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Abstract: High-ion-conductivity solid-state electrolytes (SSEs) have been extensively 

explored for electrochemical energy storage technologies because these materials can 

enhance the safety of solid-state energy storage devices (SSESDs) and increase the 

energy density of these devices. In this review, an overview of SSEs based on their 

classification, including inorganic ceramics, organic solid polymers, and 

organic/inorganic hybrid materials, is outlined. Related challenges, such as low ionic 

conductivity, high interfacial resistance between electrodes and SSEs, poor wettability, 

and low thermal stability, are discussed. In particular, recent advances on properties of 

SSEs and interface design of high-performance SSESDs are highlighted. Several 

interface designs, including hybrid, interlayer, solid-liquid, quasi-solid-state gel, and 

in-situ solidification interface, between electrodes and SSEs for alleviating interfacial 

resistance, stability, and compatibility in SSESDs are comprehensively reviewed to 

provide insights into the future design directions of SSEs and SSESDs. The rational 

designs of various SSESDs for flexible and wearable devices, electronic devices, 

electric vehicles, and smart grid systems are proposed in accordance with different 

practical application requirements. 

 

Keyword: Solid-state electrolyte; Solid-state energy storage device; Interface design; 
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1 Introduction 

Available commercial energy storage systems, such as lead acid batteries, nickel 

metal hydride batteries, and lithium-ion batteries, cannot satisfy the increasing energy 

demands of electronic devices, electric vehicles (EVs), and smart grid systems1-3. 

Combustible organic liquid electrolytes have been widely used in commercial lithium-

ion batteries, thereby offering the benefits of high conductivity and wetting of electrode 

surfaces for good electrochemical performance and long cycle life4-6. However, liquid 

electrolytes often suffer from inadequate electrochemical and thermal stabilities, low 

ion selectivity, poor safety, and even fire hazards during overcharge or abused 

operations7. For these reasons, energy storage devices with high energy and power 

densities, long cycle life, and acceptable safety levels at an affordable cost should be 

developed. These problems may be effectively solved by replacing liquid electrolytes 

with solid-state electrolytes (SSEs)1. 

As early as the 1830s, Faraday discovered that heated Ag2S and PbF2 show a 

remarkable conduction property, thereby leading to the research and development of 

SSEs1. A variety of SSEs have been developed, and satisfactory results have been 

obtained in solid-state energy storage devices (SSESDs). Li et al.8 suggested that all-

solid-state lithium-ion batteries in which flammable liquid electrolytes are replaced 

with SSEs are ultimate solutions for the safety issues of lithium-ion battery technologies, 

even under extreme conditions, such as high temperature or violent crush. Various 

research interests are directed toward the development of all-solid-state lithium-sulfur 

batteries because of the improvement of safety by using nonflammable inorganic SSEs9, 
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10. Research on SSEs has spread to whole energy storage field, including lithium-ion 

batteries8, 11, metal batteries12, 13, and flexible energy storage devices 14, 15. With the 

development of SSEs, a series of review papers has been published. In 2017, Manthiram 

et al.1 studied lithium-ion battery chemistries and discussed major issues, such as 

achieving acceptable ionic conductivity, electrochemical stability, and mechanical 

properties of SSEs and compatible electrolyte/electrode interfaces. In 2018, Zhang et 

al.16 reviewed the mechanisms and properties of ion transport in inorganic SSEs and 

helped elucidate the ionic conductivity and stability of inorganic SSEs. However, a 

comprehensive review on references for SSE selections and interface design 

requirements for high-performance SSESDs for particular applications, including 

flexible and wearable devices, electronic devices, EVs, and smart grid systems, has yet 

to be conducted. 

In this review, research significance and challenges of SSEs are presented. The 

selections and interface designs of SSEs are reviewed to provide insights into the 

development of SSEs and SSESDs (Fig. 1). The development of high-performance 

SSESDs for various applications is also proposed. 
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Fig. 1 Review scheme of potential research directions in solid-state electrolytes (SSEs), 

reported by Chi et al.17, Zhou et al.18, Oh et al.19, Sun et al.20 and Zhao et al.21. 

 

2 Benefits of SSEs 

SSEs have two important roles in energy storage devices: (1) separating positive 

and negative electrodes to prevent internal short circuit and (2) providing a channel for 

ion transmission between electrodes during charge–discharge processes. The 

improvement of safety, suppression of metal dendrite, and fabrication of flexible and 

wearable devices can be achieved by replacing liquid electrolytes with SSEs. 

 

2.1 Safety improvement 

Safety is a vital requirement for all technologies and product applications. Liquid 

electrolytes offer high conductivity and good wetting for energy storage devices4-6. 

However, liquid electrolytes possess potential hazards, such as leakage, corrosiveness, 

and fire risks7, thereby threatening the safety of users and devices. 
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Chi et al.17 prepared an inorganic SSE NaPS4 for all-solid-state Na-ion batteries, 

thereby eliminating leakage problems and improving the thermal stability of devices. 

Zhang et al.22 utilized an organic SSE poly(propylene carbonate) to fabricate a solid 

polymer lithium-ion battery that can be charged and discharged at 120 °C. Zhu et al.23 

developed a hybrid SSE Li0.33La0.557TiO3/polyethylene oxide for a stable solid-state 

lithium-ion battery with an electrochemical stability window (up to 5.0 V vs. Li/Li+). 

Wu et al.24 used a quasi‐SSE polyisobutylene in lithium-oxygen batteries, thereby 

preventing lithium corrosion by H2O crossover from cathodes (Fig. 2a). Batteries in a 

humid atmosphere display a charge potential of 3.4 V and a long cycle life of 150 cycles. 

Perea et al.25 showed that the high thermal stability of Li|SSE|LiFePO4 cells can be 

achieved using a solid polymer electrolyte (polyether with LiTFSI salt) compared with 

the same cell with a liquid electrolyte (1 M LiPF6 in ethylene carbonate/diethyl 

carbonate). The thermal runaway (exothermic reaction) of charged Li|liquid 

electrolyte|LiFePO4 cells (Fig. 2b) starts at 90 °C with a self-heat rate of 3.2 °C min−1 

compared with that at 247 °C (0.11 °C min−1) for Li|SSE|LiFePO4 cells (Fig. 2c). This 

result confirms that the thermal stability of Li|SSE|LiFePO4 cells improves. Therefore, 

replacing a liquid electrolyte with a SSE is an important strategy to improve the safety 

of energy storage devices. 
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Fig. 2 (a) Schematic of the proposed solid lithium-oxygen battery in a humid 

atmosphere based on quasi-SSEs (reproduced from Ref.24, with permission from Wiley). 

Dependence of self-heating rate on the temperature of (b) Li|liquid electrolyte|LiFePO4 

and (c) Li|SSE|LiFePO4 cells (reproduced from Ref.25, with permission from Elsevier). 

 

2.2 Metal dendrite suppression 

Metal dendrite growths on metal anodes caused by unevenly distributed charges 

have seriously affected the Coulombic efficiency and safety of energy storage devices26. 
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An inorganic SSE separator with good mechanical strength can avoid short circuit 

induced by the growth of metal dendrites piercing the separator in batteries27, 28. Wang 

et al.29 used an inorganic SSE Li1.5Al0.5Ge1.5(PO4)3 for a lithium-sulfur battery. An 

internal short circuit in batteries is effectively avoided because the good mechanical 

strength of Li1.5Al0.5Ge1.5(PO4)3 is sufficient to prevent lithium dendrite piercing. Han30 

and Fu et al.31 also demonstrated that inorganic SSEs can effectively suppress lithium 

dendrite formation by tuning the composition of a solid electrolyte interphase (SEI) to 

balance charge distribution because SSEs can control current distribution and lithium 

deposition. 

In addition to inorganic SSEs, organic SSEs are effective routes for dendrite 

suppression. Yu et al.32 used a cellulose-based SSE with high nanopore and nanofiber 

concentrations in lithium sulfur batteries (Fig. 3a) and obtained a stable voltage plot of 

lithium plating/stripping for 200 h without dendrite growth (Fig. 3b). Lu et al.33 

observed that lithium plating is preferentially concentrated in a thin SEI or defects to 

allow a high lithium ion flux in a liquid electrolyte (Fig. 3c), which triggers the growth 

of lithium dendrites. They designed a 3D network gel polymer electrolyte (3D‐GPE: 

polyethylene oxide and polypropylene oxide) to effectively inhibit the growth of 

lithium dendrites in lithium metal batteries. This trait is attributed to a synergistic effect 

of the uniformity of SEIs and the high mechanical strength of the cross-linked structure 

of the 3D-GPE (Fig. 3d). This phenomenon results in an enhanced cycling stability of 

a Li|3D-GPE|LiFePO4 cell at 4 C for 150 cycles (Fig. 3e). Li et al.34 reported a 3D fiber-

network-reinforced bicontinuous hybrid SSE Li1.4Al0.4Ti1.6(PO4)3/polyacrylonitrile 
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with a flexible lithium ion conductive network that helps suppress dendrite growth by 

mechanically reinforcing the fiber network (Fig. 3f). The obtained Li|SSE|Li cell shows 

long-term stability and safety at 0.3 mA cm−2 for 400 h (Fig. 3g). 

However, recent studies indicated that lithium metal dendrites can pierce the SSEs 

(e.g. Li7La3Zr2O12) causing the short circuit of the cell35. Sudo et al.36 reported that the 

Li|SSE|Li cell with the 0.5 wt% Al2O3-doped Li7La3Zr2O12 SSE showed a short circuit 

after 1000 s polarization at 0.5 mA cm−2. Such short circuit was due to lithium dendrite 

formation, which was evidenced by the surface morphology change of the SSE after 

polarization at 0.5 mA cm−2 for 0 s (Fig. 3h), 280 s (Fig. 3i) and 840 s (Fig. 3j). Several 

black spots were observed after 280 s of polarization and the diameter of these black 

spots increased with polarization time (840 s), that are attributed to the lithium dendrite 

growth through the grain boundaries and voids in the SSE, suggesting that the lithium 

dendrite can pierce the SSEs. Therefore, the selection of suitable SSEs (such as 

inorganic SSEs with high ionic conductivity) is very important and the mechanical 

strength of SSEs needs to be further improved. 
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Fig. 3 (a) Configuration of a Li|SSE|sulfur cell with a cellulose-based porous membrane; 
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upper graph, EDS mapping images of carbon paper/S cathode. (b) Voltage profiles of 

symmetric lithium cells with Celgard 2500 and cellulose-based porous membranes as 

separators at 2.4 mA cm−2 (reproduced from Ref.32, with permission from the American 

Chemical Society). Schematic of the changes in lithium electrodes with (c) a liquid 

electrolyte and (d) a 3D-GPE during lithium plating/stripping. (e) Cycling performance 

of Li|3D-GPE|LiFePO4 and Li|liquid electrolyte|LiFePO4 cells at 4 C (reproduced from 

Ref.33, with permission from Wiley). (f) Schematic of the preparation of fiber-

reinforced membranes. (g) Voltage profiles of Li|SSE|Li and Li|PEO8−LiTFSI|Li cells 

for a lithium plating/stripping experiment at 0.3 mA cm−2 at 60 °C (reproduced from 

Ref.34, with permission from the American Chemical Society). The surface morphology 

change of 0.5 wt% Al2O3-doped Li7La3Zr2O12 SSE by polarization at 0.5 mA cm−2 for 

(h) 0, (i) 280 and (j) 840 s (reproduced from Ref.36, with permission from the Elsevier). 

 

2.3 Flexible and wearable device fabrication 

In daily life, no one can even imagine a world without portable/wearable electronic 

devices, including mobile phones, laptops, cameras, smartwatch, and activity trackers, 

which have considerably changed our lifestyles and brought significant convenience to 

people37. Particularly, the emergence of flexible and wearable electronics has triggered 

continuous research on the development of reliable, flexible, and inexpensive SSEs, 

such as organic SSEs and hybrid SSEs, while inorganic SSEs were seldomly used in 

flexible and wearable device because of their higher hardness and brittleness. 

Zhao et al.38 designed a flexible hydrogel SSE composed of bacterial cellulose 
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microfibers and polyvinyl alcohol with an ionic conductivity of 80.8 × 10−3 S cm−1 for 

flexible solid-state zinc-air batteries that are cycled well at any bending angle (9 cycles, 

for 40 min per cycle). Shu et al.39 reported a flexible quasi-solid-state polymer 

electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene) for lithium-

oxygen battery. Holes can be punched through flexible lithium-oxygen batteries that 

can even be cut into any desired shape, thereby demonstrating exceptional safety.  

As illustrated in Fig. 4a, Li et al.40 designed a hierarchical polymer electrolyte 

(HPE, gelatin, and polyacrylamide) for safe and wearable solid-state zinc-ion battery 

with an areal energy density of 6.18 mWh cm−2, a power density of 148.2 mW cm−2, 

and a capacity of ∼120 mAh g−1, with a retention of 97% after 1000 cycles at 2772 mA 

g−1. Park et al.41 used a free standing gel electrolyte (gelatin) with an ionic conductivity 

of 3.1 × 10−3 S cm−1 in an all-solid-state cable-type flexible zinc-air battery (Fig. 4b). 

They achieved a stable discharge at 0.1 mA cm−2 under external strain loaded on the 

battery every 20 min from the initial length of 7–3 cm (compression). Chen et al.42 used 

a polyacrylamide hydrogel as an electrolyte in a flexible solid-state zinc-ion hybrid 

supercapacitor that is flexible enough to sustain various deformations, including 

squeezing, twisting, and folding (Fig. 4c). Liu et al.43 used a gel-type SSE polyvinyl 

alcohol-LiNO3 in a flexible lithium-ion battery and demonstrated the flexibility to 

sustain various deformations, including bending, squeezing, twisting, and folding, 

because of its solid-state design. Flexible batteries can also be tailored into any desired 

shape and even be punched with holes, thereby exhibiting excellent safety (Fig. 4d).  
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Fig. 4 (a) Schematic of the synthesis route of HPE (reproduced from Ref.40, with 

permission from the Royal Society of Chemistry). (b) Schematic of an all-solid-state 

cable-type flexible Zn-air battery assembly and the coating process of a gelatin-based 

gel polymer electrolyte on the surrounding spiral zinc anode (reproduced from Ref.41, 

with permission from Wiley). (c) Squeezing, twisting, folding, and powering an 

electronic watch under corresponding deformation conditions; cycling stability of a 

flexible solid-state zinc ion hybrid supercapacitor before and under various deformation 

conditions (reproduced from Ref.42, with permission from the Royal Society of 

Chemistry). (d) Drilling and cutting tests of the flexible lithium-ion battery (reproduced 

from Ref.43, with permission from Elsevier). 

 

With the development of SSESDs, some SSE-related challenges, such as low ion 

conductivity and high interfacial resistance, have emerged as the main bottleneck 

restricting SSE applications at the current stage. 
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3 Challenges 

A good electrochemical energy storage device needs an external circuit with good 

electronic conductivity and an internal circuit with good ionic conductivity44, 45. Good 

electronic conductivity is primarily dependent on the electrode design of an energy 

storage device2, 5, 6, 46, but this trait is not discussed here. Ionic conductivity is primarily 

dependent on the ionic conductivity of electrolytes and the interfacial resistance 

between electrolytes and electrodes in devices47, 48 that can affect the electrochemical 

performance of SSESDs (Fig. 5)49, 50. The discharge specific capacity, high C rate 

performance, and power density of SSESDs are greatly reduced by the sluggish kinetics 

of ion transport51-53. A high-performance energy storage device requires a balance 

between electron and ion transport. A poor ion transport exacerbates the 

electrochemical performance of devices and reduces their energy efficiency54, 55. Any 

imbalance in electron and ion transport can lead to the non-uniformly distributed charge 

on the surface of electrodes, resulting in a series of side reactions, especially dendrite 

growth, on the surface of metal electrodes2, 26, 56. Poor interfacial contact between the 

electrolyte and electrodes increase the interfacial resistance, thereby reducing the bulk 

energy density of the device57, 58, 59, 60, 61. Finding suitable SSEs and reducing interfacial 

resistance are important for the development of high-performance SSESDs. 
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Fig. 5 SSE-related challenges in studies on low ionic conductivity and high interfacial 

resistance. SSE, solid-state electrolyte; IF, interface. 

 

4 Properties of SSEs 

SSEs with high ionic conductivity is crucial for the practical applications of 

SSESDs. The ionic conductivities and electrochemical window of different SSEs are 

presented in Table 1. Moreover, the features including low cost processing, mechanical 

property, air stability, electronic insulation, ion conductivity, thermal stability, chemical 

stability and electrochemical stability for inorganic, organic and hybrid SSEs are 
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compared in Fig. 6. 

 

Fig. 6 The feature comparison of inorganic, organic and hybrid SSEs. 
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Table 1 Comparison of ion conductivity and electrochemical window of different solid-state electroyltes. 

SSE classification SSE composition Ionic conductivity (S cm-1) Electrochemical 

window (V) 

Ref. 

Inorganic 

SSEs 

Garnet-type Li7La3Zr2O12 1.63 × 10−6 (300 K) - 62 

Li6.5La2.5Sr0.5TaZrO12 3.08 × 10−4 (293.16 K) - 63 

Li5.9Al0.2La3Zr1.75W0.25O12 5.20 × 10−4 (298.16 K) - 64 

Li7.06La3Zr1.94Y0.06O12 9.56 × 10−4 (298.16 K) - 65 

Li6.5La3Zr1.75Te0.25O12 1.02 × 10−3 (303.16 K) - 66 

Li6.55La3Zr2Ga0.15~0.3O12 1.30 × 10−3 (297.16 K) - 67 

Pervoskite-

type 

Lithium-

ion 

Li3OX (X=Cl, Br) 1.00 × 10−6 (298.16 K) - 68 

Li0.43La0.56Ti0.95Ge0.05O3 1.20 × 10−5 (298.16 K) 0 - 10 69 
Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05 4.80 × 10−4 (298.16 K) 2.5 - 5 70 

Li0.29La0.57TiO3 1.60 × 10−3 (300 K) - 71 

Li3OCl0.5Br0.5 1.94 × 10−3 (298.16 K) - 72 

Sodium-

ion 

Na1.5La1.5TeO6 1.00 × 10−8 (298.16 K) - 73 

Na1/3La1/3Sr1/3ZrO3 1.025 × 10−5 (298.16 K) - 74 

Argyrodite-

type 

(LISICON) 

Lithium-

ion 

Li4SnS4 1.10 × 10−4 (298.16 K) - 75 

Li-B-H 2.70 × 10−4 (308.16 K) -0.2 - 5 76 

Li6PS5Cl 1.80 × 10−3 (298.16 K) -0.5 - 5 77 

Li6−yPS5−yCl1+y (y=0−0.5) 3.90 × 10−3 (298.16 K) 0 - 3 78 

Li6PS5Cl 4.96 × 10−3 (299.36 K) 0- 4.5 79 

Li10GeP2S12 12.0 × 10−3 (300.16 K) -0.5 - 5 80 

Li6+xP1−xGexS5I 18.4 × 10−3 (298.16 K) 0 - 2.75 81 

Sodium-

ion 

Na11Sn2PS12 1.40 × 10−4 (298.16 K) - 82 

Na11Sn2SbS12 5.60 × 10−4 (298.16 K) - 83 

Na10.8Sn1.9PS11.8 6.70 × 10−4 (298.16 K) -0.5 - 5 84 

Na11Sn2PS12 4.00 × 10−3 (298.16 K) - 85 

Phosphate-

type 

(NASICON) 

Lithium-

ion 

LiTi2(PO4)3 2.10 × 10−5 (298.16 K) - 86 

Li1.1Zr1.9La0.1(PO4)3 7.20 × 10−5 (298.16 K) -0.5 - 5 87 

Li1.3Al0.3Ti1.7(PO4)3 4.20 × 10−4 (298.16 K) - 88 
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Li1.5Al0.4Ga0.1Ge1.5(PO4)3 6.67 × 10−4 (298.16 K) - 89 

Li1.4Al0.4Ti1.6(PO4)3 5.63 × 10−3 (298.16 K) - 90 

Li1.3Al0.3Ti1.7(PO4)3 6.20 × 10−3 (298.16 K) - 91 

Sodium-

ion 

Na2ScyZr2−y(SiO4)1−y(PO4)2+y (x, y=0−1) 1.00 × 10−4 (473 K) - 92 

Ga-doped Na2Zn2TeO6 1.10 × 10−4 (298.16 K) -0.5 - 4 93 

Na1+nZr2SinP3−nO12 3.40 × 10−4 (298.16 K) 0 - 3.6 94 

Na3Zr2(SiO4)2(PO4) 4.00 × 10−3 (298.16 K) 0 - 4.2 95 

Organic 

SSEs 

Gel-type Hydrogen-

ion 

Methacrylate monomers and diphenyl phosphate 3.10 × 10−4 (293.16 K) -0.6 - 1.3 96 

Poly (vinylidene fluoride-co-

hexafluoropropylene) 

5.00 × 10−4 (243.16 K) ~  

15 × 10−3 (353.16 K) 

-2.9 - 2.5 97 

Lithium-

ion 

Polyvinylpyrrolidone - 0 - 1.6 98 

Poly (propylsulfonate dimethylammonium 

propylmethacrylamide) 

- 0 - 1 99 

Single 

polymer-type 

Lithium-

ion 

Poly (ethylene glycol) diglycidyl ether  8.90 × 10−5 (298.16 K) 0 - 4.5 100 

Poly (vinylene carbonate) 9.82 × 10−5 (323.16 K) 0 - 4.5 101 
Cyclic carbonate-cyclic ether copolymer 1.58 × 10−4 (298.16 K) 0 - 4.7 102 

Poly (ether acrylate) 2.20 × 10−4 (298.15 K) 0 - 4.5 103 
Organoborane-modified polybenzimidazole with 

1-butyl-3-methylimidazolium 

bis(trifluoromethane-sulfonyl)imide 

8.80 × 10−3 (324.16 K) 0 - 5.45 104 

Sodium-

ion 

Poly (methyl methacrylate) 6.20 × 10−3 (298.16 K) 0 - 4.8 105 

Blending 

polymer-type 

Lithium-

ion 

Polyethylene oxide/poly (methyl methacrylate) 1.00 × 10−6 (298.16 K) 0 - 4.5 106 
Polyethylene oxide/poly (methyl methacrylate) 1.86 × 10−5 (298.16 K) - 107 
Polyethylene oxide/poly (vinylidene difluoride) 2.50 × 10−5 (298.16 K) - 108 
Polyethylene oxide/poly (methyl methacrylate) 1.35 × 10−4 (303.16 K) - 109 

Polyurethane acrylate/poly (methyl methacryltae) 2.76 × 10−4 (298.16 K) 2.3 - 7 110 

Poly (vinylidene difluoride)/polyvinyl alcohol 4.31 × 10−4 (298.16 K) 2.5 - 4.5 111 

Polymer with 

filling-type  

Lithium-

ion 

Polyethylene oxide/metal organic framework 1.00 × 10−4 (333.16 K) 0-3 112 

Poly (methyl methacrylate)/polyethylene 

oxide/SiO2 
2.63 × 10−4 (298.16 K) - 113 

Polyethylene oxide/poly (methyl 

methacrylate)/poly (vinylidene difluoride-co-

1.27 × 10−3 (298.16 K) 0 - 5.3 114 
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hexafluoropropylene)/SiO2 

 Zinc-ion Poly (vinylidene difluoride-co-

hexafluoropropylene)/CeO2 

1.50 × 10−5(298.16 K) 0 - 2.7 115  

Hybrid SSEs Li10GeP2S12/polyethylene oxide 1.18 × 10−5 (298.16 K) 0 - 5.7 116 

Li6.4La3Zr1.4Ta0.6O12/polyethylene oxide 1.00 × 10−4 (328.16 K) 0 - 5 117 

Li6.4La3Zr1.4Ta0.6O12/polyethylene oxide 1.60 × 10−4 (303.16 K) 0 - 5.03 118 

Li1.5Al0.5Ge1.5(PO4)3/polyethylene oxide 1.67 × 10−4 (298.16 K) 0 - 4.5 119 

Li0.33La0.557TiO3/polyethylene oxide 2.40 × 10−4 (298.16 K) 0 - 5 23 

Li6.5La3Zr1.5Nb0.5O12/polyethylene oxide 3.60 × 10−4 (298.16 K) 0 - 4.3 120 

Li7La3Zr2O12/in poly(vinylidene fluoride-co-

hexafluoropropylene) 

3.71 × 10−4 (303.16 K) 0 - 4.65 121 

Li6PS5Cl/polyethylene oxide 1.00 × 10−3 (298.16 K) 0 - 4 122 

Li7La3Zr2O12/polyethylene oxide 1.04 × 10−3 (333.16 K) 0 - 4.2 123 

Li10GeP2S12/polyethylene oxide 1.21 × 10−3 (353.16 K) 0 - 5.7 116 
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4.1 Inorganic SSEs, including garnet, perovskite, argyrodite, and phosphate types 1 

Typically, inorganic SSEs, which are a kind of ion conductors, rely on the 2 

concentration and distribution of defects124, 125. Ionic transport in inorganic SSEs starts 3 

when ions at local sites become excited to neighboring sites and collectively diffuse on 4 

a macroscopic scale126. Some materials with a crystalline framework composed of 5 

immobile ions and a sublattice of mobile species can achieve high ionic conductivities 6 

without a high defect concentration127-130. Three primary criteria must be fulfilled to 7 

achieve fast ionic conduction in inorganic SSEs1: (1) the number of equivalent (or 8 

nearly equivalent) sites available for mobile ions to occupy should be much larger than 9 

the number of mobile species; (2) the migration barrier energies between adjacent 10 

available sites should be low enough for an ion to hop easily from one site to another; 11 

and (3) these available sites must be connected to form a continuous diffusion pathway. 12 

 13 

4.1.1 Garnet-type SSEs 14 

Garnet-type SSEs have been widely explored because of their high ionic 15 

conductivity of 1 × 10−3 S cm−1, environmental stability, and electrochemical stability 16 

window of 0–9 V131-133. These SSEs are a kind of lithium transition metal oxides, whose 17 

lithium ion transport relies on their lattice defects, and element doping is beneficial to 18 

the improvement of lithium ionic conductivity. Awaka et al.62 synthesized a garnet-type 19 

SSE Li7La3Zr2O12 with tetragonal symmetry (I41/acd, no.142) via a flux method. 20 

Tetragonal Li7La3Zr2O12 has lattice constants of a=13.134(4) Å and c=12.663(8) Å and 21 

fully ordered arrangement of lithium atoms (Fig. 7a), thereby delivering a lithium ionic 22 
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conductivity of 1.63 × 10−6 S cm−1 at 26.85 °C (Fig. 7b). To improve the ionic 1 

conductivity, Kammampata et al.63 prepared some garnet-type SSEs 2 

Li6.5La2.5A0.5TaZrO12 (A=Ca, Sr, Ba) and found that Sr-doped garnet-type 3 

Li6.5La2.5Sr0.5TaZrO12 shows the highest lithium ion conductivity of 3.08 × 10−4 S cm−1 4 

(Fig. 7c). Shao et al.64 developed garnet-type SSE Li5.9Al0.2La3Zr1.75W0.25O12 whose Li 5 

(24d) and Zr (16a) sites are doped with Al and W, and the lithium ion transport route is 6 

24d-96h-48g-96h-24d, leading to an ionic conductivity of 5.2 × 10−4 S cm−1 (Fig. 7d). 7 

Al and W co-doping significantly leads to an improved ionic conductivity of 5.2 × 10−4 8 

S cm−1 at room temperature (Fig. 7e). Fig. 7f displays a polished ceramic pellet and 9 

reveals the morphological characteristics of the local environment and a surface 10 

roughness of ~500 nm. 11 

Murugan et al.65 increased the lithium ionic conductivity of Li7La3Zr2O12 with the 12 

partial substitution of trivalent Y for a tetravalent Zr. A small amount (3 at%) of Y for 13 

Zr helps increase the ionic conductivity to 9.56  × 10−4 S cm−1 at 25 °C. Deviannapoorani 14 

et al.66 studied lithium ionic transport in Li7−2xLa3Zr2−xTexO12 (x=0.125 and 0.25) and 15 

found that Li6.5La3Zr1.75Te0.25O12 sintered at 1100 °C exhibits a high lithium ionic 16 

conductivity of 1.02 × 10−3 S cm−1. Bernuy-Lopez et al.67 utilized Ga to replace Li, 17 

creating Li vacancies and enhancing the lithium ionic conductivity from 2 × 10−4 S cm−1 18 

to 1.3 × 10−3 S cm−1. Ga atoms located in tetrahedral positions promote the random 19 

distribution of lithium over the available sites (Fig. 7g), thereby promoting an increase 20 

in lithium ionic conductivity (1.3 and 2.2 × 10−3 S cm−1 at 24 °C and 42 °C, respectively).  21 

The ionic conductivity of garnet-type SSEs continuously increases with the 22 
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regulation of their crystal defects and reaches its limit134-136. Pfenninger et al.137 used a 1 

garnet-type SSE Li6.25Al0.25La3Zr2O12 in Li4Ti5O12|SSE|Li cells and obtained a capacity 2 

of ∼175 mAh g−1 with a capacity retention of 90% at 2.5 mA g−1 after 22 cycles. 3 

However, to date, the development of high-performance SSESDs with garnet-type 4 

SSEs has minimal success because of the high solid–solid interfacial resistance between 5 

garnet-type SSEs and electrode materials138, 139, 129. Future garnet-type SSE 6 

development will focus on interfacial designs between SSEs and electrodes. 7 

 8 

Fig. 7 (a) Crystal structure of tetragonal Li7La3Zr2O12. (b) Temperature dependence of 9 

the lithium ionic conductivity of tetragonal Li7La3Zr2O12 (reproduced from Ref.62, with 10 

permission from Nature). (c) Temperature dependence of the lithium ionic conductivity 11 
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of Li6.5La2.5A0.5TaZrO12 (A=Ca, Sr, Ba; reproduced from Ref.63, with permission from 1 

the American Chemical Society). (d) Crystal model of garnet-structured 2 

Li5.9Al0.2La3Zr1.75W0.25O12. (e) Arrhenius plots of Li7La3Zr2O12 and 3 

Li5.9Al0.2La3Zr1.75W0.25O12 to present ionic conductivity. (f) Atomic force microscopic 4 

image of top view of the Li5.9Al0.2La3Zr1.75W0.25O12 ceramic pellet. The color bar is in 5 

the range of 0–650 nm (reproduced from Ref.64, with permission from the American 6 

Chemical Society). (g) Garnet structure of La3Zr2Li7−3xGax□2xO12, where blue circles 7 

are Zr in octahedral (Oh) coordination; dark red circles are La in dodecahedral 8 

coordination; gray circles are Li in Oh coordination; turquoise blue and green circles 9 

are Li and Ga in tetrahedral (Td) coordination, respectively; and arrows represent 10 

vacancies (□; reproduced from Ref.67, with permission from the American Chemical 11 

Society). 12 

 13 

4.1.2 Perovskite-type SSEs 14 

Perovskite-type SSEs exhibit a considerable potential for the development of 15 

SSESDs because of their ion conductivity of nearly 1 × 10−3 S cm−1, potential window 16 

of 0–10.0 V, and excellent thermal/chemical stability140-142. A perovskite-type SSE 17 

usually refers to a metal oxide whose molecular formula is ABO3 (A, B=metal, 18 

O=oxygen). SSEs are obtained through the replacement of a transition metal with 19 

lithium or sodium. Doping transition metals in SSEs can further improve their ionic 20 

conductivity. Hu et al.69 prepared a perovskite-type SSE Li0.33La0.56TiO3 with a lithium 21 

ionic conductivity of 1.7 × 10−6 S cm−1 by replacing La with Li (Fig. 8a). After Ge-22 
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doping, they found that Li0.43La0.56Ti0.95Ge0.05O3 exhibits a lithium ionic conductivity 1 

of 1.2 × 10−5 S cm−1 attributed to its improvement of the densification and structural 2 

integrity. In addition to doping transition metals, anionic replacement can improve the 3 

ionic conductivity of perovskite-type SSEs. Li et al.70 synthesized 4 

Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05 through F- doping and obtained a lithium ionic 5 

conductivity of 4.8 × 10−4 S cm−1 at 25 °C (Fig. 8b). Wu et al.143 utilized 3D- and 2D-6 

perovskite to modify garnet-type SSE Li6.75La3Zr1.75Ta0.25O12. A Li|SSE|LiFePO4 cell 7 

exhibits specific capacities of 153 and 149 mAh g−1 for cells with 3D- and 2D-8 

perovskite after 50 cycles at 0.2 C, respectively. This result suggests an alternative path 9 

to increase battery capacity for SSESD development. 10 

Amores et al.73 developed a sodium (Na)-rich perovskite-type SSE Na1.5La1.5TeO6 11 

with a monoclinic P21/n space group and sodium ions on A and B sites (Fig. 8c). They 12 

achieved a macroscopic ionic conductivity in the order of 10−8 S cm−1, which is the 13 

microscopic diffusion coefficient of sodium ions in the order of 10−2 cm2 s−1 (Fig. 8d). 14 

Zhao et al.74 synthesized a perovskite-type SSE Na0.33La0.55ZrO3 with a sodium ion 15 

conductivity of 6.89 × 10−7 S cm−1. Increasing the amount of Sr doping to 33 at% in 16 

Na1/3La1/3Sr1/3ZrO3 can increase the lattice parameter and densification of SSE and 17 

contribute to an enhanced ionic conductivity from 6.89 × 10−7 S cm−1 to 1.025 × 10−5 S 18 

cm−1.  19 

Li- and Na-rich anti-perovskites have been widely explored as high-performance 20 

SSEs for applications in SSESDs because of their high structural tolerance and good 21 

formability144-146. Anti-perovskite-type SSE usually refers to a metal oxide whose 22 
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molecular formula is A3OX (A=metal, O=oxygen, X=halogen). Li et al.68 studied 1 

lithium-rich anti-perovskite-type SSE Li3OX (X=Cl, Br) for lithium-ion batteries and 2 

obtained an ion conductivity of 1.0 × 10−5 S cm−1. The bulk and grain boundary (GB) 3 

conductivities calculated from the equivalent circuit fitting are 1.02 × 10−5 and 1.09 × 4 

10−6 S cm−1, respectively. Zhao et al.72 presented a dihalogen anti-perovskite SSE 5 

Li3OCl0.5Br0.5 (Fig. 8e) to increase the ionic conductivity of lithium to 1.94 × 10−3 S 6 

cm−1 (Fig. 8f) by introducing lithium ionic transport channels via doping and depleting. 7 

Dawson et al.147 examined the defect chemistry and ionic transport in anti-perovskite-8 

type SSE Li3OCl and Na3OCl and observed that alkali–halide Schottky defect pairs are 9 

the dominant type of intrinsic disorder in these materials. Figs. 8g and h show the Li- 10 

and Na-ion diffusion density maps for Li3OCl and Na3OCl with an alkali–halide partial 11 

Schottky defect concentration of δ=0.038 at 426.85 °C. Chen et al.148 reported four 12 

symmetric tilt (Σ3 and Σ5) GB effects on structural characteristics and ion transport in 13 

anti-perovskite-type SSE Li3OCl. They confirmed that Σ5 GBs structures are softer and 14 

have a higher ionic conductivity than Σ3 GBs. This result provides new insights into 15 

the possible effect of GB types on the softness and ionic conductivity of SSE. However, 16 

large solid–solid interfacial resistance between perovskite SSEs and electrode materials 17 

is still a remarkable challenge that hinders the development of high-performance 18 

SSESDs140.  19 



26 

 

 1 

Fig. 8 (a) Crystal structure of Li0.33La0.56TiO3, including La1, Li vacancies at the (0, 0, 2 

0) site, La2, Li vacancies at the (1/2, 1/2, 0) site, and TiO6 octahedra (reproduced from 3 

Ref.69, with permission from the Royal Society of Chemistry). (b) Lithium ionic 4 

conductivities of Li0.38Sr0.44Ta0.75–xHf0.25+xO3–xFx with 0≤x≤0.1 (reproduced from Ref.70, 5 

with permission from Wiley). (c) Crystallographic representation of a Na1.5La1.5TeO6 6 

structure with monoclinic P21/n symmetry. (d) Arrhenius plots of the ionic conductivity 7 

and diffusion coefficient of Na1.5La1.5TeO6 (reproduced from Ref.73, with permission 8 

from the Royal Society of Chemistry). (e) Anti-perovskite structure illustration of 9 

Li3OCl0.5Br0.5. (f) Arrhenius plots of log(σT) versus 1/T for Li3OCl and Li3OCl0.5Br0.5 10 

anti-perovskites (reproduced from Ref.72, with permission from the American Chemical 11 

Society). Trajectory plots of (g) lithium ions (blue) in Li3OCl and (h) sodium ions 12 

(purple) in Na3OCl with an alkali-chloride partial Schottky defect concentration of 13 

δ=0.038 at 700 K for 10 ns simulations. O and Cl ions are given in red and silver, 14 

respectively (reproduced from Ref.147, with permission from the American Chemical 15 

Society). 16 

 17 
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4.1.3 Argyrodite-type SSEs 1 

Argyrodite-type SSEs, also known as LISICON-type SSEs79, have attracted 2 

considerable interest because of their high ion conductivity of up to 25 × 10−3 S cm−1149, 3 

150 151-155. Liu et al.156 synthesized an argyrodite-type SSE β-Li3PS4 based on Li2S and 4 

P2S5 and achieved a lithium ionic conductivity of 1.6 × 10−4 S cm−1. This material has 5 

prompted researchers to further explore this field. Subsequent developments include 6 

Li7P2S8I (6.3 × 10−4 S cm−1)157, 0.4LiI-0.6Li4SnS4 (4.1 × 10−4 S cm−1)158, Na3SbS4 (2.0 × 7 

10−4 S cm−1)159, and Li7P3S11 (1.5 × 10−3 S cm−1)160. Among various potential SSE 8 

candidates (e.g., garnet and perovskite) for SSESDs, argyrodite-type SSEs are the most 9 

competitive because of their practicability and promising electrochemical 10 

performance161. 11 

Considerable efforts have been devoted to optimizing the ionic conduction 12 

pathway to obtain argyrodite-type SSEs with a high ionic conductivity. Zhang et al.77 13 

studied halogen-doped Li6PS5X (X=Cl, Br, I) and showed that Li6PS5Cl possesses the 14 

highest ionic conductivity of 1.8 × 10−3 S cm−1 because of good lithium ion channels. 15 

Zhou et al.78 tuned the chlorine content (Li6−yPS5−yCl1+y, y=0.5) and improved the 16 

lithium ionic conductivity to 3.9 mS·cm−1. Kamaya et al.80 doped Ge in an argyrodite-17 

type SSE to form Li10GeP2S12 with a 1D lithium conduction pathway along the c axis 18 

composed of (Ge0.5P0.5)S4 tetrahedra and LiS6 octahedra (Fig. 9a) and obtained a high 19 

lithium ionic conductivity of 12 × 10−3 S cm−1 at room temperature (Fig. 9b). Kraft et 20 

al.81 explored the influence of aliovalent substitution in argyrodite-type SSE 21 

Li6+xP1−xGexS5I (Fig. 9c). After Ge content increases to 25 at%, an anion site disorder 22 
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is induced, and the activation barrier for ionic motion drops remarkably, leading to 1 

ionic conductivities of 5.4 ± 0.8 × 10−3 S cm−1 in a cold-pressed state and 18.4 ± 2.7 × 2 

10−3 S cm−1 upon sintering at 550 °C (Fig. 9d). 3 

Zhang et al.82 reported an argyrodite-type SSE Na11Sn2PS12 (sodium ionic 4 

conductivity of 1.4 × 10−4 S cm−1) with sodium ion conduction pathways that flow 5 

through equienergetic sodium sulfur octahedra interconnected by partial vacancy 6 

crossover sites in all crystallographic dimensions. They provided insights into the 7 

underlying isotropic 3D fast-ion conduction (Fig. 9e). Ramos et al.83 synthesized 8 

argyrodite-type SSE Na11Sn2SbS12 by replacing P with Sb. Na11Sn2SbS12 possesses the 9 

same structural framework as Na11Sn2PS12, while sodium ions transport through similar 10 

3D pathways, thereby exhibiting an enhanced sodium ion conductivity of 0.56 mS·cm−1. 11 

Yu et al.84 fabricated argyrodite-type SSE Na10.8Sn1.9PS11.8 by adjusting the element 12 

ratio. They obtained a large number of intrinsic sodium vacancies and 3D sodium ionic 13 

conduction pathways (Fig. 9f) and a high ionic conductivity of 6.7 × 10−4 S cm−1 at 25 °C. 14 

Duchardt et al.85 presented an argyrodite-type SSE Na11Sn2PS12, which possesses a 15 

sodium ionic conductivity close to 4 × 10−3 S cm−1. These studies have emphasized the 16 

importance of vacancies, which interconnect ion migration pathways in a 3D manner 17 

to improve SSE conductivity.  18 

Although argyrodite-type SSEs usually possess a higher conductivity than their 19 

oxide counterparts, the former are unstable against moisture and tend to produce toxic 20 

H2S gas94. Zhu et al.76 designed a new kind of argyrodite-type SSE Li-B-H with an ionic 21 

conductivity of 2.7 × 10−4 S cm−1. LiH and [Li2B12H11+1/n]n are formed in a LiBH4 matrix 22 
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in situ, and an interface layer between [Li2B12H11+1/n]n and LiBH4 is responsible for a 1 

high ion conductivity. Future research will focus on increasing the ionic conductivity 2 

of argyrodite-type SSEs without sulfur and developing novel argyrodite-type SSEs. 3 

 4 

Fig. 9 (a) Crystal structure of Li10GeP2S12, framework structure, and lithium ions that 5 

participate in ionic conduction. (b) Lithium ionic conductivity of Li10GeP2S12, 6 

impedance plots of the conductivity data from low to high temperatures, and Arrhenius 7 

conductivity plots (reproduced from Ref.80, with permission from Nature). (c) Crystal 8 

structure of Li6PS5X (X=I) in which I− forms a face-centered cubic lattice, with PS4 9 

tetrahedra in Oh voids and a free S2− on half of the tetrahedral vacant sites (4d). (d) 10 

Arrhenius plots of the conductivity values for Li6+xP1−xGexS5I (0≤x≤0.8; reproduced 11 

from Ref.81, with permission from the American Chemical Society). (e) Sodium ion 12 

probability density isosurface (yellow) obtained from ab initio molecular dynamics 13 

(AIMD) studies at 1050 K for 40 ps. Sodium diffusion along the c axis involves a 14 

pathway along -Na(4)-Na(1)-Na(3)-Na(1)- chains; the sodium ion probability density 15 

obtained from the AIMD sodium ion trajectories in the ab plane shows the pathways at 16 
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z=0.125 and z=0.25 (reproduced from Ref.82, with permission from the Royal Society 1 

of Chemistry). (f) Crystal structure of Na10.8Sn1.9PS11.8 and different views of a single 2 

crystal; white in the sodium sphere indicates the ratio of vacancies (reproduced from 3 

Ref.84, with permission from Elsevier). 4 

 5 

4.1.4 Phosphate-type SSEs 6 

The importance of exploring new SSEs for SSESDs has led to significant interests 7 

in phosphate-type materials because of their high ionic conductivities and low GB 8 

resistance95, 162. Phosphate-type SSEs, also known as NASICON-type SSEs, are formed 9 

by linking phosphorus oxide tetrahedron and metal oxygen octahedron. Ramar et al.87 10 

prepared phosphate-type SSE Li1.1Zr1.9La0.1(PO4)3 with a lithium ionic conductivity of 11 

7.2 × 10−5 S cm−1. Yan et al.89 reported a microwave sintering method to produce 12 

phosphate-type SSE Li1.5Al0.4Ga0.1Ge1.5(PO4)3 that has a lithium ionic conductivity of 13 

6.67 × 10−4 S cm−1. 14 

Phosphate-type SSEs with new compositions and crystal structures should be 15 

developed to achieve high ionic conductivities163-165. Liang et al.86 synthesized 16 

phosphate-type SSE LiTi2(PO4)3 that has a lithium ionic conductivity of 2.1 × 10−5 S 17 

cm−1 and is made of a 3D framework of TiO6 octahedra and PO4 tetrahedra (Fig. 10a), 18 

thereby providing channels for lithium ion transport166. Yi et al.88 synthesized 19 

Li1.3Al0.3Ti1.7(PO4)3 powder via a sol-gel route and sintered the powder at 1000 °C for 20 

6 h to produce phosphate-type SSE Li1.3Al0.3Ti1.7(PO4)3, which shows a high lithium 21 

ionic conductivity of 4.2 × 10−4 S cm−1 because of an increase in the grain size and 22 
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density of Li1.3Al0.3Ti1.7(PO4)3 ceramic (Fig. 10b).  1 

Deng et al.92 studied Sc-substituted phosphate-type SSE 2 

Na3ScxZr2−x(SiO4)2−x(PO4)1+x and Na2ScyZr2−y(SiO4)1−y(PO4)2+y (x, y=0−1). The 3 

conduction pathways of Na+ are plotted via three different approaches (Fig. 10c). (i) 4 

Molecular dynamics (MD) density plots of sodium ion reveal the migration pathways 5 

and lattice regions that are most frequently traversed by mobile Na ions. (ii) Bond 6 

valence energy landscapes (BVELs) obtained via the bond valence sum method require 7 

a crystal structure as an input and can probe possible ion diffusion pathways with 8 

minimal computational cost. (iii) Maximum entropy method (MEM)/Rietveld analysis 9 

involves scattering densities by giving the maximum variance of the calculated 10 

structure factors within the standard deviations of the observed ones. Sodium ion 11 

diffusion in SSEs is 3D, and a continuous exchange of sodium ions between Na(1) and 12 

Na(2) sites is present. Na3Sc0.25Zr1.75(SiO4)1.75(PO4)1.25 shows a sodium ionic 13 

conductivity of about 0.1 S cm−1 (Fig. 10d). Kehne et al.95 reported Sc-substituted 14 

phosphate-type SSE Na3Zr2(SiO4)2(PO4) with a sodium ionic conductivity of 4 × 10−3 S 15 

cm−1 for Na|SSE|NaxCoO2 cells, which show a specific capacity of 150 mAh g−1 at 6.0 16 

C for 100 cycles. 17 

Wang et al.167 investigated the diffusion pathway of aluminum ion in phosphate-18 

type SSE (Al0.2Zr0.8)20/19Nb(PO4)3 for rechargeable solid-state aluminum-ion batteries. 19 

(Al0.2Zr0.8)20/19Nb(PO4)3 has a rhombohedral structure consisting of a framework of 20 

(Zr,Nb)O6 octahedra that shares corners with (PO4) tetrahedral. Aluminim ions occupy 21 

trigonal antiprisms, thereby exhibiting extremely large displacement factors. Wang et 22 
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al.167 suggested a strong displacement of aluminum ions along the c axis of a unit cell 1 

as they diffuse across the structure via a vacancy mechanism (Fig. 10e). An 2 

Al|SSE|V2O5 nanorod/rGO cell presents initial discharge capacities of 7.5 and 10 3 

mAh·g−1 at 120 °C and 150 °C from 0.01 V to 2.0 V versus Al3+/Al at 2 mA·g−1, 4 

respectively (Fig. 10f). This research provides a basis for studying solid-state 5 

aluminum-ion batteries. 6 

In general, phosphate-type SSEs are prepared through sintering at high 7 

temperatures (1000 °C) for a prolonged time, which is unfavorable for industrial 8 

applications168, 169. New research should be conducted to prepare phosphate-type SSEs 9 

at low temperatures. 10 
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 1 

Fig. 10 (a) Predominant lithium ion conduction pathway at room temperature and 2 

possible predominant lithium ion conduction pathway at >135 °C (reproduced from 3 

Ref.166, with permission from Elsevier). (b) Arrhenius plot of the conductivity of a 4 

LiTi2(PO4)3 ceramic (reproduced from Ref.88, with permission from Elsevier). (c) 5 

Sodium ion diffusion pathways obtained from different techniques: (1) left, MD density 6 

plot of Na+ (473 K) accumulating for 1 ns with a step of 1 ps; (2) center, BVEL methods 7 

with an iso-energy surface value of 1.0 eV; (3) right, MEM/Rietveld method with an 8 

iso-surface level of 0.05 fm Å−3; and (d) Arrhenius plot for 9 

Na3Sc0.25Zr1.75(SiO4)1.75(PO4)1.25 (red), Na2Zr2(SiO4)(PO4)2 (blue), and Na2ScZr(PO4)3 10 
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(green; reproduced from Ref.92, with permission from the American Chemical Society). 1 

(e) Crystal structure of (Al0.2Zr0.8)20/19Nb(PO4)3 consisting of a framework of 2 

(Nb,Zr)O6 octahedra sharing corners with PO4 tetrahedra. (f) Initial discharge–charge 3 

profiles of a solid-state Al|SSE|V2O5 nanorod/rGO cell at 2 mA·g−1 at 120 °C and 4 

150 °C, respectively; reproduced from Ref.167, with permission from the Chinese 5 

Physical Society and IOP). 6 

 7 

4.2 Organic SSEs, including gel, single polymer, blending polymer and polymer 8 

with filling types 9 

Inorganic SSEs have interface problems and are usually prepared at high-10 

temperature calcination. By contrast, organic SSEs, such as gel, single polymer, 11 

blending polymer and polymer with filling types, attract considerable interests because 12 

of their simple polymerization process at room temperature and good interface contact. 13 

 14 

4.2.1 Gel-type SSEs 15 

Gel-type SSEs have been widely explored for flexible solid-state supercapacitors 16 

and other aqueous solid-state batteries170. A good gel-type SSE usually requires a 17 

combination of a high ion migration rate, a reasonable mechanical strength, and a robust 18 

water retention ability in a solid state to ensure excellent durability171. Łatoszynska et 19 

al.96 prepared a mechanically stable nonaqueous proton-conducting gel-type SSE based 20 

on methacrylate monomers and diphenyl phosphate. The use of phosphoric acid ester 21 

as a proton donor has led to an increase in operation voltage window (0–1.3 V) and 22 
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electrolyte ionic conductivity (3.1 × 10−4 S cm−1). Chodankar et al.98 reported gel-type 1 

SSE polyvinylpyrrolidone/LiClO4 for flexible solid-state supercapacitors. A symmetric 2 

MnO2|SSE|MnO2 supercapacitor yields an operating potential window of 1.6 V and an 3 

energy density of 23 Wh kg−1 at a power density of 1.9 kW kg−1. Veerasubramani et 4 

al.172 used a gel-type SSE composed of polyvinyl alcohol/H3PO4/Na2MoO4 to fabricate 5 

a flexible cable-type supercapacitor. A graphene oxide|SSE|graphene oxide 6 

supercapacitor exhibits a length capacitance and energy density of 18.75 mF cm−1 and 7 

2.6 mWh cm−1, respectively. Su et al.173 used an aqueous polyvinylpyrrolidone-based 8 

gel-type SSE to assemble a Zn|SSE|FeCo–N–C cell and demonstrated a good charging–9 

discharging performance, a long life time (12 h), and a high flexibility. Luo et al.174 10 

designed a gel-type SSE by utilizing tetraethylene glycol dimethyl ether, ethoxylated 11 

trimethylolpropane triacrylate, and 2-hydroxy-2-methyl-1-phenyl-1-propanon for 12 

lithium-oxygen batteries (Li|SSE|reduced graphene oxide@RuOx) that display a 13 

voltage of higher than 2.2 V after 140 cycles at 0.4 mA cm−2, with a capacity of 1000 14 

mAh g−1. 15 

Chodankar et al.175 reported that the water contact angles of polyvinyl alcohol (Fig. 16 

11aA), hydroxymethyl cellulose (Fig. 11aB), and polyethylene oxide (Fig. 11aC) gel 17 

electrolytes are 10°, 36.8°, and 63.3°, respectively. This result indicates that polyvinyl 18 

alcohol gel electrolytes possess a hydrophilic nature. Thus, a gel-type SSE composed 19 

of polyvinyl alcohol/LiClO4 has a hydrophilic nature and a good contact with active 20 

electrode materials. This trait is beneficial to the electrochemical performance of energy 21 

storage devices. Peng et al.99 reported zwitterionic gel-type SSE polypropylsulfonate 22 
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dimethylammonium propylmethacrylamide (PPDP)/LiCl with the synergic advantages 1 

of robust water retention ability and ion migration channels, thereby manifesting a 2 

superior electrochemical performance. As illustrated in Fig. 11b, PPDP possesses a 3 

positively charged quaternary ammonium group and a negatively charged sulfonate 4 

group on the same monomeric unit. Given the strong electrostatic interactions between 5 

charged groups and water molecules, PPDP is highly hydrated by the surrounding water 6 

molecules with a robust water retention ability. An ion migration channel can be 7 

developed within a hydration layer along PPDP chains between two electrodes by 8 

applying an external electric field because of the robust water retention ability of PPDP 9 

gel electrolytes. Supercapacitors with PPDP gel electrolytes yield specific capacitances 10 

of 300.8, 298.2, 292.4, 279.6, 270.4, and 256.0 F cm−3 at current densities of 0.8, 1, 2, 11 

4, 8, and 20 A cm−3 in a solid state, respectively. These values are larger than those of 12 

supercapacitors with polyvinyl alcohol (PVA) gel electrolytes (Fig. 11c). Pandey et al.97 13 

designed a flexible, free-standing, thermostable gel-type SSE based on plastic 14 

crystalline succinonitrile (SN) and ionic liquid (IL) 1-butyl-3-methylimidazolium 15 

tetrafluoroborate entrapped in poly(vinylidene fluoride-co-hexafluoropropylene). The 16 

temperature dependence of the ionic conductivity of gel SSEs leads to ionic 17 

conductivities ranging from ~0.5 × 10−3 S cm−1 at −30 °C to ~15 × 10−3 S cm−1 at 80 °C 18 

(Fig. 11d). Thermal studies have confirmed that IL-SN-gel SSEs remain stable in the 19 

same gel phase within a wide temperature range of −30 °C to 90 °C (Fig. 11e). Xia et 20 

al.176 reported a gel-type SSE based on poly(vinylidene fluoride-co-21 

hexafluoropropylene) for solid-state lithium-sulfur (Li|SSE|sulfur) batteries. Thus, 22 
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these batteries present a high initial capacity of 918 mAh g−1 at 0.05 C and an improved 1 

cycle performance for 40 cycles compared with those of their counterparts with liquid 2 

electrolytes because of the effective suppression of the shuttle effect of polysulfides 3 

(Fig. 11f). 4 

Gel-type SSEs play an important role in the development of flexible SSESDs 5 

because of their high ionic conductivity and good flexibility. However, the poor 6 

mechanical properties of gel-type SSEs pose a safety hazard in dynamic applications, 7 

and the mechanical properties of gel-type SSEs should be improved on the basis of gel 8 

selection, additive addition, and solidification condition control. Embedding a 9 

conventional energy storage device separator during the solidification of a gel-type SSE 10 

is also an effective method to improve its safety. Our group214, 215 also demonstrated 11 

that the solidification of gel-type SSEs on an electrode surface helps improve the 12 

electrochemical performance of devices. Our study is also a valuable reference for the 13 

assembly of high-performance flexible devices. 14 
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 1 

Fig. 11 (a) Contact angles of polyvinyl alcohol (A), hydroxymethyl cellulose (B), and 2 

polyethylene oxide (C) gel electrolyte film on a substrate (reproduced from Ref.175, with 3 

permission from Elsevier). (b) Schematic of a gel SSE applied to electrodes. An ion 4 

migration channel is formed by applying an external electric field. (c) Comparison of 5 

the specific capacitances for graphene-based supercapacitors between poly 6 

(propylsulfonate dimethylammonium propylmethacrylamide) and polyvinyl alcohol 7 

gel electrolytes at different current densities (reproduced from Ref.99, with permission 8 

from Nature). (d) Temperature dependence of the ionic conductivity of a gel SSE 9 

containing different amounts of crystalline SN and IL. (e) Differential scanning 10 

calorimeter curves of pure poly(vinylidene fluoride-co-hexafluoropropylene) film, pure 11 
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SN, IL-gel, IL-SN-gel-1, IL-SN-gel-2, and IL-SN-gel-3 (reproduced from Ref.97, with 1 

permission from Elsevier). (f) Cycling performance of Li|liquid electrolyte|sulfur and 2 

Li|SSE|sulfur cells at 0.05 C (reproduced from Ref.176, with permission from Wiley). 3 

 4 

4.2.2 Single polymer-type SSEs 5 

Dry single polymer-type SSEs have been extensively investigated because of their 6 

flexibility, wide range of operation temperature, and excellent cycle life177. Polymer-7 

type SSEs can effectively suppress the growth of metal dendrites and thus avoid the 8 

short circuit of batteries178 179 180. Various polymersincluding polyethylene oxide181, 9 

polyacrylonitrile182, and poly(methyl methacrylate)183, have been widely studied as 10 

SSEs. 11 

In single polymer-type SSEs, microscopic ion transport is related to the segmental 12 

motion of polymer chains above the glass transition temperature184, thereby creating 13 

free volumes for hopping ions that coordinate with polar groups. An ion can hop from 14 

one coordinating site to another, thereby accompanying the segmental motion of 15 

polymer chains185. In an electrical field, long distance transport is realized by 16 

continuous hopping.  17 

Zeng et al.103 designed a polymer-type SSE with an interpenetrating network of 18 

poly(ether acrylate) (ipn-PEA, Fig. 12a), thereby exhibiting high mechanical strength 19 

(ca. 12 GPa, Fig. 12b) and good ionic conductivity (2.2 × 10−4 S cm–1). A Li|ipn-20 

PEA|LiFePO4 cell within 4.5 V vs Li+/Li operates effectively at 5.0 C (Fig. 12c). Feng 21 

et al.102 designed a polymer-type SSE based on a cyclic carbonate-cyclic ether 22 
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copolymer (Fig. 12d). SSEs with a vinylene carbonate (VC)/tetrahydrofurfuryl acrylate 1 

molar ratio of 5:1 and 25 wt% LiTFSI have a higher ionic conductivity of 1.58 × 10−4 S 2 

cm−1 at ambient temperature than that of poly-VC (PVCA, Fig. 12e). Cyclic carbonate 3 

segments in polymer-type SSEs provide high mechanical integrity, whereas cyclic ether 4 

groups promote the dissociation of lithium salts and the formation of a stable solid 5 

electrolyte interphase (SEI). Nag et al.104 prepared a high-ion-conducting polymer-type 6 

SSE by using organoborane-modified polybenzimidazole (B-PBI) and IL, 1-butyl-3-7 

methylimidazolium bis(trifluoromethane-sulfonyl)imide (BMImTFSI, Fig. 12f). 8 

Electrolytes with B-PBI/BMImTFSI (wt%/wt%, 25/75) yield a conductivity of 8.8 × 9 

10−3 S cm−1. A Si|SSE|Li cell presents a reversible capacity of up to 1300 mAh g−1. Zhao 10 

et al.186 created polymer-type SSE polyethylene oxide stabilized by the task-specific 11 

trinal salt additives of LiBOB, LiNO3, and LiTFSI (Fig. 12g). Li|SSE with a trinal salt 12 

additive|LiNi1/3Co1/3Mn1/3O2 cell displays a capacity of 136.6 mAh g−1 at 0.1 C, with a 13 

Coulombic efficiency of 99% after 60 cycles. 14 
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 1 

Fig. 12 (a) Illustration of the preparation of ipn-PEA electrolytes and the proposed 2 

electrochemical deposition behavior of a Li metal with an ipn-PEA electrolyte. (b) 3 

Young’s modulus mapping of the ipn-PEA electrolyte. (c) Rate capabilities and 4 

corresponding galvanostatic discharge/charge voltage profiles of a Li|ipn-5 

PEA|LiFePO4 cell (reproduced from Ref.103, with permission from the American 6 

Chemical Society). (d) Schematic of solid polymer electrolytes based on a cyclic 7 

carbonate-cyclic ether copolymer. (e) Temperature-dependent ionic conductivity of 8 
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SSEs (reproduced from Ref.102, with permission from Wiley). (f) Speculated 1 

mechanism of lithium ion conduction in the system (reproduced from Ref.104, with 2 

permission from the Royal Society of Chemistry). (g) Scheme of preparing 3 

polyethylene oxide SSEs and the corresponding digital pictures of free-standing single 4 

salt and trinal salt polymer SSE membrane (reproduced from Ref.186, with permission 5 

from the Royal Society of Chemistry). 6 

 7 

4.2.3 Blending polymer-type SSEs 8 

Although the single polymer-type SSEs have been used as semicrystalline or 9 

amorphous host matrices for the preparation of organic SSEs,187-189 some issues have 10 

emerged due to the drawback of single polymer.59, 107, 190 For example, crystalline phase 11 

presenting in the polyethylene oxide materials reduces favourable ion conductive paths 12 

and results in low ionic conductivity; the brittleness of poly (methyl methacrylate) 13 

limits the fabrication of desirable shape, size, and flexibility for SSESDs.106, 191 To 14 

address these shortcomings of single polymer-type SSEs, blending polymer-type SSE 15 

has been proposed to complement the properties between different polymers. Dhatarwal 16 

et al.106 prepared a blending polymer-type SSE of polyethylene oxide and poly (methyl 17 

methacrylate) blend (50/50 wt%) with lithium tetrafluoroborate (LiBF4) ionic salt, 18 

delivering an ionic conductivity of 10−6 S cm−1 at room temperature and an 19 

electrochemical window of 0 to 4.5 V due to the combination of good properties of 20 

polyethylene oxide and poly (methyl methacrylate).  21 

Rathika et al. 108 improved the ionic conductivity of polyethylene oxide-type SSEs 22 
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(2.5 × 10−4 S cm−1 at room temperature) by adding 10 wt% poly (vinylidene difluoride) 1 

to 90 wt% polyethylene oxide with 15 wt% Zn(CF3SO3)2 (Fig. 13a). To improve the 2 

ionic conductivity and thermal stability of a polyethylene oxide-type SSE for LIBs, Lim 3 

et al.109 incorporated poly (methyl methacrylate) into polyethylene oxide matrix. The 4 

blending polymer-type SSE with polyethylene oxide: poly (methyl methacrylate) = 8:1 5 

exhibited the highest ionic conductivity of 1.35 × 10−4 S cm−1 at room temperature 6 

(from 10−8 S cm−1) and good mechanical stability because of the high specific surface 7 

area and mesoporosity of the blending polymer-type SSE. Li et al.110 reported the 8 

diethylethyletherylmethanamine bis(trifluoromethanesulfonyl)imide (DEEYTFSI) 9 

ionic liquid polymer electrolyte based on polyurethane acrylate (PUA)/poly(methyl 10 

methacryltae) (PMMA) SSE. The optimized 19 wt% DEEYTFSI SSE exhibits good 11 

flexible (Fig. 13b), tensile properties (Fig. 13c), and smallest apparent activation energy 12 

21.1 kJ mol−1 and the highest ionic conductivity of 2.76 × 10−4 S cm−1 at room 13 

temperature (Fig. 13d), together with a stable electrochemical window of 4.70 V (2.3 14 

to 7.0 V, Fig. 13e) for lithium-ion battery among the studied 15 wt% and 21 wt% 15 

DEEYTFSI SSE samples. The coin-typed cell cycled at 0.1 C retained 95% Coulombic 16 

efficiency on the 50th cycle, that is attributed to the combination of good properties of 17 

PUA and PMMA. Ma et al.111 prepared a blending polymer-type SSE, based on lithium-18 

bis(trifluoromethanelsulfonyl) (LiTFSI), polyvinylidenedifluoride (PVDF) and 19 

polyvinyl alcohol (PVA) copolymer, achieving a high ionic conductivity up to 4.31 × 20 

10−4 S cm−1 at room temperature. The electrochemical performance of the blending 21 

polymer-type SSE was evaluated in Li|SSE|LiFePO4 coin cell. Good performance with 22 
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low capacity fading on charge–discharge cycling was achieved, and high specific 1 

discharge capacity of 123 mAhg−1 along with a Coulombic efficiency of 97.1% after 2 

100 cycles was retained. In future research, a design guideline needs to be established 3 

to blend different polymers to achieve the tailored physicochemical properties. 4 

 5 

Fig. 13 (a) Schematic diagrams for the formation of SSE systems (reproduced from 6 

Ref.108, with permission from the Springer). Photograph of SSE prepared by the 7 

optimum concentration of 7 wt.% LiTFSI, 19 wt.% DEEYTFSI, 15 wt.% PUA and 8 
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59 wt.% MMA: (b) flexible property; (c) tensile property. (d) Temperature-dependent 1 

ionic conductivity of polymer electrolyte consists of different wt.% of DEEYTFSI in 2 

the range of 20–80 °C. (e) Electrochemical stability window of 19 wt.% 3 

DEEYTFSI/7 wt.% LiTFSI/15 wt.% PUA/59 wt.% PMMA electrolyte (reproduced 4 

from Ref.110, with permission from the Elsevier). 5 

 6 

4.2.4 Polymer with filling-type SSEs 7 

The polymer-type SSEs, with filling of TiO2
192, SiO2

193, ZrO2
194, and metal organic 8 

frameworks112, have demonstrated to exhibit an improved electrochemical stability of 9 

the interfaces in SSESDs, superior ionic conductivity and good mechanical strength as 10 

compared to those without filling186, 195, 196. Johnsi et al.115 reported that 5 wt% CeO2 11 

nanofiller added in 75 wt% poly(vinylidenefluoride-co-hexafluoropropylene) and 25 12 

wt% zinc trifluoromethanesulfonate (ZnTf) organic-type SSE exhibited a zinc ionic 13 

conductivity of 3 × 10−4 S cm−1 at room temperature and increased the decomposition 14 

voltage of the polymer electrolyte from 2.4 to 2.7 V, attributing to an increase in the 15 

amorphous content of the SSE.  16 

Shi et al.114 investigated the effects of the addition of nano-sized oxide fillers 17 

(Al2O3, TiO2, SiO2) on the characteristics of the blending polymer-type SSE. Fig. 14a 18 

shows the schematic illustration of the procedure for the preparation of the organic SSE, 19 

including the processes of casting, drying, peeling and immersion etc. Organic-type 20 

SSE with filling of SiO2 results in more amorphous region and porous structure, which 21 

can effectively hold the liquid electrolyte by capillary forace, and then increase the 22 
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absorbability of liquid electrolyte, and further facilitate the migration of cations at the 1 

electrode/electrolyte interface. As a result, such nano-sized oxide filled SSE can 2 

provide high ionic conductivity of 1.27 × 10−3 S cm−1 at room temperature, together 3 

with enhanced electrochemical stability. Furthermore, the polymer with filling-type 4 

SSE possesses a large electrochemical window from 0 to 5.3 V and superior thermal 5 

stability up to 200 oC. Recently, Choudhury et al.197 developed a mechanically roboust 6 

hybrid electrolyte composed of hairy SiO2 grafted polyethylene oxide and 7 

polypropylene oxide (SiO2-PEO-PPO) as show in Fig. 14b. Such nanoparticle-polymer 8 

electrolyte exhibits simultantously high mechanical modulus (1 MPa) and high ionic 9 

conductivity (5 × 10−3 S cm−1) at ambient temperature. Li|SiO2-PEO-PPO| LTO cell 10 

with PC/1 M LiTFSI liquid electrolyte salt exhibits prolong short circuit time and good 11 

cycling performance at 1C (0.50 mA cm−2) compared to cells with other state-of-the-art 12 

polymer electrolytes (Fig. 14c). Suriyakumar et al.112 explored the aluminium 13 

terephthalic acid metal organic framework (Al-TPA-MOF) polymer with filling-type 14 

SSE based on a polyethylene oxide (80 wt%) network with lithium 15 

bis(trifluoromethane)sulfonimide (LiTFSI, 10 wt%) and Al-TPA-MOF (10 wt%). Al-16 

TPA-MOF was synthesized by an electrolytic process and dried under vacuum at 50 °C 17 

for 5 days; its structure is shown in Fig. 14d. This polymer-type SSE with filling of Al-18 

TPA-MOF, having an ionic conductivity of 1 × 10−4 S cm−1 at 60  °C (Fig. 14e), is 19 

mechanically robust and thermally stable up to 270  °C. Such high ionic conductivity  20 

is attributed to the porous structure of Al-TPA-MOF that promoting a rapid ion transport. 21 

The all-solid-state lithium sulfur cell delivers a specific capacity of 800  mAh g−1, and 22 
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a stable performance upon prolonged cycling (50 cycles) even at 60  °C.  1 

 2 

Fig. 14 (a) Schematic illustration of the preparation of the polymer with filling-type 3 

SSE. (b) Schematic illustion of the synthesis of SiO2 nanoparticles tethered with 4 
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hydroxy-terminated polyethylene oxide blended with polypropylene oxide (SiO2-PEO-1 

PPO) hybrid electrolyte. (c) Comparison of short circuit time of cells with SiO2-PEO-2 

PPO hybrid electrolyte and cells with state-of-the-art electrolytes (reproduced from 3 

Ref.197, with permission from the Nature Publishing Group). (d) Sketched 4 

representation of the polymer SSE with filling-type of Al-TPA-MOF in lithium sulfur 5 

cell. (e) Arrhenius plot of the ionic conductivity as a function of the inverse temperature 6 

(reproduced from Ref.112, with permission from the Elsevier). 7 

 8 

4.3 Hybrid SSEs 9 

Hybrid SSEs are emerging as a promising solution to achieving high ionic 10 

conductivity, optimal mechanical properties, and good safety for the development of 11 

high-performance SSESDs198 199-201. The common polymer hosts of composite polymer 12 

electrolytes are polyethylene oxide, polyacrylonitrile, poly(methyl methacrylate), and 13 

poly(vinyl chloride)1. Some active materials, such as Li1.5Al0.5Ti1.5(PO4)3
202 and 14 

Li6.75La3Zr1.75Ta0.25O12
203, are dispersed or embedded in a polymer matrix to reinforce 15 

mechanical stability. The interaction of inorganic particles with polymer electrolytes 16 

not only increases the mechanical strength of polymers but also decrease the 17 

crystallization of polymers; thus, ion conductivity is enhanced204.  18 

Xu et al.205 designed a hybrid SSE by using polyvinyl alcohol, polyethylene oxide, 19 

KOH, and Na2SnO3 for a fiber-shaped solid-state aluminum-air battery. The obtained 20 

hybrid SSE improves the battery’s stability and safety by reducing the corrosion of the 21 

aluminum anode. An Al|SSE|Ag@carbon nanotube cell displays a specific capacity of 22 
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935 mAh g−1 at 0.5 mA cm−2 and an energy density of 1168 Wh kg−1. Zhao et al.116 1 

reported a hybrid SSE Li10GeP2S12/polyethylene oxide for solid-state lithium batteries, 2 

displaying an electrochemical window of 0−5.7 V and a lithium ionic conductivity of 3 

1.18 × 10−5 S cm−1. A Li|SSE|LiFePO4 cell exhibits a capacity retention of 92.5% after 4 

50 cycles at 60 °C and capacities of 158, 148, 138, and 99 mAh g−1 at 0.1, 0.2, 0.5, and 5 

1 C, respectively. Zhang et al.177 reported a hybrid SSE Li7La3Zr2O12/poly(vinylidene 6 

fluoride-co-hexafluoropropylene) with a lithium ionic conductivity of 1.1 × 10−4  S 7 

cm−1 for high-performance solid-state lithium-ion batteries. A Li|SSE|LiFePO4 cell 8 

exhibits an initial reversible discharge capacity of 120 mA h g−1 at 0.5 C and a capacity 9 

retention of 92.5% after 180 cycles.  10 

Bae et al.206 investigated the ion transport mechanism in 3D nanostructured hybrid 11 

SSE Li0.35La0.55TiO3/polyethylene oxide (Fig. 15a). The degree of percolation and the 12 

interphase volume decrease, and a discontinuous lithium-ion conducting path is 13 

generated by lowering the lithium-ion conductivity because of the agglomeration of 14 

Li0.35La0.55TiO3 nanoparticles. The enhanced conductivity of the hybrid SSE with a 15 

Li0.35La0.55TiO3 framework is attributed to a prepercolated 3D interconnected 16 

Li0.35La0.55TiO3 network, thereby providing a continuous interphase, which serves as a 17 

pathway for lithium-ion conduction. This study provides a theoretical guidance for the 18 

design of hybrid SSEs. Chen et al.117 reported hybrid SSE 19 

Li6.4La3Zr1.4Ta0.6O12/polyethylene oxide with a lithium ionic conductivity of > 0.1 × 20 

10−3 S cm−1 (Fig. 15b) and demonstrated that the hybrid SSEs of “ceramic-in-polymer” 21 

and “polymer-in-ceramic” can be applied to solid-state lithium batteries. The 22 
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Li|SSE|LiFePO4 cell has a capacity of 139.1 mAh g−1, a retention of 93.6% after 100 1 

cycles (Fig. 15c), a capacity retention of 103.6%, and a Coulombic efficiency of 100% 2 

after 50 cycles (Fig. 15d) at 0.2 C and 55 °C. Wang et al.119 designed a hybrid SSE 3 

Li1.5Al0.5Ge1.5(PO4)3/polyethylene oxide with an ionic conductivity of 1.67 × 10−4 S 4 

cm−1 (Fig. 15e) by using an ice template whose vertical Li1.5Al0.5Ge1.5(PO4)3 walls 5 

provide continuous channels for fast ionic transport, while a polyethylene oxide matrix 6 

renders the composite electrolyte flexible. The viable approach involving an ice 7 

template to fabricate hybrid SSEs with a high ionic conductivity has also been 8 

demonstrated. Liang et al.121 reported a hybrid SSE Li7La3Zr2O12/poly(vinylidene 9 

fluoride-co-hexafluoropropylene) with an ionic conductivity of 3.71 × 10−4 S cm−1. A 10 

Li|SSE|LiFePO4 cell presents a discharge capacity of 163.1 mAh g−1, with 83.8% 11 

capacity retention after 200 cycles at 0.2 C (Fig. 15f). Zhang et al.122 fabricated a hybrid 12 

SSE Li6PS5Cl/polyethylene oxide with a lithium ionic conductivity of ∼1 × 10−3 S cm−1 13 

by adding 5 wt% polyethylene oxide into Li6PS5Cl and verified that adding a suitable 14 

polymer content in ceramic particles can effectively inhibit interfacial reactions and 15 

lithium dendrite growth, thereby considerably improving the cycling performance of 16 

solid-state lithium batteries. Therefore, Li|SSE|LiNi0.8Co0.1Mn0.1O2 cells exhibit a 17 

capacity of 75.6 mA h g−1 and a capacity retention of 91% of >200 cycles at 0.05 C. 18 

Huo et al.118 developed a sandwich‐type ceramic-in-polymer electrolyte (with 20 vol% 19 

200 nm Li6.4La3Zr1.4Ta0.6O12 particles and polyethylene oxide) that has an ionic 20 

conductivity of 1.6 × 10−4 S cm−1. A Li|SSE|LiFePO4 cell (Fig. 15g) shows a discharge 21 

capacity of 118.6 mAh g−1, with a capacity retention of 82.4% after 200 cycles at 0.1 22 
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C. At 0.2 and 0.5 C, this cell maintains the specific capacities of 95.7 and 63.2 mAh g−1, 1 

respectively. This case points out that fabricating sandwich‐type composite electrolytes 2 

with hierarchical filler designs can be an effective strategy to achieve dendrite‐free 3 

batteries with high performance and high safety at room temperature. 4 

Hybrid SSEs combine the advantages of inorganic and organic SSEs to provide a 5 

good choice for the acquisition of high-performance SSESDs. At present, studies focus 6 

on the combination and optimization of various inorganic and organic SSEs to improve 7 

the properties of hybrid SSEs. Ultrathin and lightweight hybrid SSEs with high ionic 8 

conductivity are desired to achieve energy density comparable with liquid electrolyte-9 

based cells181. The direct integration of an electrode with hybrid SSEs into SSESDs is 10 

an important research direction, but their chemical and electrochemical 11 

incompatibilities are still a challenge207. 12 

 13 

Fig. 15 (a) Schematic of the possible conduction mechanism in composite electrolytes 14 

with agglomerated nanoparticles and a 3D continuous framework (reproduced from 15 
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Ref.206, with permission from Wiley). (b) Schematic of 1 

Li6.4La3Zr1.4Ta0.6O12/polyethylene-oxide. (c) Cycling stability of Li|liquid 2 

electrolyte|LiFePO4 and Li|SSE|LiFePO4 cells at 0.2 C and 55 °C. (d) Cycling 3 

performance of the Li|SSE|LiFePO4 cell at 0.2 C and 55 °C (reproduced from Ref.117, 4 

with permission from Elsevier). (e) Schematic of the preparation of ice-templated 5 

Li1.5Al0.5Ge1.5(PO4)3/polyethylene oxide (reproduced from Ref.119, with permission 6 

from Elsevier). (f) Cycling performance of a Li|SSE|LiFePO4 cell at a voltage of 2.4–7 

4.0 V at 0.2 C in 200 cycles (reproduced from Ref.121, with permission from Elsevier). 8 

(g) Schematic of hierarchical sandwich-type SSE (reproduced from Ref.118, with 9 

permission from Wiley). 10 

 11 

5 Interfacial contact between electrodes and SSEs 12 

In this section, we discussed SSE classifications and compared their ion 13 

conductivities. For inorganic SSEs, microstructure control, such as element doping, can 14 

significantly improve their ionic conductivity. For instance, Li7P3S11 (3.2 × 10−3 S cm−1) 15 

is modified to Li9.54Si1.74P1.44S11.7Cl0.3 (25 × 10−3 S cm−1) with Si and Cl dopants; 16 

LiTi2(PO4)3 (3.8 × 10−7 S cm−1) is also modified to Li1.3Al0.3Ti1.7(PO4)3 (6.2 × 10−3 S 17 

cm−1) with Al dopant91, 127, 208, 209. However, a crucial challenge of SSE is reducing the 18 

high interfacial resistance between electrodes and SSEs in energy storage systems, and 19 

such high resistance is required for stable, reversible, and efficient electrochemical 20 

energy storage210. Recent research progress on SSESDs has shown that some strategies 21 

have been proposed to tackle the interfacial resistances between electrodes and SSEs, 22 
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such as hybrid interface, interlayer interface, solid-liquid interface, quasi-solid-state 1 

interface, and in-situ solidification interface (Table 2). 2 
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Table 2 Electrochemical performance, device composition, and interfacial resistance of different solid-state energy storage devices with various 

interfaces. 

Interface 

type 

Battery Device composition Interfacial resistance 

reduction (Ω) 

Resistance 

reduction 

percentage (%) 

Electrochemical performance Ref. 

 Anode SSE Cathode Specific capacity 

(mAh g−1) 

Cycles Rate 

Hybrid 

interface 

Li battery Li Li7P3S11 MoS2@Li7P3S11 ∼330 to 225 (cathode) 31.8 (298.16 K) 547.1  400 0.1 C 211 

Li-S 

battery 

Li Li6PS5Cl Li2S@Li6PS5Cl - - 830 60 50 mA g-1 9 

Na battery Na15Sn4 Na3PS4 Na4C6O6@Na3P

S4 
∼343 to 109 (cathode) 68.2 (333.16 K) 184 400 0.2 C 17 

Interlayer 

interface 

Li battery Li Li10GeP2S12/LiH2PO4 LiCoO2 ∼5000 to 2500 (anode) 50 (198.16 K) 131.1 500 0.1 C 212 

Na battery Na Na3SbS4/polyethylene oxide Na ∼6000 to 1500 (anode) 75 (333.16 K) - 800 0.1 mA cm-2 213 

Na battery Na Na3Zr2Si2PO12/CPMEA Na ∼4000 to 1000 (anode) 75 (338.16 K) 102 70 0.2 C 18 

Solid-liquid 

interface 

Li battery Li-In Li6PS5Cl-LiTFSI liquid LiNi0.6Co0.2Mn0.

2O2 
∼14.8 to 10.4 

(cathode) 

29.7 (303.16 K) 172 - 0.025 C 19 

Li battery Li Li6PS5Br-LiPF6 liquid LiNi1/3Co1/3Mn1

/3O2 

- - 154 30 0.13 mA cm-2 214 

Li battery Carbon 

nanotube 

Li6PS5Br-LiPF6 liquid Li4Ti5O12 - - 163 200 0.2 C 215 

Na battery Na Na3Zr2Si2PO12-NaPF6 liquid Na3V2(PO4)3 ∼1250 to 55 (cathode) 95.6 (298.16 K) 90 10000 10 C 94 

Quasi-solid-

state interface 

Li-O2 

battery 

Li Poly(vinylidene fluoride-co-

hexafluoropropylene)/LiTFSI gel 

O2 ∼800 to 600 (both 

cathode and anode) 

25 (298.16 K) - 553 0.1 mA cm-2 216 

Supercapac

itor 

Carbon cloth Polyvinyl alcohol/KOH gel CuO supported 

on La1-

xSrxCoO3-δ 

∼3 to 1.5 (both 

cathode and anode) 

50 (298.16 K) 1.26 F cm−2 3500 10 mA cm−2 217 

Li−I 

battery 

Li Pentaerythritol-

tetraacrylate/LiTFSI gel 

MXene-based 

iodine 
∼180 to 82 (both 

cathode and anode) 

54.4 (298.16 K) 330 1000 0.5 C 218 

Li-S 

battery 

Li Trimethylolpropane triacrylate 

polymer/LiTFSI gel 

S ∼185 to 40 (both 

cathode and anode) 

79.5 (298.16 K) 670 250 0.1 C 219 

Li–CO2 

battery 

Li Poly(vinylidene fluoride-co-

hexafluoropropylene)/LiTFSI gel 

CO2 - - ∼3.4 40 0.08 mA cm-2 220 

 Zn–MnO2 

battery 

Zn Polyvinyl alcohol/ZnCl2/MnSO4 

gel 

MnO2 ∼30 to 23 (both 

cathode and anode) 

23.3 (298.16 K) 366.6 300 1110 mA g-1 221 

In-situ Li battery Li Poly-1,3-dioxolane/LiTFSI Li 95.4 (298.16 K) - 300 1 mA cm-2 21 
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solidification 

interface 

 LiFePO4 ∼6500 to 230 (both 

cathode and anode) 

∼95 700 1 C 
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5.1 Hybrid interface between electrodes and SSEs 1 

To improve the interfacial contact and reduce the interfacial resistance of 2 

electrodes and SSEs in devices, researchers mixed electrode materials and SSE 3 

materials to form a hybrid interface sintered in an inert atmosphere. Chi et al.17 designed 4 

a hybrid interface that is a mixture of cathode Na4C6O6 and SSE Na3PS4 for a solid-5 

state Na15Sn4|Na3PS4|Na4C6O6@Na3PS4 cell, as shown in Fig. 16a. SEM images and 6 

energy-dispersive X-ray (EDX) spectra indicate the intimate contact between cathode 7 

materials and SSEs (Fig. 16b), thereby decreasing the interfacial resistance from 343 Ω 8 

to 109 Ω because of the increased interface contact. The 9 

Na15Sn4|Na3PS4|Na4C6O6@Na3PS4 cell has a specific capacity of 184 mAh g−1, a 10 

specific energy of 395 Wh kg−1, and a capacity retention of 76% after 100 cycles at 0.1 11 

C and 70% after 400 cycles at 0.2 C. Han et al.9 designed the hybrid interface of 12 

Li2S@Li6PS5Cl by dissolving Li2S (cathode material), polyvinylpyrrolidone (carbon 13 

precursor), and Li6PS5Cl (SSE) in ethanol and by conducting coprecipitation and high-14 

temperature carbonization (Fig. 16c). Li2S cathode materials and Li6PS5Cl SSE are 15 

uniformly confined in a carbon matrix, with distinct properties of lithium storage 16 

capability, mechanical reinforcement, and ionic and electronic conductivities. The 17 

Li|Li6PS5Cl|Li2S@Li6PS5Cl cell achieves a reversible capacity of 830 mAh g−1 at 50 18 

mA g−1 for 60 cycles.  19 

In addition to mixing and sintering, the direct coating of SSEs on an electrode 20 

surface is an effective way to form a hybrid interface to reduce the interfacial resistance 21 

between electrodes and SSEs. Xu et al.211 uniformly coated SSE Li7P3S11, with an ionic 22 
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conductivity of 2.0 × 10−3 S cm−1, on MoS2 to form a MoS2@Li7P3S11 interface (Fig. 1 

16d) for solid-state Li|Li7P3S11|MoS2@Li7P3S11 cells that exhibit a reversible capacity 2 

of 547.1 mAh g−1 at 0.1 C and a capacity of 238.1 mAh g−1 after 400 cycles, with a 3 

Coulombic efficiency of almost 100%. Their interfacial resistance decreases from 330 4 

to 225 Ω (Fig. 16e). Wang et al.222 also evaluated a solid-state 5 

Li|IL/MOF|LiFePO4@IL/MOF cell, which exhibits an initial discharge capacity of 145 6 

mAh g−1 and a capacity of 132 mAh g−1 after 100 cycles at 0.1 C at a temperature range 7 

of −20 °C to 150 °C. The unique interfacial contact between SSEs and active electrodes 8 

due to an interfacial wettability effect of the nanoconfined guests, which create an 9 

effective 3D lithium ionic conductive network throughout the whole battery, is a key 10 

factor of the excellent performance of Li|IL/MOF|LiFePO4@IL/MOF cells. 11 
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 1 

Fig. 16 (a) Schematic of a solid-state sodium battery. (b) SEM image of a 2 

cathode/electrolyte cross-section (left top) and a cathode surface (right top) and the 3 

corresponding EDX mapping of O and S (bottom; reproduced from Ref.17, with 4 

permission from Wiley). (c) Schematic of the bottom-up synthesis of the mixed 5 

conducting Li2S nanocomposites (reproduced from Ref.9, with permission from the 6 

American Chemical Society). (d) Schematic of the preparation of MoS2@Li7P3S11 7 

hybrid interface. (e) Nyquist plots of an all-solid-state cell with untreated MoS2 and 8 

MoS2@Li7P3S11 (reproduced from Ref.211, with permission from Elsevier). 9 

 10 

5.2 Interlayer interface between electrode and SSE 11 

Embedding a thin interlayer between electrodes and SSEs can improve the 12 
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mechanical connection between them, thereby providing another strategy for reducing 1 

the interfacial resistance in devices223 224, 225. Zhang et al.212 prepared an inorganic 2 

LiH2PO4 interlayer to circumvent the intrinsic chemical stability issues between SSE 3 

Li10GeP2S12 and anode lithium, such as the migration of mixed ionic-electronic 4 

reactants to the inner part of Li10GeP2S12 and the kinetically sluggish reactions in an 5 

SSE/anode interface because of an increase in the connection between anode lithium 6 

and SSE Li10GeP2S12 due to the LiH2PO4 interlayer (Fig. 17a). The optimized 7 

Li|LiH2PO4/Li10GeP2S12|LiCoO2 cell, with a reduction in the interfacial resistance from 8 

5000 Ω to 2500 Ω (Fig. 17b), has a reversible discharge capacity of 131.1 mAh g−1 at 9 

the initial cycle and 113.7 mAh g−1 at the 500th cycle under 0.1 C, with a retention of 10 

86.7%. Hu et al.213 demonstrated that an organic cellulose polyethylene oxide interlayer 11 

can stabilize the interface of sodium/Na3SbS4 and reduce the interfacial resistance from 12 

4000 Ω to 1000 Ω by suppressing the electron pathway of the Na3SbS4 decomposition 13 

reaction (Fig. 17c). The Na|cellulose polyethylene oxide/Na3SbS4/cellulose 14 

polyethylene oxide|Na cell shows a capacity of 102 mAh g−1 and a cycle life of 800 15 

cycles at 0.1 mA cm−2 at 60 °C.  16 

Zhou et al.18 fabricated an interlayer between a metal sodium and SSE 17 

Na3Zr2Si2PO12 through a heat treatment of sodium and the SSE in a cross-linked 18 

poly(ethylene glycol) methyl ether acrylate (CPMEA, Fig. 17d), resulting in a uniform 19 

sodium-ion flux across the interface, reducing the interfacial resistance from 4000 Ω to 20 

400 Ω, and suppressing unwanted dendrite formation. The 21 

Na|CPMEA/Na3Zr2Si2PO12/CPMEA|NaTi2(PO4)3 cell shows a stable capacity of 102 22 
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mAh g−1 for 70 cycles at 0.2 C at 65 °C, with a high Coulombic efficiency of 99.7%. 1 

Fan et al.226 produced a LiF interlayer between a lithium anode and a SSE Li3PS4 2 

through IL LiFSI decomposition and deposition (Fig. 17e). The low electronic 3 

conductivity and high electrochemical stability of LiF interlayer blocked the side 4 

reactions between lithium and Li3PS4. The Li|LiF/Li3PS4|LiCoO2 cell has a capacity of 5 

120 mAh g−1 at 0.3 mA cm−2 between 3.5 and 3.8 V, with a Coulombic efficiency 6 

of >99.8%. 7 

 8 

Fig. 17 (a) Schematic of the preparation of LiH2PO4 interlayer. (b) The EIS plots of 9 

Li|Li10GeP2S12|LiCoO2 and Li|LiH2PO4/Li10GeP2S12|LiCoO2 cells at different cycles 10 

(reproduced from Ref.212, with permission from the American Chemical Society). (c) 11 

Cellulose polyethylene oxide interlayer between SSE Na3SbS4 and sodium anode 12 

(reproduced from Ref.213, with permission from the American Chemical Society). (d) 13 

Contact model of a solid electrolyte ceramic pellet and sodium metal, including a 14 

ceramic pellet with a poor wetting ability and an artificial interlayer with a good wetting 15 
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ability during sodium plating (reproduced from Ref.18, with permission from the 1 

American Chemical Society). (e) Interlayer between lithium metal and SSEs 2 

(reproduced from Ref.226, with permission from the American Association for the 3 

Advancement of Science).  4 

 5 

5.3 Solid-liquid interface between electrode and SSE 6 

The ionic conductivity of liquid electrolytes is much higher than that of SSEs. A 7 

solid–liquid interface refers to the addition of a small amount of liquid electrolytes 8 

between electrodes and SSEs, thereby serving as an effective medium for improving 9 

interface wettability and reducing interfacial resistance227, 228. Zhang et al.94 enhanced 10 

the charge transfer rate at the Na3V2(PO4)3 cathode and SSE Na3Zr2Si2PO12 interface 11 

through a small amount of nonflammable and nonvolatile IL (0.8M NaPF6 salt in 12 

ethylene carbonate-dimethyl carbonate, Fig. 18a). IL acts as a wetting agent, thereby 13 

enabling a favorable interface kinetics and reducing the interfacial resistance from 1250 14 

Ω to 55 Ω (Fig. 18b). The Na|SSE-IL |Na3V2(PO4)3 cell exhibited a specific capacity of 15 

90 mAh g−1 after 10,000 cycles without capacity decay at 10.0 C. Oh et al.19 reported a 16 

scalable slurry fabrication protocol (Fig. 18c) to prepare IL-based polymeric binders 17 

(NBR-Li(G3)TFSI, NBR: nitrile−butadiene rubber, G3: triethylene glycol dimethyl 18 

ether, LiTFSI:lithium bis(trifluoromethanesulfonyl)imide) with SSE Li6PS5Cl, thereby 19 

eliminating undesirable side reactions or phase separation and reducing the interfacial 20 

resistance from 14.8 Ω to 10.4 Ω. The capacity of a Li-In|Li6PS5Cl-NBR-21 

Li(G3)TFSI|LiNi0.6Co0.2Mn0.2O2 cell (Fig. 18d) at 0.025 C is 172 mAh g−1, which is 22 
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higher than that of a battery without the liquid interface (131 mAh g−1). Yubuchi et 1 

al.214 synthesized SSE Li6PS5Br from a homogeneous solution via a liquid-phase 2 

technique. Fig. 18e shows the schematic of the infiltration process and the cross-3 

sectional SEM images of the infiltrated LiNi1/3Mn1/3Co1/3O2 electrodes before and after 4 

pressing. Li–In|Li6PS5Br-1 M LiPF6 in ethylene carbonate and diethyl 5 

carbonate|LiNi1/3Mn1/3Co1/3O2 cell exhibits a high reversible capacity of 154 mAh g−1 6 

at 0.13 mA cm−2. Yubuchi et al.215 used an infiltration technique to make a solid-state 7 

battery (carbon nanotube|Li6PS5Br-1M LiPF6 in ethylene carbonate and diethyl 8 

carbonate|Li4Ti5O12) that yields a capacity of 163 mAh g−1, with 88% retention for 500 9 

cycles.  10 

Although the addition of liquid electrolytes can reduce interface resistance to some 11 

extent by improving the contact and wettability between electrodes and SSEs, the 12 

stability of a solid–liquid electrolyte interface is still controversial. Busche et al.229 13 

demonstrated that the ion conduction mechanism in two additional interfaces between 14 

solid/liquid electrolytes and a resistive solid–liquid electrolyte interphase (SLEI) 15 

changes from the diffusion of solvated ions in liquid electrolytes to a hopping 16 

mechanism attributed to ion transport in solid electrolytes (Fig. 18f). The interface 17 

between a fast-ion-conducting SSE and a conventional liquid electrolyte is chemically 18 

unstable and forms a resistive SLEI. Weiss et al.230 also found that a highly resistive 19 

solid–liquid electrolyte is formed between SSEs and liquid electrolytes, and this 20 

formation cannot be slowed down or suppressed during cycling.  21 
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 1 

Fig. 18 (a) Schematic of Na|SSE|Na3V2(PO4)3 and Na|SSE-ionic liquid|Na3V2(PO4)3 2 

solid-state batteries. (b) Impedance spectrum of Na|SSE|Na3V2(PO4)3 and Na|SSE-3 

ionic liquid|Na3V2(PO4)3 solid-state battery (reproduced from Ref.94, with permission 4 

from Wiley). (c) Schematic of the microstructures of LiNi0.6Co0.2Mn0.2O2 (NCM) 5 

electrodes with and without LiG3. The highlighted blue arrows indicate Li+ ionic 6 

pathways enabled by LiG3. (d) First-cycle charge–discharge voltage profiles of 7 

ultrathick (≈200 µm) LiNi1/3Mn1/3Co1/3O2 electrodes with and without LiG3 (1.6 or 2.5 8 

wt%) at 0.025 C (reproduced from Ref.19, with permission from Wiley). (e) Schematic 9 

of the infiltration of a LiNi1/3Mn1/3Co1/3O2 porous electrode with Li6PS5Br via a liquid-10 

phase technique. Cross-sectional FE-SEM images of the infiltrated NMC electrode 11 

before (upper image) and after (bottom image) pressing (reproduced from Ref.214, with 12 

permission from the Royal Society of Chemistry). (f) Schematic of ion transport and 13 
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resistance contributions in cells with solid–liquid phase boundaries (reproduced from 1 

Ref.229, with permission from Nature). 2 

 3 

5.4 Quasi-solid-state gel interface between electrodes and SSEs 4 

To tackle problems in the formation of SLEI in SSESDs, researchers proposed a 5 

quasi-solid-state interface between electrodes and SSEs. This interface refers to a gel-6 

like interface formed by an organic electrolyte between electrodes and SSEs217. Lei et 7 

al.231 fabricated a quasi-solid-state battery by introducing a SSE polyethylene oxide 8 

with soluble LiI as a cathode material, anthraquinone as an anode, and a nafion 9 

membrane as a separator (Fig. 19a). Solar energy can be converted and stored as 10 

chemical energy under light irradiation, which is further converted to electrical energy 11 

in the dark. The anthraquinone|SSE|LiI cell has a capacity retention of 86.3% after 30 12 

cycles at 4 mA g−1, whereas the anthraquinone|liquid electrolyte|LiI cell shows a 13 

capacity retention of 52.0% after 19 cycles.  14 

Sun et al.20 introduced a functional gel SSE (polyvinylidene fluoride-co-15 

hexafluoropropylene/cellulose acetate, grafted by sodium alginate) to increase the 16 

stability of LiNi0.88Co0.09Al0.03O2. An ion-conducting layer is formed on the interface 17 

between LiNi0.88Co0.09Al0.03O2 and a SSE through a chemical interaction between 18 

transition-metal cations of a LiNi0.88Co0.09Al0.03O2 cathode and a metalophilic reticulum 19 

group in sodium alginate (Fig. 19b). Hence, the interfacial compatibility on the 20 

cathode/electrolyte interface is enhanced, and the interfacial resistance decreases from 21 

420 Ω to 130 Ω (Fig. 19c). The Li|SSE|LiNi0.88Co0.09Al0.03O2 cell shows a capacity of 22 
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204.9 mAh g−1 at a rate of 1.0 C and a high discharge capacity retention of 68.33% 1 

within 300 cycles. Zeng et al.221 fabricated a quasi-solid-state Zn–MnO2 battery by 2 

utilizing a gel SSE polyvinyl alcohol/ZnCl2/MnSO4. The Zn|polyvinyl 3 

alcohol/ZnCl2/MnSO4|MnO2 cell presents a reduced interfacial resistance of 23 Ω (from 4 

30 Ω), a capacity of 366.6 mAh g−1 with a retention of >77.7%, and a Coulombic 5 

efficiency of nearly 100% after 300 cycles. Zhao et al.216 used a gel SSE β-phase 6 

poly(vinylidene fluoride-co-hexafluoropropylene) in a Li|SSE|Ni foam@Co3O4 cell 7 

that achieves a smaller interfacial resistance (600 Ω) and a long cycle life (203 cycles) 8 

with a limited capacity of 0.1 mAh cm−2 at 0.1 mA cm−2 than the cell without a gel SSE 9 

(Li|LiClO4|Ni foam@Co3O4, 800 Ω, 165 cycles). 10 

The formation of a quasi-solid-state interface between electrodes and SSEs 11 

depends on the type of gel SSEs that have good wettability and high plasticity. Tang et 12 

al.218 developed a quasi-solid-state Li–I battery (a MXene-based iodine cathode and a 13 

gel SSE made of NaNO3 particles dispersing in pentaerythritol tetraacrylate, Fig. 19d) 14 

that simultaneously suppresses the diffusion of I species, stabilizes the Li anode/SSE 15 

interface against dendrite growth, and reduces the interfacial resistance from 180 Ω 16 

(without gel SSE) to 82 Ω, resulting in a stable capacity of 330 mAh g-1 at 0.5 C for 17 

1000 cycles. 18 

Cho et al.219 demonstrated a monolithic heterojunction quasi-SSEs (MH-QEs) 19 

based on thermodynamically immiscible dual phases of anodes (tetraethylene glycol 20 

dimethyl ether)/cathodes (ethyl methyl sulfone). Driven by the combined effects of 21 

structural uniqueness and thermodynamic immiscibility, electrode-customized MH-22 
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QEs provide an exceptional electrochemical performance that lies far beyond those 1 

accessible with conventional batteries composed of 1,3-dioxalane (DOL)/1,2-2 

dimethoxyethane (DME) electrolytes. A Li|ethoxylated trimethylolpropane triacrylate 3 

polymer|S cell has a capacity of 670 mAh g−1 and a Coulombic efficiency of 98.3% 4 

after 250 cycles at 0.1 C because the interfacial resistance reduces from 185 Ω (liquid 5 

electrolyte) to 40 Ω (Fig. 19e). Zhou et al.220 designed a quasi-solid-state fiber-shaped 6 

Li–CO2 battery by using a gel SSE poly(vinylidene fluoride-co-hexafluoropropylene). 7 

The Li|SSE|Mo2C/carbon nanotube cell achieves a charge potential of <3.4 V and an 8 

energy efficiency of 80% and can be reversibly discharged and charged for 40 cycles at 9 

0.08 mA cm−2 with 0.08 mAh cm−2. Yang et al.232 reported a flexible quasi-solid-state 10 

microsupercapacitor based on free-standing black phosphorous thin films and gel SSE 11 

polyvinyl alcohol/H3PO4. The supercapacitor exhibits a capacity of 26.67 F cm−2 and a 12 

capacity retention of 94.3% after 50,000 cycles at 500 mA cm−3.  13 
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 1 

Fig. 19 (a) Configuration and electron transfer scheme of the designed quasi-solid-state 2 

solar rechargeable battery with a gel SSE polyethylene oxide (reproduced from Ref.231, 3 

with permission from the American Chemical Society). (b) Schematic of the functional 4 

mechanism of SA-PHC. (c) EIS spectra of a cell with LE and SA-PHC after the selected 5 

cycles (reproduced from Ref.20, with permission from the American Chemical Society). 6 

(d) Schematic of the preparation of MXene-wrapped carbon cloth–iodine cathodes and 7 

a composite polymer electrolyte (reproduced from Ref.218, with permission from the 8 

American Chemical Society). (e) Cycling performance of cells with MH-QE and 9 

DOL/DME electrolytes at 0.1 C (reproduced from Ref.219, with permission from the 10 

Royal Society of Chemistry). 11 

 12 

5.5 In-situ solidification interface between electrodes and SSEs 13 
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Although quasi-solid-state interfaces have good contact and wettability, can solve 1 

interfacial problems, and can improve the electrochemical performance of SSESDs, the 2 

poor mechanical contact properties of gel SSEs seriously affect the stability of energy 3 

storage devices. Thus, the in situ solidification of SSEs to achieve a good interfacial 4 

contact between electrodes become an effective approach in SSESD fabrication. Zhao 5 

et al.21 used cationic aluminum species that initiate the ring-opening polymerization of 6 

molecular ethers to produce polymer SSEs, thereby retaining the conformal interfacial 7 

contact with electrodes (Fig. 20a). The SSE (polymerized DOL, poly-DOL) exhibits a 8 

high ionic conductivity (1 × 10−3 S cm−1) at room temperature. The Li|poly-DOL|Li cell 9 

displays uniform lithium deposition and high lithium plating/striping efficiencies 10 

of >98% after 300 charge–discharge cycles at 1 mA cm−2 (Fig. 20b) and low interfacial 11 

resistances (decreased from 6500 Ω of ex situ polymer to 230 Ω of poly-DOL, Fig. 20c). 12 

A Li|poly-DOL|LiFePO4 cell with a capacity of 95 mAh g−1 and a Coulombic efficiency 13 

of 99% for 700 cycles at 1.0 C can be achieved with an in-situ solidification interface 14 

(Fig. 20d). This study provides a promising direction for the in-situ solidification of 15 

SSEs, thereby meeting the interfacial conductivity requirements for practical solid-state 16 

polymer batteries. 17 
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 1 

Fig. 20 (a) Schematic of ex-situ and in-situ syntheses of polymer SSEs. (b) Coulombic 2 

efficiencies as a function of cycle number for liquid DOL and poly-DOL electrolyte. (c) 3 

EIS of symmetrical Li cells with a liquid DOL electrolyte, a poly-DOL SSE, and an ex-4 

situ polymer. (d) Galvanostatic cycling performance and Coulombic efficiencies of 5 

Li|liquid DOL|LFP (red) and Li|poly-DOL|LFP cells (blue and purple; reproduced from 6 

Ref.21, with permission from Nature). 7 

 8 

6 Perspectives on SSESDs 9 

We provide our perspectives on the rational design of SSESDs based on SSE 10 

selections and approaches in reducing the interfacial resistance between electrodes and 11 

SSEs. 12 

 13 

6.1 Design principle 14 
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SSEs are generally required to have a high ionic conductivity of  > 1 × 10−3 S cm−1. 1 

Our previous study233 showed that NASICON-type SSE Na3Zr2Si2PO12 with an ionic 2 

conductivity of 1.3 × 10−3 S cm−1 delivers a high discharge voltage of 2.88 V and a low 3 

voltage gap of 0.14 V at 0.1 mA cm−2 in hybrid sodium-air batteries. Quasi-solid-state 4 

interfaces exhibit a superior electrochemical performance in supercapacitors because 5 

of their good mechanical contact234-236. These two factors are discussed here in detail, 6 

and directions for the development of SSEs and SSESDs are provided. 7 

In SSESDs, SSEs not only separate positive and negative electrodes to prevent 8 

internal short circuit but also provide a channel for ion transmission between positive 9 

and negative electrodes. The bandgap of inorganic SSEs can be tuned by doping 10 

elements and constructing 3D ion transport channels, thereby accelerating ion transport 11 

performance in electrochemical processes. New inorganic SSEs, especially argyrodite- 12 

and phosphate-type SSEs with a high ion conductivity, require further research. Organic 13 

SSEs with good flexibility can be the preferred electrolyte for flexible energy storage 14 

devices. However, the low ionic conductivity of polymer-type SSEs and the poor 15 

mechanical stability of gel-type SSEs remain the largest challenge hindering their 16 

applications. Hybrid SSEs formed by the combination of organic and inorganic SSEs 17 

are expected to be widely explored because of the improvement of ionic conductivity 18 

with high flexibility.  19 

A good interfacial contact between electrodes and SSE can effectively improve the 20 

electrochemical performance in SSESDs. Our works suggested that the in-situ 21 

solidification of SSEs is a promising strategy to improve the interfacial contact between 22 



71 

 

electrodes and SSEs and achieve the industrialization of high-performance SSESDs237, 1 

238.  2 

 3 

6.2 Practical applications 4 

High-performance SSESDs have many applications, including smart grid systems, 5 

EVs, electronic devices, and flexible and wearable devices, which may require a 6 

particular method to assemble SSEs with electrodes. The proper selection of SSE for 7 

each application is discussed below (Fig. 21).  8 

 9 

 10 
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Fig. 21 Perspective: Design and configuration of high-performance SSESDs for 1 

practical applications. 2 

 3 

6.2.1 Smart grid systems 4 

The application of energy storage devices in smart grid systems mainly includes 5 

backup power, energy storage from renewable energy sources, and grid frequency 6 

modulation239. Backup powers should have excellent self-discharge performance, low 7 

cost, and high safety level240. Typical operating conditions are a small charge/discharge 8 

current rate (0.5 C) and a large depth of discharge (100%) in the application of energy 9 

storage from renewable energy sources241. Grid frequency modulation requires that an 10 

energy storage device can be under a large charge/discharge current rate (1.0 C) and a 11 

small discharge depth (45%–55%)242. Therefore, smart grid systems require SSESDs 12 

with sufficient stability and suitable rate performance. An inorganic SSE with a high 13 

ionic conductivity can be the first choice to meet these requirements because of its good 14 

aging resistance and structural stability. Hybrid or interlayer interfaces between SSEs 15 

and electrodes can be used to reduce interface resistance and meet the requirements of 16 

the large current discharge for grid frequency modulation. Thus, the ionic conductivity 17 

of energy storage devices and C rate performance are improved. 18 

 19 

6.2.2 EVs 20 

The sales of EVs reached ~0.78 million in 2017243, and their accumulated sales are 21 

projected to reach 5 million in 2020239. In addition to the requirements of high energy 22 
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density and safety in charging and discharging, energy storage devices in EVs can 1 

achieve a high power density244, 245. Thus, a high ion conductivity of SSEs with good 2 

mechanical strength is critically needed. Design options can be selected as follows: (1) 3 

inorganic SSEs exhibiting a high ionic conductivity and a high mechanical strength and 4 

combined with a solid–liquid interface or a quasi-solid-state interface, or (2) hybrid 5 

SSEs that can be formed via in-situ solidification. 6 

 7 

6.2.3 Electronic devices 8 

SSESDs in portable electronic devices, such as cell phones and tablets, require a 9 

high ionic conductivity of SSEs for the fast charging rate of batteries246-248. Gel SSEs 10 

with a quasi-solid-state interface and hybrid SSEs that can be formed via in-situ 11 

solidification can be the choice for this application. 12 

 13 

6.2.4 Flexible and wearable devices 14 

Flexible and wearable electronic devices are often in intimate contact with the 15 

human body, thereby requiring electrolytes to have sufficient flexibility249, 250. 16 

Electrolyte leakage should be prevented even under extremely damaged conditions. In 17 

general, bracelets and watches do not require a large current discharge (0.5 A). Thus, 18 

the high ionic conductivity of SSEs may not be a major consideration251, 252. A hybrid 19 

SSE with a “ceramic-in-polymer” structure178 that can be formed via in-situ 20 

solidification will be the focus of future research on flexible and wearable SSESDs. 21 

 22 
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7 Conclusion and outlooks 1 

Available commercial energy storage devices/systems cannot satisfy the 2 

increasing energy and power demands of electronic devices, EVs, and smart grid 3 

systems. Particularly, liquid electrolytes for energy storage devices suffer from 4 

inadequate electrochemical and thermal stabilities, low ion selectivity, poor safety, and 5 

even fire hazards. These problems may be efficiently resolved by replacing liquid 6 

electrolytes with SSEs. SSEs have potential for application in suppressing metal 7 

dendrite formation. However, the low ionic conductivity of SSEs and the high interface 8 

resistance between electrodes and SSEs have become the largest bottleneck that limits 9 

the developments of SSESDs. SSEs and SSESDs have been widely explored for 10 

electrochemical energy storage technologies and become new research directions 11 

because they can provide energy storage devices with enhanced safety and increased 12 

energy and power densities. In this review, various classes and features of SSEs, such 13 

as inorganic SSEs, organic SSEs, and hybrid SSEs, and interface designs in SSESDs, 14 

such as hybrid interface, interlayer interface, solid–liquid interface, quasi-solid-state 15 

interface, and in-situ solidification interface, are comprehensively reviewed, paving the 16 

way for the development of next-generation high-performance SSESDs. SSEs with 17 

distinct characteristics can be obtained, and various interfaces in energy storage devices 18 

can be designed, providing a rich selection for the preparation of SSESDs for various 19 

applications, such as smart grid systems, EVs, electronic devices, and flexible and 20 

wearable devices. 21 

SSESDs are promising high-safety, high-energy, and high-power devices. Hybrid 22 
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SSEs and in-situ solidification interfaces have been extensively investigated in the field 1 

of energy storage. Many opportunities and challenges are still present in the research of 2 

SSEs. Additional efforts are needed to further improve the mechanical strength and 3 

ionic conductivity of SSEs, reduce interfacial resistance through interface modification 4 

and design, and ensure the high power density and structural stability of SSESDs. 5 

SSESDs should be developed as competitive technologies for energy storage and 6 

solutions for various energy-related challenges. 7 
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