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Abstract. Recently, the concept of NeutroAlgebraic and AntiAlgebraic Structures were introduced and analyzed by

Florentin Smarandache. His new approach to the study of Neutrosophic Structures presents a more robust tool needed

for managing uncertainty, incompleteness, indeterminate and imprecise information. In this paper, we introduce for the

first time the concept of NeutroVectorSpaces. Specifically, we study a particular class of the NeutroVectorSpaces called

of type 4S and their elementarily properties are presented. It is shown that the NeutroVectorSpaces of type 4S may con-

tain NeutroSubspaces of other types and that the intersections of NeutroSubspaces of type 4S are not NeutroSubspaces.

Also, it is shown that if NV is a NeutroVector Space of a particular type and NW is a NeutroSubspace of NV , the

NeutroQuotientSpace NV/NW does not necessarily belong to the same type as NV .

Keywords: Neutrosophy; Vector Space; NeutroField; weak NeutroVectorSpace; strong NeutroVectorSpace; weak An-

tiVectorSpace; strong AntiVectorSpace; NeutroSubspace; weak NeutroQuotientSpace; strong NeutroQuotientSpace.

—————————————————————————————————————————-

1. Introduction

As an extension of his work in [15], Florentine Smarandache in [12] introduced a new way of handling

uncertainty, incompleteness, indeterminate and imprecise information. He studied and presented the

concept of NeutroAlgebraicStructures and AntiAlgebraicStructures, which can be generated from a

classical algebraic structure by a process called neutro-sophication and anti-sophication respectively.

The emergence of these processes has given birth to a new field of research in the theory of neutrosophic

algebraic structures. More details on neutrosophic algebraic structures can be found in [4]- [10].

Smarandache in [13] recalled, improved and extended several definitions and properties of NeutroAl-

gebras and AntiAlgebras given in [12]. This new concept was examined by Agboola et al. in [1]

viz-a-viz the classical number systems N,Z,Q,R and C . In [2], Agboola formally presented the notion

of NeutroGroups by considering three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral

element and existence of NeutroInverse element). In addition, he showed that generally, Langrange’s
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theorem and 1st isomorphism theorem of the classical groups do not hold in the class of NeutroGroups

considered. Also in [3], Agboola studied NeutroRing, NeutroSubring, NeutroIdeal, NeutroQuotien-

tRings and he showed that the 1st isomorphism theorem of the classical rings holds in this class of

NeutroRing. Recently, Rezaei and Smarandache [11] introduced the concept of Neutro-BE-algebras

and Anti-BE-algebras and they showed that given any classical algebra S with n operations (laws and

axioms) where n ≥ 1 we can generate (2n − 1) NeutroStructures and (3n − 2n) AntiStructures. For

comprehensive review of new trends in neutrosophic theory readers should see [4–6,8–10].

The present paper will be concerned with the introduction of NeutroVectorSpaces. Specifically in

the paper, we will introduce and study a class of NeutroVectorSpaces called NeutroVectorSpaces of

type 4S (i.e., 4 of its scalar multiplication axioms are NeutroAxioms) and we will present some of

their elementarily properties. It will be shown that the NeutroVectorSpaces of type 4S may contain

NeutroSubspaces of other types and that the intersections of NeutroSubspaces of type 4S are not Neu-

troSubspaces. Also, it will be shown that if NV is a NeutroVectorSpace of a particular type and NW

is a NeutroSubspace of NV , then the NeutroQuotientSpace NV/NW does not necessarily belong to

the same type as NV .

2. Preliminaries

In this section, we will give some definitions, examples and results that will be used in the sequel.

Definition 2.1. [14]

(i) A ClassicalOperation is an operation well-defined for all the set’s elements while a Neutro-

Operation is an operation partially well-defined, partially indeterminate, and partially outer

defined on the given set. An AntiOperation is an operation that is outer defined for all the

set’s elements.

(ii) A classicalLaw/Axiom defined on a nonempty set is a law/axiom that is totally true for all

the set’s elements while a NeutroLaw/Axiom defined on a nonempty set is a law/axiom that is

true for some set’s element, indeterminate for other set’s elements, or false for the other set’s

elements. An AntiLaw/Axiom defined on a nonempty set is a law/axiom that is false for all

set’s elements.

(iii) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom

(axiom that is true for some elements, indeterminate for other elements, and false for other

elements), and no AntiOperation or AntiAxiom while an AntiAlgebra is an algebra endowed

with at least one AntiOperation or at least one AntiAxiom.

Theorem 2.2. [11] Let U be a nonempty finite or infinite universe of discourse and let S be a finite

or infinite subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then

there will be (2n − 1) NeutroAlgebraicStructures and (3n − 2n) AntiAlgebraicStructures.
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Definition 2.3. [Classical group]

Let G be a nonempty set and let ∗ : G × G → G be a binary operation on G. The couple (G, ∗) is

called a classical group if the following conditions hold:

(G1) x ∗ y ∈ G ∀x, y ∈ G [closure law].

(G2) x ∗ (y ∗ z) = (x ∗ y) ∗ z ∀x, y, z ∈ G [axiom of associativity].

(G3) There exists e ∈ G such that x ∗ e = e ∗ x = x ∀x ∈ G [axiom of existence of neutral element].

(G4) There exists y ∈ G such that x ∗ y = y ∗ x = e ∀x ∈ G [axiom of existence of inverse element]

where e is the neutral element of G.

If in addition ∀x, y ∈ G, we have

(G5) x ∗ y = y ∗ x, then (G, ∗) is called an abelian group.

Definition 2.4. [NeutroSophication of the law and axioms of the classical group]

(NG1) There exist at least three duplets (x, y), (u, v), (p, q),∈ G such that x ∗ y ∈ G (inner-defined

with degree of truth T) and [u∗v = indeterminate (with degree of indeterminacy I) or p∗q 6∈ G

(outer-defined/falsehood with degree of falsehood F)] [NeutroClosureLaw].

(NG2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ G such that x∗ (y ∗z) = (x∗y)∗z

(inner-defined with degree of truth T) and [[p ∗ (q ∗ r)]or [(p ∗ q) ∗ r] = indeterminate (with

degree of indeterminacy I) or u ∗ (v ∗ w) 6= (u ∗ v) ∗ w (outer-defined/falsehood with degree of

falsehood F)] [NeutroAxiom of associativity (NeutroAssociativity)].

(NG3) There exists an element e ∈ G such that x ∗ e = e ∗ x = x (inner-defined with degree of truth

T) and [[x ∗ e]or[e ∗ x] = indeterminate (with degree of indeterminacy I) or x ∗ e 6= x 6= e ∗ x

(outer-defined/falsehood with degree of falsehood F)] for at least one x ∈ G [NeutroAxiom of

existence of neutral element (NeutroNeutralElement)].

(NG4) There exists an element u ∈ G such that x ∗ u = u ∗ x = e (inner-defined with degree of truth

T) and [[x ∗ u]or[u ∗ x)] = indeterminate (with degree of indeterminacy I) or x ∗ u 6= e 6= u ∗ x

(outer-defined/falsehood with degre of falsehood F)] for at least one x ∈ G [NeutroAxiom of

existence of inverse element (NeutroInverseElement)] where e is a NeutroNeutralElement in G.

(NG5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ G such that x ∗ y = y ∗ x (inner-defined

with degree of truth T) and [[u ∗ v]or[v ∗ u] = indeterminate (with degree of indeterminacy

I) or p ∗ q 6= q ∗ p (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of

commutativity (NeutroCommutativity)].

Definition 2.5. A NeutroGroup NG is an alternative to the classical group G that has at least one

NeutroLaw or at least one of {NG1, NG2, NG3, NG4} with no AntiLaw or AntiAxiom.

Definition 2.6. A NeutroAbelianGroup NG is an alternative to the classical abelian group G that

has at least one NeutroLaw or at least one of {NG1, NG2, NG3, NG4} and NG5 with no AntiLaw or

AntiAxiom.
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Example 2.7. Let NG = N = {1, 2, 3, 4 · · · , }. Then (NG, .) is a finite NeutroGroup where ′′.′′ is the

binary operation of ordinary multiplication.

Definition 2.8. [Classical ring] Let R be a nonempty set and let +, . : R×R→ R be binary operations

of the usual addition and multiplication respectively defined onR. The triple (R,+, .) is called a classical

ring if the following conditions (R1−R9) hold:

(R1) x+ y ∈ R ∀x, y ∈ R [closure law of addition].

(R2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ R [axiom of associativity].

(R3) There exists e ∈ R such that x+ e = e+ x = x ∀x ∈ R [axiom of existence of neutral element].

(R4) There exists −x ∈ R such that x+ (−x) = (−x) + x = e ∀x ∈ G [axiom of existence of inverse

element]

(R5) x+ y = y + x ∀x, y ∈ R [axiom of commutativity].

(R6) x.y ∈ R ∀x, y ∈ R [closure law of multiplication].

(R7) x.(y.z) = (x.y).z ∀x, y, z ∈ R [axiom of associativity].

(R8) x.(y + z) = (x.y) + (x.z) ∀x, y, z ∈ R [axiom of left distributivity].

(R9) (y + z).x = (y.x) + (z.x) ∀x, y, z ∈ R [axiom of right distributivity].

If in addition we have,

(R10) x.y = y.x ∀x, y ∈ R [axiom of commutativity],

then (R,+, .) is called a commutative ring.

Definition 2.9. [NeutroSophication of the laws and axioms of the classical ring]

(NR1) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+y ∈ R (inner-defined with

degree of truth T) and [u + v = indeterminate (with degree of indeterminacy I) or p + q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] [NeutroClosure law of addition].

(NR2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x+(y+z) = (x+y)+z

(inner-defned with degree of truth T) and [[p + (q + r)]or[(p + q) + r] = indeterminate (with

degree of indeterminacy I) or u+ (v + w) 6= (u+ v) + w (outer-defined/falsehood with degree

of falsehood F)] [NeutroAxiom of associativity (NeutroAssociativity)].

(NR3) There exists an element e ∈ R such that x+ e = x+ e = x (inner-defined with degree of truth

T) and [[x+ e]or[e+ x] = indeterminate (with degree of indeterminate I) or x+ e 6= x 6= e+ x

(outer-defined/falsehood with degree of falsehood F)] for at least one x ∈ R [NeutroAxiom of

existence of neutral element (NeutroNeutralElement)].

(NR4) There exists −x ∈ R such that x + (−x) = (−x) + x = e (inner-defined with degree of

truth T) and [[−x + x]or[x + (−x)] = indeterminate (with the degree of indeterminate I) or

−x + x 6= e 6= x + (−x) (outer-defined/falsehood with degree of falsehood F)] for at least one

x ∈ R [NeutroAxiom of existence of inverse element (NeutroInverseElement)].
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(NR5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+ y = y+x (inner-defined

with degree of truth T) and [[p + q]or[q + p] = indeterminate (with degree of indeterminacy

I) or u + v 6= v + u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of

commutativity (NeutroCommutativity)].

(NR6) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y ∈ R (inner-defined

with degree of truth T) and [u.v = indeterminate (with degree of indeterminacy I) or p.q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] NeutroClosure law of multiplication].

(NR7) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y.z) = (x.y).z

(inner-defined with degree of truth T) and [[p.(q.r)]or[(p.q).r] = indeterminate (with degree of

indeterminacy I) or u.(v.w) 6= (u.v).w (outer-defined/falsehood with degree of falsehood F)]

[NeutroAxiom of associativity (NeutroAssociativity)].

(NR8) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y + z) = (x.y) +

(x.z) (inner-defined with degree of truth T) and [[p.(q + r)]or[(p.q) + (p.r)] = indeterminate

(with degree of indeterminacy I) or u.(v + w) 6= (u.v) + (u.w) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of left distributivity (NeutroLeftDistributivity)].

(NR9) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that (y + z).x = (y.x) +

(z.x) (inner-defined with degree of truth T) and [[(v + w).u]or[(v.u) + (w.u)] = indeterminate

(with degree of indeterminacy I) or (v + w).u 6= (v.u) + (w.u) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of right distributivity (NeutroRightDistributivity)].

(NR10) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y = y.x (inner-defined

with degree of truth T) and [[p.q]or[q.p] = indeterminate (with degree of indeterminacy I) or

u.v 6= v.u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of commutativity

(NeutroCommutativity)].

Definition 2.10. A NeutroRing NR is an alternative to the classical ring R that has at least one

NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} with no AntiLaw

or AntiAxiom.

Definition 2.11. A NeutroNoncommutativeRing NR is an alternative to the classical noncommu-

tative ring R that has at least

one NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} and NR10

with no AntiLaw or AntiAxiom.

Example 2.12. (i) Let NR = Z and let ⊕ be a binary operation of ordinary addition and for all

x, y ∈ NR, let � be a binary operation defined on NR as x� y =
√
xy. Then (NR,⊕,�) is a

NeutroRing.

(ii) Let NR = Q and let ⊕ be a binary operation of ordinary addition and for all x, y ∈ NR, let �

be a binary operation defined on NR as x� y = x/y. Then (NR,⊕,�) is a NeutroRing.
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3. Formulation of NeutroVectorSpaces

In this section, we present the concept of NeutroVectorSpaces and study their elementary properties.

Definition 3.1. [7] [Classical Vector Space]

A vector space consists of a nonempty set V of objects (called vectors) that can be added, that can be

multiplied by a real or complex number (called a scalar in this context), and for which the following

laws and axioms hold:

The Law and Axioms for vector addition

(A1) If u and v are in V, then u+ v is in V.

(A2) u+ (v + w) = (u+ v) + w for all u, v, and w in V.

(A3) An element 0 in V exist such that v + 0 = v = 0 + v for every v in V.

(A4) For each v in V, an element −v in V exist such that −v + v = 0 and v + (−v) = 0.

(A5) u+ v = v + u for all u and v in V.

The Law and Axioms for scalar multiplication

(S1) If v is in V, then av is in V for all a in R.

(S2) a(v + w) = av + aw for all v and w in V and all a ∈ R.

(S3) (a+ b)v = av + bv for all v in V and all a and b ∈ R.

(S4) a(bv) = (ab)v for all v in V and all a and b in R.

(S5) 1v = v for all v in V.

Definition 3.2. [NeutroSophication of the law and axioms of the classical vector space]

NeutroSophication of the law and axioms for vector addition

(NA1) There exist at least three duplets (u, v), (w, x), (y, z) ∈ V such that u + v ∈ V (inner-defined

with degree of truth T) and [w+x = indeterminate (with degree of indeterminacy I) or y+z 6∈ V

(outer-defined/falsehood with degree of falsehood F)].

(NA2) There exist at least three triplets (u, v, w), (x, y, z), (p, q, r) ∈ V such that u+(v+w) = (u+v)+w

(inner-defined with degree of truth T) and [[x + (y + z)]or[(x + y) + z] = indeterminate (with

degree of indeterminacy I) or p+ (q + r) 6= (p+ q) + r (outer-defined/falsehood with degree of

falsehood F)].

(NA3) There exists an element e ∈ V such that v + e = e+ v = v (inner-defined with degree of truth

T) and [[v + e]or[e+ v] = indeterminate (with degree of indeterminacy I) or v + e 6= v 6= e+ v

(outer-defined/falsehood with degree of falsehood F)] for at least one v ∈ V .

(NA4) There exists −v ∈ V such that v+ (−v) = (−v) + v = e (inner-defined with degree of truth T)

and [[−v + v]or[v + (−v)] = indeterminate (with degree of indeterminacy I) or [−v + v 6= e 6=

v + (−v) (outer-defined/falsehood with degree of falsehood F)]
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(NA5) There exist at least three duplets (u, v), (x, y), (w, z) ∈ V such that u+v = v+u (inner-defined

with degree of truth T) and [[x+ y]or[y + x] = indeterminate (with degree of indeterminacy I)

or w + z 6= z + w (outer-defined/falsehood with degree of falsehood F)].

NeutroSophication of the law and axioms for scalar multiplication

(NS1) There exist at least three duplets (a, v), (b, u), (c, x) with a, b, c ∈ K and v, u, x ∈ V such

that av ∈ V (inner-defined with degree of truth T) and [bu = indeterminate (with degree of

indeterminacy I) or cx 6∈ V (degree of falsehood F)].

(NS2) There exist at least three triplets (k, x, y), (m,u, v), (n,w, z) with k,m, n ∈ K and

x, y, u, v, w, z ∈ X such that k(x + y) = kx + ky (inner-defined with degree of truth T) and

[[m(u+v)]or[mu+mv] = indeterminate (with degree of indeterminacy I) or n(w+z) 6= nw+nz

(outer-defined/falsehood with degree of falsehood F)].

(NS3) There exist at least three triplets (k,m, x),(p,q,y),(r,s,z) with k,m, p, q, r, s ∈ K and x, y, z ∈ X

such that (k+m)x = kx+mx (inner-defined with degree of truth T) and [[(p+q)y]or[py+qy] =

indeterminate (with degree of indeterminacy I) or (r + s)z 6= rz + sz (outer-defined/falsehood

with degree of falsehood F)].

(NS4) There exist at least three triplets (k,m, x), (p, q, y), (r, s, z) with k,m, p, q, r, s ∈ K and

x, y, z ∈ X such that k(mx) = (km)x = (mk)x (inner-defined with degree of truth T) and

[[p(qy)]or[q(py)]or[(pq)y] = indeterminate (with degree of indeterminacy I) or r(sz) 6= (rs)z

(outer-defined/falsehood with degree of falsehood F)].

(NS5) There exists an element k ∈ K such that kv = v (inner-defined with degree of truth T) and

[kv = indeterminate (with degree of indeterminacy I) or kv 6= v (outer-defined/falsehood with

degree of falsehood F)] for at least one v ∈ V .

Definition 3.3. [AntiSophication of the law and axioms of the classical vector space]

AntiSophication of the law and axioms for vector addition

(AA1) For all the duplets (u, v) ∈ V , u+ v /∈ V.

(AA2) For all the triplets (u, v, w) ∈ V , u+ (v + w) 6= (u+ v) + w.

(AA3) There does not exist an element e in V such that v + e = v = e+ v for every v in V.

(AA4) There does not exist −v in V such that v + (−v) = (−v) + v = e for all v ∈ V where e is a

AntiNeutralElement in V.

(AA5) For all the duplets (u, v) ∈ V , u+ v 6= v + u.

AntiSophication of the law and axioms for scalar multiplication

(AS1) For all v ∈ V and a ∈ R, av 6∈ V .

(AS2) For all u, v ∈ V and a ∈ R, a(u+ v) 6= au+ av.

(AS3) For all v ∈ V and a, b ∈ R, (a+ b)v 6= av + bv.

(AS4) For all v ∈ V and a, b ∈ R, a(bv) 6= (ab)v.
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(AS5) For all v ∈ V , 1v 6= v.

Definition 3.4. Let (K,+, ·) be a field. A NeutroField (NK,+, ·) is an alternative to the classical field

(K,+, ·) that has at least one NeutroLaw or at least one NeutroAxiom with no Antilaw or AntiAxiom.

Definition 3.5. Let (K,+, ·) be a field. An AntiField (AK,+, ·) is an alternative to the classical field

(K,+, ·) that has at least one AntiLaw or at least one AntiAxiom.

Definition 3.6. Let ” + ” be addition of vectors, ” · ” be multiplication of vector by scalars and let

K be a Neutro/classical field. A NeutroVectorSpace (NV,+, ·) is an alternative to the classical vector

space (V,+, ·) that has at least one NeutroLaw or at least one of {NA1 − NS5} with no Antilaw or

AntiAxiom.

If K is a classical field, then the quadruple (NV,+, ·,K) is called a weak NeutroVectorSpace over

K. And the quadruple (NV,+, ·,K) is called a strong NeutroVectorSpace if K is a NeutroField (i.e.,

K = NK).

Definition 3.7. Let ” + ” be addition of vectors, ” · ” be multiplication of vectors by scalars and let K

be a Anti/classical field. An AntiVectorSpace (AV,+, ·) is an alternative to the classical vector space

(V,+, ·) that has at least one AntiLaw or at least one of {AA1−AS5}.

If K is a classical field, then the quadruple (AV,+, ·,K) is called a weak AntiVectorSpace over K.

And the quadruple (AV,+, ·,K) is called a strong AntiVectorSpace if K is a AntiField (i.e., K = AK).

Theorem 3.8. Let (V,+, ·) be a classical vector space over a field K. Then,

(1) there are 1023 classes of NeutroVector Spaces.

(2) there are 58025 classes of AntiVector Spaces.

Proof. The proof follows easily from Theorem 2.2.

Theorem 3.8 shows that there are many classes of NeutroVector Spaces. The trivial cases from the

1023 classes are the cases where NA1−NS5 hold. Examples of weak and strong NeutroVectorSpaces

for the trivial cases are given in Example 3.9.

Example 3.9. Let V = Z12 and K = R. Define addition and scalar multiplication by

x⊕ y =
2x+ 3y

2
and k � a = ka2

where ⊕ is addition modulo 12. Then (V,⊕,�) is a weak NeutroVectorSpace over a field K.

To see this:

(1) We will show that (V,⊕) is a NeutroAbelianGroup.
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(a) There exist at least x, y ∈ V such that x ⊕ y ∈ V and at least a, b ∈ V such that

a⊕ b /∈ V. For instance, if we take (x, y) = (1, 2) and (a, b) = (2, 1), we will see that NV 1

holds. Therefore ⊕ is NeutroClosed.

(b) Let x, y, z ∈ V. Then

x⊕ (y ⊕ z) = 4x+6y+9z
4 and (x⊕ y)⊕ z = 4x+6y+6z

4 , equating these we have

4x+ 6y + 9z = 4x+ 6y + 6z which gives 9z = 6z,

∴ 3z = 0 this implies that z = 0, 4 and 8.

Thus, only the triplets (x, y, 0), (x, y, 4), and (x, y, 8) can verify the associativity of ⊕ and

therefore, ⊕ is NeutroAssociative.

(c) Let e ∈ V such that x⊕ e = 2x+3e
2 = x and e⊕ x = 2e+3x

2 = x.

Then 2x+3e
2 = 2e+3x

2 from which we obtain e = x.

The elements of V that satisfy x ⊕ x = x are 0, 8. This shows that V has NeutroNeutral

element.

(d) Considering each NeutroNeutral element in (b) we can show that V has NeutroInverse

element.

(e) Let x, y ∈ V, x⊕ y = 2x+3y
2 and y ⊕ x = 2y+3x

2 .

If ′′⊕′′ is commutative, we will have 2x+3y
2 = 2y+3x

2 from which we obtain x = y. This

shows that only the duplet (x, x) can verify commutativity of ⊕.

Thus, ⊕ is NeutroCommutative. Hence, (V,⊕) is a NeutroAbelianGroup.

(2) We wish to find at least a triplet (k,m, u) with u ∈ V and k,m ∈ K, such that k � (m� u) =

(km)� u.

Now, consider (km)� u = (km)u2 = kmu2 and k� (m� u) = k� (mu2) = k(mu2)2 = km2u4.

Equating these we have

kmu2 = km2u4,

which gives

mu2 = 1.

Since we need at least a triplet, take m = 1, then elements of V that will satisfy mu2 = 1 are

5, 7, 11.

So, k � (m� u) = (km)� u for at least the triplets (k, 1, 5), (k, 1, 7) and (k, 1, 11).

(3) We want to show that, there exist at least a triplet (k,m, u) with u ∈ V and k,m ∈ K, such

that (k +m)� u = k � u⊕m� u.

Consider, (k +m)� u = (k +m)u2 = ku2 +mu2 and

k � u⊕m� u = ku2 ⊕mu2 = 2ku2+3mu2

2 .

Equating these we have

ku2 +mu2 =
2ku2 + 3mu2

2
,
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which gives

mu2 = 0 =⇒ u2 = 0

∴ u = 0 and 6.

This shows that only the triplets (k,m, 0) and (k,m, 6) can verify

(k +m)� u = k � u⊕m� u.

(4) We want to show that there exists at least a triplet (k, u, v) with u, v ∈ V and k ∈ K, such that

k � (u⊕ v) = k � u⊕ k � v.

Now, consider k � (u ⊕ v) = k � (2u+3v)
2 = k (2u+3v)2

4 = 4ku2+12kuv+9kv2

4 = 4ku2+9kv2

4 and k �

u⊕ k � v = ku2 ⊕ kv2 = 2ku2+3kv2

2 .

Equating these we have

4ku2 + 9kv2 = 4ku2 + 6kv2,

which gives

9kv2 = 6kv2

3kv2 = 0 =⇒ v2 = 0.

So,

v = 0, 6.

This shows that only the triplets (k, u, 0) and (k, u, 6) can verify k � (u⊕ v) = k � u⊕ k � v.

(5) We want to show that there exists at least a u ∈ V such that 1� u = u.

We have that the only elements of V that satisfy 1� u = u2 = u are 4 and 9.

Accordingly, (V,⊕,�) is a weak NeutroVectorSpace over a field K = R.

Example 3.10. Let X = {a, b, c, d, e} be a universe of discourse and let K = {a, b, c, d}.

Let ⊕ and � be the binary operations defined on K as shown in the Cayley tables below.

Table 1. (a) Cayley table for the binary operation ′′⊕′′ and (b) Cayley table for the

binary operation ′′�′′

⊕ a b c d

a a c a c

b b d b d

c c a c a

d d b d b or d

(a)

� a b c d

a a c a c

b b d b d

c a c a c

d b d b d

(b)

(1) (K,⊕,�) is a trivial NeutroField.

(2) (K,⊕,�) taken over itself is a strong NeutroVector Space.
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(1) To show that (K,⊕,�) is a trivial NeutroField we proceed as follows:

(a) (K,⊕) is a NeutroAbelianGroup. It is clear from the table that;

(i) d⊕ d = b or d.

So, the composition d⊕d is indeterminate with 6.25% degree of indeterminacy and all

other compositions are true with 93.75% degree of truth. Hence ′′⊕′′ is NeutroClosed.

(ii) d⊕ (c⊕ a) = (d⊕ c)⊕ a = d,

a⊕ (c⊕ d) = a, but (a⊕ c)⊕ d = c 6= a. Hence ′′⊕′′ is NeutroAssociative.

(iii) Since only the duplet (x, x) ∈ K verify commutativity, for x = a, b, c ∈ K.

Hence ′′⊕′′ is NeutroCommutative.

(iv) Let Nx and Ix represent additive neutral and inverse element respectively with re-

spect to any element x ∈ K.

Then Na = a, Nc = c and Nb, Nd do not exist.

Ia = a, Ic = c and Ib, Id do not exist.

Hence, (K,⊕) is a NeutroAbelianGroup.

(b) (K,�) is a NeutroAbelianGroup. It is clear from the table that;

(i) (a� b)� d = a� (b� d) = c,

(b� c)� d = d but b� (c� d) = b 6= d. Hence ′′�′′ is NeutroAssociative.

(ii) a� c = c� a = a,

a� b = c but b� a = b. Hence, � is NeutroCommutative.

(iii) Let Ux and Ix represent multiplicative neutral and inverse element(s) respectively

with respect to any element x ∈ K.

Then, Ua = a and c. Ud = b and d. Ub and Uc do not exist.

Ia = a and c. Id = b and d. Ic and Ib do not exist.

Hence, (K,�) is a NeutroAbelianGroup.

(c) Now, we show that � is distributive over ⊕. It is clear from the table that ;

(i) a� (b⊕ c) = a� b⊕ a� c = c,

b � (a ⊕ b) = b, but b � a ⊕ b � b = d 6= b. So, ′′�′′ is left NeutroDistributive over

′′⊕′′.

(ii) (b⊕ c)� a = b� a⊕ c� a = b,

(c⊕ b)� d = c, but c� d⊕ b� d = a 6= c. So, ′′�′′ is right NeutroDistributive over

′′⊕′′. Hence, ′′�′′ is NeutroDistributive over ′′⊕′′.

Accordingly, (K,⊕,�) is a trivial NeutroField.

(2) That (K,⊕,�) is a strong NeutroVector Space over itself, follows easily from all the properties

established in solution of 1 above.

Proposition 3.11. Every NeutroField taken over itself is a strong NeutroVectorSpace.
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Proof. The proof follows from Example 3.10 .

4. A Study of a Class of NeutroVectorSpaces

In this section, we shall consider a particular class of NeutroVectorSpaces (NV,+, ·) where

(1) (NV,+) is a classical abelian group.

(2) S1 is totally true for all v ∈ V and a ∈ K.

(3) S2, S3, S4 and S5 are either partially true or partially indeterminate or partially false for some

elements of V and K.

We shall refer to this class of NeutroVectorSpace as NeutroVectorSpace of type 4S (i.e., 4 of its scalar

multiplication axioms are NeutroAxioms).

Example 4.1. Let K = Zp (where p is prime) and NV = Z8. Define ⊕ and � by

a⊕ b = a+ b and k � a = a2 + ka.

Where ′′+′′ is addition modulo 8 .

Then (NV,⊕,�) is a weak NeutroVectorSpace of type 4S over the field K = Zp.

It is easy to show that (NV,⊕) is an abelian group. Also, it is easy to see that S1 holds.

Now it remains to show that NS2, NS3, NS4 and NS5 hold.

(1) We want to show that there exists at least a triplet (k, x, y) with k ∈ K and x, y ∈ NV such

that

k � (x⊕ y) = k � x⊕ k � y.

Now, k � (x⊕ y) = k � (x+ y) = (x+ y)2 + k(x+ y) = x2 + y2 + 2xy + kx+ ky.

And k � x⊕ k � y = (x2 + kx)⊕ (y2 + ky) = x2 + y2 + kx+ ky.

∴ x2 + y2 + 2xy + kx+ ky = x2 + y2 + kx+ ky

=⇒ xy = 0.

Hence x = 0 or y = 0, (x, y) = (2, 4), (x, y) = (4, 2), (x, y) = (4, 6) and (x, y) = (6, 4).

This shows that only the triplets (k, x, 0), (k, 0, y), (k, 2, 4), (k, 4, 2), (k, 4, 6) and (k, 6, 4) can

verify NS2.

(2) We want to show that there exists at least a triplet (k,m, u) with k,m ∈ K and u ∈ NV such

that

(k +m)� u = k � u+m� u.

(k +m)� u = u2 + (k +m)u = u2 + ku+mu and k � u⊕m� u = 2u2 + ku+mu.

Then, we have

u2 + ku+mu = 2u2 + ku+mu

=⇒ u2 = 0.
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∴ u = 0 and 4.

Hence, only the triplet (k,m, 0) and (k,m, 4) can verify NS3.

(3) We want to show that there exists at least a triplet (k,m, u) with u ∈ NV and k,m ∈ K, such

that k � (m� u) = (km)� u.

Now, consider (km)� u = u2 + (km)u = u2 + kmu and

k � (m� u) = k � (u2 +mu) = (u2 +mu)2 + k(u2 +mu) = u4 + 2mu3 +m2u2 + ku2 + kmu.

Equating these we have

u2 + 2mu+m2 + k = 1.

Since we need at least a triplet, take k = 1, then we have u2 + 2um + m2 = 0 and this gives

u = −m.

Hence, at least the triplet (1,m,−m) satisfies NS4.

(4) We want to show that there exists at least v ∈ NV such that 1� v = v.

From definition of � we have that the only elements of NV that satisfy

1� u = v2 + v = v are 0 and 4.

Hence (NV,⊕,�) is a weak NeutroVectorSpace of type 4S over the field K = Zp.

Example 4.2. Let X = {a, b, c, d, e} be a universe of discourse. Let K = {a, b, c, d} be the Neutrofield

defined in Example 3.10 and let NV =
{
v1 = a

e , v2 = b
e , v3 = c

e , v4 = d
e

}
.

Define on NV the binary operation +′ as in the table below and scalar multiplication ? by

a ? v =
a� x
e

,

here � is the multiplication in K defined in Table 1 (b) for all elements in K.

Table 2. Cayley table for the binary operation +′

+′ v1 v2 v3 v4

v1 v1 v2 v3 v4

v2 v2 v3 v4 v1

v3 v3 v4 v1 v2

v4 v4 v1 v2 v3

Then (NV,+′, ?) is a strong NeutroVectorSpace of type 4S over K.

It is clear from Table 2 that (NV,+′) is an abelian group. Also, it is easy to see that S1 holds.

Now it remains to show that NS2, NS3, NS4 and NS5 hold.

It can be seen from Table 1 (a), Table 1 (b) and Table 2 that ;
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(1) for c ∈ K and v2, v3 ∈ NV,

c ? (v2 +′ v3) = c ? (v2 +′ v3)

= c ? v4 from Table 2

= c�d
e

= c
e ∵ c� d = c, from Table 1 (b)

= v3.

c ? v2 +′ c ? v3 = c�b
e +′ c�ce

= c
e +′ ae from Table1 (b)

= v3 +′ v1

= v3.

=⇒ c ? (v2 +′ v3) = c ? v2 +′ c ? v3 = v3,

and for b ∈ K and v3, v4 ∈ NV,

b ? (v3 +′ v4) = v4 but b ? v3 +′ b ? v4 = v1 6= v4.

This shows that NS2 holds.

(2) for a, c ∈ K and v2 ∈ NV,

(a⊕ c) ? v2 = a ? v2 +′ c ? v2 = v3,

and for a, b ∈ K and v4 ∈ NV,

(a⊕ b) ? v4 = v3 but a ? v4 +′ b ? v4 = v2 6= v3.

This shows that NS3 holds.

(3) for a, b ∈ K and v4 ∈ NV,

(a� b) ? v4 = a ? (b ? v4) = v3,

and for b, c ∈ K and v4 ∈ NV

(b� c) ? v4 = v4 but b ? (c ? v4) = v2 6= v4.

This shows that NS4 holds.

(4) We know from Table 1 that NeutroUnityElements in K are Ua = a, c and Ud = b, d.

Now, suppose we consider the NeutroUnityElement Ud = b only.

We have that b ? v4 = v4 and b ? v3 = v2 6= v3.

This shows that NS5 holds.

Hence, we have that (NV,+′, ?) is a strong NeutroVectorSpace of type 4S over the NeutroField K.

From now on, every weak(strong) NeutroVectorSpaces of type 4S over K(NK) will simply be called a

weak(strong) NeutroVectorSpace over K(NK).

Proposition 4.3. Let (NV,+′1, ?1) and (NH,+′2, ?2) be two weak NeutroVectorSpace over the field K

and let

NV ×NH = {(v, h) : v ∈ NV and h ∈ NH},

for x = (v1, h1), y = (v2, h2) ∈ NV ×NH and k ∈ K define :

x⊕ y = ((v1 +′1 v2), (h1 +′2 h2),
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k � x = (k ?1 v1, k ?2 v2).

Then (NV ×NH,⊕,�) is a weak NeutroVectorSpace over the field K.

Proof. Since (NV,+′1) and (NH,+′2) are classical abelian groups, then it can be shown that (NV ×

NH,⊕) is a classical abelian group. Also, it is easy to see that S1 is true in (NV ×NH).

Now, it remains to show that NS2−NS5 hold in NV ×NH.

(1) There exists at least a triplet (k, (v1, h1), (v2, h2)) with (v1, h1), (v2, h2) ∈ NV ×NH and k ∈ K,

such that

k � ((v1, h1)⊕ (v2, h2)) = k � (v1 +′1 v2, h1 +′2 h2)

= (k ?1 (v1 +′1 v2), k ?2 (h1 +′2 h2))

= (k ?1 v1 +′1 k ?1 v2, k ?2 h1 +′2 k ?2 h2) ∵ NS2 holds in NV and NH.

= (k ?1 v1, k ?2 h1)⊕ (k ?1 v2, k ?2 h2)

= k � (v1, h1)⊕ k � (v2, h2).

Also, there exists at least a triplet (m, (a1, b1), (a2, b2)) with (a1, b1), (a2, b2) ∈ NV ×NH and

m ∈ K, such that

m� ((a1, b1)⊕ (a2, b2)) = m� (a1 +′1 a2, b1 +′2 b2)

= (m ?1 (a1 +′1 a2), m ?2 (b1 +′2 b2))

6= (m ?1 a1 +′1 m ?1 a2, m ?2 b1 +′2 m ?2 b2) ∵ NS2 holds in NV and NH.

= (m ?1 a1,m ?2 b1)⊕ (m ?1 a2,m ?2 b2)

= m� (a1, b1)⊕ m� (a2, b2).

Hence, NS2 holds in NV ×NH.

(2) There exists at least a triplet (k,m, (v, h)) with k,m ∈ K and (v, h) ∈ NV ×NH such that

(k +m)� (v, h) = ((k +m) ?1 v, (k +m) ?2 h)

= ((k ?1 v +′1 m ?1 v), (k ?2 h+′2 m ?2 h)) ∵ NS3 holds in NV and NH.

= ((k ?1 v, k ?2 h)⊕ (m ?1 v,m ?2 h))

= k � (v, h)⊕m� (v, h).

Also, there exists at least a triplet (p, q, (a, b)) with p, q ∈ K and (a, b) ∈ NV ×NH such that

(p+ q)� (a, b) = ((p+ q) ?1 a, (p+ q) ?2 b)

6= ((p ?1 a+′1 q ?1 a), (p ?2 b+′2 q ?2 b)) ∵ NS3 holds in NV and NH.

= ((p ?1 a, p ?2 b)⊕ (q ?1 a, q ?2 b))

= p� (a, b)⊕ q � (a, b).

Hence, NS3 holds in NV ×NH.

(3) There exists at least a triplet (k,m, (v, h)) with k,m ∈ K and (v, h) ∈ NV ×NH such that

(km)� (v, h) = ((km) ?1 v, (km) ?2 h)

= (k ?1 (m ?1 v), k ?2 (m ?2 h)) ∵ NS4 holds in NV and NH.

= k � ((m ?1 v), (m ?2 h))

= k � (m� (v, h)).
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Also, there exists at least a triplet (p, q, (a, b)) with p, q ∈ K and (a, b) ∈ NV ×NH such that

(pq)� (a, b) = ((pq) ?1 a, (pq) ?2 b)

6= (p ?1 (q ?1 a), p ?2 (q ?2 b)) ∵ NS4 holds in NV and NH.

= p� ((q ?1 a), (p ?2 b))

= p� (q � (v, h)).

Hence, NS4 holds in NV ×NH.

(4) There exists (v, h) ∈ NV ×NH such that

1� (v, h) = (1 ? v, 1 ? h)

= (v, h). ∵ NS5 holds in NV and NH.

Also, there exists (a, b) ∈ NV ×NH such that

1� (a, b) = (1 ?1 a, 1 ?2 b)

6= (a, b). ∵ NS5 holds in NV and NH.

Accordingly, (NV ×NH,⊕,�) is a weak NeutroVectorSpace over the field K.

Proposition 4.4. Let (NV,+′1, ?1) be a weak NeutroVectorSpace over the field K and let (H,+, ·) be

a classical vector space over the same field K and let

NV ×H = {(v, h) : v ∈ NV and h ∈ H}

and for x = (v1, h1), y = (v2, h2) ∈ NV ×H and k ∈ K define :

x⊕ y = ((v1 +′1 v2), (h1 + h2) and k � x = (k ? v1, k · v2).

Then (NV ×H,⊕, ·) is a weak NeutroVectorSpace over the field K.

Proof. The proof is similar to the proof of Proposition 4.3 .

Proposition 4.5. Let (NV,+′1, ?1) and (NH,+′2, ?2) be two strong NeutroVectorSpaces over the Neu-

troField NK and let

NV ×NH = {(v, h) : v ∈ NV and h ∈ NH}

and for x = (v1, h1), y = (v2, h2) ∈ NV ×NH and k ∈ NK define :

x⊕ y = ((v1 +′1 v2), (h1 +′2 h2) and k � x = (k ?1 v1, k ?2 v2).

Then (NV ×NH,⊕,�) is a strong NeutroVectorSpace over the NeutroField NK.

Proof. The proof follows similar approach as the proof of Proposition 4.3.

Definition 4.6. Let NV be a NeutroVectorSpace. Then NW is a NeutroSubspace of NV if and only

if NW is a subset of NV, and NW is itself a NeutroVectorSpace with the same operations as in NV.
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Example 4.7. Let (NV,⊕,�) be a weak NeutroVectorSpace of Example 4.1 and let NW = 2Z8 be

a subset of NV. Following the approach in Example 4.1, it can be shown that (NW,⊕,�) is a weak

NeutroVectorSpace over the field Zp. Hence NW is a weak NeutroSubspace of NV.

Example 4.8. Let (NV,+′, ?) be the strong NeutroVectorSpace of Example 4.2 , NV is the only

strong NeutroSubspace of NV.

Remark 4.9. It should be noted that a NeutroVectorSpace NV of a particular class may contain a

NeutroSubspace NW which belongs to another class.

We will illustrate Remark 4.9 with Example 4.10 .

Example 4.10. Let (NV,+′, ?) be the strong NeutroVectorSpace of Example 4.2 and let NW =

{v1, v3} be a subset of NV. Then (NW,+′, ?) is a NeutroVectorSpace of a class other than the class of

NV.

We can see from Table 2 that (NW,+′) is an abelian group. Now, it can be seen from Table 1 (a),

Table 1 (b) and Table 2 that ;

(1) S1 fails to hold. Since ? is not true for all a ∈ K and v ∈ NW.

For instance, take b ∈ K and v3 ∈ NW, then

b ? v3 =
b · c
e

=
b

e
= v2 /∈ V3.

But if we take a ∈ K then for all v ∈ NW we will have that a ? v ∈ NW.

Hence, NS1 holds in NW.

(2) for a, b ∈ K and v1, v3 ∈ NW, we have

a ? (v1 +′ v3) = a ? v1 +′ a ? v3 = v1,

and b ? (v1 +′ v3) = v2 but b ? v1 +′ b ? v3 = v4 6= v2.

This shows that NS2 holds in NW .

(3) for a, c ∈ K and v3 ∈ NW,

(a⊕ c) ? v3 = a ? v3 +′ c ? v3 = v1,

and for a, b ∈ K and v3 ∈ NW,

(a⊕ b) ? v3 = v1 but a ? v3 +′ b ? v3 = v3 6= v1.

This shows that NS3 holds.

(4) for a, c ∈ K and v3 ∈ NW,

(a� c) ? v3 = a ? (c ? v3) = v1,
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and for a, b ∈ K and v3 ∈ NW ,

(a� b) ? v3 = v1 but a ? (b ? v3) = v3 6= v1.

This shows that NS4 holds.

(5) We know from Table 1 that NeutroUnityElements in K are Ua = a, c and Ud = b, d.

Now, suppose we consider the NeutroUnityElement Ua = c only.

We have that c ? v1 = v1 and c ? v3 = v1 6= v3.

This shows that NS5 holds.

Hence, we have that (NW,+′, ?) is a strong NeutroSubpace of type 5S over the NeutroField K. This

implies that the NeutroSubspace NW does not belong to the same class as NV.

Example 4.11. Let NV = Z12 and K = Zp. Define ⊕ and � for all u, v ∈ V and k ∈ K by

u⊕ v = u+ v and k � v = v2 + kv.

Where ′′+′′ is addition mod 12.

Following the approach of Example 4.1 it can be shown that (NV,⊕,�) is a weak NeutroVectorSpace

of type 4S over the field K.

Let NW = 2Z12 and NH = 3Z12 be two subsets of NV. Also, by following similar approach as in

Example 4.1 it can be shown that (NW,⊕,�) and (NH,⊕,�) are weak NeutroSubspaces of NV.

Now consider the following :

(1) NW +NH = {0, 1, 2, · · · , 11} = NV.

(2) NW ∪NH = {0, 2, 3, 4, 6, 8, 9, 10}.

(3) NW ∩NH = {0, 6}.

These show that NW + NH is a NeutroSubspace of NV but NW ∪NH and NW ∩NH are not

NeutroSubspaces of NV.

These observations are recorded in Proposition 4.12 .

Proposition 4.12. Let NW and NH be any two weak NeutroSubspaces of a NeutroVectorSpace NV

over a field K. Then

(1) NW +NH =
⋃
{(w + h) : w ∈ NW and h ∈ NU} is a NeutroSubspace of NV .

(2) NW ∩NU is not necessarily a NeutroSubspace of NV.

(3) NW ∪NU is not necessarily a NeutroSubspace of NV.

Definition 4.13. Let NW be a weak(strong) NeutroSubspace of a weak(strong) NeutroVectorSpace

NV over a field (NeutroField) K(NK). The quotient NV/NW is defined by the set

{v +NW : v ∈ NV }.
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Proposition 4.14. Let (NV,+′, ?) be a weak NeutroVectorSpace and (NW,+′, ?) be a weak Neutro-

Subspace of NV. The quotient NV/NW is a weak NeutroVectorSpace over a field K if addition and

multiplication are defined for all ū = u+NW, v̄ = v +NW ∈ NV/NW and k ∈ K as follows:

ū⊕ v̄ = (u+NW )⊕ (v +NW ) = (u+′ v) +NW,

and

α� ū = α� (u+NW ) = (α ? u) +NW.

This weak NeutroVectorSpace (NV/NW,⊕,�) over a field K is called a weak NeutroQuotientSpace.

Proof. We can easily show that ⊕ and � are well defined.

The proof that (NV/NW,⊕) is an abelian group follows similar approach as the proof in classical case.

Now it remains to show that NS2, NS3, NS4 and NS5 all hold.

(1) SinceNS2 holds inNV, then there exist at least the triplets (k, u, v) and (m, a, b) with u, v, a, b ∈

NV and k,m ∈ K such that k ? (u+′ v) = k ? u+′ k ? v and m ? (a+′ b) 6= m ? a+′ m ? b.

Let ū, v̄, ā, b̄ ∈ NV/NW and k,m ∈ K(NK). Then

k � (ū⊕ v̄) = k � ((u+′ v) +NW )

= k ? (u+′ v) +NW

= (k ? u+′ k ? v) +NW

= (k ? u) +NW ⊕ (k ? v) +NW

= k � (u+NW )⊕ k � (v +NW )

= k � ū⊕ k � v̄.

So, it implies k � (ū⊕ v̄) = k � ū⊕ k � v̄.

And also,

m� (ā⊕ b̄) = m� ((a+′ b) +NW )

= m ? (a+′ b) +NW

6= (m ? a+′ m ? b) +NW

= (m ? a) +NW ⊕ (m ? b) +NW

= m� (a+NW )⊕m� (b+NW )

= m� ā⊕m� b̄.

This implies m� (ā⊕ b̄) 6= m� ā⊕m� b̄. Hence, we can conclude that NS2 holds in NV/NW.

(2) Since NS3 holds in NV, then there exist at least the triplets (k,m, u) and (p, q, v) with u, v ∈

NV and k,m, p, q ∈ K such that (k +m) ? u = k ? u+′ m ? u and (p+ q) ? v 6= p ? v +′ q ? v.

Let ū, v̄ ∈ NV/NW and k,m, p, q ∈ K(NK). Then

(k +m)� ū = (k +m)� (u+NW )

= (k +m) ? u+NW

= (k ? u+′ m ? u) +NW

= (k ? u) +NW ⊕ (m ? u) +NW

= k � (u+NW )⊕m� (u+NW )

= k � ū⊕m� ū.
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So, it implies (k +m)� ū = k � ū⊕m� ū.

And also,

(p+ q)� v̄ = (p+ q)� (v +NW )

= (p+ q) ? v +NW

6= (p ? v +′ q ? v) +NW

= (p ? v) +NW ⊕ (q ? v) +NW

= p� (v +NW )⊕ q � (v +NW )

= p� v̄ ⊕ q � v̄.

So, it implies (p+ q)� v̄ 6= p� v̄ ⊕ q � v̄.

Hence, we can conclude that NS3 holds in NV/NW.

(3) Since NS4 holds in NV, then there exist at least the triplets (k,m, u) and (p, q, v) with u, v ∈

NV and k,m, p, q ∈ K such that (km) ? u = k ? (m ? u) and (pq) ? v 6= p ? (q ? v).

Let ū, v̄ ∈ NV/NW and k,m, p, q ∈ K(NK). Then

(km)� ū = (km)� (u+NW )

= (km) ? u+NW

= (k ? (m ? u)) +NW

= k � ((m ? u) +NW )

= k � (m� (u+NW ))

= k � (m� ū).

So, it implies (km)� ū = k � (m� ū).

And also,

(pq)� v̄ = (pq)� (v +NW )

= (pq) ? v +NW

6= (p ? (q ? v)) +NW

= p� ((q ? v) +NW )

= p� (q � (v +NW ))

= p� (q � v̄).

So, it implies that (pq)� v̄ 6= p� (q � v̄).

Hence, we can conclude that NS4 holds in NV/NW.

(4) In NV we have at least u and v such that 1 ? u = u and 1 ? v 6= v.

So, in NV/NW there exist ū and v̄ such that

1� ū = 1� (u+NW ) = (1 ? u) +NW = u+NW = ū

and

1� v̄ = 1� (v +NW ) = (1 ? v) +NW 6= v +NW = v̄.

So, it implies 1� ū = ū and 1� v̄ = v̄.

Hence, we can conclude that NS5 holds in NV/NW.

Accordingly, (NV/NW,⊕,�) is a weak NeutroVectorSpace over the field K.
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Remark 4.15. Let NV be weak(strong) NeutroVectorSpace of type 4S over a field(NeutroField)

K(NK) and let NW be a NeutroSubspace of NV. Then, the weak(strong) NeutroQuotient Space

NV/NW over K(NK) is not necessarily of type 4S.

We illustrate Remark 4.15 by Example 4.16 .

Example 4.16. Let (NV = Z12,+
′, ?) be a weak NeutroVectorSpace of type 4S over K = Zp and let

(NW = 2Z12,+
′, ?) be a NeutroSubspace of NV. Where +′ is addition mod 12 and ? is defined as

k ? v = v2 +′ kv

for all v ∈ NV and k ∈ K.

Then for all ū, v̄ ∈ NV/NW and k ∈ K define the operation ⊕ and � by

ū⊕ v̄ = (u+′ v) +NW

and

k � ū = (k ? u) +NW.

Then (NV/NW,⊕,�) is a weak NeutroVectorSpace over K of type other than 4S.

We know that NV = {0, 1, 2, · · · , 11} and NW = {0, 2, 4, 6, 8, 10} then we have

NV/NW = {NW, 1 +NW}.

Table 3. Cayley table for the binary operation ⊕

⊕ NW 1 +NW

NW NW 1 +NW

1 +NW 1 +NW NW

From Table 3 it is clear that (NV/NW,⊕) is an abelian group.

Now,

(1) NS2 fails to hold since for any triplet (k, ū, v̄) we pick, with k ∈ K and ū, v̄ ∈ NV/NW,

k � (ū⊕ v̄) = k � ū⊕ k � v̄

is always satisfied. This implies that S2 is totally true in NV/NW.

(2) There exists at least a triplet (k,m, v̄) with k,m ∈ K and v̄ ∈ NV/NW such that

(k +m)� (v̄) = k � v̄ ⊕m� v̄.

Now,

(k +m)� (v̄) = ((k +m) ? v) +NW = (v2 +′ kv +′ mv) +NW
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and

k � v̄ ⊕m� v̄ = ((k ? v) +NW )⊕ ((m ? v) +NW ) = (2v2 +′ ku+′ mv) +NW.

Equating these we have that v2 +NW = NW which implies v2 ∈ NW.

So, only the triple (k,m,NW ) satisfies (k +m)� (v̄) = k � v̄ ⊕m� v̄.

Hence, NS3 holds in NV/NW.

(3) There exists at least a triplet (k,m, v̄) with k,m ∈ K and v̄ ∈ NV/NW such that

(km)� (v̄) = k � (m� v̄).

Now,

(km)� (v̄) = ((km) ? v) +NW = (v2 +′ kmv) +NW

and

k� (m� v̄) = k� ((m?v)+NW ) = (k ? (v2 +′mv))+NW = (v4 +′ 2v3m+′m2v2 +kv2 +′ kmv)+NW.

Equating these we have that (v4 +′ 2v3m +′ m2v2 + kv2) + NW = v2 + NW which implies

(v2 +′ 2vm+′ m2 +′ k) +NW = 1 +NW.

Since we needed at least a triplet, take k = 1, then we have

(v2 +′ 2vm+′m2 +′ 1) +NW = 1 +NW which gives (v2 +′ 2vm+′m2) +NW = NW. So, we

have that (v2 +′ 2vm+′m2) ∈ NW. Then, at least the triplet (1,m,NW ) satisfies (km)� (v̄) =

k � (m� v̄). Hence, NS4 holds in NV/NW.

(4) We can easily see that 1�NW = NW and

1� (1 +NW ) = (1 ? 1) +NW = 2 +NW = NW 6= 1 +NW.

Hence, NS5 holds in NV/NW.

Accordingly, we have that (NV/NW,⊕,�) is a weak NeutroVectorSpace of type 3S over K.

This implies that the NeutroQuotient Space (NV/NW,⊕,�) does not belong to the class of Neutro-

VectorSpace NV.

5. Conclusions

In this paper, we have for the first time introduced the concept of NeutroVectorSpaces. Specifically, a

class of NeutroVectorSpaces called of type 4S was investigated and some of their elementary properties

and examples were presented. It was shown that NeutroVectorSpaces of type 4S contained Neutro-

Subspaces of other types and that the intersections of NeutroSubspaces of type 4S are not necessarily

NeutroSubspaces. Also, it was shown that if NV is a NeutroVectorSpace of a particular type and NW

is a NeutroSubspace of NV , the NeutroQuotientSpace NV/NW does not necessarily belong to the

same type as NV . We hope to continue this work in our next paper to be titled “NeutroVectorSpaces

II”.
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