,
along the line-of-sight over comoving distance, χ, to the
survey’s limiting comoving distance, χlim. The function
SKðχÞ in Eq. (3) accounts for the curvature of the Universe,
K, such that:

SKðχÞ¼

8>><
>>:
jKj−1=2 sinðjKj−1=2χÞ K>0 ðClosedÞ
χ K¼0 ðFlatÞ
jKj−1=2 sinhðjKj−1=2χÞ K<0 ðOpenÞ:

ð4Þ

Wi denotes the lensing kernel for tomographic bin i, which
is defined as follows:

WiðχÞ ¼
3

2
Ωm

H2
0

c2
SKðχÞ
aðχÞ

Z
χlim

χ
dχ0 niðχ0Þ

×
SKðχ0 − χÞ
SKðχ0Þ

; ð5Þ

where Ωm is the dimensionless present-day matter density
parameter of the Universe, H0 is the Hubble constant, c is
the speed of light in a vacuum, aðχÞ is the scale factor of the
Universe, and niðχÞ is the probability distribution of
galaxies within bin i.
Under the flat-sky approximation [23], the spin-2 shear

is related to the convergence via:

γ̃αi ðlÞ ¼ TαðlÞκ̃iðlÞ; ð6Þ

where l is the Fourier conjugate of θ, we make the
“prefactor unity” approximation [23], and TαðlÞ are
trigonometric weighting functions:

T1ðlÞ ¼ cosð2ϕlÞ; ð7Þ

T2ðlÞ ¼ sinð2ϕlÞ; ð8Þ
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in which the vector l has angular component ϕl, and
magnitude l.
For an arbitrary shear field, two linear combinations

of the shear components can be constructed: a curl-free
E-mode, and a divergence-free B-mode:

ẼiðlÞ ¼
X
α

Tα γ̃αi ðlÞ; ð9Þ

B̃iðlÞ ¼
X
α

X
β

εαβTαðlÞ γ̃βi ðlÞ; ð10Þ

where εαβ is the two-dimensional Levi-Civita symbol, with
ε12 ¼ −ε21 ¼ 1 and ε11 ¼ ε22 ¼ 0. The B-mode of Eq. (10)
vanishes in the absence of higher-order systematic effects.
This leaves the E-mode, for which we can define auto and
cross-correlation power spectra, Cγγ

l;ij:

hẼiðlÞẼjðl0Þi ¼ ð2πÞ2δ2Dðlþ l0ÞCγγ
l;ij; ð11Þ

with δ2D being the two-dimensional Dirac delta. Under the
assumption of the Limber approximation, where only
l-modes in the plane of the sky are taken to contribute
to the lensing signal, the power spectra themselves are

Cγγ
l;ij ¼

Z
χlim

0

dχ
WiðχÞWjðχÞ

S2KðχÞ
Pδδðk; χÞ; ð12Þ

where Pδδðk; χÞ is the matter power spectrum.
Comprehensive reviews of this standard calculation can
be found in [24,25].

B. Intrinsic alignments and shot noise

In reality, the angular power spectrum measured from
galaxy surveys contains noncosmological signals, in addi-
tion to the cosmic shear contribution fromEq. (12). One such
component is the result of the IA of galaxies [26]. Galaxies
that form in similar tidal environments have preferred,
intrinsically correlated, alignments. The observed ellipticity
of a galaxy, ϵ can be described to first-order as:

ϵ ¼ γ þ γI þ ϵs; ð13Þ

where γ is from cosmic shear, γI is the IA contribution, and ϵs

is the galaxy’s source ellipticity in the absence of any IA. A
theoretical two-point statistic (e.g., the angular power spec-
trum) calculated from Eq. (13) would then consist of four
kinds of terms: hγγi; hγIγi, hγIγIi, and a shot noise term from
the uncorrelated part of the unlensed source ellipticities, ϵs.
Accordingly, the observed angular power spectra, Cϵϵ

l;ij,
contain contributions from all these terms:

Cϵϵ
l;ij ¼ Cγγ

l;ij þ CIγ
l;ij þ CγI

l;ij þ CII
l;ij þ Nϵ

l;ij; ð14Þ

where Cγγ
l;ij are the cosmic shear spectra of Eq. (12), CIγ

l;ij

represent the correlation between the background shear and
the foreground IA, CγI

l;ij are the correlation of the fore-
ground shear with background IA, CII

l;ij are the autocorre-
lation spectra of the IAs, and Nϵ

l;ij is the shot noise. The

CγI
l;ij spectra are zero except in the case of when photo-

metric redshifts cause scattering of observed redshifts
between bins.
The additional nonzero IA spectra can be described in an

analogous manner to the shear power spectra, through the
use of the nonlinear alignment (NLA) model [27]:

CIγ
l;ij ¼

Z
χlim

0

dχ
S2KðχÞ

½WiðχÞnjðχÞ þ niðχÞWjðχÞ�

× PδIðk; χÞ; ð15Þ

CII
l;ij ¼

Z
χlim

0

dχ
S2KðχÞ

niðχÞnjðχÞPIIðk; χÞ; ð16Þ

where PδIðk; χÞ and PIIðk; χÞ are the IA power spectra, and
are defined as functions of the matter power spectra:

PδIðk; χÞ ¼
�
−
AIACIAΩm

DðχÞ
�

Pδδðk; χÞ; ð17Þ

PIIðk; χÞ ¼
�
−
AIACIAΩm

DðχÞ
�

2

Pδδðk; χÞ: ð18Þ

Within these equations, AIA and CIA are free model
parameters to be determined by fitting to data or simu-
lations, and DðχÞ is the growth factor of density perturba-
tions in the Universe, as a function of comoving distance.
The shot noise, which is the last of the terms in Eq. (14),

is written as:

Nϵ
l;ij ¼

σ2ϵ
n̄g=Nbin

δKij; ð19Þ

where σ2ϵ is the variance of the observed ellipticities in the
galaxy sample, n̄g is the galaxy surface density of the
survey, Nbin is the number of tomographic bins used, and
δKij is the Kronecker delta. The shot noise term is zero for
cross-correlation spectra because the ellipticities of gal-
axies at different comoving distances should be uncorre-
lated. Equation (19) assumes that the tomographic bins
used in the survey are equipopulated.

C. Relaxing the reduced shear approximation

The procedure for relaxing the reduced shear approxi-
mation involves Taylor expanding equation (1) around
κ ¼ 0, and retaining terms up to and including second-
order: [18,28,29]:
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gαðθÞ ¼ γαðθÞ þ ðγακÞðθÞ þOðκ3Þ: ð20Þ

This expression for gα is then substituted for γα in Eq. (9).
Recomputing the power spectrum, we recover Eq. (12) plus
a second-order correction term:

δCRS
l;ij ¼

Z
∞

0

d2l0

ð2πÞ2 cosð2ϕl0 − 2ϕlÞ

× Bκκκ
ij ðl;l0;−l − l0Þ; ð21Þ

in which Bκκκ
ij are the two-redshift convergence bispectra.

Under the assumption of an isotropic universe, we are
always free to set ϕl ¼ 0.
The convergence bispectra can then be safely expressed

subject to the Limber approximation [30] as projections of
the matter bispectra, Bδδδ:

Bκκκ
ij ðl1;l2;l3Þ ¼ Bκκκ

iij ðl1;l2;l3Þ þ Bκκκ
ijj ðl1;l2;l3Þ

¼
Z

χlim

0

dχ
S4KðχÞ

WiðχÞWjðχÞ

× ½WiðχÞ þWjðχÞ�Bδδδðk1; k2; k3; χÞ:
ð22Þ

The analytic form of the matter bispectrum is not fully
known. Instead, expressions are typically obtained by
fitting to N-body simulations [31–33]. In this work, we
examine two such approaches.
The first approach starts from second-order perturbation

theory [34], and then fits the resulting expression to
simulations. We denote this approach by SC, after the first
work to propose this methodology [31]. Here, the matter
bispectrum can be written as:

Bδδδðk1; k2; k3; χÞ ¼ 2Feff
2 ðk1; k2ÞPδδðk1; χÞPδδðk2; χÞ

þ cyc perms; ð23Þ

with:

Feff
2 ðk1; k2Þ ¼

5

7
aðns; k1Þaðns; k2Þ

þ 1

2

k1 · k2
k1k2

�
k1
k2

þ k2
k1

�
bðns; k1Þbðns; k2Þ

þ 2

7

�
k1 · k2
k1k2

�
2

cðns; k1Þcðns; k2Þ; ð24Þ

where a, b, and c are fitting functions given in [31].
A more contemporary approach adopts the HALOFIT

formalism [35] for the matter power spectrum, to also
describe the matter bispectrum [33]. We denote this
approach by BH, as this technique is known as
BIHALOFIT. In this paradigm, the matter bispectrum con-
stitutes one-halo (1h), and three-halo (3h) terms:

Bδδδðk1; k2; k3; χÞ ¼ B1hðk1; k2; k3; χÞ
þB3hðk1; k2; k3; χÞ: ð25Þ

These terms are then determined by fitting to N-body
simulations. A full description of these can be found in
Appendix B of [33].

D. k-cut cosmic shear

Given that the shear angular power spectrum is a
projection of the matter power spectrum, to remove
sensitivity to physical scales below a certain k-mode we
must remove angular scales above the corresponding
l-mode. One may imagine that, in the regime of the
Limber approximation, this could simply involve removing
information where l > kχ. However, in reality lensing
kernels are broad; meaning that lenses across a range of
distances and scales contribute power to the same l-mode.
Consequently, this simple method of removing scales is not
effective on its own [14].
A solution comes in the form of the BNT nulling scheme

[16]. In this formalism, the observed tomographic angular
power spectrum can be reweighted in such a way that each
redshift bin retains only the information about lenses within
a small redshift range. This procedure can be illustrated by
first considering three discrete source planes. Then, the
BNT weighted convergence, assuming flatness, can be
written as:

κBNT ¼ 3ΩmH2
0

2c2

Z
χβ

0

dr
δðχÞ
aðχÞwðχÞ; ð26Þ

where χβ is the comoving distance to source plane i, and:

wðχÞ ¼
X
β;χβ>χ

pβ
χβ − χ

χβ
; ð27Þ

where pβ are the weights for planes β ¼ f1; 2; 3g with
χ1 < χ2 < χ3, for the three bin case. In the BNT scheme,
weights are then chosen such that wðχ < χ1Þ ¼ 0. This
coupled with the fact that lenses with χ > χ3 will not
contribute to the reweighted convergence, means that κBNT

will only be sensitive to lenses with comoving distances in
the range χ1 ≤ χ < χ3. This argument can be generalized
[36] for an arbitrary number of continuous source bins;
leading to the construction of a weighting matrix, M, that
can be applied to the observed tomographic angular power
spectra:

CBNT
l ¼ MClMT; ð28Þ

where Cl is a matrix of the Cl;ij for all tomographic bin
combinations, at the given l-mode, and CBNT

l is its BNT-
nulled counterpart.
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For a given k-cut, we remove information where l >
kcutχmean

i from the tomographic BNT-nulled angular power
spectrum of bin i. Here, we use the mean comoving
distance of the redshift bin rather than the minimum
distance to the bin in order to avoid removing the first
bin entirely. This has negligible impact on reduction in
sensitivity to small scales [17].

E. Fisher matrices and bias formalism

The cosmological parameter constraints for a given
survey can be predicted by using the Fisher matrix
formalism [37]. The Fisher matrix is given by the expect-
ation of the Hessian of the likelihood. By safely assuming a
Gaussian likelihood [38,39], we can rewrite the Fisher
matrix in terms of only the mean of the data vector, and the
covariance of the data. For the cosmic shear case, we note
that the mean of the shear field is zero. Under the Gaussian
covariance assumption, the specific Fisher matrix for a
cosmic shear survey is then (see e.g., [13] for a detailed
derivation):

Fτζ ¼ fsky
Xlmax

l¼lmin

Δl
�
lþ 1

2

�

× tr

�∂Cl

∂θτ Cl
−1 ∂Cl

∂θζ Cl
−1
�
; ð29Þ

where fsky is the fraction of sky included in the survey, Δl
is the bandwidth of l-modes sampled, the sum is over these
blocks in l, and τ and ζ refer to parameters of interest, θτ
and θζ. The predicted uncertainty for a parameter, τ, is then
calculated with:

στ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Fττ

−1
q

: ð30Þ

This formalism can be adapted to show how biased the
predicted cosmological parameter values will be when a
systematic effect in the data is neglected [40]:

bðθτÞ ¼
X
ζ

F−1
τζ fsky

X
l

Δl
�
lþ 1

2

�

× tr

�
δClCl

−1 ∂Cl

∂θζ Cl
−1
�
; ð31Þ

where δCl is a matrix with every tomographic bin
combination of the systematic effect, δCl;ij, evaluated at
mode l. In this work, these systematic effect terms are
given by the reduced shear correction of Eq. (21).

III. METHODOLOGY

In order to examine whether k-cut cosmic shear can
be used to minimize the impact of the reduced shear
approximation on Stage IV surveys, we adopt forecasting

specifications for a Euclid-like survey [13]. The k-cut
technique enables the inclusion of information from smaller
angular scales, making the “optimistic” scenario for such a
survey, where l-modes up to 5000 are studied, more
achievable. Accordingly, we compute the reduced shear
correction, and carry out the corresponding k-cut analysis,
up to this maximum l. This is compared to the “pessi-
mistic” case for such an experiment where only l-modes up
to 1500 are included, and no k-cut is necessary [13].
The fraction of sky that will be covered by a Euclid-like

survey is fsky ¼ 0.36. The intrinsic variance of unlensed
galaxy ellipticities is modeled with two components, each
of value 0.21, so that the root-mean-square intrinsic
ellipticity is σϵ ¼

ffiffiffi
2

p
× 0.21 ≈ 0.3. The surface density

of galaxies will be n̄g ¼ 30 arcmin−2. We examine the case
where the data consists of ten equipopulated redshift bins
with limits: f0.001;0.418;0.560;0.678;0.789;0.900;1.019;
1.155;1.324;1.576;2.50g.
The galaxy distributions within these tomographic bins,

assuming they are determined with photometric redshift
estimates, are modeled according to:

N iðzÞ ¼
R zþi
z−i

dzpnðzÞpphðzpjzÞR
zmax
zmin

dz
R zþi
z−i

dzpnðzÞpphðzpjzÞ
; ð32Þ

where zp is measured photometric redshift, z−i and zþi are
edges of the ith redshift bin, zmin and zmax define the range
of redshifts covered by the survey, and nðzÞ is the true
distribution of galaxies with redshift, z, which is defined
using the expression [7]:

nðzÞ ∝
�
z
z0

�
2

exp

�
−
�
z
z0

�
3=2

�
; ð33Þ

wherein z0 ¼ zm=
ffiffiffi
2

p
, with zm ¼ 0.9 being the median

redshift of the survey. The function pphðzpjzÞ exists to
account for the probability that a galaxy at redshift z is
measured to have a redshift zp, and is given by:

pphðzpjzÞ ¼
1 − foutffiffiffiffiffiffi
2π

p
σbð1þ zÞ exp

�
−
1

2

�
z − cbzp − zb
σbð1þ zÞ

�
2
�

þ foutffiffiffiffiffiffi
2π

p
σoð1þ zÞ

× exp

�
−
1

2

�
z − cozp − zo
σoð1þ zÞ

�
2
�
: ð34Þ

In this equation, the first term on the right-hand side
describes the multiplicative and additive bias in redshift
determination for the fraction of sources with a well
measured redshift, while the second term accounts for
the effect of a fraction of catastrophic outliers, fout. The
values assigned to the parameters in this equation are stated
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in Table I. Then, the galaxy distribution as a function of
comoving distance is niðχÞ ¼ N iðzÞdz=dχ.
Kinematic lensing has been proposed as a method to

reduce shape noise in weak lensing by an order of
magnitude [21]. It is predicated on spectroscopic measure-
ments of disk galaxy rotation and use of the Tully-Fisher
relation in order to control for the intrinsic orientations of
galaxy disks. Here, we study the effect of k-cut cosmic
shear on the hypothetical TF-Stage III survey described in
[21]. This survey includes l-modes up to 5000, has
fsky ¼ 0.12, with an intrinsic ellipticity of σϵ ¼ 0.021,
and a surface density of galaxies of n̄g ¼ 1.1 arcmin−2. We
consider the survey to have ten equipopulated redshift bins
with limits: f0.001;0.568;0.654;0.723;0.788;0.851;0.921;
0.999;1.097;1.243;1.68g. A kinematic survey will not have
IA contributions. The galaxy distribution for such a survey
is modeled by:

N iðzÞ ∝ zαe−ð
z
z0
Þβ ; ð35Þ

with α ¼ 29.98, z0 ¼ 1.10 × 10−6, and β ¼ 0.33.
This work assumes a flat w0waCDM fiducial cosmology.

Allowing for a time-varying dark energy equation-of-state,
the model consists of the following parameters: the present-
day total matter density parameter Ωm, the present-day
baryonic matter density parameter Ωb, the Hubble param-
eter h ¼ H0=100 km s−1Mpc−1, the spectral index ns, the
RMS value of density fluctuations on 8 h−1 Mpc scales σ8,
the present-day value of the dark energy equation of state
w0, the high-redshift value of the dark energy equation of
state wa, and massive neutrinos with a sum of massesP

mν ≠ 0. We choose the same fiducial parameter values
as presented in [13]. We explicitly state these in Table II.
The BNT matrices are calculated using the code5 of [36].
Additionally, to calculate the matter power spectrum, we
use the publicly available CAMB

6 cosmology package [43],
with HALOFIT [35] and corrections from [44] used to
compute the nonlinear contributions. Comoving distances

are computed with Astropy7 [46,47]. To obtain the matter
bispectrum of the BH approach, we employ the publicly
available C code8 supplied with [33]. The IA power spectra
are modeled with the parameter values: AIA ¼ 1.72 and
CIA ¼ 0.0134 [13]. Our Fisher matrix contains the follow-
ing parameters: Ωm;Ωb; h; ns; σ8; w0; wa, and AIA, for
consistency with [13].

IV. RESULTS AND DISCUSSION

In this section, we demonstrate the effect k-cut cosmic
shear has on addressing the biases resulting from the
reduced shear approximation, for a Euclid-like experiment
and a hypothetical kinematic survey. We begin by compar-
ing the cosmological parameter biases, for the standard
calculation with no k-cut, found when the reduced shear
approximation is relaxed with either the SC or BH
bispectrum models. Next, the change in parameter con-
straints and biases for the BNT transformed power spectra
with a range of k-cuts are shown; first for a Euclid-like
survey, and then a kinematic lensing survey.

A. Comparing matter bispectrum models

The ratio of the reduced shear correction of Eq. (21)
calculated using the BH bispectrum, relative to the cor-
rection calculated using the SC bispectrum is shown in
Fig. 1. Here, the correction terms for the autocorrelation of
four bins, with redshift-limits: 0.001–0.418, 0.678–0.789,
1.019–1.155, and 1.576–2.50, are shown in order to
illustrate the difference between the two models. The
consequent difference in the predicted parameter biases
from using the two models is stated in Table III.
From Fig. 1, we see that the two approaches produce

correction terms that differ at most by 27%. At low-l and at
all but the highest redshifts, the BH model produces a
correction smaller than the SC one. The BH correction then
increases until the two models produce comparable results
at l ∼ 100. Beyond this l-mode, the BH model once again
produces a smaller correction value than the SC approach.

TABLE I. Parameter values in this investigation in order to
describe the probability distribution function of the photometric
redshift distribution of sources, in Eq. (34).

Parameter Value

cb 1.0
zb 0.0
σb 0.05
co 1.0
zo 0.1
σo 0.05
fout 0.1

TABLE II. Fiducial values of w0waCDM cosmological param-
eters adopted in this work. Values were selected to match [13].

Cosmological parameter Fiducial value

Ωm 0.32
Ωb 0.05
h 0.67
ns 0.96
σ8 0.816P

mν (eV) 0.06
w0 −1
wa 0

5See Ref. [41].
6See Ref. [42].

7See Ref. [45].
8See Ref. [48].
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For the highest redshift bins, the same trend persists.
However, in this case the corrections start off being
comparable, before the BH term becomes greater than
the SC correction. After peaking at scales of l ∼ 100, the
BH correction reduces again. The greatest differences
between the two models occur at lower l-modes, where
the reduced shear correction is typically negligible [18].
Additionally, these differences are likely to be dwarfed by
baryonic model uncertainties.
Despite these differences, Table III shows that the

resulting cosmological parameter biases from the two

models are not significantly different. Accordingly,
although the BH and SC models can differ significantly
at calculating the matter bispectrum for certain scales and
configurations [33], the reduced shear correction calcula-
tion can be considered robust to the choice of matter
bispectrummodel. For all results that follow, we use the BH
matter bispectrum model.

B. k-cut cosmic shear and reduced shear
for Stage IV surveys

We calculated the cosmological parameter constraints,
and the biases resulting from neglecting the reduced shear
approximation, for a range of k-cut values. The changing
constraints are shown in Fig. 2, while the biases are shown
in Fig. 3. As expected, taking lower k-cuts results in weaker
constraints. In general, biases reduce as a lower k-cut is
taken. The behavior of the bias in Ωb is nontrivial, due to
the complex way in which this parameter interacts with the
nonlinear component of the matter power spectrum. A bias
is considered significant if its magnitude is greater than
0.25σ, as beyond this the confidence contours of the biased
and unbiased parameter estimates overlap by less than 90%
[49]. The maximum k-cut required in order to ensure that
no parameter biases are significant is 5.37 hMpc−1.
Table IV shows the biases and constraints at this k-cut,
as well as the biases and constraints when no k-cut is taken
for both the optimistic (lmax ¼ 5000), and pessimistic
(lmax ¼ 1500) scenarios for a Euclid-like survey. From
this, we see that the optimum k-cut increases the size
of all of the parameter constraints by less than 10%. This is
a marked improvement over the pessimistic case in which
all but two of the parameters have their constraints
increased by more than 10% compared to the optimistic
case.
These findings support the idea that k-cut cosmic shear

can be successfully used to access smaller angular scales
for upcoming Stage IV weak lensing surveys. It has already
been shown that this technique can bypass the need to
model baryonic physics [17], while allowing access to
small physical scales. Now, these results indicate that k-cut
cosmic shear can also address the impact of the reduced
shear approximation. While explicit calculation of the
reduced shear correction yields the most precise cosmo-
logical parameter constraints, it is prohibitively computa-
tionally expensive [18]. The k-cut approaches bypasses this
cost while only marginally weakening the constraints.
We note that if the photometric redshifts are systemati-

cally miscalibrated, the BNT transform we compute would
be inaccurate. In fact, given that the lensing kernels have
some width, using the peak of the kernel as a representative
comoving distance value for the k-cut is already technically
inaccurate. Despite this, the k-cut technique proves suc-
cessful [17]. Given that we would expect any biases in the
photometric redshifts to be narrower than the width of the
kernel, we do not anticipate that these biases would

FIG. 1. Ratio of reduced shear corrections calculated with two
different matter bispectrum models. The first of these uses the
approach of [31] and is labelled by SC, whereas the second is the
BIHALOFIT model [33] and is denoted by BH. The correction
terms for four different autocorrelation spectra across the survey’s
anticipated redshift range are presented, and are representative of
all the spectra. The most extreme disagreement between the
models occurs at l ¼ 89, where they disagree by 27%. We note
that the reduced shear correction is negligible at these scales, and
only becomes significant at scales above l ∼ 1000 [18], at which
point the two models are in closer agreement.

TABLE III. Cosmological parameter biases predicted if the
reduced shear correction is neglected for two different matter
bispectrum models. The SC model uses the fitting formulas of
[31], while BH is the BIHALOFIT model [33]. The difference
between the two approaches is also stated, and is not significant.
Here σ denotes the 1σ uncertainty.

Cosmological
parameter

SC model
Bias=σ

BH model
Bias=σ

Absolute difference
in Biases=σ

Ωm −0.32 −0.28 0.04
Ωb −0.011 −0.0056 0.0044
h 0.025 0.027 0.002
ns 0.14 0.11 0.03
σ8 0.27 0.24 0.03
w0 −0.40 −0.33 0.07
wa 0.28 0.23 0.05
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significantly affect the validity of the k-cut method. In
addition, if there is no miscalibration, the BNT transformed
cross-spectra should be small, and dominated by shot-
noise, which is well known and cosmology-independent. If
there is significant photometric redshift calibration bias,
these cross-spectra will no longer be small. Accordingly,
the BNT transform can also serve as a null-test for
miscalibration.
Furthermore, another consideration is our choice of IA

model. The NLA model used here can be overly restrictive,

and artificially improve constraining power. This could lead
to an overestimate of the biases, and accordingly the
determination of a lower than needed k-cut. However, in
any case the limiting k-cut value will be that necessitated by
baryonic physics.

C. k-cut cosmic shear and reduced shear
for kinematic weak lensing surveys

The predicted cosmological parameter constraints for a
hypothetical kinematic lensing survey which includes

FIG. 2. Change in the 1σ cosmological parameter constraints predicted for a Euclid-like survey, when a range of k-cuts are applied.
These results are for the optimistic case for such a survey, where l-modes up to 5000 are included. Unsurprisingly, the constraints
weaken as lower k-cuts are taken; corresponding to more information being removed. The black dashed line at k ¼ 5.37 hMpc−1 marks
the maximum k-cut required for biases from the reduced shear correction to not be significant.

FIG. 3. Change in cosmological parameter biases with changing k-cuts, when the reduced shear correction is neglected, for a Euclid-
like survey. The values are reported as a fraction of the 1σ uncertainty of the respective parameter. A parameter is considered to be
significantly biased if the bias is greater than 0.25σ. Beyond this point, the biased and unbiased confidence regions overlap less than
90%. These results are for the optimistic case for a Euclid-like survey, where l-modes up to 5000 are included. The black dashed line at
k ¼ 5.37 hMpc−1 marks the maximum k-cut required for biases from the reduced shear correction to not be significant. The brown
dotted line denotes the threshold for a bias to be significant. Generally, a lower k-cut corresponds to smaller biases, as sensitivity is
reduced to regions where the reduced shear correction is largest.
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l-modes up to 5000, together with the expected biases in
those constraints from neglecting the reduced shear approxi-
mation, are stated in Table V. From this we see that the
reduced shear correction is also necessary for potential future
kinematic lensing surveys, as thebias inns is significant. This
is due to the fact that constraint on ns is improved, compared
to the standard Stage IV case. The spectral index is most
sensitive to high-l modes [50], and this is where the
hypothetical kinematic survey performs better than the
standard survey. The kinematic survey has a higher signal-
to-noise ratio at high-l, and a lower signal-to-noise ratio at
low-l, as the shot-noise is lowbyconstruction, andbecause it
covers a smaller area than the Stage IV survey which means
sample variance is relatively more important.

For such a survey, we find that the maximum k-cut
required for the biases from the reduced shear correction to
no longer be significant is 5.82 hMpc−1. This is higher
than the value in the Stage IV survey case, because the
kinematic survey is less deep in redshift. Consequently, the
same l-mode corresponds to a higher k-mode for the
kinematic survey than in the Stage IV experiment case.
Since the reduced shear correction is only non-negligible at
the highest l-modes, this is where a cut will alleviate
biases, and shallower surveys can include higher k-modes
before reaching this regime. Table V shows the predicted
parameter constraints and reduced shear biases at this k-cut.
For comparison, the constraints and biases for the pessi-
mistic case of the kinematic survey, where only l-modes up

TABLE IV. Predicted parameter uncertainties, and biases from neglecting the reduced shear approximation, for a
Euclid-like survey under three different scenarios. The optimistic scenario is when l-modes up to 5000 are included,
and no k-cut is made, while the ‘maximum k-cut’ columns denote the situation where l-modes up to 5000 are
included, but a k-cut is taken at k ¼ 5.37 hMpc−1, as this is the maximum k-cut to achieve nonsignificant biases.
Finally, the ‘pessimistic’ case is when only l-modes up to 1500 are included, and no k-cut is taken. The maximum
k-cut option is able to suppress the biases to the point of not being significant, while still achieving more precise
constraints than the pessimistic option. Here σ denotes the 1σ uncertainty.

Cosmological
parameter

Optimistic
(lmax ¼ 5000Þ
uncertainty (1σ)

Maximum k-cut
uncertainty (1σ)

Pessimistic
(lmax ¼ 1500Þ
uncertainty (1σ)

Optimistic
Bias=σ

Maximum
k-cut
Bias=σ

Pessimistic
Bias=σ

Ωm 0.0089 0.0094 0.013 −0.28 −0.22 −0.076
Ωb 0.020 0.021 0.022 −0.0056 −0.020 −0.012
h 0.12 0.13 0.13 0.027 0.0043 −0.001
ns 0.028 0.029 0.035 0.11 0.10 0.040
σ8 0.0094 0.010 0.015 0.24 0.19 0.083
w0 0.11 0.12 0.14 −0.33 −0.24 −0.064
wa 0.32 0.33 0.44 0.23 0.15 0.024

TABLE V. Predicted cosmological parameter constraints, and biases from neglecting the reduced shear
approximation, for a TF-Stage III [21] kinematic lensing survey. Three different scenarios are presented here.
The optimistic scenario is when l-modes up to 5000 are included, and no k-cut is made, while the maximum k-cut
columns denote the situation where l-modes up to 5000 are included, but a k-cut is taken at k ¼ 5.82 hMpc−1, as
this is the maximum k-cut to achieve nonsignificant biases. Finally, the pessimistic case is when only l-modes up to
1500 are included, and no k-cut is taken. The maximum k-cut option is able to suppress the biases to the point of not
being significant, while still achieving more precise constraints than the pessimistic option. Here σ denotes the 1σ
uncertainty.

Cosmological
parameter

Optimistic
(lmax ¼ 5000)
uncertainty (1σ)

Maximum k-cut
uncertainty (1σ)

Pessimistic
(lmax ¼ 1500)
uncertainty (1σ)

Optimistic
Bias=σ

Maximum
k-cut
Bias=σ

Pessimistic
Bias=σ

Ωm 0.0083 0.0093 0.016 −0.035 −0.032 −0.0056
Ωb 0.0089 0.0094 0.013 0.079 0.068 0.022
h 0.022 0.027 0.058 −0.053 −0.0044 −0.00077
ns 0.015 0.017 0.041 0.28 0.24 0.036
σ8 0.031 0.032 0.047 0.083 0.082 0.017
w0 0.17 0.19 0.33 0.059 0.046 0.024
wa 0.59 0.68 1.18 −0.081 −0.064 −0.021
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to 1500 are probed, are also shown here. As with the Stage
IV cosmic shear survey, the k-cut technique degrades the
predicted cosmological constraints for a kinematic lensing
survey less than the exclusion of l-modes above 1500.
With the k-cut, the largest increase is on the constraint
on h, which increases by 27%. In comparison, in the
pessimistic case, the lowest increase in constraints is of
44%, for Ωb.

V. CONCLUSIONS

In this paper, we have examined the validity of the
reduced shear approximation when applying k-cut cosmic
shear to Stage IV cosmic shear experiments, and a
hypothetical kinematic lensing survey. We first compared
the reduced shear correction calculated using two different
models for the matter bispectrum: the fitting formulas of
[31], and the BIHALOFIT model [33]. Despite the differences
between the two approaches, we found that their resulting
reduced shear corrections were not significantly different,
and that accordingly the reduced shear correction was
robust to the choice of bispectrum model.
The k-cut cosmic shear technique is used to remove

sensitivity to baryonic physics, while allowing access to
small physical scales. We examined whether it would also
affect the impact of the reduced shear approximation. A
variety of k-cuts were applied to the BNT transformed
theoretical shear power spectra and reduced shear correc-
tions for the optimistic case of a Euclid-like survey.

This scenario assumes l-modes up to 5000 are probed.
We demonstrated that, in this case, k-cut cosmic shear
preferentially removes scales sensitive to the reduced shear
approximation, reducing its importance. This technique
makes this optimistic scenario more achievable, while
bypassing the significant computational expense posed
by having to explicitly calculate the reduced shear correc-
tion. The disadvantage is that the inferred cosmological
parameter constraints are weakened. However, with k-cut
cosmic shear applied to the optimistic case, the parameters
constraints are weakened significantly less than those found
in the pessimistic case for such a survey; where only
l-modes up to 1500 are included. We also repeated this
analysis for a theoretical kinematic lensing survey; finding
similarly that the k-cut technique reduced sensitivity to the
reduced shear approximation.
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