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Abstract: Neutrosophic N -structures with applications in BCK/BCI-algebras is discussed.
The notions of a neutrosophic N -subalgebra and a (closed) neutrosophic N -ideal in a
BCK/BCI-algebra are introduced, and several related properties are investigated. Characterizations
of a neutrosophic N -subalgebra and a neutrosophic N -ideal are considered, and relations between a
neutrosophic N -subalgebra and a neutrosophic N -ideal are stated. Conditions for a neutrosophic
N -ideal to be a closed neutrosophic N -ideal are provided.
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1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1], and
they have been applied to many branches of mathematics, such as group theory, functional analysis,
probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets
(MV-algebras). Additionally, Iséki introduced the notion of a BCI-algebra, which is a generalization of
a BCK-algebra (see [2]).

A (crisp) set A in a universe X can be defined in the form of its characteristic function µA :
X → {0, 1} yielding the value 1 for elements belonging to the set A and the value 0 for elements
excluded from the set A. So far, most of the generalizations of the crisp set have been conducted
on the unit interval [0, 1], and they are consistent with the asymmetry observation. In other words,
the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp
point {1} into the interval [0, 1]. Because no negative meaning of information is suggested, we now
feel a need to deal with negative information. To do so, we also feel a need to supply a mathematical
tool. To attain such an object, Jun et al. [3] introduced a new function, called a negative-valued
function, and constructed N -structures. Zadeh [4] introduced the degree of membership/truth (t)
in 1965 and defined the fuzzy set. As a generalization of fuzzy sets, Atanassov [5] introduced the
degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache
introduced the degree of indeterminacy/neutrality (i) as an independent component in 1995 (published
in 1998) and defined the neutrosophic set on three components:

(t, i, f) = (truth, indeterminacy, falsehood)
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For more details, refer to the following site:

http://fs.gallup.unm.edu/FlorentinSmarandache.htm

In this paper, we discuss a neutrosophic N -structure with an application to BCK/BCI-algebras.
We introduce the notions of a neutrosophic N -subalgebra and a (closed) neutrosophic N -ideal in a
BCK/BCI-algebra, and investigate related properties. We consider characterizations of a neutrosophic
N -subalgebra and a neutrosophicN -ideal. We discuss relations between a neutrosophicN -subalgebra
and a neutrosophic N -ideal. We provide conditions for a neutrosophic N -ideal to be a closed
neutrosophic N -ideal.

2. Preliminaries

We let K(τ) be the class of all algebras with type τ = (2, 0). A BCI-algebra refers to a system
X := (X, ∗, θ) ∈ K(τ) in which the following axioms hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ,
(II) (x ∗ (x ∗ y)) ∗ y = θ,
(III) x ∗ x = θ,
(IV) x ∗ y = y ∗ x = θ ⇒ x = y.

for all x, y, z ∈ X. If a BCI-algebra X satisfies θ ∗ x = θ for all x ∈ X, then we say that X is a BCK-algebra.
We can define a partial ordering � by

(∀x, y ∈ X) (x � y ⇒ x ∗ y = θ)

In a BCK/BCI-algebra X, the following hold:

(∀x ∈ X) (x ∗ θ = x) (1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) (2)

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all
x, y ∈ S.

A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies the following:

(I1) 0 ∈ I,
(I2) (∀x, y ∈ X)(x ∗ y ∈ I, y ∈ I ⇒ x ∈ I).

We refer the reader to the books [6,7] for further information regarding BCK/BCI-algebras.
For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite
sup{ai | i ∈ Λ} otherwise

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite
inf{ai | i ∈ Λ} otherwise

We denote by F (X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that an
element of F (X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly, N -function on X).
An N -structure refers to an ordered pair (X, f ) of X and an N -function f on X (see [3]). In what
follows, we let X denote the nonempty universe of discourse unless otherwise specified.

A neutrosophic N -structure over X (see [8]) is defined to be the structure:

XN := X
(TN ,IN ,FN)

=
{

x
(TN(x),IN(x),FN(x)) | x ∈ X

}
(3)

http://fs.gallup.unm.edu/FlorentinSmarandache.htm
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where TN , IN and FN are N -functions on X, which are called the negative truth membership function,
the negative indeterminacy membership function and the negative falsity membership function, respectively,
on X.

We note that every neutrosophic N -structure XN over X satisfies the condition:

(∀x ∈ X) (−3 ≤ TN(x) + IN(x) + FN(x) ≤ 0)

3. Application in BCK/BCI-Algebras

In this section, we take a BCK/BCI-algebra X as the universe of discourse unless
otherwise specified.

Definition 1. A neutrosophic N -structure XN over X is called a neutrosophic N -subalgebra of X if the
following condition is valid:

(∀x, y ∈ X)

 TN(x ∗ y) ≤ ∨{TN(x), TN(y)}
IN(x ∗ y) ≥ ∧{IN(x), IN(y)}
FN(x ∗ y) ≤ ∨{FN(x), FN(y)}

 (4)

Example 1. Consider a BCK-algebra X = {θ, a, b, c} with the following Cayley table.

∗ θ a b c
θ θ θ θ θ

a a θ θ a
b b a θ b
c c c c θ

The neutrosophic N -structure

XN =
{

θ
(−0.7,−0.2,−0.6) , a

(−0.5,−0.3,−0.4) , b
(−0.5,−0.3,−0.4) , c

(−0.3,−0.8,−0.5)

}
over X is a neutrosophic N -subalgebra of X.

Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that −3 ≤ α + β +

γ ≤ 0. Consider the following sets:

Tα
N := {x ∈ X | TN(x) ≤ α}

Iβ
N := {x ∈ X | IN(x) ≥ β}

Fγ
N := {x ∈ X | FN(x) ≤ γ}

The set

XN(α, β, γ) := {x ∈ X | TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ}

is called the (α, β, γ)-level set of XN. Note that

XN(α, β, γ) = Tα
N ∩ Iβ

N ∩ Fγ
N

Theorem 1. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that −3 ≤
α + β + γ ≤ 0. If XN is a neutrosophic N -subalgebra of X, then the nonempty (α, β, γ)-level set of XN is a
subalgebra of X.
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Proof. Let α, β, γ ∈ [−1, 0] be such that−3 ≤ α + β + γ ≤ 0 and XN(α, β, γ) 6= ∅. If x, y ∈ XN(α, β, γ),
then TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ, TN(y) ≤ α, IN(y) ≥ β and FN(y) ≤ γ. It follows from
Equation (4) that

TN(x ∗ y) ≤ ∨{TN(x), TN(y)} ≤ α,
IN(x ∗ y) ≥ ∧{IN(x), IN(y)} ≥ β, and
FN(x ∗ y) ≤ ∨{FN(x), FN(y)} ≤ γ.

Hence, x ∗ y ∈ XN(α, β, γ), and therefore XN(α, β, γ) is a subalgebra of X.

Theorem 2. Let XN be a neutrosophic N -structure over X and assume that Tα
N , Iβ

N and Fγ
N are subalgebras of

X for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then XN is a neutrosophic N -subalgebra of X.

Proof. Assume that there exist a, b ∈ X such that TN(a ∗ b) >
∨{TN(a), TN(b)}. Then TN(a ∗ b) > tα ≥∨{TN(a), TN(b)} for some tα ∈ [−1, 0). Hence a, b ∈ Ttα

N but a ∗ b /∈ Ttα
N , which is a contradiction. Thus

TN(x ∗ y) ≤ ∨{TN(x), TN(y)}

for all x, y ∈ X. If IN(a ∗ b) <
∧{IN(a), IN(b)} for some a, b ∈ X, then

IN(a ∗ b) < tβ <
∧
{IN(a), IN(b)}

where tβ := 1
2 {IN(a ∗ b) +

∧{IN(a), IN(b)}}. Thus a, b ∈ I
tβ

N and a ∗ b /∈ I
tβ

N , which is a
contradiction. Therefore

IN(x ∗ y) ≥ ∧{IN(x), IN(y)}

for all x, y ∈ X. Now, suppose that there exist a, b ∈ X and tγ ∈ [−1, 0) such that

FN(a ∗ b) > tγ ≥
∨
{FN(a), FN(b)}

Then a, b ∈ Ftγ

N and a ∗ b /∈ Ftγ

N , which is a contradiction. Hence

FN(x ∗ y) ≤
∨
{FN(x), FN(y)}

for all x, y ∈ X. Therefore XN is a neutrosophic N -subalgebra of X.

Because [−1, 0] is a completely distributive lattice with respect to the usual ordering, we have the
following theorem.

Theorem 3. If {XNi | i ∈ N} is a family of neutrosophic N -subalgebras of X, then
(
{XNi | i ∈ N},⊆

)
forms

a complete distributive lattice.

Proposition 1. If a neutrosophic N -structure XN over X is a neutrosophic N -subalgebra of X, then TN(θ) ≤
TN(x), IN(θ) ≥ IN(x) and FN(θ) ≤ FN(x) for all x ∈ X.

Proof. Straightforward.

Theorem 4. Let XN be a neutrosophic N -subalgebra of X. If there exists a sequence {an} in X such that
lim

n→∞
TN(an) = −1, lim

n→∞
IN(an) = 0 and lim

n→∞
FN(an) = −1, then TN(θ) = −1, IN(θ) = 0 and FN(θ) = −1.

Proof. By Proposition 1, we have TN(θ) ≤ TN(x), IN(θ) ≥ IN(x) and FN(θ) ≤ FN(x) for all x ∈
X. Hence TN(θ) ≤ TN(an), IN(an) ≤ IN(θ) and FN(θ) ≤ FN(an) for every positive integer n. It
follows that
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− 1 ≤ TN(θ) ≤ lim
n→∞

TN(an) = −1

0 ≥ IN(θ) ≥ lim
n→∞

IN(an) = 0

− 1 ≤ FN(θ) ≤ lim
n→∞

FN(an) = −1

Hence TN(θ) = −1, IN(θ) = 0 and FN(θ) = −1.

Proposition 2. If every neutrosophic N -subalgebra XN of X satisfies:

TN(x ∗ y) ≤ TN(y), IN(x ∗ y) ≥ IN(y), FN(x ∗ y) ≤ FN(y) (5)

for all x, y ∈ X, then XN is constant.

Proof. Using Equations (1) and (5), we have TN(x) = TN(x ∗ θ) ≤ TN(θ), IN(x) = IN(x ∗ θ) ≥ IN(θ)

and FN(x) = FN(x ∗ θ) ≤ FN(θ) for all x ∈ X. It follows from Proposition 1 that TN(x) = TN(θ),
IN(x) = IN(θ) and FN(x) = FN(θ) for all x ∈ X. Therefore XN is constant.

Definition 2. A neutrosophic N -structure XN over X is called a neutrosophic N -ideal of X if the following
assertion is valid:

(∀x, y ∈ X)

 TN(θ) ≤ TN(x) ≤ ∨{TN(x ∗ y), TN(y)}
IN(θ) ≥ IN(x) ≥ ∧{IN(x ∗ y), IN(y)}
FN(θ) ≤ FN(x) ≤ ∨{FN(x ∗ y), FN(y)}

 (6)

Example 2. The neutrosophic N -structure XN over X in Example 1 is a neutrosophic N -ideal of X.

Example 3. Consider a BCI-algebra X := Y×Z where (Y, ∗, θ) is a BCI-algebra and (Z,−, 0) is the adjoint
BCI-algebra of the additive group (Z,+, 0) of integers (see [6]). Let XN be a neutrosophic N -structure over X
given by

XN =
{

x
(α,0,γ) | x ∈ Y× (N∪ {0})

}
∪
{

x
(0,β,0) | x /∈ Y× (N∪ {0})

}
where α, γ ∈ [−1, 0) and β ∈ (−1, 0]. Then XN is a neutrosophic N -ideal of X.

Proposition 3. Every neutrosophic N -ideal XN of X satisfies the following assertions:

(x, y ∈ X) (x � y ⇒ TN(x) ≤ TN(y), IN(x) ≥ IN(y), FN(x) ≤ FN(y)) (7)

Proof. Let x, y ∈ X be such that x � y. Then x ∗ y = θ, and so

TN(x) ≤ ∨{TN(x ∗ y), TN(y)} =
∨{TN(θ), TN(y)} = TN(y)

IN(x) ≥ ∧{IN(x ∗ y), IN(y)} =
∧{IN(θ), IN(y)} = IN(y)

FN(x) ≤ ∨{FN(x ∗ y), FN(y)} =
∨{FN(θ), FN(y)} = FN(y)

This completes the proof.

Proposition 4. Let XN be a neutrosophic N -ideal of X. Then

(1) TN(x ∗ y) ≤ TN((x ∗ y) ∗ y) ⇔ TN((x ∗ z) ∗ (y ∗ z)) ≤ TN((x ∗ y) ∗ z)
(2) IN(x ∗ y) ≥ IN((x ∗ y) ∗ y) ⇔ IN((x ∗ z) ∗ (y ∗ z)) ≥ IN((x ∗ y) ∗ z)
(3) FN(x ∗ y) ≤ FN((x ∗ y) ∗ y) ⇔ FN((x ∗ z) ∗ (y ∗ z)) ≤ FN((x ∗ y) ∗ z)

for all x, y, z ∈ X.
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Proof. Note that
((x ∗ (y ∗ z)) ∗ z) ∗ z � (x ∗ y) ∗ z (8)

for all x, y, z ∈ X. Assume that TN(x ∗ y) ≤ TN((x ∗ y) ∗ y), IN(x ∗ y) ≥ IN((x ∗ y) ∗ y) and FN(x ∗ y) ≤
FN((x ∗ y) ∗ y) for all x, y ∈ X. It follows from Equation (2) and Proposition 3 that

TN((x ∗ z) ∗ (y ∗ z)) = TN((x ∗ (y ∗ z)) ∗ z)

≤ TN(((x ∗ (y ∗ z)) ∗ z) ∗ z)

≤ TN((x ∗ y) ∗ z)

IN((x ∗ z) ∗ (y ∗ z)) = IN((x ∗ (y ∗ z)) ∗ z)

≥ IN(((x ∗ (y ∗ z)) ∗ z) ∗ z)

≥ IN((x ∗ y) ∗ z)

and

FN((x ∗ z) ∗ (y ∗ z)) = FN((x ∗ (y ∗ z)) ∗ z)

≤ FN(((x ∗ (y ∗ z)) ∗ z) ∗ z)

≤ FN((x ∗ y) ∗ z)

for all x, y ∈ X.
Conversely, suppose

TN((x ∗ z) ∗ (y ∗ z)) ≤ TN((x ∗ y) ∗ z)

IN((x ∗ z) ∗ (y ∗ z)) ≥ IN((x ∗ y) ∗ z)

FN((x ∗ z) ∗ (y ∗ z)) ≤ FN((x ∗ y) ∗ z)

(9)

for all x, y, z ∈ X. If we substitute z for y in Equation (9), then

TN(x ∗ z) = TN((x ∗ z) ∗ θ) = TN((x ∗ z) ∗ (z ∗ z)) ≤ TN((x ∗ z) ∗ z)

IN(x ∗ z) = IN((x ∗ z) ∗ θ) = IN((x ∗ z) ∗ (z ∗ z)) ≥ IN((x ∗ z) ∗ z)

FN(x ∗ z) = FN((x ∗ z) ∗ θ) = FN((x ∗ z) ∗ (z ∗ z)) ≤ FN((x ∗ z) ∗ z)

for all x, z ∈ X by using (III) and Equation (1).

Theorem 5. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that
−3 ≤ α + β + γ ≤ 0. If XN is a neutrosophic N -ideal of X, then the nonempty (α, β, γ)-level set of
XN is an ideal of X.

Proof. Assume that XN(α, β, γ) 6= ∅ for α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Clearly, θ ∈
XN(α, β, γ). Let x, y ∈ X be such that x ∗ y ∈ XN(α, β, γ) and y ∈ XN(α, β, γ). Then TN(x ∗ y) ≤ α,
IN(x ∗ y) ≥ β, FN(x ∗ y) ≤ γ, TN(y) ≤ α, IN(y) ≥ β and FN(y) ≤ γ. It follows from Equation (6) that

TN(x) ≤
∨
{TN(x ∗ y), TN(y)} ≤ α

IN(x) ≥
∧
{IN(x ∗ y), IN(y)} ≥ β

FN(x) ≤
∨
{FN(x ∗ y), FN(y)} ≤ γ

so that x ∈ XN(α, β, γ). Therefore XN(α, β, γ) is an ideal of X.
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Theorem 6. Let XN be a neutrosophic N -structure over X and assume that Tα
N , Iβ

N and Fγ
N are ideals of X for

all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then XN is a neutrosophic N -ideal of X.

Proof. If there exist a, b, c ∈ X such that TN(θ) > TN(a), IN(θ) < IN(b) and FN(θ) > FN(c),
respectively, then TN(θ) > at ≥ TN(a), IN(θ) < bi ≤ IN(b) and FN(θ) > c f ≥ FN(c) for some

at, c f ∈ [−1, 0) and bi ∈ (−1, 0]. Then θ /∈ Tat
N , θ /∈ Ibi

N and θ /∈ F
c f
N . This is a contradiction.

Hence, TN(θ) ≤ TN(x), IN(θ) ≥ IN(x) and FN(θ) ≤ FN(x) for all x ∈ X. Assume that there exist
at, bt, ai, bi, a f , b f ∈ X such that TN(at) >

∨{TN(at ∗ bt), TN(bt)}, IN(ai) <
∧{IN(ai ∗ bi), IN(bi)} and

FN(a f ) >
∨{FN(a f ∗ b f ), FN(b f )}. Then there exist st, s f ∈ [−1, 0) and si ∈ (−1, 0] such that

TN(at) > st ≥
∨
{TN(at ∗ bt), TN(bt)}

IN(ai) < si ≤
∧
{IN(ai ∗ bi), IN(bi)}

FN(a f ) > s f ≥
∨
{FN(a f ∗ b f ), FN(b f )}

It follows that at ∗ bt ∈ Tst
N , bt ∈ Tst

N , ai ∗ bi ∈ Isi
N , bi ∈ Isi

N , a f ∗ b f ∈ F
s f
N and b f ∈ F

s f
N . However,

at /∈ Tst
N , ai /∈ Isi

N and a f /∈ F
s f
N . This is a contradiction, and so

TN(x) ≤
∨
{TN(x ∗ y), TN(y)}

IN(x) ≥
∧
{IN(x ∗ y), IN(y)}

FN(x) ≤
∨
{FN(x ∗ y), FN(y)}

for all x, y ∈ X. Therefore XN is a neutrosophic N -ideal of X.

Proposition 5. For any neutrosophic N -ideal XN of X, we have

(∀x, y, z ∈ X)

 x ∗ y � z ⇒


TN(x) ≤ ∨{TN(y), TN(z)}
IN(x) ≥ ∧{IN(y), IN(z)}
FN(x) ≤ ∨{FN(y), FN(z)}

 (10)

Proof. Let x, y, z ∈ X be such that x ∗ y � z. Then (x ∗ y) ∗ z = θ, and so

TN(x ∗ y) ≤
∨
{TN((x ∗ y) ∗ z), TN(z)} =

∨
{TN(θ), TN(z)} = TN(z)

IN(x ∗ y) ≥
∧
{IN((x ∗ y) ∗ z), IN(z)} =

∧
{IN(θ), IN(z)} = IN(z)

FN(x ∗ y) ≤
∨
{FN((x ∗ y) ∗ z), FN(z)} =

∨
{FN(θ), FN(z)} = FN(z)

It follows that

TN(x) ≤
∨
{TN(x ∗ y), TN(y)} ≤

∨
{TN(y), TN(z)}

IN(x) ≥
∧
{IN(x ∗ y), IN(y)} ≥

∧
{IN(y), IN(z)}

FN(x) ≤
∨
{FN(x ∗ y), FN(y)} ≤

∨
{FN(y), FN(z)}

This completes the proof.

Theorem 7. In a BCK-algebra, every neutrosophic N -ideal is a neutrosophic N -subalgebra.

Proof. Let XN be a neutrosophic N -ideal of a BCK-algebra X. For any x, y ∈ X, we have
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TN(x ∗ y) ≤
∨
{TN((x ∗ y) ∗ x), TN(x)} =

∨
{TN((x ∗ x) ∗ y), TN(x)}

=
∨
{TN(θ ∗ y), TN(x)} =

∨
{TN(θ), TN(x)}

≤
∨
{TN(x), TN(y)}

IN(x ∗ y) ≥
∧
{IN((x ∗ y) ∗ x), IN(x)} =

∧
{IN((x ∗ x) ∗ y), IN(x)}

=
∧
{IN(θ ∗ y), IN(x)} =

∧
{IN(θ), IN(x)}

≥
∧
{IN(y), IN(x)}

and

FN(x ∗ y) ≤
∨
{FN((x ∗ y) ∗ x), FN(x)} =

∨
{FN((x ∗ x) ∗ y), FN(x)}

=
∨
{FN(θ ∗ y), FN(x)} =

∨
{FN(θ), FN(x)}

≤
∨
{FN(x), FN(y)}

Hence XN is a neutrosophic N -subalgebra of a BCK-algebra X.

The converse of Theorem 7 may not be true in general, as seen in the following example.

Example 4. Consider a BCK-algebra X = {θ, 1, 2, 3, 4} with the following Cayley table.

∗ θ 1 2 3 4
θ θ θ θ θ θ

1 1 θ θ θ θ

2 2 1 θ 1 θ

3 3 3 3 θ θ

4 4 4 4 3 θ

Let XN be a neutrosophic N -structure over X, which is given as follows:

XN =
{

θ
(−0.8,0,−1) , 1

(−0.8,−0.2,−0.9) ,

2
(−0.2,−0.6,−0.5) , 3

(−0.7,−0.4,−0.7) , 4
(−0.4,−0.8,−0.3)

}
Then XN is a neutrosophic N -subalgebra of X, but it is not a neutrosophic N -ideal of X as

TN(2) = −0.2 > −0.7 =
∨{TN(2 ∗ 3), TN(3)}, IN(4) = −0.8 < −0.4 =

∧{IN(4 ∗ 3), IN(3)}, or
FN(4) = −0.3 > −0.7 =

∨{FN(4 ∗ 3), FN(3)}.

Theorem 7 is not valid in a BCI-algebra; that is, if X is a BCI-algebra, then there is a neutrosophic
N -ideal that is not a neutrosophic N -subalgebra, as seen in the following example.

Example 5. Consider the neutrosophic N -ideal XN of X in Example 3. If we take x := (θ, 0) and y := (θ, 1)
in Y× (N∪ {0}), then x ∗ y = (θ, 0) ∗ (θ, 1) = (θ,−1) /∈ Y× (N∪ {0}). Hence

TN(x ∗ y) = 0 > α =
∨
{TN(x), TN(y)}

IN(x ∗ y) = β < 0 =
∧
{IN(x), IN(y)} or

FN(x ∗ y) = 0 > γ =
∨
{FN(x), FN(y)}

Therefore XN is not a neutrosophic N -subalgebra of X.
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For any elements ωt, ωi, ω f ∈ X, we consider sets:

Xωt
N := {x ∈ X | TN(x) ≤ TN(ωt)}

Xωi
N := {x ∈ X | IN(x) ≥ IN(ωi)}

X
ω f
N :=

{
x ∈ X | FN(x) ≤ FN(ω f )

}
Clearly, ωt ∈ Xωt

N , ωi ∈ Xωi
N and ω f ∈ X

ω f
N .

Theorem 8. Let ωt, ωi and ω f be any elements of X. If XN is a neutrosophic N -ideal of X, then Xωt
N , Xωi

N

and X
ω f
N are ideals of X.

Proof. Clearly, θ ∈ Xωt
N , θ ∈ Xωi

N and θ ∈ X
ω f
N . Let x, y ∈ X be such that x ∗ y ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N and

y ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N . Then

TN(x ∗ y) ≤ TN(ωt), TN(y) ≤ TN(ωt)

IN(x ∗ y) ≥ IN(ωi), IN(y) ≥ IN(ωi)

FN(x ∗ y) ≤ FN(ω f ), FN(y) ≤ FN(ω f )

It follows from Equation (6) that

TN(x) ≤
∨
{TN(x ∗ y), TN(y)} ≤ TN(ωt)

IN(x) ≥
∧
{IN(x ∗ y), IN(y)} ≥ IN(ωi)

FN(x) ≤
∨
{FN(x ∗ y), FN(y)} ≤ FN(ω f )

Hence x ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N , and therefore Xωt

N , Xωi
N and X

ω f
N are ideals of X.

Theorem 9. Let ωt, ωi, ω f ∈ X and let XN be a neutrosophic N -structure over X. Then

(1) If Xωt
N , Xωi

N and X
ω f
N are ideals of X, then the following assertion is valid:

(∀x, y, z ∈ X)

 TN(x) ≥ ∨{TN(y ∗ z), TN(z)} ⇒ TN(x) ≥ TN(y)

IN(x) ≤ ∧{IN(y ∗ z), IN(z)} ⇒ IN(x) ≤ IN(y)

FN(x) ≥ ∨{FN(y ∗ z), FN(z)} ⇒ FN(x) ≥ FN(y)

 (11)

(2) If XN satisfies Equation (11) and

(∀x ∈ X) (TN(θ) ≤ TN(x), IN(θ) ≥ IN(x), FN(θ) ≤ FN(x)) (12)

then Xωt
N , Xωi

N and X
ω f
N are ideals of X for all ωt ∈ Im(TN), ωi ∈ Im(IN) and ω f ∈ Im(FN).

Proof. (1) Assume that Xωt
N , Xωi

N and X
ω f
N are ideals of X for ωt, ωi, ω f ∈ X. Let x, y, z ∈ X be such

that TN(x) ≥ ∨{TN(y ∗ z), TN(z)}, IN(x) ≤ ∧{IN(y ∗ z), IN(z)} and FN(x) ≥ ∨{FN(y ∗ z), FN(z)}.
Then y ∗ z ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N and z ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N , where ωt = ωi = ω f = x. It follows

from (I2) that y ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N for ωt = ωi = ω f = x. Hence TN(y) ≤ TN(ωt) = TN(x),

IN(y) ≥ IN(ωi) = IN(x) and FN(y) ≤ FN(ω f ) = FN(x).
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(2) Let ωt ∈ Im(TN), ωi ∈ Im(IN) and ω f ∈ Im(FN) and suppose that XN satisfies Equations (11)

and (12). Clearly, θ ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N by Equation (12). Let x, y ∈ X be such that x ∗ y ∈ Xωt

N ∩ Xωi
N ∩

X
ω f
N and y ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N . Then

TN(x ∗ y) ≤ TN(ωt), TN(y) ≤ TN(ωt)

IN(x ∗ y) ≥ IN(ωi), IN(y) ≥ IN(ωi)

FN(x ∗ y) ≤ FN(ω f ), FN(y) ≤ FN(ω f )

which implies that
∨{TN(x ∗ y), TN(y)} ≤ TN(ωt),

∧{IN(x ∗ y), IN(y)} ≥ IN(ωi), and
∨{FN(x ∗

y), FN(y)} ≤ FN(ω f ). It follows from Equation (11) that TN(ωt) ≥ TN(x), IN(ωi) ≤ IN(x) and

FN(ω f ) ≥ FN(x). Thus, x ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N , and therefore Xωt

N , Xωi
N and X

ω f
N are ideals of X.

Definition 3. A neutrosophic N -ideal XN of X is said to be closed if it is a neutrosophic N -subalgebra of X.

Example 6. Consider a BCI-algebra X = {θ, 1, a, b, c} with the following Cayley table.

∗ θ 1 a b c
θ θ θ a b c
1 1 θ a b c
a a a θ c b
b b b c θ a
c c c b a θ

Let XN be a neutrosophic N -structure over X which is given as follows:

XN =
{

θ
(−0.9,−0.3,−0.8) , 1

(−0.7,−0.4,−0.7) , a
(−0.6,−0.8,−0.3) ,

b
(−0.2,−0.6,−0.3) , c

(−0.2,−0.8,−0.5)

}
Then XN is a closed neutrosophic N -ideal of X.

Theorem 10. Let X be a BCI-algebra, For any α1, α2, γ1, γ2 ∈ [−1, 0) and β1, β2 ∈ (−1, 0] with α1 < α2,
γ1 < γ2 and β1 > β2, let XN := X

(TN ,IN ,FN)
be a neutrosophic N -structure over X given as follows:

TN : X → [−1, 0], x 7→
{

α1 if x ∈ X+

α2 otherwise

IN : X → [−1, 0], x 7→
{

β1 if x ∈ X+

β2 otherwise

FN : X → [−1, 0], x 7→
{

γ1 if x ∈ X+

γ2 otherwise

where X+ = {x ∈ X | θ � x}. Then XN is a closed neutrosophic N -ideal of X.

Proof. Because θ ∈ X+, we have TN(θ) = α1 ≤ TN(x), IN(θ) = β1 ≥ IN(x) and FN(θ) = γ1 ≤ FN(x)
for all x ∈ X. Let x, y ∈ X. If x ∈ X+, then

TN(x) = α1 ≤
∨
{TN(x ∗ y), TN(y)}

IN(x) = β1 ≥
∧
{IN(x ∗ y), IN(y)}

FN(x) = γ1 ≤
∨
{FN(x ∗ y), FN(y)}
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Suppose that x /∈ X+. If x ∗ y ∈ X+ then y /∈ X+, and if y ∈ X+ then x ∗ y /∈ X+. In either case,
we have

TN(x) = α2 =
∨
{TN(x ∗ y), TN(y)}

IN(x) = β2 =
∧
{IN(x ∗ y), IN(y)}

FN(x) = γ2 =
∨
{FN(x ∗ y), FN(y)}

For any x, y ∈ X, if any one of x and y does not belong to X+, then

TN(x ∗ y) ≤ α2 =
∨
{TN(x), TN(y)}

IN(x ∗ y) ≥ β2 =
∧
{IN(x), IN(y)}

FN(x ∗ y) ≤ γ2 =
∨
{FN(x), FN(y)}

If x, y ∈ X+, then x ∗ y ∈ X+. Hence

TN(x ∗ y) = α1 =
∨
{TN(x), TN(y)}

IN(x ∗ y) = β1 =
∧
{IN(x), IN(y)}

FN(x ∗ y) = γ1 =
∨
{FN(x), FN(y)}

Therefore XN is a closed neutrosophic N -ideal of X.

Proposition 6. Every closed neutrosophic N -ideal XN of a BCI-algebra X satisfies the following condition:

(∀x ∈ X) (TN(θ ∗ x) ≤ TN(x), IN(θ ∗ x) ≥ IN(x), FN(θ ∗ x) ≤ FN(x)) (13)

Proof. Straightforward.

We provide conditions for a neutrosophic N -ideal to be closed.

Theorem 11. Let X be a BCI-algebra. If XN is a neutrosophic N -ideal of X that satisfies the condition of
Equation (13), then XN is a neutrosophic N -subalgebra and hence is a closed neutrosophic N -ideal of X.

Proof. Note that (x ∗ y) ∗ x � θ ∗ y for all x, y ∈ X. Using Equations (10) and (13), we have

TN(x ∗ y) ≤
∨
{TN(x), TN(θ ∗ y)} ≤

∨
{TN(x), TN(y)}

IN(x ∗ y) ≥
∧
{IN(x), IN(θ ∗ y)} ≥

∧
{IN(x), IN(y)}

FN(x ∗ y) ≤
∨
{FN(x), FN(θ ∗ y)} ≤

∨
{FN(x), FN(y)}

Hence XN is a neutrosophicN -subalgebra and is therefore a closed neutrosophicN -ideal of X.
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