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A B S T R A C T   

Biodiversity underpins the supply of ecosystem services essential for well-being and economic development, yet 
biodiversity loss continues at a substantial rate. Linking biodiversity indicators with national economic accounts 
provides a means of mainstreaming biodiversity into economic planning and monitoring processes. Here we 
examine the various strategies for biodiversity indicators to be linked into national economic accounts, specif
ically the System of Environmental-Economic Accounts Experimental Ecosystem Accounting (SEEA EEA) 
framework. We present what has been achieved in practice, using various case studies from across the world. 
These case studies demonstrate the potential of economic accounting as an integrating, mainstreaming frame
work that explicitly considers biodiversity. With the right indicators for the different components of biodiversity 
and scales of biological organisation, this can directly support more holistic economic planning approaches. This 
will be a significant step forward from relying on the traditional indicators of national economic accounts to 
guide national planning. It is also essential if society’s objectives for biodiversity and sustainable development 
are to be met.   

1. Introduction 

The importance of biodiversity to human well-being is well estab
lished (e.g., via IPBES, 2019; MA, 2005; TEEB, 2010) and enshrined in 
multiple international commitments (e.g., the United Nations (UN) 
Sustainable Development Goals (SDGs) and the Convention on Biolog
ical Diversity’s (CBD) Aichi Targets). Many of the biological entities 
constituting biodiversity, including individual species, contribute 
directly to human well-being (e.g., fisheries, non-timber forest products, 
wildlife watching and pollination). More generally, biodiversity as a 
whole is key to maintaining ‘ecosystem functioning’ (Devictor et al., 
2010; Díaz et al., 2007; Hooper et al., 2005) and, in turn, indirectly 
supplying a broad set of ecosystem services that benefit people (Balva
nera et al., 2014, 2006; Cardinale et al., 2012; Tilman et al., 2006). 
Biodiversity is also critical in maintaining ecosystem services flows 
during times of disturbance or stress that ecosystems may experience, 
for example, climate variability, pollution incidents or fires. This 

resilience is achieved via ‘functional redundancy,’ where different as
pects of biodiversity (e.g., species) can perform similar ecosystem 
functions, but are affected by disturbance in different ways (Elmqvist 
et al., 2003; Mori et al., 2013). 

In these ways, biodiversity is crucial for maintaining the capacity for 
current and future ecosystem service supply, especially as pressures on 
ecosystems continue to build. Despite these clear imperatives for 
maintaining biodiversity, the recent Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services report (IPBES, 2019), 
highlights continuing and substantial declines across all three compo
nents of biodiversity (ecosystem diversity, species diversity and genetic 
diversity, see Fig. 1). The UN Agenda for Sustainable Development 
explicitly recognizes that these biodiversity losses are exacerbating the 
development challenges humanity faces (UN, n.d.). The IPBES (2019) 
report identifies that declines in biodiversity undermine progress to
wards 80 % of the SDG Targets related to poverty, hunger, health, water, 
cities, climate, oceans and land. To help address these losses, IPBES 
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(2019), the CBD (via Aichi Target 2) and the SDGs themselves (via SDG 
Target 15.9) all call for the mainstreaming of biodiversity and ecosystem 
services into development planning. 

In order to mainstream biodiversity into decision making, policy 
makers, land managers, businesses and other actors need a regularly 
updated and consistent supply of information on biodiversity and the 
benefits it provides (Hein et al., 2020; Vardon et al., 2019). The System 
of Environmental-Economic Accounts Experimental Ecosystem Ac
counting (SEEA EEA) has been developed to extend the System of Na
tional accounts and provide the information system that responds to 
these needs (UN et al., 2017, 2014). There is now a growing group of 
countries producing biodiversity-related SEEA EEA accounts (Ruijs and 
Vardon, 2019). Examples include the European Union (EU) via the KIP 
INCA project (UNEP-WCMC, 2019, 2017; Vallecillo et al., 2018), the 
Netherlands (Bogaart et al., 2020), Mexico (Schipper et al., 2017), the 
Southeast USA (Warnell et al., 2020), KwaZulu-Natal, South Africa 
(Driver et al., 2015) and the Great Barrier Reef in Australia (ABS, 2017). 
The upcoming CBD Conference of the Parties provides an important 
opportunity for the biodiversity community to call for other countries to 
also commit to producing biodiversity-related SEEA EEA accounts 
(Burnett et al., 2020; Nature, 2020). 

The aim of this paper is to encourage the integration of biodiversity 
into national accounts by demonstrating a set of biodiversity indicators 
and statistics that might be useful to embed and link to the SEEA EEA. In 
Section 2, we describe the SEEA EEA framework and how biodiversity 
features in this accounting model. In Section 3, we present an expanded 
vision of the SEEA EEA, linked to indicators for different components of 
biodiversity and scales of biological organisation. In Section 4, we pre
sent three Species Accounting case studies. The focus on Species Ac
counts reflects that accounting for this component of biodiversity is 
underdeveloped in the SEEA EEA. In Section 5, we discuss best practice 
options, challenges and ways forward. Our conclusions are provided in 
Section 6. 

2. Biodiversity and the SEEA EEA 

The System of National Accounts (SNA, European Commission et al., 
2009) is a tried and tested framework for organising statistics on na
tional economic activities. It covers all economic activity associated 

with production, consumption and accumulation and all industrial 
sectors. As such, it is a fundamental source of information for national 
economic planning. However, the SNA fails to fully account for the 
environment, both in terms of the economic benefits it provides and the 
environmental degradation that results from various economic activities 
(Vardon et al., 2019, 2018). The SEEA EEA aims to address this by 
extending the SNA to provide integrated statistics on ecosystems and 
how they contribute to the economy and well-being. The SEEA EEA is 
currently under revision, with the aspiration to become an international 
statistical standard in 2021 (UNCEEA, 2019). 

The SEEA EEA core ecosystem accounting model (Fig. 2) (F proposes 
that changes in ‘stocks’ of Ecosystem Assets are measured via changes in 
biophysical measures of their extent and condition over an accounting 
period (ideally a year but in current practice often longer, e.g., every 5 
years). An Ecosystem Asset is represented by a contiguous area of the 
same Ecosystem Type. The current proposal for measuring ecosystem 
condition is using indicators for the abiotic and biotic characteristics of 
Ecosystem Assets and landscape or seascape scale characteristics that 
emerge across multiple Ecosystem Assets of the same Ecosystem Type. 

Ecosystem Assets supply a ‘flow’ of ecosystem services over the ac
counting period. These flows are recorded within accounts showing the 
supply and use of ecosystem services in physical and monetary terms. 
Recording these transactions in services between ecosystems and 
different economic units (e.g., households, businesses, government) 
enables the full integration of ecosystem accounting with the economic 
accounting of the SNA (Eigenraam and Obst, 2018). 

The measures for the ‘stocks ‘of Ecosystem Assets and ‘flows’ of 
Ecosystem Services are aggregated and presented in ecosystem extent, 
condition and ecosystem service supply and use accounts for particular 
Ecosystem Accounting Areas (EAA, e.g., country, watershed, adminis
trative area) (UN et al., 2017, 2014). This arrangement of Ecosystem 
Assets (EAs), Ecosystem Types (ETs) and Ecosystem Accounting Areas 
(EAAs) is presented in Fig. 3. 

The core accounts of the SEEA EEA are supported by thematic ac
counts on different topics, including biodiversity (Fig. 2). The SEEA EEA 
adopts the Convention on Biological Diversity’s definition of biodiver
sity (CBD, 1992): “the variability among living organisms from all sources 
including, inter alia, terrestrial, marine and other aquatic ecosystems and the 
ecological complexes of which they are part; this includes diversity within 
species, between species and of ecosystems". However, a tension exists be
tween the definition of biodiversity in the CBD and the treatment of 
biodiversity in the core SEEA EEA accounting model. In the CBD defi
nition, ecosystem diversity is a subset of biological diversity, while in the 
SEEA-EEA biodiversity accounting is a subset of ecosystem accounting 
(Vardon et al., 2015). We tackle this in next section. 

3. Applying a biodiversity perspective to the SEEA-EEA 

The core biophysical accounts of the SEEA EEA allow for measuring 
and monitoring the extent and condition of ecosystem types, which can 
be viewed as the fundamental entities constituting ecosystem-level 
biodiversity. However, the framework currently stops short of using 
these Ecosystem Asset accounts to derive an explicit “ecosystem di
versity” account. This focus on ecosystem types and assets in SEEA EEA 
has important implications for any consideration of the relationship 
between biodiversity in a holistic sense, and ecosystem condition and 
services supply in ecosystem accounting. Such consideration needs to 
accommodate the potential roles played by diversity across the multiple 
levels of biological organisation, or at least by each of the entities, or 
components, comprising this diversity (including individual species as 
components of species diversity, e.g., Luck et al., 2009) and across scales 
(i.e., landscape as well as local, Ecosystem Asset scale) (Oliver et al., 
2015; Tscharntke et al., 2005). This is because all of the components of 
biodiversity and the way in which they interact across scales underpins 
both current and future ecosystem services supply (Folke et al., 2004; 
Isbell et al., 2011). 

Fig. 1. Loss of the components of biodiversity (IPBES, 2019).  
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With respect to species-level biodiversity, the SEEA EEA proposes a 
structure for a ‘Species Abundance’ Account (UN et al., 2014). This 
essentially comprises an inventory of abundance for different taxonomic 
groups and provides an opening measure and a closing measure for 
various species-related data items and associated changes over an ac
counting period. The logic of accounting for species abundance is that 
certain species may be directly relevant to ecosystem service supply (e. 
g., number of fish or pollinators), as well as conservation concern. As an 
alternative, maintaining species ranges of occupancy (i.e., the extent of 
their presence and suitable habitat) can also be implemented in order to 
inform on ecosystem service and conservation management goals for 
biodiversity (Ferrier, 2011). However, just as measures of extent and 
condition of ecosystem types under SEEA EEA do not adequately reflect 
the emphasis of variability implicit in the CBD’s definition of biological 
diversity (CBD, 1992), the same is true of measures of distribution and 
abundance of individual species. 

The SEEA EEA Technical Recommendations (UN et al., 2017) pro
vides some further clarification, where measures of species-level di
versity are considered a characteristic of the condition of Ecosystem 
Assets (i.e., areas of contiguous ecosystem type) that can be degraded or 
enhanced over time. Maintaining local species diversity (i.e., alpha di
versity) implies more species (or more species retained) within indi
vidual Ecosystem Assets. As such, a larger number of functional traits is 
conferred upon the asset (or retained by the asset). Such assets are likely 
to be characterised as multifunctional, delivering a relatively wider 

range of ecosystem services (Gamfeldt et al., 2013; Wagg et al., 2014) 
and exhibiting higher ecosystem resilience (Elmqvist et al., 2003; 
Sundstrom et al., 2012). 

Thus, there are two main objectives that Species Accounts may 
serve:1) the measurement of the ‘Stocks of individual Species’ that 
directly underpin ecosystem services supplied by Ecosystem Assets 
(including conservation-based values); and 2) the measurement of 
‘Species Diversity’ as a key indicator for characterising the condition of 
Ecosystem Assets (i.e., its compositional integrity). However, there is an 
additional role for these accounts for characterising biodiversity at scale 
(i.e., for entire EAAs), expanded upon later. 

3.1. Linking biodiversity to the core physical SEEA EEA accounts 

In Fig. 4, we reproduce the model of the core physical SEEA EEA 
accounts in Fig. 2 and link it to different biodiversity indicators and 
interactions with the economy. To this end, Fig. 4 explicitly recognises 
ecosystems and species as different components of biodiversity and how 
these interact in the supply of ecosystem services. We stress that Fig. 4 is 
entirely compatible with the core SEEA EEA accounting model in Fig. 2. 
In both figures, Species / Biodiversity Accounts are cross-cutting and can 
inform all of the core SEEA EEA physical accounts. For instance, infor
mation on species may be used to inform the ecosystem typologies and 
used to delineate Ecosystem Assets when calculating ecosystem extent 
accounts (Arrow A, Fig. 4) or generate local (alpha) species-diversity 
indicators for ecosystem condition accounting (Arrow A1 & A3, 
Fig. 4). However, species-diversity indicators may also be estimated 
directly for inclusion in Ecosystem Condition Accounts (Arrow A2 and 
A3). 

Species Accounts themselves need not be confined to measurement 
of species diversity within Ecosystem Assets. Rather, it is anticipated 
that the Species Accounts will organize information at landscape scales 
for different EAAs (Arrow A1). This is the approach for measuring di
versity of butterfly species in the Australian case study (Table 2). Species 
Accounts that cover multiple Ecosystem Assets at landscape scales also 
provide a means of dealing with the complications of some species 
lifecycles and their use of different ecosystems (Tscharntke et al., 2005; 
UNEP-WCMC, 2016) 

Arrows A and A3, between the Ecosystem Asset Accounts and the 
Species Accounts and Species Diversity Indicators box, are double 
ended. This is because Ecosystem Asset Accounts contain information 
that can also be used to help infer species status. For instance, on the 
extent of suitable habitat for species of interest (e.g., as per the Uganda 
case study, Section 4.1, Arrow A) or information relevant to species’ 
responses to land use pressures (represented by Arrow A3). Species loss 
within Ecosystem Assets implies a loss of some ecosystem function, 

Fig. 2. Core Physical Accounting Modules of the SEEA-EEA (replication of Fig. 2.3a, UN et al., 2017). The dotted line and double arrows reflect measurement of 
ecosystem condition and services may be concurrent and iterative. 

Fig. 3. Relationship between Ecosystem Assets, Ecosystem Types and 
Ecosystem Accounting Areas (reproduced from Fig. 3.1, UN et al., 2017). 
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which may impact ecosystem service supply now and into the future 
(represented by Arrow C). 

Ultimately, the benefits that species provide (e.g., food, wildlife 
watching, pollination) will be realized at a particular location and time 
and attributed to an Ecosystem Asset (or combination of assets). 
Ecosystem service accounts are used to organize this spatially explicit 
information on ecosystem service supply and use. In this context, species 
measures may directly relate to final ecosystem service supply (e.g., 
harvested fish, Arrows B). Alternatively, the ecosystem services may 
derive from a production function in which species contribute (e.g., 
pollinator species contribute to the supply of nuts and fruits, Arrows B1 
and B1 & C). 

Arrows E in Fig. 4, represents the negative pressures from the 
economy on Ecosystem Assets and species (e.g., land use change, 
ecosystem fragmentation, pollution, species over-harvesting and 
poaching). Arrows F in Fig. 4, represents positive inputs from economic 
agents (e.g., ecosystem restoration, control of invasive species or rein
troduction of native species). 

Genetic diversity has been shown to have significant effects on 
ecological processes that underpin ecosystem services supply (Bolnick 
et al., 2011; Hughes et al., 2008). However, this component of biodi
versity is not explicitly considered in Fig. 4. This is because of the 
challenges in obtaining multi-year, spatially explicit information on 
genetic diversity for integration with SEEA EEA (considered further in 
our discussion). However, where meta-populations become fragmented, 
Species Accounts could play a role in tracking transfers of individuals 
between different EEAs. This would be relevant for maintaining gene 
pool diversity (e.g., when translocating species between protected areas, 
observation from Rudd Jansen, Conservation International). 

3.2. Accounting for biodiversity at scale 

From a biodiversity perspective, it is also crucial to assess not only 
species diversity within Ecosystem Assets but also the diversity in spe
cies assemblages between these Ecosystem Assets (i.e., variation in the 
composition of assemblages both within and between ecosystem types). 
Directly relevant to this is the growing body of research on the impor
tance of beta diversity (i.e., differences in biological composition be
tween locations) and gamma diversity (variation in biological 
composition within whole landscapes) (Burley et al., 2016; Ferrier, 

2002). Accounting for the complementarity of species assemblages is the 
core motivation here. In this sense, complementarity (beta diversity) 
regulates how the richness of local species assemblages (alpha diversity) 
combines to generate the gamma diversity of the whole, larger system (i. 
e., the EAA) (Colwell and Coddington, 1994). This concept is scalable, 
for example in relation to the species assemblages located in the root 
systems and canopies of individual trees to the pattern of species as
semblages at landscape level (McGill et al., 2015). 

Different species and species assemblages perform different func
tional roles. They also have varying degrees of resilience to different 
pressures. Understanding the complementarity between species and 
species assemblages with respect to the functions they perform is a 
concern if ambitions for resilient multi-functional landscapes are to be 
realized. However, making these links requires indicators that go 
beyond assessing the local species richness (alpha diversity) of 
Ecosystem Assets. Given that Ecosystem Assets are defined as discrete 
spatial occurrences (i.e., patches of a contiguous ecosystem type), the 
total biodiversity value (i.e., gamma diversity) of the larger EAA cannot 
be derived simply by averaging or summing the alpha diversity mea
sures of Ecosystem Assets (recorded in ecosystem condition accounts). 
This is because spatial scaling of biodiversity is strongly non-additive (i. 
e., biodiversity is scale dependent). This means that any assessment of 
the collective state of biodiversity within an EAA containing multiple 
Ecosystem Assets must consider not only the state of biodiversity within 
each of these assets, but also complementarities in species composition 
(i.e., beta diversity) between these assets. 

Consideration of complementarities in species assemblages can be 
achieved only through whole-landscape approaches to biodiversity 
assessment (e.g., Ferrier and Drielsma, 2010). This requires the calcu
lation of appropriate biodiversity indicators directly at the EAA scale (i. 
e., of gamma diversity), as well as Ecosystem Asset scale (Kim et al., 
2018). Ecosystem diversity measures derived from Ecosystem Extent 
Accounts may help in quantifying gamma diversity in EAAs (Arrow D, 
Fig. 4). These will be most informative where the ecosystem typology 
employed provides a good representation of the distribution of different 
species assemblages (i.e., when it is closely aligned to spatial distribu
tion of distinct sets of organisms that form a functional unit) 
(UNEP-WCMC, 2016). However, this is unlikely to yield a satisfactory 
metric of the variation in species-level assemblages in EAAs, particularly 
when rather broad ecosystem typologies are employed (as is often the 

Fig. 4. Applying a biodiversity perspective to the core physical SEEA EEA accounts (Adapted from UNEP-WCMC, 2016).  
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case when land cover is used to delineate ecosystems). As such, these 
types of indicators for gamma diversity should be part of the set of 
species diversity indicators at EEA scale included in the ‘Species Di
versity’ box in Fig. 4. The San Martin, Peru case study in Section 4.3 
presents an example of this approach. 

4. Species Accounting case studies 

Compiling Species Accounts to better link this component of biodi
versity into national accounts is relatively novel, even in the experi
mental context of the SEEA EEA. In order to illustrate possibilities, this 
section presents a set of real-world Species Accounting case studies. 
These case studies present information on different selections of species 
and species groups that speak to different policy and land management 
concerns. It is essential when developing Species Accounts that these 
management and policy concerns are identified upfront to ensure the 
accounts meet the needs of users and decision-makers (Vardon et al., 
2016). For instance, species could be selected due to their functional 
traits, being charismatic or endangered, endemism or providing direct 
use benefits. 

The availability of appropriate data for the compilation of Species 
Accounts is often a challenge for their compilation. The ideal situation is 
for data to be from regularly compiled, consistent and representative 
primary monitoring of species populations. In this context, representa
tive implies representation across ecosystems, space, time and taxonomy 
of species groups. This ‘Direct Observation’ approach is employed for 
the Australian case studies. It should be noted that further processing of 
‘Direct Observation’ data may be required where populations show high 
inter-annual variations and where variations in species detectability and 
sampling intensities need to be controlled for (e.g., see Roy et al., 2019). 

The emergence of Citizen science programs, such as eBird 
(http://www.ebird.org) and iNaturalist (https://www.inaturalist.org/) 
can also support ‘Direct Observation’ Species Accounting approaches. 
However, these programmes tend to suffer from spatial bias towards 
populated locations (Fletcher et al., 2019) and from the largely oppor
tunistic manner in which observations are generated (Bayraktarov et al., 
2019). This can pose significant challenges for any attempt to extract 
information on biodiversity change from such datasets. 

Where ‘Direct Observation’ data on species are sufficiently limited, 

an alternative approach based on observations of changes in the spatial 
extent and configuration of habitat required by species may be 
employed (Ferrier, 2011). These ‘Habitat-based approaches’ for Species 
Accounting were employed for the Uganda and San Martin case studies. 

4.1. Uganda Species Accounts 

UNEP-WCMC and IDEEA (2017) presented ‘Species Accounts’ for 
iconic wildlife species (Chimpanzees and Elephants) and selected 
Non-Timber Forest Product species (NTFPs, including Shea Butter Nuts 
and Gum Arabic). These Species Accounts inform on the national debate 
on degazettement of protected areas, where declining biodiversity 
threatens ecosystem services and progress towards the objectives of 
Uganda’s National Biodiversity Strategy and Action Plan (NBSAP II) and 
National Development Plan (NDP II, recently updated to ND III). 

The Species Accounts were compiled using information from 
ecosystem extent accounts to infer the potential extent of suitable 
habitat for iconic and NTFP species (represented by the double headed 
Arrow A linking the Ecosystem Asset and Species Accounts in Fig. 4). For 
instance, the extent of suitable habitat for Shea Butter Nut Trees was 
based on the extent of Butyrospermum in Dry Combretum savannah (i. 
e., vegetation classes that include Shea Butter Nut Trees) in areas of 
natural land cover. 

The Species Accounts identified large areas in the north of Uganda 
that provided suitable habitat for Shea Butter Nut Trees (Fig. 5). As 
shown via the simplified account in Fig. 5, whilst over 20 % of this 
habitat had been lost between 1990 and 2015, over 2 million ha still 
exists. A vast majority of the remaining Shea Butter Nut Tree habitat was 
outside of the protected areas estate. 

For other species, the accounts revealed the protected area estate 
covered a large majority of remaining suitable habitat for Chimpanzees 
and Elephants in Uganda (87 % and 81 % respectively in 2015). How
ever, when looking at sub-national EAAs, significant reductions in the 
areas of chimpanzee suitable habitat and elephant suitable habitat were 
observed in the Western sub-region of Uganda between 2005 and 2015 
(-86,154 ha and -57,383 ha, respectively). 

Whilst habitat suitability is no guarantee of species occurrence, the 
Species Accounts for Uganda direct attention to areas where ecological 
and economic returns on species may be most likely realized. They can 

Fig. 5. Uganda Shea Butter Nut Tree Accounts (1990 to 2015). The red areas in the map represent the closing stock of Shea Butter Nut Tree suitable habitat in 2015.  
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be used to inform policy on NTFP harvesting, where the protected areas 
estate is safeguarding wildlife watching tourism opportunities and 
where it could be extended (i.e., with respect to Arrow B in Fig. 4). 
Species Accounts can also guide development investment plans based on 
sustainable exploitation of NTFP and iconic species. For example, by 
identifying where potential Shea Butter Nut harvesting and processing 
may be viable as part of a combined conservation and development 
programme outside of protected areas. 

4.2. Australian accounts for endangered species and butterflies 

A range of different accounts related to biodiversity have been pro
duced for different parts of Australia. Keith et al. (2017) produced ac
counts for endangered species for the Central Highlands of Victoria as 
input to on-going discussions on forest management (Table 1). The 
change in threat category of a species represents change in its extinction 
risk, which can be used to infer indicative changes in biodiversity for the 
EAA of the Central Highlands. Table 1 reveals a steady and consistent 
increase in the number of species being classified as endangered in the 
Central Highlands. These Endangered Species Accounts were part of an 
integrated set of accounts that allowed analysis of the trade-off between 
managing the forest for timber supply versus the supply of water and 
carbon storage. They demonstrated that supply of water and carbon 
storage were compatible with management of forest for biodiversity 
conservation, while timber harvesting was not. They also allowed the 
economic costs of biodiversity conservation to be evaluated, in terms of 
timber harvesting revenue foregone. 

For the Australian Capital Territory (ACT), Bond and Vardon (2019) 
prepared a set of accounts for butterflies as input to the ACT State of the 
Environment Report. The accounts span four decades (1978–2019), 
identifying 88 butterfly species in five families. Of the 88 species, 63 are 
endemic to Australia, 69 breed in the ACT and the other 19 species are 
migratory or vagrants. Of the 69 breeding species, 40 are habitat spe
cialists and not all species are found in all years. The number of species 
found increased by ten between 1978 and 2019 due to the finding of six 
more Australian endemic species, three more non-endemics and one 
taxonomic reclassification. Systematic surveys were used for the period 
2014− 15 to 2018− 19 and these show a net gain of 7 species (Table 2). 

The butterfly accounts provide a useful indicator of species-level 
biodiversity at the state scale (EAA, Arrow A1 in Fig. 4). This indica
tor is spatially and temporally consistent with other economic in
dicators, helping to reveal sustainable development progress in the ACT 
as it relates to one component of biodiversity. A key practical aspect to 
emerge from the production of these accounts was that it is necessary to 
consider a range of different classifications for Species Accounts (e.g., 
local and national endemics, non-endemics, introduced species). In 
particular, it is necessary to consider more than just the threat status of 
species, for example the degree of endemism. This is because endemic 
species are often a key conservation concern and can be a surrogate for 
directing conservation action for biodiversity generally (Lamoreux et al., 
2006). 

4.3. Biodiversity accounts for San Martin, Peru 

San Martin is a region in northern Peru along the eastern slopes of the 
Andes, representing an area that is among the most biodiverse on the 
planet. Home to almost one million people, San Martin is characterized 
by a complex landscape consisting of diverse natural ecosystems and 
land uses, particularly forestry and agricultural production. Grantham 
et al. (2016) developed biodiversity indicators and accounts for the San 
Martin region (EAA) to inform the government’s progressive green 
development policies that aim to curb ongoing threats such as illegal 
deforestation and the associated loss of biodiversity and ecosystem 
services. This was part of a broader pilot of developing a set of ecosystem 
accounts. 

One of the key approaches used by Grantham et al. (2016) for 
biodiversity indicators and accounting was the application of General
ised Dissimilarity Modelling (GDM) (Ferrier et al., 2007) to measure 
change in species diversity. GDM is a community-level modelling 
approach that allows differences in environmental conditions to be 
represented in terms of their effect on species composition for whole 
biological groups. It is then possible to compare the expected ecological 
similarity of any location with all other locations in modelled environ
mental space (i.e., the EAA). This allows the environmental uniqueness 
of a location, degree of human modification, and its contribution to 
regional biodiversity (i.e., gamma diversity) to be assessed (Allnutt 
et al., 2008). 

The biodiversity account produced by Grantham et al. (2016) mea
sures the proportion of species retained between three time periods 
(2009, 2011, and 2013), against what would be assumed to be there in 
the absence of human modification (i.e., natural conditions) (Table 3). 
Table 3 shows a continuing decline in species retained across each major 
ecosystem type in San Martin for each major taxonomic group (vascular 
plants, vertebrates and invertebrates), as well as for species overall This 
represents Arrow A3 in Fig. 4, linking species diversity to condition of 
EAs of the same Ecosystem Type in an EAA). For the San Martin region as 
a whole, Table 3 also shows continuing loss of species-level biodiversity 
between 2009 and 2013 within all three major taxonomic groups and 
overall (Arrow A1 / A2 in Fig. 4 linking species data to diversity across 
EAAs) 

An important feature of organizing biodiversity indicators by 
ecosystem type in Table 3, is that this allows the indicators to be linked 
with information in other ecosystem accounts. This reveals trade-offs 
and synergies among biodiversity and ecosystem services and how 
these are affected by changes in ecosystem extent and condition (Arrow 
C in Fig. 4). For example, an unexpected finding indicated that palm 
swamps represent exceptionally high-value ecosystems on a per hectare 
basis for both species-level biodiversity and ecosystem services yet have 
been largely transformed for rice. Consequently, and based on these 
results, the government has been exploring the feasibility of restoring 
low-value rice production areas to palm swamp. The results of the 
biodiversity accounts are also being used as part of an Ecological 

Table 1 
Endangered Species Account for the Central Highlands (species listed under the 
Environmental Protection and Biodiversity Conservation Act 1999).   

Regionally 
Extinct 

Critically 
Endangered 

Endangered Vulnerable 

2000 2 0 12 14 
2005 2 1 13 15 
2010 2 1 13 18 
2015 2 5 14 17 
Net 

change 
0 5 2 3  

Table 2 
Butterfly Species Account for the ACT, 2014 – 2019.   

Native species Introduced 
species 

Total Endemic 
ACT 

Endemic 
Australia 

Non- 
endemic 
Australia 

Introduced 
Australia 

2014− 15 0 40 12 1 53 
2015− 16 0 40 12 1 53 
2016− 17 0 41 15 1 57 
2017− 18 0 51 10 1 62 
2018− 19 0 49 10 1 60 
Net change 

(2014− 15 
to 
2018− 19) 

0 9 − 2 0 7  
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Economic Zoning initiative which is assessing sustainable, alternative 
uses of forests and other ecosystems. 

5. Discussion 

The case study Species Accounts presented were compiled using 
existing data, so the potential of the accounts could be demonstrated. 
The use of different data types across the three case studies requires a 
flexible data presentation approach, yielding different accounting 
structures. This reflects our previous observation that Species Account
ing remains relatively new, even within the experimental context of the 
SEEA EEA. Moving to standard structures and data sets would be very 
helpful for building familiarity and understanding with potential users 
of the accounts. A challenge is how to best consider migratory species, 
which may also underpin ecosystem services supply (e.g., duck hunting 
and pollination). This is because an international spatial disconnect 
often emerges between the habitats that most support these species and 
where these ecosystem services are used (Bagstad et al., 2019; Semmens 
et al., 2018). This implies the need to structure Species Accounts in a 
way that can inform transboundary cooperation around conservation 
and ecosystem service benefits for migratory species. 

It is vital that direct observation and habitat-based approaches for 
estimating biodiversity change shown in the case studies are not viewed 
as mutually exclusive, or competing, alternatives. There is much to be 
gained by taking advantage of the complementary strengths of these 
information sources, and of ongoing advances in analytical techniques 
for more effectively integrating direct field-based and indirect remotely- 
sensed data streams. Statistical modelling, or machine learning, of re
lationships between sparse field observations and remotely-derived 
habitat variables offers a powerful means of extrapolating changes in 
species occurrence or abundance across space and time (Ferrier, 2011). 
Field-based monitoring should also play a key ongoing role in evaluating 
such model-based extrapolations, and in the progressive calibration and 
refinement of underpinning models. 

Advances are also being made in the development of analytical ap
proaches integrating direct and indirect data streams to assess change in 
ecosystem- and genetic-level diversity (e.g., Mimura et al., 2017). These 
offer considerable promise for more effectively incorporating these 
levels of organisation into future SEEA EEA accounts. Cost-effective 
estimation of change across large spatial extents, and at all three 
levels of biodiversity, is also likely to benefit enormously over coming 
years from rapid advances being made in the development and 
deployment of new cutting-edge observation technologies, both direct 
and indirect. For instance, high-throughput sequencing of 
environmental-DNA samples and satellite-borne hyperspectral sensing 
of plant community composition (e.g., Bush et al., 2017). 

5.1. Linking biodiversity into economic accounts via the SEEA EEA 

Combined presentations of indicators for the different components of 

biodiversity with wider economic statistics is an immediate means of 
using information organized by the SEEA EEA for mainstreaming 
biodiversity (see para 8.11, UN et al., 2017). For example, presenting 
information on species and ecosystem trends alongside trends in 
impacting economic activities (as per the Central Highlands case study). 
Alternatively, information on species, ecosystems and associated 
ecosystem services can be presented alongside information on other key 
development concerns, such as employment in the fisheries or wildlife 
watching tourism sectors, poverty, food security or environmental pro
tection expenditure. This information can inform more holistic cross 
sectoral economic planning that recognises the multiple benefits biodi
versity provides and mitigates economic impacts (e.g., as envisaged via 
Ecological Economic Zoning in the San Martin case study). As the SEEA 
EEA is scalable, it also opens up the opportunity to align these combined 
presentations with the established biodiversity assessment (e.g., Mokany 
et al., 2019) and integrated landscape management approaches (e.g., 
Meijer et al., 2019). 

Valuation of ecosystem services opens up possibilities for main
streaming the values of different aspects of biodiversity into economic 
planning via the monetary ecosystem service supply and use and asset 
accounts of the SEEA EEA (UN et al., 2017, 2014). This would also 
support integrated analyses for greener, central economic planning. 
Where the relationship between biodiversity, ecosystem services and 
goods recorded in the SNA can be articulated, economic modelling of the 
effects of increases in ecosystem service supply to economic output can 
be undertaken. La Notte et al. (2020) provide a relevant example, which 
links control of Asian Hornets (an invasive species) and to improved 
abundance of wild pollinators and crop pollination services. Increased 
ecosystem service supply is then bridged to key economic indicators 
using established economy-wide modelling (i.e., general equilibrium 
modelling). Banerjee et al. (2020) provide a similar analysis for Rwanda, 
modelling the effect of land use decisions on ecosystems and ecosystem 
service supply on standard economic indicators for Green Economy 
planning. 

Notwithstanding the above, achieving a full integration of biodi
versity into national economic accounting is challenging and requires 
valuing a very broad set of ecosystem services. This includes values 
placed by society on the continued existence of biodiversity for spiritual, 
religious or non-use reasons (Haines-Young and Potschin, 2018); 
bequest values associated with endowing future generations with 
adequate biodiversity (Walsh et al., 1984); option values reflecting that 
elements of biodiversity may prove valuable in the future (Weitzman, 
1992); and, insurance values associated with biodiversity and the 
resilience of ecosystem services supply (Baumgärtner, 2007). Further
more, as biodiversity represents all the different parts of the system 
essential for the ecological processes underpinning ecosystem service 
supply, it can be considered to have an infrastructure or ‘glue’ value 
(Turner et al., 2003). Many of these values are captured via the IPBES 
(2019) Nature’s Contribution to People 1 (NCP 1) ‘habitat creation and 
maintenance’. Whilst environmental economics has developed 

Table 3 
Proportion of species richness retained over time by taxonomic group and ecosystem type for San Martin, Peru.  

Ecosystem Type 

Invertebrates Vascular plants Vertebrates All taxa 

(% species retained) (% species retained) (% species retained) (% species retained) 

2009 2011 2013 2009 2011 2013 2009 2011 2013 2009 2011 2013 

Palm Swamps 91.90 % 91.31 % 90.96 % 92.21 % 91.65 % 91.31 % 86.97 % 86.62 % 86.42 % 90.36 % 89.86 % 89.56 % 
Humid Forest with High Hills 91.89 % 91.30 % 90.95 % 91.98 % 91.40 % 91.05 % 86.46 % 86.10 % 85.89 % 90.11 % 89.60 % 89.30 % 
Humid Forest with Low Hills 91.82 % 91.21 % 90.86 % 92.08 % 91.48 % 91.13 % 86.73 % 86.36 % 86.15 % 90.21 % 89.68 % 89.38 % 
Humid Montane Forest 93.94 % 93.54 % 93.25 % 94.03 % 93.63 % 93.34 % 90.53 % 90.29 % 90.12 % 92.83 % 92.49 % 92.24 % 
Lowland Terra Firme Forest 91.79 % 91.23 % 90.88 % 91.47 % 90.91 % 90.56 % 85.88 % 85.52 % 85.31 % 89.71 % 89.22 % 88.92 % 
Floodplain Forest 90.99 % 90.39 % 90.03 % 90.77 % 90.17 % 89.82 % 85.30 % 84.92 % 84.71 % 89.02 % 88.49 % 88.19 % 
Shrubs 95.29 % 95.10 % 94.95 % 95.97 % 95.86 % 95.76 % 95.49 % 95.42 % 95.36 % 95.58 % 95.46 % 95.36 % 
High Andean Grasslands 95.59 % 95.44 % 95.33 % 95.82 % 95.71 % 95.61 % 95.45 % 95.38 % 95.32 % 95.62 % 95.51 % 95.42 % 
Entire San Martin Region 94.08% 93.72 % 93.47 % 94.04 % 93.67 % 93.41 % 90.89 % 90.66 % 90.51 % 93.00 % 92.68 % 92.46 %  
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approaches to estimate these types of values, this often requires the 
deployment of so-called expressed preference survey methods. The 
resulting estimates are not exchange values and do not fit into a strict 
SNA protocol for accounting. It is also the case that some aspects of 
biodiversity that are essential to consider for development to proceed in 
balance with nature will remain beyond monetary calculus. 

Building the understanding and capacity for using the SEEA EEA may 
then be best accomplished by building protocols as a complementary 
accounting framework, rather than seeking full economic integration 
within the SNA. The Complementary Accounts Network (CAN) idea is 
proposed as a pragmatic way forward here (Turner et al., 2019). This 
builds on the combined presentations discussed above. Rather than 
trying to adjust the measures of production, consumption, income and 
the value of assets in the SNA to reflect biodiversity losses or gains, CAN 
seeks to assemble ‘complementary’ sets of indices to sit alongside GDP 
and other economic statistics on the same timescale. The framework 
presented in Fig. 4 directly supports a CAN type approach to generating 
a ‘dashboard’ of physical and monetary indicators linked to biodiversity. 

6. Conclusions 

This paper highlights multiple entry points for biodiversity data in 
the core biophysical accounts of the SEEA EEA. It argues the importance 
of Species Accounts for integrating this component of biodiversity in to 
the SEEA-EEA. This will better inform management of the supply of 
ecosystem services directly related to species and the myriad of services 
that arise via the interactions of species with the abiotic environment. 

Implementation of the SEEA EEA by national statistical offices in a 
way that best represents biodiversity will be challenging. Establishing 
and resourcing the right institutional collaborations with government 
agencies with the mandate for biodiversity assessment and conservation 
will be crucial. Such collaboration should be reciprocal, in that the SEEA 
EEA will integrate information from existing national and international 
biodiversity conservation reporting frameworks, as well as delivering 
information to inform them. However, building the understanding and 
the capacity of a wide range of decision-makers to use the accounts is an 
urgent investment priority if the SEEA is to deliver on its potential to 
steer us on a development pathway that makes sustainable use of 
biodiversity. 

Despite the challenges in applying the SEEA EEA more broadly, the 
ability of the framework to integrate environmental, social and eco
nomic information make it an essential tool to recognise the benefits 
biodiversity provides and address its loss. The upcoming CBD Confer
ence of the Parties, provides the biodiversity community with a key 
opportunity to press for better representation of biodiversity in national 
accounts via the SEEA and better mainstreaming of biodiversity into 
national planning. This will be essential for taking us a step beyond GDP, 
so that national economic accounting can guide decision-making for 
sustainable development that delivers better outcomes for people and 
nature. 
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Rodgers, T.W., Snape, S., Visseren-Hamakers, I., Vogler, A.P., White, P.C.L., 
Wooster, M.J., Yu, D.W., 2017. Connecting Earth observation to high-throughput 
biodiversity data. Nat. Ecol. Evol. 1, 176. https://doi.org/10.1038/s41559-017- 
0176. 

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., 
Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., 
Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012. 
Biodiversity loss and its impact on humanity. Nature 486, 59–67. 

CBD, 1992. Convention on Biological Diversity. Article 2: Use of Terms. 
Colwell, R.K., Coddington, J.A., 1994. Estimating terrestrial biodiversity through 

extrapolation. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 345, 101–118. 
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., Mouquet, N., 2010. 

Spatial mismatch and congruence between taxonomic, phylogenetic and functional 
diversity: the need for integrative conservation strategies in a changing world. Ecol. 
Lett. 13, 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x. 

Díaz, S., Lavorel, S., Chapin, F.S., Tecco, P.A., Gurvich, D.E., Grigulis, K., 2007. 
Functional diversity - at the crossroads between ecosystem functioning and 
environmental filters. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (Eds.), Terrestrial 

S. King et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0005
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0005
https://doi.org/10.1111/j.1755-263X.2008.00027.x
https://doi.org/10.1007/s13280-018-1049-4
https://doi.org/10.1007/s13280-018-1049-4
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0020
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0020
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0020
https://doi.org/10.1093/biosci/bit003
https://doi.org/10.1016/j.scitotenv.2020.138779
https://doi.org/10.1016/j.scitotenv.2020.138779
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0035
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0035
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0040
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0040
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0040
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0045
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0045
https://doi.org/10.1016/j.tree.2011.01.009
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0055
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0055
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0055
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0060
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0060
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0060
https://doi.org/10.1038/s41559-020-1108-7
https://doi.org/10.1038/s41559-020-1108-7
https://doi.org/10.1038/s41559-017-0176
https://doi.org/10.1038/s41559-017-0176
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0075
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0075
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0075
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0075
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0080
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0085
http://refhub.elsevier.com/S1462-9011(20)31376-9/sbref0085
https://doi.org/10.1111/j.1461-0248.2010.01493.x


Environmental Science and Policy 116 (2021) 20–29

28

Ecosystems in a Changing World. Springer, Berlin Heidelberg, Berlin, Heidelberg, 
pp. 81–91. https://doi.org/10.1007/978-3-540-32730-1_7. 

Driver, A., Nel, J.L., Smith, J., Daniels, F., Poole, C.J., Jewitt, D., Escott, B.J., 2015. Land 
and Ecosystem Accounting in KwaZulu-Natal, South Africa. Discussion Document for 
Advancing SEEA Experimental Ecosystem Accounting Project, October 2015. 
Pretoria, South Africa.. 

Eigenraam, M., Obst, C., 2018. Extending the production boundary of the System of 
National Accounts (SNA) to classify and account for ecosystem services. Ecosyst. 
Heal. Sustain. 4, 247–260. https://doi.org/10.1080/20964129.2018.1524718. 

Elmqvist, T., Folke, C., Nyström, M., Peterson, G.D., Bengtsson, J., Walker, B., 
Norberg, J., Nystrom, M., 2003. Response diversity, ecosystem change, and 
resilience. Front. Ecol. Environ. 

European Commission, International Monetary Fund, Organisation for Economic Co- 
operation and Development, United Nations, World Bank, 2009. System of National 
Accounts 2008. New York. 

Ferrier, S., 2002. Mapping spatial pattern in biodiversity for regional conservation 
planning: where to from Here? Syst. Biol. 51, 331–363. https://doi.org/10.1080/ 
10635150252899806. 

Ferrier, S., 2011. Extracting more value from biodiversity change observations through 
integrated modeling. Bioscience 61, 96–97. https://doi.org/10.1525/ 
bio.2011.61.2.2. 

Ferrier, S., Drielsma, M., 2010. Synthesis of pattern and process in biodiversity 
conservation assessment: a flexible whole-landscape modelling framework. Divers. 
Distrib. 16, 386–402. 

Ferrier, S., Manion, G., Elith, J., Richardson, K., 2007. Using generalized dissimilarity 
modelling to analyse and predict patterns of beta diversity in regional biodiversity 
assessment. Divers. Distrib. 13, 252–264. https://doi.org/10.1111/j.1472- 
4642.2007.00341.x. 

Fletcher Jr., R.J., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCleery, R.A., 
Dorazio, R.M., 2019. A practical guide for combining data to model species 
distributions. Ecology 100, e02710. https://doi.org/10.1002/ecy.2710. 

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., Holling, C. 
S., 2004. Regime shifts, resilience, and biodiversity in ecosystem management. 
Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev. 
ecolsys.35.021103.105711. 

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz- 
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