DE GRUYTER

Bibi Hanifa, Muhammad Sirajuddin*, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of 4-[(4-methoxy-2-nitrophenyl) carbamoyl]butanoic acid, C₁₂H₁₄N₂O₆

https://doi.org/10.1515/ncrs-2020-0350 Received July 10, 2020; accepted August 2, 2020; available online August 12, 2020

Abstract

 $C_{12}H_{14}N_2O_6$, triclinic, $P\bar{1}$ (no. 2), a = 4.8835(4) Å, b = 9.2111(7) Å. c = 14.6655(7) Å, $\alpha = 76.135(5)^{\circ}$, $\beta =$ 82.693(6)°, $\gamma = 87.379(7)^{\circ}$ $V = 635.19(8) \text{ Å}^3$, Z = 2, $R_{\rm gt}(F) = 0.0449, w R_{\rm ref}(F^2) = 0.1297, T = 293(1)$ K.

CCDC no.: 2020549

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

4-Methoxy aniline (Sigma-Aldrich; 0.56 g, 5 mmol) and glutaric anhydride (Sigma-Aldrich; 0.57 g, 5 mmol) were dissolved separately in analytical grade toluene (ca 10-15 mL). The two solutions were then slowly mixed and stirred at room temperature until the appearance of yellow precipitate. The resulting precipitate was washed with a minimum amount of toluene (to remove any unreacted reactants) and then with Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	$0.13 \times 0.09 \times 0.06~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	1.03 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
$ heta_{\max}$, completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	14803, 2267, 0.041
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 1969
N(param) _{refined} :	188
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}	
01	0.7000(3)	0.57969(19)	0.05405(9)	0.0749(5)	
H10	0.799(6)	0.583(4)	0.0032(14)	0.112*	
02	0.9970(3)	0.40397(17)	0.11252(9)	0.0626(4)	
03	0.8601(3)	0.19436(18)	0.47437(9)	0.0675(5)	
04	0.4971(3)	-0.15120(16)	0.90826(9)	0.0632(4)	
05	0.0053(3)	0.33983(16)	0.63309(9)	0.0645(4)	
06	-0.0987(3)	0.27358(19)	0.78196(10)	0.0795(5)	
N1	0.4247(3)	0.21163(18)	0.54797(10)	0.0495(4)	
H1N	0.269(3)	0.257(2)	0.5398(15)	0.059*	
N2	0.0423(3)	0.25956(16)	0.70976(10)	0.0469(4)	
C1	0.7882(4)	0.4784(2)	0.12275(11)	0.0461(4)	
C2	0.6057(4)	0.4619(2)	0.21419(11)	0.0474(4)	
H2A	0.430617	0.421954	0.207848	0.057*	
H2B	0.569303	0.560231	0.226627	0.057*	
C3	0.7239(3)	0.3617(2)	0.29818(11)	0.0444(4)	
H3A	0.761780	0.263015	0.286435	0.053*	
H3B	0.896825	0.402060	0.306255	0.053*	
C4	0.5254(4)	0.3489(2)	0.38768(11)	0.0481(4)	
H4A	0.495603	0.447298	0.400506	0.058*	
H4B	0.349208	0.314741	0.377520	0.058*	
C5	0.6247(3)	0.2434(2)	0.47306(11)	0.0436(4)	
C6	0.4441(3)	0.12560(19)	0.63937(11)	0.0410(4)	
C7	0.6483(3)	0.0134(2)	0.65813(12)	0.0442(4)	
H7	0.777368	-0.001931	0.608823	0.053*	
C8	0.6613(3)	-0.0740(2)	0.74762(12)	0.0461(4)	
H8	0.800277	-0.146443	0.757922	0.055*	
C9	0.4703(4)	-0.0561(2)	0.82317(12)	0.0456(4)	
C10	0.2700(3)	0.0538(2)	0.80762(11)	0.0448(4)	
H10	0.141883	0.067954	0.857474	0.054*	

brought to you by

ded by Sunway Institut

^{*}Corresponding authors: Muhammad Sirajuddin, Department of Chemistry, University of Science and Technology, Bannu, 28100, Pakistan, e-mail: m.siraj09@gmail.com; and Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Bibi Hanifa: Department of Chemistry, University of Science and Technology, Bannu, 28100, Pakistan

Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 2 (continued)

Atom	x	у	z	U _{iso} */U _{eq}	
C11	0.2592(3)	0.14377(18)	0.71717(11)	0.0401(4)	
C12	0.2814(5)	-0.1490(3)	0.98342(14)	0.0693(6)	
H12A	0.280685	-0.054918	1.000853	0.104*	
H12B	0.311520	-0.228699	1.037008	0.104*	
H12C	0.106920	-0.161791	0.962920	0.104*	

water (to remove any glutaric acid that may have formed during the reaction). After that, the desired compound was air-dried and recrystallised in ethanol:acetone mixture (1:1) to produce yellow crystals. Yield: 82%. M.pt (Gallenkamp (UK) electrothermal melting point apparatus): 418-420 K. **FTIR** (FTIR Spectrometer Model Thermo Nicolet iS50; cm⁻¹): 3123 ν(OH); 3348 ν(NH); 1688 ν(amide C=O); 1582 ν(CO_{asym}); 1328 v(CO_{sym}). ¹H NMR (Bruker Advanced Digital 400 MHz NMR spectrometer, chemical shifts relative to Me₄Si, DMSOd₆ solution at 298 K: numbering as per the figure): 11.02 (s. 1H, OH), 2.50 (t, 2H, H2, J = 10.0 Hz), 1.94 (quin, 2H, H3, J = 14.7 Hz), 2.32 (t, 2H, H4, J = 15 Hz); 8.58 (s, 1H, NH), 7.38-7.40 (d, 1H, H7, J = 5 Hz), 6.75 (d, 1H, H8, J = 5 Hz), 6.74 (s, br,1H, H10), 3.70 (s, 3H, H12). ¹³C{¹H} NMR (as for ¹H NMR): 174.3, 32.8, 20.2, 35.9, 170.9, 128.5, 125.3, 121.4, 155.2, 108.4, 140.1, 55.6 for C1-C12, respectively.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.93-0.97 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O- and N-bound H atoms were refined with $O-H = 0.82 \pm 0.01$ Å and $N-H = 0.86 \pm 0.01$ Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$ or $1.2U_{eq}(N)$.

Comment

Organotin compounds, including organotin carboxylates, have long been known to possess biological activity, including anti-cancer potential [5, 6]. In continuing studies in this area, recent attention has focussed on the biological activity of organotin carboxylates derived from carboxylic acids incorporating an amide group [7]. Concurrent studies show that these carboxylic acids of the general formula $ArN(H)C(=O)(CH_2)_3C(=O)OH$ also demonstrate potential as anti-cancer and anti-leishmanial agents [8]. In this communication, the crystal and molecular structures of one such carboxylic acid derivative, where Ar = 4-methoxy-2-nitrophenyl, (I), are described.

The molecular structure of (I) is shown in the figure (50% probability displacement ellipsoids) and adopts an extended

(all-trans) configuration as seen in the sequence of C1-C2-C3-C4 [-179.14(16)°], C2-C3-C4-C5 [176.77(15)°], C3-C4-C5-N1 [-168.45(16)°] and C4-C5-N1-C6 [-176.31(17)°] torsion angles, respectively. A small twist in the chain about the C4–C5 bond is indicated by the deviation of the C3–C4– C5–N1 torsion angle from 180°. The carboxylic acid residue exhibits a significant difference in the C–O bond lengths [C1– 01, 02 = 1.302(2) and 1.216(2) Å] confirming protonation at the O1 atom. This group is twisted out of the plane of the backbone of the molecule as seen in the O2-C1-C2-C3 torsion angle of 9.2(3)°. A far greater twist is noted between the amide group and the appended aryl ring as reflected in the C5-N1-C6–C7 torsion angle of $-24.5(3)^{\circ}$. The amide-N–H atom is orientated towards a nitro-O atom to allow the formation of an intramolecular $N-H\cdots O$ hydrogen bond [N1-H1n $\cdots O5$: $H1n \cdots O5 = 2.019(19)$ Å, $N1 \cdots O5 = 2.643(2)$ Å with angle at $H1n = 128.8(18)^{\circ}$].

The most closely related compound in the crystallographic literature is the derivative where the Ar group is 4-((methylsulfonyl)amino)-3-phenoxyphenyl. The molecule has a highly twisted conformation in the C3 chain by contrast to that in (I) [9]. In the molecular packing, an eight-membered $\{\cdots \text{OCOH}\}_2$ homosynthon forms as a result of hydroxy- $O-H\cdots O(\text{carbonyl})$ hydrogen bonding $[O1-H10\cdots O2^{i}]$: $H10 \cdots O2^{i} = 1.84(2)$ Å, $O1 \cdots O2^{i} = 2.6654(19)$ Å with angle at H10 = $177(3)^{\circ}$ for symmetry operation (i) 2 - x, 1 - y, -z]. In addition to the formation of an intramolecular N-H···O interaction, the amide-N-H atom, being bifurcated, forms an intermolecular hydrogen bond with the amide-O atom [N1-H1n···O3ⁱⁱ: H1n···O3ⁱⁱ = 2.470(17) Å, N1···O3ⁱⁱ = 3.110(2) Å with angle at $H1n = 132.0(16)^{\circ}$ for (ii) -x, y, z] to form supramolecular chains to link the aforementioned dimers into a supramolecular tape parallel to (0 - 2 - 1). The links between tapes to consolidate the three-dimensional packing are weak $C-H \cdots O$ interactions, involving methyl-H and hydroxyl-O1 atoms [C12–H12b..O1ⁱⁱⁱ: H12b···O1ⁱⁱⁱ = 2.53 Å, $C12 \cdot \cdot \cdot O1^{iii} = 3.214(3)$ Å with angle at H12b = 129° for (iii) x, -1+y, 1+z and weaker methylene-C-H···O(nitro) interactions, involving both nitro-O atoms, with a minimum $H \cdots O$ separation of 2.70 Å.

A complementary analysis of the molecular packing of (I) was performed by calculating the Hirshfeld surface and the two-dimensional fingerprint plots employing Crystal Explorer 17 [10] following literature procedures [11]. The analysis confirms the dominance of $H \cdots O/O \cdots H$ contacts to the overall surface, contributing 46.0% of all contacts, and reflecting the hydrogen bonding interactions as well as the numerous weaker interactions. The next most prominent contacts are due to $H \cdots H$ [29.1%], $H \cdots C/C \cdots H$ [11.1%], $C \cdots O/O \cdots C$ [5.5%] and $O \cdots O$ [3.3%] contacts. **Acknowledgements:** Financial support by the Higher Education Commission Pakistan under Grant No. 6796/KPK/ NRPU/R&D/HEC/2016 is gratefully acknowledged. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

- 1. Agilent Technologies. CrysAlis^{PRO}. Agilent Technologies, Santa Clara, CA, USA (2014).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Gielen, M.: Review: organotin compounds and their therapeutic potential: a report from the Organometallic Chemistry Department of the Free University of Brussels. Appl. Organomet. Chem. 16 (2002) 481–494.
- Hadjikakou, S. K.; Hadjiliadis, N.: Antiproliferative and antitumor activity of organotin compounds. Coord. Chem. Rev. 253 (2009) 235–249.

- Sirajuddin, M.; Ali, S.; McKee, V.; Matin, A.: Synthesis, characterization and biological screenings of 5-coordinated organotin(IV) complexes based on carboxylate ligand. J. Mol. Struct. **1206** (2020) article no. 127683. https://doi.org/10. 1016/j.molstruc.2020.127683.
- Sirajuddin, M.; Ali, S.; Shahnawaz, A.; Perveen, F.; Andleeb, S.; Alie, S.: Exploration of biological potency of carboxylic acid derivatives: designing, synthesis, characterizations and molecular docking study. J. Mol. Struct. **1207** (2020) article no. 127809. https://doi.org/10.1016/j.molstruc.2020. 127809.
- Dey, T.; Chatterjee, P.; Bhattacharya, A.; Pal, S.; Mukherjee, A. K.: Three nimesulide derivatives: synthesis, ab initio structure determination from powder X-ray diffraction, and quantitative analysis of molecular surface electrostatic potential. Cryst. Growth Des. 16 (2016) 1442–1452.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.