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ABSTRACT

A phylogenetic tree represents the evolutionary relationships among a set of or-

ganisms. Due to several biological processes, the evolutionary histories of the parts of

the genome, called gene trees, might not agree with each other, or with the evolution

of the species from which the genes were sampled. Such gene trees can be used to

reconstruct phylogenetic trees. The multispecies coalescent is a stochastic process

that often used to model sources of gene-species tree discordance.

The methods in this dissertation focus on the gene tree topologies with emphasis

on ranked gene tree topologies. A ranked tree depicts the order in which nodes appear

in the tree together with topological relationships among gene lineages. One challenge

that arises during phylogenetic inference is the existence of the anomaly zones, the

regions of branch-length space in the species tree that can produce anomalous gene

trees, gene trees that have topologies differing from the species tree topology but are

more probable than the gene tree matching the species tree. The recognition of the
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possibility of anomalous gene trees motivated development of inference methods that

are not affected by anomaly zones. In spite of the many analytic results known about

the various types of anomalous gene trees, less is known about how often they arise

in practice. In this work, we show how the parameters of a constant-rate birth-death

process used to simulate species trees affect the probability that the species tree lies

in the anomaly zone. We prove that the probability that a species tree is in an

anomaly zone approaches 1 as the number of species and the birth rate go to infinity

in a pure birth process. We propose a heuristic approach to infer whether species

trees have different types of anomalous gene trees when it is intractable to compute

the entire distribution of gene tree topologies. The method proposed cannot have

false positives and serves as a quick test to check the presence of anomaly zones.

In this dissertation, we develop the first maximum likelihood method that infers

a species tree from the collection of ranked gene tree topologies. We introduce

the software PRANC, which was initially designed to compute the probabilities of

ranked gene tree topologies under the coalescent process and extended to infer a

maximum likelihood species tree. PRANC has other useful options to work with

phylogenetic trees. We propose methods to estimate a starting tree to be able to

locate the maximum likelihood species tree quickly. We evaluate the computational

and accuracy performance of PRANC under different settings. To illustrate the

methods proposed, we analyze two experimental studies of skinks and gibbons.
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Chapter 1

Introduction

Evolution is a historical natural process by which organisms change over time as a

result of changes in heritable physical or behavioral traits (Darwin, 1872). It is likely

that all life on Earth evolved from a single common ancestor approximately a billion

years ago (Weiss et al., 2016). Evolution plays a central role in all fields of biology.

Variation in physical traits can occur among organisms of different species or among

organisms of the same species. For example, long necked saddle-backed tortoises

lived on an island with a lot of tall plants. On the other hand, short-necked domed

tortoises lived in areas with a lot of short plants (Schafer and Krekorian, 1983).

Species adapted to their enviroments that led to a genetic change in a population

in future generations. Therefore, these tortoises have different evolutionary histories

which can be studied by phylogenetic trees.

The main goal of phylogenetics is to reconstruct the evolutionary history of living

organisms, and describe this history via species trees. Of course, the fossil record can

be used but it is incomplete and fragmentary. Since all organisms can be uniquely

identified by deoxyribonucleic acid (DNA) (ribonucleic acid (RNA) for some viruses),

one can study the evolutionary relationships of organisms by comparing their DNA
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Chapter 1. Introduction

(Felsenstein, 1981; Nei, 1987). DNA consists of four types of nucleotides, adenine

(A), thymine (T), cytosine (C), and guanine (G). The main cause of evolution is the

mutational changes in these characters due to substitution, insertion, inversion, or

deletion of nucleotides (Wakeley, 2009). A phylogenetic tree represents the evolu-

tionary history of a set of species given DNA sequences. Therefore, the phylogeny

can be reconstructed from the various sets of genes, segments of the DNA sequence

in the genome. Prior to the reconstruction, the species samples are gathered and

samples are sequenced. Then, sequences are extracted for each gene and aligned to

match each other as closely as possible.

The most intuitive approach to reconstruct the evolutionary relationships among

species is to concatenate all DNA sequences contained in genes in a single alignment

(Philippe et al., 2005) and thus reduce the variation among genes. In a such way

individual gene data might be concatenated into single supermatrix, which is then

used for the phylogeny reconstruction (e.g., by maximum likelihood). Due to several

reasons, such concatenation of sequences from multiple genes can lead to poor esti-

mates of the true relationships of species (Kubatko and Degnan, 2007; Leaché and

Rannala, 2011; Jiang et al., 2019). Moreover, the maximum likelihood estimation

of concatenated alignments is statistically inconsistent under the multispecies coa-

lescent model (Roch and Steel, 2015) due to the incorrect assumption that all genes

share the same tree. Another approach is to estimate a tree for each gene, called a

gene tree, and then estimate a phylogeny from the sample of gene trees assuming the

latter were estimated accurately.

In this dissertation, most of the methods we will discuss either estimate a phy-

logeny and the gene trees at the same time, or just estimate a species tree from a

given sample of gene trees (Liu et al., 2009a).

2



Chapter 1. Introduction

1.1 Gene trees and species trees

A phylogeny or phylogenetic tree is a tree that represents the evolutionary relation-

ships of a set of organisms. The tree itself can be viewed as a connected undirected

graph without cycles. Each phylogenetic tree has nodes that usually represent popu-

lations of species (called taxa), where a single population is all organisms of the same

species. The leaves of the tree represent current species. The branches of the tree

(i.e. edges) represent the evolutionary time between the species and its offspring.

The branch lengths of the tree can represent various things. They can show the

amount of evolutionary time between two consecutive nodes. Branch lengths could

also show the amount of mutation that occurred in the evolutionary time between

lineages.

A tree can be rooted or unrooted (Figure 1.1). A rooted tree is a tree with the

root specified. The root of the tree corresponds to the most recent common ancestor

(MRCA) of all the organisms at the leaves of the tree. An unrooted tree has no

known or inferred root. Such a tree just describes the relatedness of the leaves. We

can observe an ancestral hierarchy in the rooted tree but not in the unrooted tree.

We can always obtain an unrooted tree from the rooted tree by omitting the root.

However, to infer the root for the unrooted tree is difficult. A common approach is

to add an outgroup, a distantly related species, and assume that the root is between

the outgroup and rest of the tree. Another approach is to assume a molecular clock,

i.e., that the evolutionary rate is constant over time. To safely use a molecular clock

rooting, one needs to test for the validity of this assumption. This typically involves

calculating a maximum likelihood of two trees, one with the molecular clock enforced

and one without the molecular clock enforced and then conducting a likelihood ratio

test (Felsenstein, 1983).

Both rooted and unrooted phylogenetic trees can be either bifurcating or mul-

3
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tifurcating. In a bifurcating (binary) tree each species gives rise to exactly two

descendants, whereas a multifurcating tree may have more than two descendants at

some nodes. The trees can be labeled or unlabeled. In labeled trees all the leaves

are considered distinct. An unlabeled tree is equivalent to a labeled tree where every

leaf has the same label. In this work, we primarly work with rooted and unrooted

labeled ultrametric binary trees where ultrametric means that the leaves are equally

distant from the root. Ultrametric trees satisfy the molecular clock assumption.

In phylogenetic studies, gene trees are often used to reconstruct a species tree that

describes evolutionary relationships among species. Gene trees that are contained

within the branches of the species phylogeny represent the evolutionary histories of

the sampled genes. The species tree is treated as a parameter, and gene trees are

considered as random variables whose distributions depend on the species tree (Yang,

2014).

The methods in this dissertation involve only topologies of gene trees; however,

the species tree is always a rooted binary ultrametric tree with branch lengths spec-

ified. The methods use unrooted and rooted gene trees. There are two types of

rooted gene trees: ranked and unranked. A ranked gene tree not only accounts for

the topology, as an unranked tree does, but also for the order in which lineages

join. We write a ranked tree topology as a modified unranked tree topology using

the Newick format, in which each clade (a group of organisms that includes a single

ancestor and all of its descendants) is represented by a pair of parentheses, and we

add a number after each clade to indicate its ranking. For example, the unranked

gene tree ((A,B), (C,D)) produces two ranked gene trees because the most recent

ancestral gene of the A and B lineages could be either more or less recent than the

most recent ancestral gene of the C and D lineages. Therefore, we count the follow-

ing ranked gene trees as distinct ((A,B)2, (C,D)3) and ((A,B)3, (C,D)2), where the

subscript indicates the ranking of the nodes. In the first of these two ranked gene
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trees, the (C,D) coalescence, indicated by the largest subscript, is the most recent.

In the Newick format, we suppress the labeling of the root node, which has rank 1.

The term “gene tree” will be used to refer to the topology of the gene tree (without

branch lengths) unless otherwise noted.

present

past

Evolutionary time:

A B C D E

taxon

node

branch

root

A Phylogenetic rooted tree

A B C D E

rank is 2

B Rooted ultrametric tree

A

B

C D

E

C Phylogenetic unrooted tree

A B

C

D E

D Rooted non-ultrametric tree

Figure 1.1: (A)–(B) Rooted phylogenetic trees that have the same unranked
topology (((A,B), C), (D,E)) but different ranked topologies. (A) Tree with
the ranked topology (((A,B)3, C)2, (D,E)4). (B) Tree with the ranked topology
(((A,B)4, C)2, (D,E)3). (C) An unrooted tree. (D) A tree that does not satisfy the
molecular clock assumption that tips are equidistant from the root. The tree in (D)
is also called non-ultrametric.
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1.2 The coalescent process

It is impossible to trace the history of all gene variants, called alleles, because some

of them didn’t produce descendants in the past and have no trace in the current gen-

eration. Because we don’t have high quality fossils to study such ghost lineages, we

can only study the alleles that have descendants in the current population. A phy-

logeny represents the history of the lineages that reproduced and have descendants

in the present.

We also don’t take every allele in the whole population to analyze. Instead, we aim

to infer a true evolutionary history about the population from a representative sample

of alleles from a set of populations. The history of the sample can be represented as

a tree embedded in the larger tree of all the populations. Under the Fisher-Wright

model (Fisher, 1930; Wright, 1931), where genetic differences between individuals

have no influence on their probability of reproducing (all mutations are selectively

neutral), each allele is equally likely to have been passed from one generation to

the next. We need to make a clear distinction between census size (actual number

of individuals) and effective population size, which is based on an ideal population

where all parents have an equal expectation of being the parents of any offspring.

Therefore, populations with the same effective population size have similar patterns

of genetic variation and genetic drift (random fluctuations in allele frequency in

a population over time) as randomly mating populations regardless of census size

(Hamilton, 2011).

When DNA is replicated, two gene copies descend from a single common ancestor.

Viewed backwards in time from present to past, the process of merging of alleles into

a single ancestor called coalescence. The theory of coalescence was developed inde-

pendently by several researchers but mainly attributed to John Kingman (Kingman,

1982a,b; Tajima, 1983; Hudson, 1983).
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Let’s consider the case of coalescence of any two alleles from a sample of alleles.

The question then arises: going backwards in time, how many generations it will

take to find their most recent common ancestor (MRCA)? Given a constant effective

population size N (2N copies in diploid organisms), the probability that two alleles

descended from the same ancestral parent in the previous generation is 1/(2N).

Therefore, the probability that two alleles came from different parental alleles is 1−

1/(2N). Figure 1.2 illustrates the coalescence process of two alleles. The probability

that two alleles coalesce and find their MRCA t generations back in time is

P (coalescence occurs at time t) = P (T1 = t) =
(

1− 1

2N

)t−1 1

2N
, (1.1)

where T1 is the coalescent waiting time. Because the first successful coalescence

doesn’t occur until t generations back, T1 follows a geometric distribution with mean

2N . Thus, on average, it will take 2N generations for two alleles to coalesce. For ex-

ample, on average, two randomly choosen alleles from a population of 50 individuals

(i.e., 100 gene copies) find their MRCA 100 generations back in time.

Because the first-order Taylor expansion for ex is 1 + x + o(x2), the geometric

distribution can be rewriten as its continuos analog, the exponential distribution. In

particular, the cumulative distribution function for a geometric random variable T1

is written in equation (1.2). As N →∞, we can expand e−
1

2N as (1− 1
2N

) which is

the exponential cumulative distribution function for t/(2N) (eq. (1.3)). Therefore as

N →∞, it follows that for two alleles T1/(2N)
d→ T2, where T2 is exponential with

mean 2N .

P (T1 < t) = 1−
(

1− 1

2N

)t
, (1.2)

P (T2 < t) = 1− e−
t

2N , (1.3)

More generally, one can calculate the probability that u lineages coalesce into v

lineages. Given that T = t/(2N) is a branch length, the probability that u lineages
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coalesce into v lineages (1 ≤ v ≤ n) in the length of time T is (Tavaré, 1984)

Puv(T ) =
u∑
k=v

e−(k2)T (2k − 1)(−1)k−v

v!(k − v)!(v + k − 1)

k−1∏
y=0

(v + y)(u− y)

u+ y
. (1.4)

Figure 1.2: Illustrations of a Kingman’s coalescent process. It starts from the current
generation (bottom) tracing backward in time to the most recent common ancestral
(MRCA). Two alleles coalesced at the sixth generation backward time. The distri-
butions of allele frequencies in successive generations follow a Fisher-Wright model.

The coalescent is a stochastic process that considers all genealogies of all possible

rooted labeled binary trees with internal nodes ordered in time, with coalescence

times 0 < Ti < ∞ for 2 ≤ i ≤ n lineages. Any particular genealogy will specify

the branching pattern of relationships among the members of the sample and the

coalescence times (Wakeley, 2009). For n lineages, Kingman (1982a,b) showed that

as N →∞, the coalescence times Ti are independent and exponentially distributed

as

fTi(ti) =

(
i

2

)
e−(i2)ti , ti ≥ 0, i = 2, ..., n (1.5)

The coalesent model for a single population was generalized to the Multi-Species Co-

alescent (MSC) (Rannala and Yang, 2003) model for multiple populations. The MSC
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framework allows tracing an evolutionary history of multiple species. Each branch

is modeled using one instance of the Kingman coalescent process with a fixed pop-

ulation size. A coalescent history describes where on the species tree the coalescent

events occurred (Degnan and Salter, 2005). The probability of a coalescent history

is the product of the probabilities of the events on each branch. The probability of

a gene tree is the sum of the probabilities of the coalescent histories. For the rest of

this dissertation, branch lengths in the species tree are in coalescent units t/(2N),

where t is the number of generations and N is the effective population size. Here,

1.0 coalescent unit represents 2N generations, where 2N is the effective number of

gene copies (Felsenstein, 2004).

1.3 Incomplete lineage sorting (ILS)

For a variety of reasons, gene trees may fail to reflect the relationships of the species

from which the genes were sampled. This discord can arise from horizontal trans-

fer (including hybridization), lineage sorting, and gene duplication and extinction

(Maddison, 1997). Moving backward in time, when two lineages from closely related

species enter the parental population, they might or might not coalesce. The proba-

bility of coalescence largely depends on the population size and branch length in the

species tree. If the lineages don’t coalesce in a more recent population, they coalesce

at the more ancestral population where other lineages from other species that are less

related to these two are also present. Sometimes lineages from these other species

have a chance of coalescing with lineages from one of the two closely related species

before those two lineages coalesce with each other. This phenomenon of the failure

of ancestral copies to coalesce into a common ancestral copy until deeper than pre-

vious speciation events is called deep coalescence. The Incomplete Lineage Sorting

(ILS) phenomenon is characterized by regions of DNA that produce gene trees with
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different topologies compared to the species tree.

The multispecies coalescent has emerged as a powerful framework that allows

modeling sources of gene-species tree discordance due to ILS and deep coalescence

(Figure 1.3). Both deep coalescence and ILS more frequently occur when effective

population sizes are large and/or branch lengths are short. Many researches do not

distinguish between ILS and deep coalescence. Both terms are used to describe the

discordance of the gene and species tree topologies.

Figure 1.3: Example of a Fisher-Wright coalescent process. The middle and right
diagrams show a gene tree is embedded in the species tree. Each dot represents a
gene copy and each line connects a gene copy to its ancestor in the previous gener-
ation. Starting with a set of individuals in the present generation, each subsequent
generation is created by randomly selecting a parent from the previous generation.
T1 and T2 in the leftmost figure represent speciation events. The central figure
depicts the event called deep coalescence that occurs when the most recent common
ancestor (MRCA) of two gene copy samples from species A, B, and C is much older
than the speciation event T1. The figure to the right shows a deep coalescence in
combination with ILS. ILS causes the discordance in gene and species tree topolo-
gies. For example, the gene tree illustrates that among the three species, the lineage
sampled from species B is more closely related to the lineage sampled from species
A than to the one from species C, even though B is more closely related to C at the
species level. The illustration is from Leliaert et al. (2014).

If a rooted gene tree and species tree have the same unranked topology, then
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we describe the unranked topologies as identical and refer to the unranked gene

tree as matching the unranked species tree; otherwise, the gene tree topology is

nonmatching. Similarly, we say the ranked gene tree matches the ranked species

tree if, and only if, they have the same ranked topology. At times we will also be

interested in cases where a ranked gene tree has the same unranked topology as the

species tree, meaning that if the ranks are ignored, the two trees are matching.

1.4 Constant-rate birth-death process

The birth-death model is widely used in the field of biology to model speciation

processes and disease transmission (Tanaka et al., 2006; Volkov et al., 2003; Ford

et al., 2009). It is a continuous time Markov process with the state transitions of

birth or death. The model is characterized by the two parameters, the birth rate

λ ≥ 0 and the death rate µ ≥ 0. In the birth-death model transitions are allowed

only between neighboring states, and it assumes that the birth and death events

are independent. The transition from ith to the (i + 1)th state, indicating that

a birth occurs before death, happens with the probability Pi,i+1 = λi
λi+µi

, whereas

the transition from the ith to the (i − 1)th state, indicating that a death occurs

before birth, happens with the probability Pi,i−1 = µi
λi+µi

. The constant birth-death

process (Kendall et al., 1948) assumes that at any time point, birth and death can

happen at constant rates. In the case when µ = 0, the process is called the pure birth

process or Yule process. It is often used to describe the reproduction process of living

organisms. In the Yule process, at any time point the rate of birth is proportional

to the population size.

In the context of species tree terminology, each tree branch gives birth to a new

branch at an exponential rate λ. Lineages can also go extinct at an exponential rate

µ. In this model, each species is equally likely to be the next to speciate. In the
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Yule model, each branch only gives a birth and never go extinct. When λ = µ, the

branching process is critical (Popovic, 2004), and we expect each tree branch to have

one new branch before going extinct.

In this dissertation, we limited our choices for λ and µ such that the turnover

µ
λ

= 0.25, 0.5, 0.75, 1 with λ primarily in the range of values 0 < λ ≤ 1. Cases for the

extreme values of λ (up to 30) were also considered. Because the length of a randomly

selected interior branch in a Yule tree on n leaves is exponentially distributed with

rate 2λ (Stadler and Steel, 2012), for λ = 0.1 and λ = 1 a species tree has a mean

branch length of 1/(2 · 0.1) = 5 and 1/(2 · 1) = 0.5, respectively. Values of λ near 0.5

are chosen to be reasonably plausible for hominid evolution (Stadler et al., 2016).

The range of λ = 0.1 to λ = 1 thus gives a range of low to moderate levels of

incomplete lineage sorting that are plausibly consistent with empirical studies.

1.5 Species tree inference

Numerous methods were developed during the last two decades to estimate a phy-

logeny. The multispecies coalescent process (Rannala and Yang, 2003; Degnan et al.,

2009a) is widely used to infer species trees directly from sequence data or from gene

trees, assuming that gene trees were estimated correctly. There are several inference

methods that have been proven to be statistically consistent under this model. The

majority of the developed methods fall into one of the following categories: Bayesian

inference methods, full or pseudo maximum likelihood methods, and heuristic ap-

proaches.

Bayesian coalescent-based methods are typically slowest. They perform multiple

MCMC runs to estimate a posterior distribution for a species tree. SNAPP is a

Bayesian method that infers the species tree directly from sequences (Bryant et al.,

2012). However, a few methods were developed that co-estimate gene trees and
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species tree simultaneously from the alignments: MrBayes (Huelsenbeck and Ron-

quist, 2001), BEST (Liu, 2008), *BEAST (Heled and Drummond, 2009), and BPP

(Yang, 2015).

Maximum likelihood methods typically search in the tree space to infer the species

tree topology and the set of branch lengths by maximizing the likelihood of the gene

trees. There are several methods that infer the ML species tree from the set of

unrooted or unranked gene tree topologies. For example, STELLS and STELLS2

(Wu, 2012; Pei and Wu, 2017) infer a species tree from the unranked gene tree

topologies. InferNetworkML (Yu et al., 2014) can infer the phylogenetic network or

a species tree from a sample of unrooted gene trees. These methods use only gene

tree topologies for inference ignoring the additional information contained in branch

lengths. Several methods were developed that estimate the species tree from the

gene trees with branch lengths. For example, STEM (Kubatko et al., 2009) uses

the gene trees with branch lengths for the estimation. However, the accuracy of

STEM applied to estimated ML gene trees can decrease with the number of gene

trees (McCormack et al., 2009; Leaché and Rannala, 2011). Since full ML methods

are computationally extensive, some pseudo-likelihood methods were developed. The

most popular is MP-EST (Liu et al., 2010) that maximizes the pseudo-likelihood of

the triplets in the unranked gene tree topologies to estimate the species tree.

Several methods were developed to further decrease the computational time. For

example, NJst (Liu and Yu, 2011) reconstructs the species tree from the distance

matrix between pairs of species in the unrooted gene tree topologies. The recent

method ASTRAL (Mirarab et al., 2014) became very popular. It minimizes the

quartet distance between unrooted gene tree topologies and the species tree. Other

methods include STAR (Liu et al., 2009b), which uses only topologies, and STEAC

(Liu et al., 2009b), which uses average coalescence times of the unranked gene trees

to estimate the species tree.

13



Chapter 1. Introduction

There is an uncertainty in both the estimated gene tree topologies and their

branch lengths. DeGiorgio and Degnan (2014) showed that topology-based methods

have similar or better performance as some current methods using coalescence times.

Therefore, it might be better to rely not on the exactly estimated branch lengths

but on the temporal order of nodes in the gene tree (ranked gene tree topology).

Although branch lengths in gene trees are not estimated very accurately, the relative

hierarchical order of the nodes might still be estimated more correctly than the

branch lengths. Therefore, in this dissertation, we propose the maximum likelihood

method that infers a species tree from the collection of ranked gene tree topologies.

1.6 Ranked gene tree probabilities

Let T be a rooted species tree with branch lengths in coalescent units. Assuming that

we have observed a collection of N ranked gene trees Gis, the maximum likelihood

(ML) species tree is (Rannala and Yang, 2003)

TML = argmax
T

P [G1, ...,GN |T ] = argmax
T

N∏
i=1

P [Gi|T ]. (1.6)

Here the same set of labels is used for both species and genes, and all gene trees have

one gene sampled per species. As shown in eq. (4.1), to get a maximum likelihood

estimate, the probabilities of individual gene trees should be calculated first.

For a species tree with n labeled leaves, we assign ranks to the nodes according to

their speciation order. Denote the time of the interior node of rank i (ith speciation)

by si, i = 1, 2, ..., n − 1. Time is zero for the leaves and increases going backwards

in time: s1 > s2 > ... > sn−1, where s1 is the time of the root (Figure 1.4). For

i = 2, 3, ..., n− 1, denote the interval between the (i− 1)th and ith speciation events

by τi and its length by ti = si−1 − si. As discussed in Section 1.1, we write a ranked

tree topology as a modified unranked tree topology using the Newick format, in
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which each clade is represented by a pair of parentheses, and we add a number after

each clade to indicate its ranking. For example, the species tree in Figure 1.4A can

be written as (((A,B)3, C)2, (D,E)4). In the Newick format, we supress the labeling

of the root node, which has rank 1.

1.6.1 Ranked histories

Let G be a ranked gene tree topology with the same labels for the leaves as species

tree T . Given a gene tree that evolves on a species tree T , a ranked history can be

defined as a non-decreasing sequence x = (x1, x2, ..., xn−1), where for i = 1, 2, ..., n−1,

xi = j if the ith coalescence occurs in species tree interval τj = [sj−1, sj) (Degnan

et al., 2012b). For example, in Figure 1.4B, the ranked history of the gene tree is

(1, 2, 3, 3, 3). One coalescence occurs in the species tree interval τ1, one in τ2, and

three in τ3. We denote the probability under the coalescent model of a ranked gene

tree topology with the particular ranked history x by P (G, x|T ).

Eventually, we will need to compute the probability of a ranked gene tree for

every possible ranked history. To find the set of all possible ranked histories, we

need to determine the maximal ranked history. The maximal ranked history depicts

the sequence of coalescence events, where each coalescence of gene lineages occurs

in the most recent possible species tree interval. For the matching ranked gene tree

topology with n leaves, the maximal ranked history is always (1, 2, 3, ..., n−1). After

determining the maximal ranked history, each next ranked history can be obtained

by decreasing the rightmost element by 1 to have a non-descreasing sequence and

resetting each element to the right of this element to its possible maximum depicted

in the maximal ranked history. For example, the maximal ranked history of the

matching gene tree depicted in Figure 1.4A is (1, 2, 3, 4). The maximal ranked history

of the nonmatching gene tree depicted in Figure 1.5A is (1, 2, 3, 3). There are eight

other possible ranked histories of the nonmatching gene tree depicted in Figure 1.5A.
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Three of them are depicted in Figures 1.5B–D, and the five others are (1, 1, 2, 3),

(1, 1, 2, 2), (1, 1, 1, 3), (1, 1, 1, 2), and (1, 1, 1, 1). The “last” ranked history in this

enumeration is always (1, 1, 1, 1) for any five-taxon gene tree representing that all

four coalescences occur in the species tree interval τ1.

A Matching ranked gene tree

Ranked history (1,2,2,2)

A B C D E

s4

s3

s2

s1

τ4

τ3

τ2

τ1

u4
u3

u2

u1

A B C D E F

s5

s4

s3

s2

s1
τ1

τ2

τ3

τ4

τ5

u5

u2

u1

u3
u4

B Matching ranked gene tree

Ranked history (1,2,3,3,3)

A B C D E F

s5

s4

s3

s2

s1

τ1

τ2

τ3

τ4

τ5

u5

u2

u1

u3
u4

C Matching ranked gene tree

Ranked history (1,2,2,2,2)

A B C D E F

s5

s4

s3

s2

s1

τ1

τ2

τ3

τ4

τ5

u3
u2

u1

u4
u5

D Non-matching ranked gene tree

Ranked history (1,2,2,2,2)

Figure 1.4: Gene trees evolving on five-taxon and six-taxon species trees. (A) Five
taxa. (B)–(D) Six taxa. The gene trees in (B)–(D) have the same unranked topology
((A,(B,(C,D))),(E,F)). Only the ranked gene tree topology in (D) does not match
the ranked species tree topology. For each i = 1, 2, ..., n − 1, si ≥ 0 denotes the
time of the ith speciation, τi represents the interval between the (i − 1)th and ith
speciation events, and ui represents the ith coalescence (node with rank i) in the
gene tree. Interval τ1 has infinite length.

16



Chapter 1. Introduction

A B C D E

τ4

τ3

τ2

τ1

u1

u3

u4

u2

A Ranked history (1,2,3,3)

A B C D E

τ4

τ3

τ2

τ1

u1

u3

u4

u2

B Ranked history (1,2,2,3)

A B C D E

τ4

τ3

τ2

τ1

u1

u3

u4

u2

C Ranked history (1,2,2,2)

A B C D E

τ4

τ3

τ2

τ1

u1

u3

u4

u2

D Ranked history (1,1,3,3)

Figure 1.5: (A)–(D) Illustration of the different ranked histories. The same non-
matching gene tree (((A,B)4, C)2, (D,E)3) is evolving on the five-taxon species tree
(((A,B)3, C)2, (D,E)4). The maximal ranked history is depicted in (A). For each
i = 1, 2, ..., n− 1, τi represents the interval between the (i− 1)th and ith speciation
events, and ui represents the ith coalescence (node with rank i) in the gene tree.
Interval τ1 has infinite length.

1.6.2 Calculating ranked gene tree probabilities

The probability of the ranked gene tree P (G|T ) can be computed as a sum over all

ranked histories. Denote the probability in interval τi for a particular ranked history

17



Chapter 1. Introduction

x by P (Gτi , x|T ). The probability of a ranked gene tree topology G with ranked

history set Y given a species tree T can be written as

P (G|T ) =
∑
x∈Y

H`1(x)
n−1∏
i=2

P (Gτi , x|T ), (1.7)

where H`1(x) is the probability that the coalescences above the root appear in the

order that follows the ranked gene tree (Stadler and Degnan, 2012). If the number

of lineages above the root is `1, then (Rosenberg, 2006)

H`1(x) =
2`1−1

`1!(`1 − 1)!
. (1.8)

Denote the number of lineages available for coalescence in population z just after

(going forward in time) the jth coalescence in interval τi by ki,j,z. For example, there

are always i populations in the interval τi. The probability that ` lineages fail to

coalesce in a time interval of length ti is e−(`2)ti . Hence, the waiting time until the

next coalescent event (going backward in time) has rate λi,j =
i∑

z=1

(
ki,j,z

2

)
. The

density for the coalescent events in the interval τi is (Degnan et al., 2012b)

fi(v0, v1, ..., vmi) = exp

(
−

mi∑
j=0

λi,jvj

)
, (1.9)

where vj is the time between the jth and (j + 1)st coalescent events, with v0 being

the time between si−1 and the least recent coalescent event in τi and with vmi being

the time between si and coalescent event mi.

For example, consider the second speciation interval τ2 for the species tree in

Figure 1.4A. Here, v0 is the time between s1 and the least recent coalescent event

u2 in interval τ2. Similarly, v1 is the time between u2 and u3, v2 is the time between

u3 and u4, and vmi = v3 is the time between u4 and s2. Using the fact that the

sum of exponential random variables with different rates λi has a hypoexponential

distribution (Ross, 2014), eq. (1.9) can be written as follows (Stadler and Degnan,
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2012):

P (Gτi , x|T ) =

∫
v

fi(v0, ..., vmi)dv =

mi∑
j=0

e−λi,j(si−1−si)

mi∏
k=0,k 6=j

(λi,k − λi,j)
. (1.10)

Therefore,

P (G|T ) =
∑
x∈Y

H`1(x)
n−1∏
i=2

mi(x)∑
j=0

e−λi,j(si−1−si)

mi(x)∏
k=0,k 6=j

(λi,k − λi,j)

, (1.11)

we denoted mi as mi(x) in eq. (1.11) to clarify that mi depends on the ranked history

x.

In general, we can uniquely specify an unranked or unrooted gene tree topology

by the ranked gene tree topology. The probability of an unranked gene tree topology

can be obtained by summing the probabilities of all ranked gene tree topologies that

share that unranked topology. Similarly, the probability of an unrooted gene tree

topology can be obtained by summing the probabilities of all unranked gene trees

with the same unrooted topology.

Examples

Here we provide a few examples of calculation of gene tree probability for some ranked

history x. Consider a species tree T and gene tree with matching ranked topology

((A, (B, (C,D)4)3)2, (E,F )5) (Figure 1.4C). We now calculate the probability of the

ranked history (1, 2, 2, 2, 2) in interval τ2. Because four coalescences occur in interval

τ2, m2 = 4 and k2,j,z is defined for j = 0, 1, 2, 3, 4 and z = 1, 2. We have k2,j,1 =

(1, 2, 3, 4, 4) for j = 0, 1, ..., 4 and k2,j,2 = (1, 1, 1, 1, 2) for j = 0, 1, ..., 4. Using λ2,j =
2∑
z=1

(
k2,j,z

2

)
, we have λ2,j = (0, 1, 3, 6, 7) for j = 0, 1, ..., 4. Thus, eq. (1.10) evaluates
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to

P (Gτ2 , (1, 2, 2, 2, 2)|T ) =
4∑
j=0

e−λ2,jt2

4∏
k=0,k 6=j

(λ2,k − λ2,j)

=
1

126
−e
−t2

60
+
e−3t2

72
−e
−6t2

90
+
e−7t2

168
,

where t2 = s1 − s2 is the length of interval τ2.

Similarly, we can compute the probabilities in intervals τ3, τ4, τ5. No coalescence

occurs in any of the intervals τ3, τ4, or τ5. Therefore mi = 0 for i = 3, 4, 5 and λ3,0 =(
1
2

)
+
(

3
2

)
+
(

2
2

)
= 4, λ4,0 =

(
1
2

)
+
(

1
2

)
+
(

2
2

)
+
(

2
2

)
= 2, λ5,0 =

(
1
2

)
+
(

1
2

)
+
(

1
2

)
+
(

1
2

)
+
(

2
2

)
= 1.

The probabilities in these intervals are

P (Gτ3 , (1, 2, 2, 2, 2)|T ) = e−λ3,0t3 = e−4t3 ,

P (Gτ4 , (1, 2, 2, 2, 2)|T ) = e−λ4,0t4 = e−2t4 ,

P (Gτ5 , (1, 2, 2, 2, 2)|T ) = e−λ5,0t5 = e−t5 .

Given that the probability for the coalescence of `1 = 2 lineages above the root

appearing in the right order is H2 = 1 (eq. (1.8)), the probability of the ranked

history (1, 2, 2, 2, 2) is equal to

P (G, (1, 2, 2, 2, 2)|T ) =H2(x) ·
5∏
i=2

P (Gτi , (1, 2, 2, 2, 2)|T )

=

(
1

126
− e−t2

60
+
e−3t2

72
− e−6t2

90
+
e−7t2

168

)
· e−4t3−2t4−t5 ,

(1.12)

where ti = si−1 − si.

Now consider a species tree T and gene tree G with nonmatching ranked topology

((A, (B, (C,D)5)4)2, (E,F )3) (Figure 1.4D). The values of ki,j,z in interval τ2 are

k2,j,1 = (1, 2, 2, 3, 4), j = 0, 1, ..., 4; k2,j,2 = (1, 1, 2, 2, 2), j = 0, 1, ..., 4.
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Thus, λ2,j = (0, 1, 2, 4, 7) for j = 0, 1, ..., 4, and the probability of the nonmatching

ranked gene tree for the ranked history (1, 2, 2, 2, 2) is

P (G, (1, 2, 2, 2, 2)|T ) =H2(x) ·
5∏
i=2

P (Gτi , (1, 2, 2, 2, 2)|T )

=

(
1

56
− e−t2

18
+
e−2t2

20
− e−4t2

72
+
e−7t2

630

)
· e−4t3−2t4−t5 ,

(1.13)

where ti = si−1 − si.
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Anomaly Zones

In 2006, Degnan and Rosenberg defined the concept of an anomaly zone: a subset

of branch-length space for the species tree in which the most likely unranked gene

tree has a topology differing from the species tree topology. A nonmatching gene

tree topology that is more probable than the matching one was termed an anomalous

gene tree (AGT) (Degnan and Rosenberg, 2006). In general, rooted labeled unranked

or ranked gene tree topologies that are more probable than the labeled unranked or

ranked gene tree topology matching the species tree are called anomalous unranked

gene trees or anomalous ranked gene trees and are termed AGTs and ARGTs (Degnan

et al., 2012b), respectively. Similarly, unrooted gene trees that are more probable

than the matching unrooted gene tree are termed anomalous unrooted gene trees

(AUGTs) (Degnan, 2013). Species trees that have unrooted, unranked, or ranked

anomalous gene trees are said to be in the unrooted, unranked, or ranked anomaly

zone (AZ), respectively.

Following equations (1.12) and (1.13), the limiting probabilities for the matching

and nonmatching ranked gene tree topologies for the ranked history (1, 2, 2, 2, 2)

when t2 →∞ and t3, t4, t5 → 0 are 1
126

and 1
56

, respectively. Thus, the ranked history
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(1, 2, 2, 2, 2) is more probable for the nonmatching ranked gene tree topology than

for the matching ranked history when t2 → ∞ and t3, t4, t5 → 0. For sufficiently

large t2 and sufficiently small t3, t4, t5, most of the probability of the ranked gene

tree topology is concentrated on this ranked history, making the probabilities of the

other ranked histories close to 0. Thus, the most probable ranked gene tree topology

becomes discordant from the ranked species tree topology, forcing the species tree

into the ranked anomaly zone.

An intuitive explanation for the existence of AGTs is that when rankings of

coalescences are not taken into account, gene trees that are more symmetric can

have more rankings than gene trees that are less symmetric (Degnan and Rosenberg,

2006; Rosenberg, 2013; Xu and Yang, 2016). As an extreme case, a gene tree with

only one two-taxon clade, called a caterpillar, has only one possible ranking and can

never be an AGT (Degnan and Rhodes, 2015).

This explanation leads to a similar question for ranked trees: does the most

probable ranked gene tree match the species tree? In the case of four taxa, this turns

out to be the case: although caterpillar species trees can have unranked anomalous

gene trees, they cannot have ARGTs. However, for five or more taxa, ARGTs

do exist (Degnan et al., 2012a,b; Disanto and Rosenberg, 2014). The concept of

anomalous gene trees has been further extended to consider AUGTs (Degnan, 2013).

The concept of the anomaly zone can even be extended to phylogenetic networks

(Zhu et al., 2016). In particular, a gene tree is anomalous if it is more probable than

any gene tree displayed by the network. Zhu et al. (2016) showed that three-taxon

phylogenetic networks do not produce anomalies, but that symmetric phylogenetic

networks with four leaves can produce anomalies.

Several properties of anomalous gene trees in different settings are known. In

particular, every species tree topology with five or more taxa produces AGTs (Deg-

nan and Rosenberg, 2006; Rosenberg, 2013). The analogous result for unrooted gene
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trees is that every species tree topology with seven or more taxa produces AUGTs

(Degnan, 2013). Rosenberg and Tao (2008) considered all sets of branch lengths

that give rise to five-taxon AGTs. They found that the largest value possible for the

smallest branch length in the species tree is greater in the five-taxon case (0.1934

coalescent time units) than in the previously studied case of four taxa (0.1568).

This finding raises the question of whether species trees with more taxa are more

likely to have AGTs. Studies for ARGTs (Degnan et al., 2012a) showed that neither

caterpillar nor pseudocaterpillar species trees have ARGTs, where a pseudocaterpil-

lar can be obtained from a caterpillar (. . . (((A1, A2), A3), A4), . . . An) by replacing

(((A1, A2), A3), A4) with ((A1, A2), (A3, A4)) (Rosenberg, 2007). Strangely enough,

although caterpillar gene trees cannot be anomalous unranked gene trees, they can

be ARGTs. In addition, Disanto and Rosenberg (2014) showed that as the number

of species n→∞, almost all ranked species trees give rise to ARGTs.

Evolutionary biologists have sometimes wondered how often anomalous gene trees

arise in practice (Castillo-Ramı́rez and González, 2008; Zhaxybayeva et al., 2009;

Linkem et al., 2016), because the existence of anomalous gene trees makes the method

that chooses the most common gene tree as the estimate of the species tree statis-

tically inconsistent in the anomaly zone. A recent empirical identification of the

anomaly zone is for gibbons (Shi and Yang, 2018). In spite of the many analytic

results known about the various types of anomalous gene trees, less is known about

how often they arise in practice. This question is difficult to answer because it re-

quires some knowledge of the empirical distribution of branch lengths in the species

trees.

To study the probability that the species tree lies in an anomaly zone, we examine

random species trees generated from a constant-rate birth-death process. The ap-

proach we use is to simulate the species tree while computing gene tree probabilities

analytically for each simulated species tree. This simulation can help to understand
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how often AGTs and ARGTs arise in practice, to the extent that birth-death pro-

cesses are reasonable models for species trees and that we can understand typical

birth-death process parameters. We additionally examine cross sections of anomaly

zones to see how much overlap exists for different types of anomaly zones. This

analysis shows that for larger trees, a species tree can simultaneously be in unranked

and ranked anomaly zones.

We primarily focus on two types of gene trees: unranked and ranked gene trees,

sometimes we will consider unrooted trees as well. We can view unrooted, unranked,

and ranked gene trees as preserving increasing amounts of information about the

underlying rooted trees with full branch length information.

We computed probabilities of ranked and unranked gene trees for species trees

with five to eight taxa to find a subset of speciation interval length space in which a

species tree has both AGTs and ARGTs. For plots comparing unrooted and unranked

anomaly zones, see Degnan (2013).

2.1 Simulation design

We simulated species phylogenies under a constant-rate birth-death model. In this

model, each species is equally likely to be the next to speciate. Each tree branch

gives birth to a new branch at rate λ. Lineages can also go extinct at rate µ.

As explained in Section 1.4, because the length of a randomly selected interior

branch in a Yule (rate λ) tree on n leaves is exponentially distributed with rate

2λ (Stadler and Steel, 2012), for λ = 0.1 and λ = 1, a species tree has a mean

branch length of 5 and 0.5, respectively. We note that if all branch lengths were 0.5

coalescent units, then the species trees in the simulations would be outside of the

unranked anomaly zone. A value of 0.5 coalescent units for an internal branch means
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that two lineages have a probability of 1 − exp(−0.5) ≈ 39% of coalescing within

that branch, whereas for 5 coalescent units, the probability of coalescence exceeds

99%.

We let the speciation rate λ take the values of 0.1, 0.5, and 1, and choose the

extinction rate µ to depend on λ such that the turnover rate µ/λ is 0 or 0.5. Values

of (n, λ, µ) were chosen to examine the effect of the species tree parameters on the

existence of anomalous gene trees. For each combination (n, λ, µ), the distributions

of unranked and ranked gene tree topologies were computed analytically for each sim-

ulated species tree. The probabilities of all possible unranked and ranked topologies

were computed using hybrid-coal (Zhu and Degnan, 2017) and PRANC, respectively,

conditional on a species tree generated under a constant-rate birth-death model with

parameters (n, λ, µ). The presence of anomalous gene trees was then identified by

comparing the analytical probabilities of the matching gene tree topology and the

most probable nonmatching gene tree topology.

2.2 Five taxa

Figure 2.1A depicts a five-taxon species tree with interval lengths t2, t3, and t4.

The interval lengths determine how long or rapid the speciation was. The ranked

topology shown is the only five-taxon species tree topology that possesses ARGTs.

For fixed values of t4 = 0.05, 0.075, 0.1, we computed the analytical probabilities of

all 105 unranked and all 180 ranked gene tree topologies on a grid with t2 ∈ [0.01, 3]

and t3 ∈ [0.01, 1]. The anomaly zones in Figure 2.1B were identified by finding the

set of values of t2, t3, and t4 for which at least one nonmatching unranked or ranked

gene tree topology has probability exceeding the probability of the corresponding

matching gene tree topology. Figures 2.1B–D depict cross-sections of unranked and

ranked anomaly zones for the five-taxon species tree in Figure 2.1A. For values of
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Figure 2.1: Five-taxon anomaly zones. (A) The only ranked five-taxon species tree
topology that produces ARGTs. The same species tree, with a gene tree evolving
inside, is shown in Figure 1.4A. (B) Slices of the unranked (on the left side) and
ranked (on the right side) anomaly zones for the topology in (A). For fixed values
of t4, each shaded region represents pairs of speciation interval lengths (t2, t3) for
which the most probable unranked (ranked) gene tree topology does not match the
unranked (ranked) species tree topology. Each slice was generated by computing
the probability distribution of gene tree topologies on a grid with t2 ∈ [0.01, 3] and
t3 ∈ [0.01, 1], with increments of 0.01 for both variables. In the ranked case, the
shaded region for a smaller t4 contains the shaded region for a larger t4. In the
unranked case, the shaded region for a larger t4 contains the shaded region for a
smaller t4. (C)–(D) Unranked (blue) and ranked (red) anomaly zones for different
values of tis. Each dot was generated by computing the probability distribution of
gene tree topologies on a grid with t2 ∈ [0.01, 3] with increment of 0.1, t3 ∈ [0.01, 0.5]
with increment of 0.01, and t4 ∈ [0.05, 0.5] with increment of 0.025.
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t2, t3, and t4 considered, we observe that the unranked and ranked anomaly zones do

not overlap for five-taxon species trees. As t4 becomes smaller, the ranked anomaly

zone increases in size, whereas the size of the unranked anomaly zone decreases.

Although for the values of ti considered, we do not observe an overlap in unranked

and ranked anomaly zones in the five-taxon case, these zones start to intersect for

larger trees.

For the five-taxon case, it is not necessary to compute analytical probabilities

of the entire gene tree distribution to study whether ranked and unranked anomaly

zones overlap. As discussed in Degnan et al. (2012b), the only unranked topology that

could produce anomalous ranked gene trees is the TRLL tree (((A,B)3, C2), (D,E)4)

(Figure 2.1A). There are three possible rankings of the unranked TRLL tree topol-

ogy. The 5-taxon species tree produces an anomalous ranked gene tree if for the

species tree TRLL, the probability of any of the other two rankings is greater than

the probability of the matching gene tree GRLL (Degnan et al., 2012b). As noted

before, the probabilities of the ranked gene tree can be calculated by summing

the probabilities of all possible ranked histories. Table 4 in Degnan et al. (2012b)

presents the probabilities for each ranked history for the nonmatching gene trees

GLRL : (((A,B)4, C2), (D,E)3) and GLLR : (((A,B)4, C3), (D,E)2). Because the

ranked history set for GLLR is a subset of the ranked histories of GLRL, it is sufficient

to consider only the probability of GLRL gene tree when checking for anomalousness.

Therefore, we can write that the species tree TRLL has ARGTs if

P [(((A,B)4, C2), (D,E)3)|TRLL] > P [(((A,B)3, C2), (D,E)4)|TRLL]. (2.1)

It was shown in Rosenberg and Tao (2008) that only the unranked tree with

two leaves on the one side and three on the other one can be AGTs for the species

tree topology (((A,B), C), (D,E)). The probability of an unranked gene tree can

be obtained by summing the probabilities of the ranked gene trees that share this

unranked topology. Therefore, the probability of ((A,B), (C, (D,E))) gene tree will
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be larger than the probability for the other two topologies ((B,C), (A, (D,E))) and

((A,C), (B, (D,E))). The species tree TRLL has AGTs if

P [((A,B), (C, (D,E)))|TRLL] > P [(((A,B), C), (D,E))|TRLL], (2.2)

where each of these gene trees has 3 possible rankings. By summing the probabilities

of the possible ranking histories for each ranked topology and by denoting the interval

lengths ti, i = 2, 3, 4 by x = e−t2 , y = e−t3 , z = e−t4 , respectively, for 0 < x, y, z < 1,

the species tree falls in the ranked anomaly zone if eq. (2.3) holds, and in the

unranked anomaly zone if eq. (2.4) holds:

z

(
1− 2x

3
− y(1 + y/4)

2
+

2xy(x+ y) + x2y2(x2/8− 1)

9

)
+

2(x+ y)− xy(1 + x2/6)

3
− 1 > 0, (2.3)

x+
2y

3
− xy

(
1

2
+
x2

9

)
− 1 +

xyz

3

(
2− 4y

3
− 13x

6
+
xy

4

(
13

3
+ x2

))
> 0.

(2.4)

These expressions can be used to determine whether a five-taxon species tree falls in

the ranked or unranked anomaly zones instead of computing the gene tree distribu-

tion.

Using inequalities (2.3) and (2.4), Figures 2.2A–B depict cross-sections of un-

ranked and ranked anomaly zones for the five-taxon species tree in Figure 2.1A. For

the whole range of interval lengths 0 < x, y, z < 1 (i.e., e−ti , i = 2, 3, 4) considered,

we observe that the unranked and ranked anomaly zones do not overlap as well.

In Figure 2.2 each dot was generated by computing the probability distribution of

gene tree topologies on a grid of (0, 1) with increment of 0.02 for all variables. In

general, the smaller increment of 0.005 was used to check whether the five-taxon

anomaly zones could overlap. We did not find any of the values X, Y, Z for which

the expressions (2.3) and (2.4) hold simultaneously.
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A B

Figure 2.2: (A)–(B) Slices of the unranked (blue) and ranked (red) anomaly zones
for the species tree depicted on the Figure 2.1A. Here X, Y, Z are e−t2 , e−t3 , and
e−t4 , respectively. Because the possible range for any interval length ti is (0,∞), the
possible range for e−ti is (0, 1). Each dot was generated by computing the probability
distribution of gene tree topologies on a grid of (0, 1) with increment of 0.02 for all
variables.

2.3 Six taxa

We next considered six-taxon trees. There exist six unlabeled tree shapes with six

taxa. Excluding the caterpillar and pseudocaterpillar shapes, four of these, depicted

in Figure 2.3, give rise to both AGTs and ARGTs. Figure 2.4 shows 2D cross-sections

of unranked and ranked anomaly zones for the six-taxon species tree topologies in

Figure 2.3. For ease of visualization, we consider only two different values, denoted by

S and L, for the lengths of speciation intervals t2, t3, t4, and t5. For each combination

of S ∈ [0.005, 1] and L ∈ [0.01, 2], we computed the distributions of unranked and

ranked gene tree topologies, and the presence of AGTs and ARGTs was then iden-

tified by comparing the analytical probabilities of the matching gene tree topology

and the most probable nonmatching gene tree topology.

We examined three interval lengths patterns: LLSS, LSSL, and LSSS for the
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Figure 2.3: Representative labeled rankings of all six-taxon unlabeled species tree
topologies, except the caterpillar and pseudocaterpillar. (A)–(D) Bold lines indicate
a displayed five-taxon tree topology given in Figure 2.1A. We set some lengths of the
speciation intervals to be equal to aid in visualization and computation. Two values
L and S, measured in coalescent units, are used as interval lengths. All values of L
are equal to each other and all values of S are equal to each other. The figures are
not drawn to scale.

species tree topologies with rankings displayed in Figure 2.3. We chose these patterns

because a longer branch near the root is more likely to result in ARGTs and two short

consecutive intervals are likely to result in unranked anomalous gene trees based

on Rosenberg (2013). For the values and three patterns considered, both ranked

and unranked anomaly zones (AZs) do not overlap for the species tree topology in

Figure 2.3C. The AZs corresponding to the species tree topologies with rankings

displayed in Figure 2.3D have only a few values in common. The unranked anomaly

zone is not continuous in all corresponding figures (i.e., 2.4J, 2.4K, and 2.4L), there

is no unranked anomaly zone for very small L < 0.1 and for certain regions in S. For

the less balanced species trees depicted in Figure 2.3A and Figure 2.3B, the behavior

of the AZs changes drastically for different interval lengths patterns. As shown in
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Figure 2.4: Two-dimensional cross-sections of unranked and ranked anomaly zones,
each associated with a six-taxon species tree topology in the corresponding panel of
Figure 2.3. (A)–(C) Species tree in Figure 2.3A. (D)–(F) Species tree in Figure 2.3B.
(G)-(I) Species tree in Figure 2.3C. (J)–(L) Species tree in Figure 2.3D. For each
species tree topology, 200 values of L ∈ [0.01, 2] and 200 values of S ∈ [0.005, 1] were
used to identify the existence of anomalous gene trees. The interval lengths patterns
are LLSS, LSSL, and LSSS from left to right, respectively.

Figures 2.4A and 2.4D, the unranked AZ occurs mostly for small values of L and

larger values of S, while the ranked AZ occurs mostly for small values of S and

large values of L. For the interval length pattern LLSS this behavior is intuitive

and similar to one observed in five-taxon case. In particular, the unranked AZ arises

for the two consecutive short intervals on a path from tip to root, and the ranked

AZ arises when the interval near the root of the tree is long. However, the anomaly

zones behave differently for the pattern LSSL for exactly the same ranked species

tree topologies. The unranked AZ occurs more often than for the LLSS patterns
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as shown in Figures 2.4B and 2.4E. It is interesting that both AZs can happen

for extremely small L and larger S. This might happen because the corresponding

species tree topologies in Figures 2.3A and 2.3B are topologically closer to the five-

taxon tree TRLL that has both AGTs and ARGTs. For example, we can move the

branch corresponding to the (D,E) clade closer to the root, therefore collapsing the

F taxon and increasing the branch corresponding to the C taxon. Such “conversion”

for the LSSL pattern to the 5-taxon tree will make the interval closest to the root

with length L+ S largest and other two intervals will have SL pattern for the next

two intervals from past to present. This results in a ranked anomaly zone but it is

interesting that an unranked AZ can occur for short L and long S. According to

Figure 2.4C, the ranked anomaly zone does not occur for the species tree topology

in Figure 2.3A when there are three consectutive intervals with equal lengths from

tips to the root. However, the unranked AZ occurs in this case. For the species tree

topology in Figure 2.3B, both AZs for the pattern LSSS intersect for large L values

and small values of S (Figure 2.4F).

Figures 2.5A–C display ranked and unranked anomaly zones for interval patterns

LLSS, LSSL, and LSSS from left to right, respectively, each associated with a six-

taxon species tree topology in Figure 2.3C with ranking (((A,B)3, (C,D)4)2, (E,F )5).

It seems the ranking of the species tree does not greatly affect the anomaly zones

for the LLSS and LSSL patterns. However, the ranked anomaly zone disappeared

for this ranking and LSSS pattern. Figures 2.5D–F display a scenario when only

unranked anomaly zones occur for three interval patterns associated with a topology

in Figure 2.3D with different ranking topology (((A,B)4, C)2), ((E,F )5, D)3).
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Figure 2.5: Two-dimensional cross-sections of unranked and ranked anomaly zones,
each associated with a six-taxon species tree topology in the (C) or (D) panel of
Figure 2.3. (A)–(C) Species tree in Figure 2.3C with different ranking topology
(((A,B)3, (C,D)4)2, (E,F )5). The interval patterns are LLSS, LSSL, and LSSS
from left to right, respectively. (D)–(F) Species tree in Figure 2.3D with different
ranking topology (((A,B)4, C)2), ((E,F )5, D)3). The interval patterns are LLSS,
LSSL, and LSSS from left to right, respectively. For each species tree topology,
200 values of L ∈ [0.01, 2] and 200 values of S ∈ [0.005, 1] were used to identify the
existence of anomalous gene trees.

Overall, the intersection of anomaly zones behaves differently for each topology

and interval length pattern. The smallest overlap occurs for the more balanced

species tree topologies. The anomaly zones are more sensitive for less balanced

species tree topologies, in this case we observe large unranked anomaly zones and

bigger intersections of two AZs than for the more balanced topologies.
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Figure 2.6: Representative labeled rankings of two seven-taxon and two eight-taxon
species tree topologies that produce anomalous gene trees. (A)-(B) Seven taxa. (C)-
(D) Eight taxa. Bold lines indicate a displayed five-taxon tree topology given in
Figure 2.1A. Two values L and S, measured in coalescent units are used as interval
lengths. We set some lengths of the speciation intervals to be equal to aid in visu-
alization and computation. Two values L and S, measured in coalescent units, are
used as interval lengths. All values of L are equal to each other and all values of S
are equal to each other. The figures are not drawn to scale.

2.4 Seven and eight taxa

We next sought to examine scenarios with seven and eight taxa (Figure 2.6) to

determine whether the interval-length cases giving rise to AGTs and ARGTs were

similar to those seen in the case of six taxa.

The seven- and eight-taxon species trees were chosen so that they produce both
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AGTs and ARGTs. To find such topologies, we used a “caterpillarization” technique

of finding a short-short-long (SSL) pattern in three consecutive internal branches on

a path from a tip to the root of the species tree, and setting all other branches to be

long. In Degnan (2013), this technique was used to collapse taxa descended from long

branches to be effectively a single taxon, making even a topologically balanced tree

resemble a caterpillar when branch lengths are taken into account. More generally,

the technique of setting some specific branches to be short and others to be long

has been used frequently in identifying AGTs and ARGTs (Degnan and Rosenberg,

2006; Degnan et al., 2009a, 2012b,a; Rosenberg, 2013).

Here we use “caterpillarization” to make seven- and eight-taxon trees resemble

the five-taxon ranked tree (((A,B)3, C)2, (D,E)4), the only five-taxon ranked species

tree that produces ARGTs. In particular, we consider cases in which a five-taxon

species tree topology in Figure 2.1A is contained inside the larger trees. This five-

taxon tree appears with bold font in larger tree topologies (Figures 2.3 and 2.6).

Because the five-taxon tree in Figure 2.1A produces both AGTs and ARGTs, there

exists a subset of branch lengths that makes larger trees also have AGTs and ARGTs

simultaneously.

We observe a similar pattern in anomaly zones (Figure 2.7) for species tree topolo-

gies displayed in Figures 2.3A, 2.6A, and 2.6C. Each of these topologies was obtained

from the five-taxon topology in Figure 2.1A by sequentially attaching an additional

branch to the root.

Under the restriction that speciation intervals have one of two lengths, S and

L, anomaly zones behave somewhat similarly in the cases of n = 6, 7, and 8. In

particular, the species tree usually needs to have large values of L and small values

of S to be in the ranked anomaly zone. However, the pattern is reversed for AGTs:

to produce AGTs, L usually needs to be small whereas S may be relatively large.
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Figure 2.7: Two-dimensional cross-sections of unranked and ranked anomaly zones
for associated seven- and eight-taxon species tree topologies in Figure 2.6. (A)
Species tree in Figure 2.6A. (B) Species tree in Figure 2.6B. (C) Species tree in
Figure 2.6C. (D) Species tree in Figure 2.6D. For each species tree topology, 200
values of L ∈ [0.01, 2] and 200 values of S ∈ [0.005, 1] were used to identify the
existence of anomalous gene trees.

2.5 Simulation results

We performed simulations to explore the probability that random species trees have

AGTs and ARGTs. In particular, we simulated 5000 species trees with n = 5, 6, 7,

and 8-taxa under a constant-rate birth-death model using the TreeSim package in

R (Stadler, 2011).

Figure 2.8 shows probabilities of the species tree being in the unranked and ranked

anomaly zones in relation to the number of taxa n, speciation rate λ, and extinction

rate µ. For both types of trees, the probability of a species tree being in an anomaly
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zone increases with the number of taxa and with λ. For unranked trees, both results

are intuitive: for increasing numbers of taxa, there are more possible ways to have

consecutive short branches or intervals in a tree, a pattern typical of the unranked

anomaly zone (Rosenberg, 2013). Increasing λ reduces the average branch length,

making consecutive short branches more likely.
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Figure 2.8: The impact of the speciation rate parameter λ and the turnover rate µ/λ
on the existence of ranked, unranked, and unrooted anomaly zones. For each value of
n = 5, 6, 7, and 8 taxa, 5000 species trees were simulated using a constant-rate birth-
death process with rates λ = 0.1, 0.5, 1 and µ/λ = 0, 0.5. For each combination of
(n, λ, µ), the probability of the species tree being in the anomaly zone was computed
from the 5000 trials.

We observed a different effect of the turnover rate µ/λ on the probability of pro-

ducing unranked and ranked anomalous gene trees. The probability has a decreas-

ing trend for the unranked anomaly zones and an increasing trend for the ranked

anomaly zone as turnover rate increases. On average, branch lengths are longer as

µ increases. In particular, a branch length near the root becomes longer, decreasing
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the probabilities of AGTs but increasing the probabilities of ARGTs.

Figure 2.9: Conditional probabilities of ranked and unranked anomaly zones given
species tree shape for all possible six-taxon unlabeled, unranked species tree topolo-
gies. The exact probabilities of tree shapes under the Yule birth process are displayed
on the x-axis. The results are based on 5000 species trees simulated under the birth
process with n = 6, λ = 0.5, and µ = 0. Among the shapes with both AGTs and
ARGTs, the third tree shape, with four taxa descended from one side of the root and
two from the other, produces the largest combined frequency of AGTs and ARGTs.
It is also the most probable shape under the birth process. Similar patterns occur
for λ = 0.1 and λ = 1 (not shown).

We calculated the probabilities of ranked and unranked anomaly zones for spe-

cific five- and six-taxon tree topologies (λ = 0.1, 0.5, 1, µ = 0, 5000 replicates) to

investigate the frequency with which the different tree shapes give rise to AGTs and

ARGTs. Under the Yule process, the probabilities of a caterpillar shape, pseudo-

caterpillar shape, and the unranked version of the tree shape depicted in Figure 2.1A
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for the five-taxon case are 1/3, 1/6, and 1/2, respectively. The conditional probabil-

ities of a species tree being in the unranked anomaly zone given the shape are 7.42%,

0.87%, and 2.15% for the three shapes, respectively. Because neither caterpillar nor

pseudocaterpillar species trees can produce ARGTs, the conditional probabilities of

a species tree being in the ranked anomaly zone given the shape are 0%, 0%, and

0.77% for the three shapes, respectively.

Figure 2.9 shows conditional probabilities of ranked and unranked anomaly zones

for all possible six-taxon topologies when λ = 0.5 and µ = 0. Under the Yule process,

the unranked tree shapes have probabilities 2/15, 1/5, 4/15, 1/5, 1/15, and 2/15 from

left to right. AGTs arise more often for the caterpillar shape, whereas ARGTs arise

more often for the second and third shapes (from left to right). The full probability

of anomalous gene trees can be calculated using the law of total probability.

We also noticed that the probabilities of being in the unranked anomaly zone

grow faster than those of the ranked anomaly zone as the speciation rate increases

(Figure 2.10). For example, the probabilities that a species tree belongs to unranked

and ranked anomaly zones are equal to 0.399 and 0.194, respectively, for n = 8,

λ = 1, and µ = 0. For an eight-taxon species tree, with λ = 10 and µ = 0, these

probabilities are equal to 0.909 and 0.267, respectively.
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Figure 2.10: The impact of the speciation rate parameter λ ∈ [0.1, 50] and the
turnover rate µ/λ = 0 and 0.5 on the existence of unranked and ranked anomaly
zones. For each combination of (n, λ, µ), the probability of the species tree being
in the anomaly zone was computed from 5000 species trees. Probabilities of the
unranked anomaly zone appear to increase with λ, whereas probabilities of the ranked
anomaly zone increase up to a certain value λ ≈ 5, and then begin to decrease.

2.6 Discussion

The existence of anomalous gene trees poses challenges for inferring species trees from

gene trees. We have studied AGTs and ARGTs for small trees, identifying cases in

which a species tree possesses both types of anomalies (Figures 2.4, 2.7). We studied

how the parameters of the species tree (n, λ, µ) simulated under a constant-rate

birth-death process can affect the probability that a species tree is in the anomaly

zone. We have shown that often, a species tree has lower probability to be in the

ranked anomaly zone than in the unranked anomaly zone (Figures 2.8, 2.10).
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We also ran our simulations with larger values of λ, observing that the probabil-

ities of unranked anomaly zones grow faster than those of ranked anomaly zones as

the speciation rate increases (Figure 2.10). The probability of a species tree being

in the ranked anomaly zone for n = 8 reaches a peak near 27.4% and begins to de-

crease for approximately λ > 5. Probabilities of a species tree being in the unranked

anomaly zone appear to increase with λ, but they are not approaching 1.

An intuitive reason that probabilities do not approach 1 for fixed n is that as λ

increases, the probability increases that all coalescences occur more anciently than

the root of the tree. This scenario does not always result in anomaly zones. For

ranked trees, if the species tree is either a caterpillar or pseudocaterpillar, then there

cannot be an ARGT, putting a limit on the probability that the species tree lies in

the ranked anomaly zone when n is fixed. In the five-taxon case, ARGTs are more

likely when interval τ2, in which there are two populations (Figure 1.4A), is relatively

large compared with other intervals. Increasing λ makes this condition less likely.

For unranked species trees, if all coalescences occur above the root, then the species

tree has AGTs if, and only if, the species tree does not have a maximally probable

shape, where a maximally probable shape is one for which labeled topologies have the

maximum number of possible rankings (Degnan and Rosenberg, 2006). For example,

for five taxa, the tree (((A,B), C), (D,E)) has three rankings. Thus, if the species

tree has this topology and all internal branches have length 0, then no other gene

tree shape can be anomalous for it. In this case, as λ → ∞, an unranked labeled

gene tree topology approaches probability r/180, where r is the number of rankings

for the gene tree.

For six taxa, the unlabeled tree shape whose labeled topologies have the maximum

number of rankings has four taxa descended from one side of the root and two from

the other side, as shown in Figure 2.3C, where the rooted subtrees on each side

of the root themselves maximize the number of possible rankings. This scenario
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results in an unlabeled tree with eight rankings and 45 labelings. Because there are

2700 ranked labeled topologies for n = 6 taxa, we therefore expect that as λ → ∞,

the probability of the species tree being in an unranked anomaly zone is at least

1 − (45 · 8)/2700 = 13/15. This value occurs because labeled unranked trees with

this maximally probable shape are tied in probability for being the most probable

when all coalescences occur more anciently than the root; as λ→∞, the probability

approaches 13/15 that the species tree does not have the maximally probable shape,

and therefore is in an unranked anomaly zone.

More generally, let Tn be an unlabeled species tree shape with the maximum

number of rankings. For large λ, the probability of the species tree with n leaves

being in an unranked anomaly zone has a lower bound of

1− 2n−1−σ(Tn)

n−1∏
i=1

[ci(Tn)− 1]−1, (2.5)

where σ(Tn) is the number of balanced internal vertices of Tn and ci(Tn) is the number

of descendant leaves of interior vertex i, including the root as an interior vertex. The

lower bound given in eq. (2.5) can be calculated as 1 minus the probability that the

species tree under the Yule process has the shape that produces the largest number of

rankings for a fixed labeling. For example, the lower bound for six-taxon species trees

can be calculated as 1−2/15 = 13/15. This lower bound in eq. (2.5) underestimates

the probability of being in an anomaly zone for large λ because even labeled species

trees with the maximally probable shape can have AGTs for some sets of branch

lengths. It can be shown that this lower bound approaches 1 as n→∞ (see the next

section for details).

In general, probabilities of both AGTs and ARGTs increase with the number

of taxa. For example, going from five to eight taxa, the probability of an AGT

approximately doubles, for both λ = 0.5 and λ = 1 at both levels of turnover. The

probability of an ARGT increases by a factor of 10 to 15 going from five to eight
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taxa at λ = 0.5 and λ = 1 at both levels of turnover (Figure 2.8).

An open question from Degnan et al. (2012b) was whether the most probable

ARGT could have a different unranked topology from that of the species tree. In

that study, examples of ARGTs had different rankings from the species tree but

the same unranked topology. Here, in our simulation with different combinations

of values (n, λ, µ), we have not found any cases where the most probable ranked

gene tree and the species tree have different unranked topologies. However, we found

a few cases where a gene tree within one step by nearest neighbor interchange —

which has a different unranked topology from the species tree — has exactly the

same ranked histories and probability as the ranked gene tree topology that matches

the unranked species tree topology.

For example, for a species tree given in Figure 2.11, the two ranked gene trees

have the same probabilities, because they have exactly the same values of ki,j,z and

thus, the same values of λi,j (see eq. (1.10) for details). The same result that at least

one of the most probable ranked gene tree topologies must have the same unranked

topology as the species tree was proved mathematically by Disanto et al. (2019).

This result suggests that the “democratic vote” method used for ranked gene trees

might be less misleading than in the unranked setting: if one takes the ranked gene

tree (or gene trees, allowing for ties) that occurs most frequently in a large enough

sample, then its unranked version is predicted to match the species tree, except

possibly when another ranked gene tree is tied for being most probable.

We compute the probabilities of ranked and unranked gene tree topologies for

all species trees with five to eight taxa to find a subset of speciation interval length

space in which the species tree generates anomalous unranked and ranked gene trees.

Studying the properties of anomalous gene trees, as well as examining connections

between ranked and unranked anomaly zones, will help to find strategies for solving

the problem posed during phylogenetic inference by the existence of anomalous gene
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Figure 2.11: Gene trees evolving on an eight-taxon species tree. (A) Ranked gene tree
((((A,B)6, C)4, (D,E)7)2, ((G,H)5, F )3) that shares the same unranked topology
with that of the species tree. (B) Gene tree ((((A,B)6, C)4, (D,E)7)2, ((F,G)5, H)3)
that has a different unranked topology from the species tree. Note that the
ranked gene tree ((((A,B)6, C)4, (D,E)7)2, ((F,H)5, G)3) (not shown) has exactly
the same probability as gene trees in (A) and (B) for the species tree depicted.
For each i = 1, 2, ..., 7, si ≥ 0 denotes the time of the ith speciation, τi represents
the interval between the (i − 1)th and ith speciation events, ti (ti = si−1 − si,
2 ≤ i ≤ 7) represents the length of interval τi, and ui represents the ith coa-
lescence (node with rank i) in the gene tree. The species tree has ranked topol-
ogy ((((A,B)4, C)3, (D,E)6)2, ((G,H)7, F )5). For the species tree values ti =
(0.29, 0.006, 0.041, 0.001, 0.022, 0.001), i = 2, 3, ..., 7, the ranked gene trees in (A)
and (B) are the most probable ranked gene trees, with probability 1.72404× 10−5.

2.7 The lower bound of a probability being in an

unranked anomaly zone

The lower bound given in eq. (2.5) denotes the probability of the species tree with n

leaves being in an unranked anomaly zone for large λ. In this section we prove that

this lower bound approaches 1 as n→∞ and λ→∞.

Let Tn be a labeled species tree whose unlabeled shape maximizes the number
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of rankings of its associated labeled topologies. For large λ, the probability of the

species tree with n leaves being in an unranked anomaly zone has a lower bound of

1− NR ·R
NT

, (2.6)

where NR is the number of ways to label the unranked unlabeled tree with the

maximum number of rankings, R is the number of rankings, and NT is the number

of ranked topologies for an n-taxon labeled tree.

A given unlabeled tree topology has R = (n− 1)!/
∏n−1

i=1 (ci − 1) rankings, where

ci is the number of descendant leaves of interior vertex i, including the root as an

interior vertex (Steel, 2016, p. 46). There are NR = n!2−σ ways to label the tree

with the maximum number of rankings, where σ is the number of balanced internal

vertices (Steel, 2016). Because the number of ranked topologies for an n-taxon tree

is NT =
∏n

i=2

(
i
2

)
= n!(n− 1)!/2n−1 (Brown, 1994; Steel, 2016), equation (2.6) leads

to the following expression:

1− n!2−σ(Tn) · (n− 1)!
∏n−1

i=1 [ci(Tn)− 1]−1

n!(n− 1)!/2n−1
= 1− 2n−1−σ(Tn)

(n− 1)
∏n−1

i=2 [ci(Tn)− 1]
,

(2.7)

equivalent to the expression (2.5).

An n-taxon labeled species tree Tn with the maximum number of rankings has

21+blog2[(n−1)/3]c taxa descended from one side of the root and n−21+blog2[(n−1)/3]c from

the other side (Harding, 1971, 1974; Hammersley and Grimmett, 1974) (Table 2.1).

For an n-taxon tree, n must be between two powers of 2. Let k ≥ 0 be an integer

with 2k+1 < n ≤ 2k+2. For a tree with the maximum number of rankings, one of the

subtrees descended from Tn has at most 2k+1 leaves and has the number of leaves a

power of 2. In particular, Tn with 2k+1 < n ≤ 2k+2 leaves has 2k ≤ 21+blog2[(n−1)/3]c ≤

2k+1 taxa descended from one side of the root and 2k < n − 21+blog2[(n−1)/3]c ≤ 2k+1

from the other side (Table 2.1 and Figure 2.12). The tree rooted on each side of the
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root of Tn itself maximizes the number of possible rankings for all labeled trees with

the same number of leaves.

To prove that the lower bound approaches 1 as n → ∞, we need to show that

in eq. (2.7),
∏n−1

i=2 [ci(Tn) − 1]−1 → 0 and 2n−1−σ(Tn)(n − 1)−1 ≤ 1 as n → ∞. We

consider three cases: (1) n = 2k+2, (2) n odd, and (3) n even and n 6= 2k+2.

Consider a case with n = 2k+2, k = 0, 1, ... . A completely balanced symmetric

shape is the shape with the maximum number of rankings, with σ(Tn) = n−1. Thus,

for n = 2k+2, eq. (2.7) can be written as follows:

1−
k+1∏
i=1

(2k−i+3 − 1)−2i−1

. (2.8)

The product in eq. (2.8) is the inverse product of the numbers of descendant leaves

of all interior vertices, including the root as an interior vertex. That the lower bound

for n = 2k+2 approaches 1 as k →∞ is proven by Lemma 1.

Lemma 1: Let ci(Tn) be the number of descendant leaves of interior vertex i of

a tree Tn, excluding the root. Then
∏n−1

i=2 [ci(Tn)− 1]−1 → 0 as n→∞.

Proof. Define c∗i as

c∗i =

2, if i is a cherry,

3, otherwise.

The maximum number of cherries of an n-taxon tree is at most n/2. Hence,

n−1∏
i=2

[ci(Tn)− 1]−1 ≤
n−1∏
i=2

[c∗i (Tn)− 1]−1 ≤ 2−(n−2−n/2) = 2−n/2+2,

where n − 2 − n/2 is the number of internal nodes excluding the root minus the

maximum number of cherries. This quantity approaches 0 as n → ∞, completing

the proof.
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Table 2.1: The n-taxon species trees with the maximum number of rankings for a
labeled topology.

n (`, r) n (`, r) n (`, r) n (`, r)

2 (1,1) 18 (10,8) 34 (18,16) 50 (32,18)
3 (2,1) 19 (11,8) 35 (19,16) 51 (32,19)
4 (2,2) 20 (12,8) 36 (20,16) 52 (32,20)
5 (3,2) 21 (13,8) 37 (21,16) 53 (32,21)
6 (4,2) 22 (14,8) 38 (22,16) 54 (32,22)
7 (4,3) 23 (15,8) 39 (23,16) 55 (32,23)
8 (4,4) 24 (16,8) 40 (24,16) 56 (32,24)
9 (5,4) 25 (16,9) 41 (25,16) 57 (32,25)
10 (6,4) 26 (16,10) 42 (26,16) 58 (32,26)
11 (7,4) 27 (16,11) 43 (27,16) 59 (32,27)
12 (8,4) 28 (16,12) 44 (28,16) 60 (32,28)
13 (8,5) 29 (16,13) 45 (29,16) 61 (32,29)
14 (8,6) 30 (16,14) 46 (30,16) 62 (32,30)
15 (8,7) 31 (16,15) 47 (31,16) 63 (32,31)
16 (8,8) 32 (16,16) 48 (32,16) 64 (32,32)
17 (9,8) 33 (17,16) 49 (32,17) 65 (33,32)

Note. — The tree with the maximum number of rankings splits into (left, right)
subtrees with (`, r) leaves. The n-taxon species tree with the maximum number
of rankings Tn has 21+blog2[(n−1)/3]c taxa descended from one side of the root and
n− 21+blog2[(n−1)/3]c from the other side.

For the other two cases, we use a series of lemmas. Table 2.2 depicts the results

of Lemmas 2 and 3.

Lemma 2: Let σ(Tn) be the number of balanced internal vertices in Tn, the tree

with the maximal number of rankings. Then σ(Tn) = n− k − 1 when n is odd and

2k < n < 2k+1, k ≥ 1.

Proof. Let C(k) be the statement that for odd n and 2k < n < 2k+1, σ(Tn) = n−k−1.

C(k) is true for k = 1 as 3-taxon trees have one balanced internal vertex. Now we

show that if C(k) is true, then C(k + 1) is true for any k ≥ 1.
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We need to show that for odd n, 2k+1 < n < 2k+2, the number of balanced

internal vertices is σ(Tn) = n− (k + 1)− 1 = n− k − 2.

Among trees with 2k+1 < n < 2k+2 leaves, let Tn be a tree with the maximal

number of rankings. Let `(TL) and `(TR) be the numbers of leaves in the trees rooted

at the left and right immediate descendants of the root, respectively. Without loss

of generality, let `(TL) = 21+blog2[(n−1)/3]c and `(TR) = n− 21+blog2[(n−1)/3]c.

TL is a completely balanced symmetric tree, σ(TL) = 21+blog2[(n−1)/3]c−1. Because

n is odd, TR has an odd number of leaves with 2k < n − 21+blog2[(n−1)/3]c < 2k+1 for

2k+1 < n < 2k+2 (Figure 2.12).

Now, using an induction assumption that C(k) is true, σ(Tn) = σ(TL) +σ(TR) =

21+blog2[(n−1)/3]c − 1 + (n− 21+blog2[(n−1)/3]c − k − 1) = n− k − 2.

Lemma 3: Let σ(Tn) be the number of balanced internal vertices in Tn, the tree

with the maximal number of rankings. Then σ(Tn) ≥ n− k − 1 when n is even and

2k < n ≤ 2k+1, k ≥ 0.

Proof. Let C(k) be the statement that for even n and 2k < n ≤ 2k+1, σ(Tn) ≥

n − k − 1. Obviously, C(k) is true for k = 0 as 2-taxon trees have one balanced

internal vertex (σ(T2) ≥ 1). Now we show that if C(k) is true, then C(k+ 1) is true

for any k ≥ 0.

We need to show that for even n, 2k+1 < n ≤ 2k+2, the number of balanced

internal vertices is σ(Tn) ≥ n− (k + 1)− 1 = n− k − 2.

Among trees with 2k+1 < n ≤ 2k+2 leaves, let Tn be a tree with the maximal

number of rankings. Let `(TL) and `(TR) be the numbers of leaves in the trees rooted

at the left and right immediate descendants of the root, respectively. Without loss

of generality, let `(TL) = 21+blog2[(n−1)/3]c and `(TR) = n− 21+blog2[(n−1)/3]c.
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TL is a completely balanced symmetric tree, σ(TL) = 21+blog2[(n−1)/3]c−1. Because

n is even, TR has an even number of leaves with 2k < n− 21+blog2[(n−1)/3]c ≤ 2k+1 for

2k+1 < n ≤ 2k+2 (Figure 2.12).

Now, using an induction assumption that C(k) is true, σ(Tn) = σ(TL) +σ(TR) ≥

21+blog2[(n−1)/3]c − 1 + (n− 21+blog2[(n−1)/3]c − k − 1) = n− k − 2.

Lemma 4: 2n−1−σ(Tn)(n− 1)−1 ≤ 1 as n→∞.

Proof. From Lemmas 2 and 3, it follows that σ(Tn) ≥ n − k − 1 for 2k < n ≤ 2k+1

and log2(n)− 1 ≤ k < log2(n).

Consider two cases: k = log2(n) − 1 and log2(n) − 1 < k < log2(n). If k =

log2(n)− 1, then σ(Tn) ≥ n− log2(n) and

2n−1−σ(Tn) ≤ 2log2(n)−1 = 2log2(n)/2 = n/2 ≤ n− 1.

From log2(n) − 1 < k < log2(n) and the fact that k is an integer, k = blog2(n)c

and σ(Tn) ≥ n− 1− blog2(n)c. Then, as n→∞

2n−1−σ(Tn) ≤ 2blog2(n)c ≤ 2log2(n−1) = n− 1.

It follows that, as n→∞,

2n−1−σ(Tn)(n− 1)−1 ≤ (n− 1)/(n− 1) = 1.

Theorem: The lower bound of the probability of the species tree with n leaves

being in an unranked anomaly zone, as defined in eq. (2.7), approaches 1 as n→∞

and λ→∞.

Proof. The result immediately follows by Lemmas 1 and 4 in eq. (2.7).
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Figure 2.12: The values of n − 21+blog2[(n−1)/3]c, 2k, and 2k+1 for a tree with
2k+1 < n ≤ 2k+2 taxa. The tree with the maximum number of rankings has
2k ≤ 21+blog2[(n−1)/3]c ≤ 2k+1 taxa descended from one side of the root and 2k <
n− 21+blog2[(n−1)/3]c ≤ 2k+1 from the other side.
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Table 2.2: The number of balanced internal vertices σ(Tn) in n-taxon species trees
with the maximum number of rankings for a labeled topology.

n even n odd

n σ(Tn) n− 1− σ(Tn) n σ(Tn) n− 1− σ(Tn)

2 1 0 3 1 1
4 3 0 5 2 2
6 4 1 7 4 2

8 7 0 9 5 3
10 7 2 11 7 3
12 10 1 13 9 3
14 11 2 15 11 3

16 15 0 17 12 4
18 14 3 19 14 4
20 17 2 21 16 4
22 18 3 23 18 4
24 22 1 25 20 4
26 22 3 27 22 4
28 25 2 29 24 4
30 26 3 31 26 4

32 31 0 33 27 5
34 29 4 35 29 5
36 32 3 37 31 5
38 33 4 39 33 5
40 37 2 41 35 5
42 37 4 43 37 5
44 40 3 45 39 5
46 41 4 47 41 5
48 46 1 49 43 5
50 45 4 51 45 5
52 48 3 53 47 5
54 49 4 55 49 5
56 53 2 57 51 5
58 53 4 59 53 5
60 56 3 61 55 5
62 57 4 63 57 5

64 63 0 65 58 6

Note. — For even n, σ(Tn) ≥ n−k−1 (Lemma 3). For completely balanced and symmetric
n = 2k+2-taxon trees, σ(Tn) = n − 1. For n = 3 · 2blog2(n)−1c-taxon trees, σ(Tn) = n − 2.
For odd n, the number of balanced internal vertices is σ(Tn) = n − 1 − blog2 nc (Lemma
2).
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Heuristic approaches for detecting

anomaly zones

In this chapter, we introduce some heuristic approaches to infer whether species

trees are in anomaly zones when it is intractable to compute the entire distribution

of gene tree topologies. The number of possible tree topologies grows faster than

exponentially with the number of species, make it computationally intensive to infer

whether larger species trees (i.e., more than eight taxa) are in anomaly zones by

calculating the gene tree distributions.

3.1 Theoretical probability of being in the

unranked anomaly zone

Theoretically, the probability that a species tree is an anomaly zone can be obtained

by integrating the distribution of species trees under the branching process, using

the anomaly zone for limits. In the case of four-taxon unranked trees, the probability
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under a pure birth model with rate λ is

1

3

∫ ∞
0

∫ a(x)

0

6λ2e−λ(2x+3y) dy dx,

where the integrand is the joint density of the branch lengths (Stadler, 2011), the

1/3 term is the probability that the species tree has a caterpillar topology (i.e., only

one two-taxon clade), and

a(x) = log

[
2

3
+

3e2x − 2

18(e3x − e2x)

]
(3.1)

is the boundary of the anomaly zone. Here x represents the more basal branch in

the caterpillar species tree, and for y < a(x), the species tree is in the anomaly zone

(Degnan and Rosenberg, 2006). Even in the four-taxon case, however, the integral

appears to not be analytically tractable, and requires either numerical or simulation

methods to evaluate. For more species, the dimension of the integral would be n− 2

since the probability requires integrating over all internal branches in the species tree,

making the problem more difficult for larger trees. The boundary of the anomaly zone

is also more complicated for larger trees (Rosenberg and Tao, 2008). Consequently,

we have used the simulation approach.

3.2 Simulation design

Our simulation approach consisted of the following steps (1) generation of species

trees under a constant rate birth-death model using TreeSim (Stadler, 2011), (2)

computation of probabilities of gene trees for each species tree, (3) identification

of the presence of AGTs by comparing the probability of the matching gene tree

topology to that of the most probable nonmatching gene tree topology, (4) calculation

of the proportion of species trees falling in anomaly zone. These are the same steps

as in Chapter 2 except that in step (2), the probabilities of only a small subset of all

possible gene trees are computed.
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When generating species trees, we let the parameters take values in a biologically

plausible range. In particular, the speciation rate λ takes the values of 0.1, 0.5, 1,

and the extinction rate µ depends on λ such that the turnover rate µ
λ

is 0 or 0.5.

This range of values of (λ, µ) was choosen to observe a moderate difference between

gene and species trees topologies that allows examining the effect of the species tree

parameters on the existence of AGTs.

Because all three types of AGTs can exist simultaneously for n ≥ 5-taxon trees,

we computed the distributions of gene tree topologies for the 5000 5-, 6-, 7-, and

8-taxon species trees. The results based on the n ≤ 8–taxon trees in Figure 3.1 are

the same as in Kim et al. (2019) because same species trees were used for these cases.

We proposed some heuristic methods for larger phylogenies and demonstrated

their performance on 1000 simulated species trees with 9, 10, 11, and 12 taxa. Using

hybrid-coal (Zhu and Degnan, 2017), probabilities of unranked gene tree topologies

were computed, and from these, probabilities of unrooted topologies for n ≤ 8 were

found by summing probabilities of unranked topologies that share the same unrooted

topology. We used CalGTProb command from PhyloNet (Yu et al., 2012a) to com-

pute probabilities of unrooted gene trees topologies for n > 8. The probabilities of

ranked gene tree topologies were computed using PRANC (Kim et al., 2019).

3.3 Proposed approaches

It is necessary to propose some heuristic approaches for nine and more taxa since

computing probabilities of gene trees given a species tree for the entire distribution

is computationally intensive. The number of tree topologies grows faster than expo-

nentially with the number of species. For instance, there are 56,700, 1,587,600, and

57,153,600 ranked gene trees for 7, 8, and 9 species, respectively.
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Figure 3.1: The impact of the number of taxa n on the existence of ranked, unranked,
and unrooted anomaly zones given speciation λ and extinction µ rates. We simulated
5000 species trees for n = 5, 6, 7, 8 taxa and 1000 species trees for n = 9, 10, 11, 12
taxa using a constant rate birth-death process with rates λ ∈ {0.1, 0.5, 1} and µ

λ
∈

{0, 0.5λ}. For each combination of (n, λ, µ) the probabilities of the species tree being
in each type of µ/λ anomaly zone were computed.

To see how topologically different ARGTs, AGTs, and AUGTs can be from

species trees we consider the Robinson-Foulds (RF)(Robinson and Foulds, 1981)

topological distance between the most probable gene tree topology and the species

tree topology for different values of the speciation rate λ, extinction rate µ, and the

number of taxa n (Table 3.1). The RF distance metric between two rooted trees is

defined to be a number of distinct clades between two trees. The Robinson-Foulds dis-

tance can take only even integer values. The RF distance of zero between two rooted

trees indicates that the trees have the same unranked labeled topology. The maximal

RF distance between two rooted n-taxon trees is 2n−4. For example, the RF distance

between two 6-taxon trees can take a value of 0, 2, 4, or 8. Larger values indicate more
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topologically distant trees. The RF distances between pairs of trees in Figures 2.3A

and B, Figures 2.3A and C, and Figures 2.3A and D are 4, 6, and 4, respectively. For

example, the symmetric difference between sets of clades between two trees in Figures

2.3A and D consists of four clades {(D,E), (((A,B), C), (D,E)), (E,F ), ((D,E), F )}

that results in the RF distance of 4.

Table 3.1: Frequency distribution of the Robinson-Foulds distances between the most
probable gene tree topology and the species tree topology. We simulated 5000 species
trees for each combination of n, λ, and µ.

µ
λ

= 0 µ
λ

= 0.5

unrooted unranked unrooted unranked

λ n 0 2 4-8 0 2 4-10 0 2 4-8 0 2 4-8

0.1

5 99.76 0.24 99.42 0.58 99.78 0.22 99.64 0.36
6 99.32 0.68 99.12 0.86 0.02 99.56 0.44 99.30 0.70
7 98.80 1.08 0.12 98.54 1.32 0.14 99.40 0.58 0.02 99.24 0.72 0.04
8 98.54 1.44 0.02 98.30 1.68 0.02 99.26 0.68 0.06 98.96 0.98 0.06

0.5

5 95.68 4.32 90.36 9.08 0.56 96.28 3.72 93.44 6.26 0.30
6 92.24 7.36 0.40 87.76 11.14 1.10 94.14 5.60 0.26 90.92 8.40 0.68
7 88.50 10.48 1.02 84.20 13.78 2.02 91.40 7.98 0.62 88.74 10.30 0.96
8 85.42 13.12 1.46 81.32 16.30 2.38 88.84 10.24 0.92 86.10 12.50 1.40

1

5 90.38 9.62 78.90 18.54 2.56 91.54 8.46 83.90 14.42 1.68
6 83.66 14.88 1.46 72.68 22.26 5.06 86.60 12.58 0.82 80.16 16.86 2.98
7 76.60 19.78 3.62 67.20 25.46 7.34 81.02 16.50 2.48 74.94 20.44 4.62
8 70.84 23.82 5.34 61.34 29.18 9.48 76.20 19.70 4.10 70.90 22.74 6.36

We observed that in the cases where a species tree produces AGTs or AUGTs, the

majority of most probable gene tree topologies were not too distant from the species

tree topology (RF-distance ≤ 2). In both unranked and unrooted cases for larger

turnover µ/λ, the probabilities of anomalous trees are lower but there are more trees

within RF ≤ 2 from a species tree topology. To reduce the computational complexity

of determining anomaly zones, we consider only gene trees that are exactly one

nearest neighbor interchange (NNI) away from the species tree. The NNI distance

defined as the minimum number of nearest neighbor interchange moves that must be

applied to one tree such that it becomes topologically equal to the other. One NNI

move swaps two subtrees along a certain internal edge. The rightmost tree in Figure
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3.2 is one NNI move away from the central tree but two NNI moves away from the

leftmost tree. The central tree in Figure 3.2 is one NNI move away from the leftmost

tree: the branch that connects the parent of species C and the root was fixed and

two clades C and (D,E) were swapped.

Even if the most frequent gene tree topology is farther than one NNI step away

from the species tree topology, it is likely that there is at least one other gene tree

topology within one NNI from the species tree topology that has larger probability

than the matching tree topology.

A B C D E A B ED C A B ED C

Two NNIs

One
NNI One

NNI

Figure 3.2: Central and rightmost six-taxon rooted trees within one and two NNI
moves from the leftmost tree.

The above observations lead to a useful heuristic for unranked gene trees. Given

a species tree, we compute probabilities of unranked gene trees that are exactly one

NNI of the species trees. If one of these gene trees is anomalous, then the species

tree is classified as being in an unranked anomaly zone. If none of the NNI unranked

gene trees is in an unranked AZ, then the species tree is classified as not anomalous.

Under this heuristic, false positives (judging a species tree to be in an AZ when it is

not) cannot occur, but false negatives can occur when a specie tree has AGTs but all

AGTs are more than one NNI move from the species tree. For n taxa, the heuristic
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requires only computing 2n−4 +1 unranked gene tree probabilities (the plus 1 is for

the matching tree) for each species tree. The heuristic for unrooted trees is the same

as that for unranked trees except that 2n− 6 + 1 unrooted NNI trees (plus 1 for the

matching tree) are used. We note that the heuristic will tend to underestimate the

probability that the species tree is in an AZ.

Table 3.2 shows true positive rates of unrooted and unranked species trees that

fall in their respective anomaly zones by computing probabilities of all gene tree

topologies that are only one NNI step away from a species tree. Since we have

found only a few cases in which all anomalous gene trees were more than two NNI

steps away from the species tree topology, we propose that considering unranked or

unrooted gene tree topologies within one NNI step from the species tree topology is

a reasonable heuristic to infer the existence of AGTs or AUGTs.

Table 3.2: True positive rates of species trees that fall in the unrooted and unranked
anomaly zones. We simulated 5000 species trees for each combination of n, λ, and
µ.

λ(µ = 0) λ(µ
λ

= 0.5)

rate (in%) n 0.1 0.5 1 0.1 0.5 1

unrooted

5 100.0 100.0 100.0 100.0 100.0 100.0
6 100.0 100.0 99.88 100.0 99.66 100.0
7 100.0 99.83 100.0 100.0 100.0 99.68
8 100.0 100.0 99.73 100.0 99.82 99.75

unranked

5 100.0 100.0 99.91 100.0 100.0 100.0
6 100.0 99.67 99.27 100.0 99.56 100.0
7 100.0 99.75 99.76 100.0 100.0 99.76
8 100.0 99.89 99.84 100.0 100.0 99.73

We use a different strategy in the search for ARGTs. Disanto et al. (2019) proved

mathematically that at least one of the most probable ranked gene tree topologies

must have the same unranked topology as the species tree (it is possible that several
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conflicting trees are exactly tied for most probable). Based on this result, we propose

to use only those ranked gene trees that have topologies that match the unranked

species tree topology to check for anomalousness. This is an exact test with no false

positives and no false negatives. This greatly reduces the number of tree probabilities

to be computed when checking whether the species tree has an ARGT. For example,

instead of computing 1,587,600 probabilities for the balanced 8-taxon tree, we need

to compute only 80 probabilities, since there are 80 possible rankings for the balanced

8-taxon topology.

3.4 Limit of the anomaly zone

Another heuristic test was proposed to identify the unranked anomaly zone in larger

trees by Linkem et al. (2016). They considered the limit of the anomaly zone a(x) for

the four-taxon caterpillar tree (Figure 3.3A) defined earlier (eq. (3.1)). Given that y

and x are lengths of an internal branch and its immediate ancestor in the species tree,

a four-taxon species tree falls in the unranked anomaly zone if it satisfies the condition

y < a(x). Linkem et al. (2016) proposed that this condition could be checked for any

two consecutive branches in a tree within a larger species tree to conclude whether

there is evidence of the unranked anomaly zone. In particular, their examination

shows that several pairs of parent-child internodes in the skink phylogeny satisfy

this condition, and that this species tree is therefore in the anomaly zone. This may

explain a strong conflict between species trees inferred under the coalescent versus

using the more traditional approach of concatenating multiple gene sequences and

inferring a single tree.

We tested the Linkem et al. (2016) heuristic on small trees to estimate false pos-

itive and false negative rates. We then applied this approach on 5–8-taxon species

trees since the exact error can be computed by analytically computing probabilities
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A B C D

x

y

A

A B C ED F

b3
b4

b2

b1

B

Figure 3.3: (A) Using the Linkem et al. (2016) heuristic, the four-taxon species tree
is said to be in unranked anomaly zone if two consecutive branches with lengths x
and y in coalescent units, satisfy the anomaly zone condition y < a(x). (B) Pairs
of two internal consecutive branches (i.e., (b1, b2), (b1, b3), and (b2, b4)) in larger tree
that can be checked for anomaly zone condition y < a(x). If at least one pair satisfy
condition, then the species tree is likely to be in an unranked anomaly zone.

for the entire gene tree distributions. We simulated 5000 species trees under a con-

stant rate birth-death process for each combination of λ = 0.1, 0.5, 1 and µ/λ = 0, 0.5.

For each of these species trees, we calculated the probabilities of all possible unranked

gene tree topologies and compared a species tree topology with the most probable

gene tree topology to see whether a corresponding species tree fell in the unranked

anomaly zone.

All pairs of consecutive internode branch lengths were used to check if at least

one pair satisfied the anomaly zone limit condition y < a(x) (Figure 3.3B). If there

was evidence of the unranked anomaly zone based on this condition, the species tree

was checked if it was in the unranked anomaly zone based on computing probabilities

for the full gene tree distribution.

Table 3.3 depicts the percentages of species trees that were correctly identified

(true positives) to be in the unranked anomaly zone. Table 3.3 also shows false

positive percentages of trees that satisfy the anomaly zone condition y < a(x) but

are not in the anomaly zone.
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Table 3.3: Percentages of species trees that were correctly identified to be in the
anomaly zone by satisfying the anomaly zone limit condition y < a(x), where y and
x are branch lengths of an internal node and its parental node in the species tree.
All consecutive pairs of internode branch lengths were used to check if at least one
pair satisfying the anomaly zone limit condition y < a(x). The table also depicts
percentages of species trees that were incorrectly identified to be in the anomaly
zone. There were 5000 species trees simulated for each combination of n, λ, and µ.
The probabilities that species trees lie in unranked anomaly zones were computed
based on the full gene tree distribution (true cases).

λ(µ = 0) λ(µ
λ

= 0.5)

rate (in%) n 0.1 0.5 1 0.1 0.5 1

True positive

5 96.55 94.19 92.80 100.00 95.43 94.29
6 97.73 95.26 94.51 100.00 93.83 94.46
7 93.15 95.95 95.24 97.37 95.74 96.01
8 92.94 95.61 95.45 98.08 93.96 97.32

False positive

5 0.00 2.16 7.06 0.06 1.52 4.76
6 0.18 4.08 9.72 0.06 2.26 7.00
7 0.12 4.60 11.76 0.02 3.44 9.28
8 0.18 5.82 13.30 0.12 4.06 9.80

We observed that the false positive rate slowly increases with the number of taxa

and speciation rate λ. Despite the relatively high false positive rate, the test is still

useful for checking that a tree does not fall in an anomaly zone — if none of two

consecutive branches on a path from the the root to a tip satisfy y < a(x), then it is

very unlikely that the species tree is in an unranked anomaly zone.

We considered a similar test for the ranked anomaly zone. As discussed in Section

2.2, the expression (2.3) can be used to determine whether a five-taxon species tree

falls in the ranked anomaly zones instead of computing the gene tree distribution.

We use this expression to determine candidates for being in a ranked anomaly zone

by checking every three consecutive speciation intervals in larger rooted species trees.

Unfortunately, this method has high false positive and low true positive rates (data
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not shown), and cannot be used as a quick test whether a species tree falls into the

ranked anomaly zone.

3.5 Results for 9-12 taxa

Figures 3.1 and 3.4 show probabilities of the species tree being in the unranked,

unrooted, and ranked anomaly zones for different combinations of the number of taxa

n, speciation rate λ, and extinction rate µ. For all types of trees, the probability

of being in an anomaly zone increases with the number of taxa and with λ in this

range. Increasing λ makes consecutive short branches more likely to appear in the

species tree, which explains the increasing trend in probabilities of the unranked and

unrooted anomaly zones.

We also observed the opposite effect of the turnover rate µ/λ on the probability of

producing unranked and unrooted versus ranked anomalous gene trees. On average,

branches closer to the root are longer than other branches in a tree as the turnover

rate increases (Table 3.4). This leads to a longer speciation interval near the root and

explains the decreasing trend in probability in the unranked and unrooted anomaly

zones and the increasing trend in the ranked anomaly zone as turnover rate increases

since longer branches near the root can produce ARGTs when other branches are

short.

To reduce the computational complexity, we use the heuristic described in Section

3.3 of considering unranked and unrooted gene tree topologies within one NNI step

from the species tree topology to infer the existence of AGTs and AUGTs for larger

trees (n > 8). For ranked gene tree topologies, we consider only those that share the

same unranked topology with the species tree.

We used Venn diagrams to visualize results obtained from analyzing larger trees.
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Figure 3.4: The impact of the speciation rate parameter λ and turnover rate µ/λ
on the existence of ranked, unranked, and unrooted anomaly zones. We simulated
1000 species trees for n = 9, 10, 11, 12 taxa using a constant rate birth-death process
with rates λ ∈ {0.1, 0.5, 1} and µ

λ
∈ {0, 0.5λ}. For each combination of (n, λ, µ)

the probabilities of the species tree being in each type of µ/λ anomaly zone were
computed.

Figures 3.5 and 3.6 depict the relationships between unrooted, unranked, and ranked

anomaly zones (AZUGT , AZGT and AZRGT ). Each slice represents the number of

species trees in the anomaly zone. We observe that for low speciation rates, AZUGT

is often a subset of AZGT , and there are not many species trees in any of the three

anomaly zones. However, as λ increases, species trees start to produce anomalous

gene trees more often in each type of anomaly zone, and the proportion of trees in

the intersection of two or more anomaly zones also increases (Figures 3.5B, 3.5D).

As shown in Figure 3.6, turnover rate does not make a substantial difference to the

relationships between different types of anomaly zones.
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Table 3.4: Average length and average proportion of the intervals in the tree. We
generated 10000 8-taxon trees under the constant rate birth-death process with spe-
ciation rate λ = 1 and extinction rates µ = 0, 0.5. The proportion for each tree
was calculated by dividing the interval length by the sum of the interval lengths in
the tree. The speciation intervals are represented by t2 to t8 from past to present,
respectively.

µ = 0 µ
λ

= 0.5

t length proportion length proportion

t2 0.50 0.26 0.84 0.30
t3 0.33 0.19 0.51 0.20
t4 0.25 0.15 0.35 0.15
t5 0.20 0.12 0.26 0.12
t6 0.17 0.10 0.20 0.09
t7 0.14 0.09 0.16 0.07
t8 0.12 0.08 0.13 0.06

Overall, using the proposed heuristic approach for n > 8, species trees produce

more AGTs than AUGTs and ARGTs (Figures 3.1, 3.4, 3.5). Species trees more

often fall in AZRGT than in AZGT when the speciation rate λ is small, but as λ in-

creases they start to produce more AGTs than ARGTs. The unrooted and unranked

anomaly zones have more trees in common, and the ranked anomaly zone is more

separated from them.

We computed probabilities of anomaly zones for extreme values of λ ∈ [1, 30]

and noticed that the probabilities of unranked and unrooted anomaly zones grow

much faster than that of the ranked anomaly zone as the speciation rate increases

(Figure 3.7). In particular, the probability that a species tree belongs to unrooted,

unranked, and ranked anomaly zones is equal to 0.338, 0.404, and 0.285, respectively,

for n = 9, λ = 1, µ = 0. For 9-taxon species tree with λ = 10 and µ = 0,

the corresponding probabilities are equal to 0.796, 0.914, and 0.417, respectively.

For extreme speciation rates, probabilities of unranked and unrooted anomaly zones
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Figure 3.5: Relationships between unrooted, unranked, and ranked anomaly zones.
We considered 1000 species trees with birth parameters λ = 0.1, 1 for 9 and 12 taxon
species trees. In each Venn diagram, each slice represents a number of anomalous
trees found. Note that figures are not drawn to scale.

grow much faster than that of the ranked anomaly zone with the speciation rate

(Figure 3.7).

It is hard to detect what kind of species tree shapes tend to fall more often in the

certain types of anomaly zones. We calculate the Colless index (Colless, 1982) for

9-taxon species trees, simulated under the constant rate birth process with λ = 1,

in the ranked and unranked anomaly zones (Figure 3.8). More balanced trees tend

to fall in the ranked anomaly zone and more imbalanced into the unranked anomaly

zone. The average Colless statistic is 9.92 for the ranked anomaly zone and 12.39 for
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Figure 3.6: Relationships between unrooted, unranked, and ranked anomaly zones.
We considered 1000 species trees with birth parameters λ = 0.1, 1 and turnover rates
µ
λ

= 0.5 for 9 and 12 taxon species trees. In each Venn diagram, each slice represents
a number of anomalous trees found. Note that figures are not drawn to scale.

the unranked anomaly zone. For the 12-taxon species trees (Figure 3.9), the average

Colless statistics are 16.96 and 20.01 for the ranked and unranked anomaly zone,

respectively. The bars corresponding to the ranked AZ are higher than the bars for

the unranked AZ for the smaller Colless values, whereas the bars corresponding to

the unranked AZ are higher than the bars for the ranked AZ for the larger Colless

values.
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Figure 3.7: The impact of the speciation rate parameter λ ∈ {0.1, 30} on the existence
of unranked, unrooted and ranked anomaly zones. The probabilities of the 9-taxon
species trees being in the anomaly zone were computed. Probabilities of unranked
anomaly zone appear to increase with λ, whereas probabilities of ranked anomaly
zone increase up to a certain values, and then begin to decrease for approximately
λ ≥ 10.

3.6 Discussion

Although the theoretical possibility of anomalous gene trees has been known over a

decade, it has not been clear how often this phenomenon occurs in practice. This

section addresses this question, albeit indirectly, by estimating how often AGTs,

ARGTs, and AUGTs occur under the widely-used birth-death models of speciation.

The probability of the species tree having an anomalous gene tree increases with

the speciation rate and the number of species sampled. Our simulation was based on

unconstrained tree heights for the species tree, so that sampling more species meant
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Figure 3.8: The probability of species trees being in the unranked and ranked
anomaly zones. 1000 9-taxon species trees were simulated under the birth process
with λ = 1. The Colless statistic was computed for all trees in the anomaly zone.
The larger the value, the more imbalanced the tree is.

that the total expected height of the tree also increased. Even under this design,

probabilities of being in anomaly zones increased with more taxa. In practice, the

question of how often anomaly zones arise is still difficult to answer, but if something

is known about the speciation rate, particularly in coalescent units, then this study

can help to answer that question. We did not study the effect of sampling more

densely within a clade. When more taxa are sampled within a clade, then the total

height of the species tree is kept constant but more branches are added, making the

branches shorter and more likely to produce at least AGTs and AUGTs. We leave

such effects of taxon sampling to future work.

Knowing how often and what kind of anomalous gene trees can generate species

trees can help to design valid simulation studies. Our proposed heuristic approaches
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Figure 3.9: The probability of species trees being in the unranked and ranked
anomaly zones. 1000 12-taxon species trees were simulated under the birth pro-
cess with λ = 1. The Colless statistic was computed for all trees in the anomaly
zone. The larger the value, the more imbalanced the tree is.

are generally useful for anomaly zone calculation with high true positives and no

false positives. Our simulation study revealed that the most probable tree often is

not topologically far from the species tree. When the most probable tree is far from

the species tree (in terms of RF distance), there are usually other AGTs or AUGTs

that are closer to the species tree, even if they are not the highest probability gene

trees. Therefore, using the nearest neighbor interchange branch rearrangement tech-

nique, we found that considering only unrooted and unranked gene trees within one

NNI move from the species tree topology is a good heuristic to infer the existence of

anomalous unrooted and unranked gene trees, respectively. This heuristic underesti-

mates the probability that the species tree is in an anomaly zone due to there being

few false negatives but no false positives. This tends to reinforce our conclusion that
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there is a high probability that a species tree can have AGTs or AUGTs for mod-

erately high levels of speciation. Less balanced tree shapes also tend to have higher

probabilities of AGTs and AUGTs (Figures 3.8 and 3.9). If standard birth-death

models underestimate levels of imbalance in real phylogenies (Mooers and Heard,

1997; Bortolussi et al., 2005; Stadler et al., 2016), then we can expect probabilities

of AGTs and AUGTs to be even higher than these simulations suggest.
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Maximum likelihood species tree

estimation

As discussed in Chapter 1.2, the multispecies coalescent model (MSC) is often used to

model discordance between species trees and gene trees representing the evolutionary

relationships among a set of species and genes, respectively. The MSC is widely used

to infer species trees directly from sequence data (Huelsenbeck and Ronquist, 2001;

Heled and Drummond, 2009; Bryant et al., 2012; Chifman and Kubatko, 2014; Yang,

2015). It is extensively used to make inferences from unrooted gene tree topologies

(Larget et al., 2010; Liu and Yu, 2011; Mirarab et al., 2014), rooted unranked gene

tree topologies (Liu et al., 2009b, 2010; Wu, 2012; Pei and Wu, 2017), or from gene

trees with branch lengths (Liu et al., 2009b; Kubatko et al., 2009; Mossel et al.,

2011).

4.1 Description

Let T be an n-taxon rooted species tree with branch lengths. Assuming that we

have observed a collection of N independent ranked gene trees Gi, i = 1, 2, . . . , N ,
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the maximum likelihood (ML) species tree is

TML = argmax
T

P [G1, ...,GN |T ] = argmax
T

N∏
i=1

P [Gi|T ] (4.1)

The probability of the ranked gene tree P (G|T ) is described elsewhere (Degnan

et al., 2012b; Stadler and Degnan, 2012; Kim et al., 2019).

Initially we developed PRANC to compute the analytical probabilities of the

ranked gene trees given a species tree. However, PRANC has other useful options

to work with phylogenetic trees. One of the main options is to find a species tree

T with branch lengths in coalescent units that maximizes the likelihood given by

eq. (4.1). To estimate the ML species tree, PRANC uses the following steps:

1. Process the initial species tree. If the tree has the branch lengths specified

in coalescent units, treat the tree as a ranked tree. Find a set of speciation

interval lengths that maximizes the likelihood. If the branch lengths are not

specified in the tree, generate all possible rankings. Randomly select a subset

of ranked trees (by default, 2n). Define the speciation interval length between

the (i − 1)th and ith speciation events as ti = si−1 − si, where si is the time

of the interior node of rank i. For each of these trees, initialize each interval

length ti to 1.0 and find a set of speciation interval lengths that maximizes

the likelihood. Pick the tree T with the highest likelihood. Note that several

initial trees can be given.

2. Obtain all trees that are one nearest neighbor interchange (NNI) away from

T , where a move is determined by swapping two subtrees that are separated

by an internal edge. NNI will be discussed in detail in Section 4.3. For each

of these unranked trees, generate all possible ranked trees. Randomly select

a subset of ranked trees (by default, 2n). Find the speciation interval lengths

that maximizes the likelihood of the ranked gene trees and pick the one with
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the highest likelihood. If this tree has a larger likelihood, then set T to this

tree.

3. Repeat step 2 until convergence or until all trees within k (by default, k = 5)

NNI steps are explored.

4. Calculate the branch lengths of the inferred tree. Note that we set the time to

the most recent internal node to 0.1 coalescent units.

We optimize the interval lengths using Brent’s method (Brent, 1973) that will be

discussed in Section 4.4.1. We compute the initial likelihood for the tree obtained

in step 1. Then, we change each length one at a time, fixing the other lengths. We

allow the length to be in the interval [0.001, 6]. We randomly pick interval orders

for optimization. After m rounds of such optimizations (by default, m is set to the

number of taxa), the optimal tree is reported. As a better alternative, we propose

to use limited memory algorithm for bound constrained optimization (Byrd et al.,

1995) for the interval lengths optimization that will be discussed in Section 4.4.2.

To further reduce the computational time, PRANC can compute likelihoods of a

randomly chosen small subset of ranked trees (by default, n/2). If at least one

of the obtained likelihoods is better than the threshold, PRANC will compute the

likelihoods of a larger subset of ranked trees (by default, up to 2n).

4.2 Finding a starting tree

It is important to find a good starting tree topology in exploring tree space.

PRANC ’s ability to locate the ML species tree quickly highly depends on the choice

of the starting tree. Because it is better to have an initial tree that is topologically

close to the true tree, we propose two methods for picking a starting tree. The first

method is a hill-climbing algorithm that will penalize long branches of the species
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tree that have multiple lineages persisting through multiple species divergence events

(discussed in the next subsection). Although this method can provide a list of good

candidate trees for a species tree, we proved that it is statistically inconsistent as

shown in Subsection 4.2.2. Another method is based on the greedy consensus method

(Bryant, 2003) which is also statistically inconsistent (Degnan et al., 2009a). In this

consensus method, clades are first ordered according to the number of times they

appear in the sample of gene trees, then the consensus tree is formed combining

clades which occurred in at least a certain percentage of the resampled trees. The

greedy consensus method considers the clades in order of the frequency with which

they have appeared, adding to the consensus tree any which are compatible with

it until the tree is fully resolved. We propose a modification to the greedy consen-

sus method. Our method outputs a tree with a maximal score, where the score is

determined by summing the frequencies of compatible clades. In such a way, the

program will include all most supported clades in the estimated tree and not only

those compatible with the most frequent clade.

4.2.1 Minimizing the ancient coalescence criterion

For a ranked gene tree Gi given a species tree T , the minimizing ancient coalescence

(MAC) method is based on minimizing the sum of the minimum number of extra

lineages withing each time interval τi (Stadler and Degnan, 2012)

m(Gi|T ) =
n−1∑
i=1

(gi − (i+ 1)). (4.2)

To compute gi, let lca(uj) be the least common ancestor node on the species tree for

a node uj on the gene tree. Here lca(uj) is the node with the largest rank on the

species tree which is ancestral to all species with the same labels as descended from

uj in the gene tree.

Minimizing 4.2 as a criterion for the species tree will tend to penalize long edges
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of the species tree and thus will allow less ILS. The expected value of the MAC

criterion for the species tree T can be defined as

Em(T ) =
Gnum∑
i=1

m(Gi|T )P (Gi|T ). (4.3)

A species tree candidate Tcand with the smallest expected value is chosen as an

estimate of the species tree T as the number of gene trees Gnum → ∞. If at least

one species tree candidate produces a smaller expected value than the true tree T ,

then the MAC criterion gives an incorrect estimate of the true tree as the number of

gene trees increases; that is, the MAC criterion is not statistically consistent.

The idea of the MAC criterion is based on the minimizing deep coalescence (MDC)

criterion (Maddison, 1997) which minimizes the number of total extra lineages in all

branches of the species tree. However, the MAC criterion is designed for ranked gene

trees, whereas the MDC criterion disregards the rankings of the gene trees. Than

and Rosenberg (2011a) showed how to compute the MDC cost in detail and proved

the inconsistency of the MDC criterion. Figure 4.1 shows the computation of both

the MDC and MAC costs.

4.2.2 Statistical inconsistency of MAC

Trees with three leaves

The MAC criterion for the ranked gene trees has a similar idea as the MDC criterion

for the unranked gene trees. Because a ranked three-taxon tree is exactly the same as

its unranked version, the result for three taxon trees that holds for MDC also holds

for MAC. It was shown by Than and Rosenberg (2011a) that MDC is consistent for

the trees with three leaves. Thus, MAC is consistent for three taxon trees as well.
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Figure 4.1: Computing the minimizing deep coalescence (MDC) cost and the mini-
mizing ancient coalescence (MAC) cost for the four taxon gene trees evolving inside
the species tree (((A,B)3, C)2, D). (A) Both the MDC cost α(G1|T ) = 1 and the
MAC cost m(G1|T ) = 1 represent the total number of extra lineages in all the
branches of T . The lineage corresponding to the C taxon failed to coalesce earlier
in the interval τ2 leading to the discordance of the gene tree and underlying species
tree and the extra lineage in the interval τ1. (B) The MDC cost α(G2|T ) = 1 and the
MAC cost m(G2|T ) = 3. These two costs are different because the MDC criterion
does not distinguish between the rankings of the same gene tree topology, whereas
the MAC criterion is designed for ranked gene trees. The lineage corresponding to
the B taxon failed to coalesce earlier in the interval τ3 and then also in the interval
τ2, and thus producing two extra lineages. The lineage corresponding to the C taxon
also failed to coalesce earlier in the interval τ2 and thus producing one extra lineage.

Trees with four leaves

There are 18 rooted ranked trees on four leaves. To study the consistency of the

MAC criterion, it is sufficient to consider only one labeling for each unlabeled

species tree topology. For example trees (((A,B), C), D) and (((B,C), A), D) are

equivalent up to permuting labels. We distinguish species trees ((A,B)2, (C,D)3)

and ((A,B)3, (C,D)2) because they have different rankings. We assume that the

species tree is either T7 = (((A,B)3, C2), D), T1 = ((A,B)3, (C,D)2)), or T2 =

((A,B)2, (C,D)3). We check the consistency of the MAC criterion on trees with
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four leaves by an exhaustive approach, that is, by directly computing the expected

ancient coalescence cost for every species tree candidate and comparing it with the

corresponding cost of the true species tree. The probabilities of ranked gene tree

topologies for the species trees T1 and T7 are given in Tables 1 and 2 of Degnan et al.

(2012b), respectively. The ancient coalescence score of each gene tree Gi conditioning

on a species tree candidate Ti is shown in Table 4.1.

Table 4.1: Ancient coalescence scores of each gene tree Gi conditioning on a species
tree candidate Ti.

candidate Ti G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18

T1 = ((AB)3(CD)2) 0 1 3 3 3 3 1 1 3 3 3 3 3 3 3 3 2 2
T2 = ((AB)2(CD)3) 1 0 3 3 3 3 2 2 3 3 3 3 3 3 3 3 1 1
T3 = ((AC)3(BD)2) 3 3 0 1 3 3 3 3 1 1 3 3 3 3 2 2 3 3
T4 = ((AC)2(BD)3) 3 3 1 0 3 3 3 3 2 2 3 3 3 3 1 1 3 3
T5 = ((AD)3(BC)2) 3 3 3 3 0 1 3 3 3 3 1 1 2 2 3 3 3 3
T6 = ((AD)2(BC)3) 3 3 3 3 1 0 3 3 3 3 2 2 1 1 3 3 3 3
T7 = (((AB)3C)2D) 1 3 2 3 3 2 0 1 1 2 3 3 1 2 3 3 3 3
T8 = (((AB)3D)2C) 1 3 3 2 2 3 1 0 3 3 1 2 3 3 1 2 3 3
T9 = (((AC)3B)2D) 2 3 1 3 3 2 1 2 0 1 3 3 1 2 3 3 3 3
T10 = (((AC)3D)2B) 3 2 1 3 2 3 3 3 1 0 2 1 3 3 3 3 1 2
T11 = (((AD)3B)2C) 2 3 3 2 1 3 2 1 3 3 0 1 3 3 1 2 3 3
T12 = (((AD)3C)2B) 3 2 2 3 1 3 3 3 2 1 1 0 3 3 3 3 1 2
T13 = (((BC)3A)2D) 2 3 2 3 3 1 1 2 1 2 3 3 0 1 3 3 3 3
T14 = (((BC)3D)2A) 3 2 3 2 3 1 3 3 3 3 3 3 1 0 2 1 2 1
T15 = (((BD)3A)2C) 2 3 3 1 2 3 2 1 3 3 1 2 3 3 0 1 3 3
T16 = (((BD)3C)2A) 3 2 3 1 3 2 3 3 3 3 3 3 2 1 1 0 2 1
T17 = (((CD)3A)2B) 3 1 2 3 2 3 3 3 2 1 2 1 3 3 3 3 0 1
T18 = (((CD)3B)2A) 3 1 3 2 3 2 3 3 3 3 3 3 2 1 2 1 1 0

Caterpillar species tree

Table 2 of Degnan et al. (2012b) contains the probabilities of 18 ranked gene trees

given that the true species tree is T7 = (((A,B)3, C2), D). It can be observed that

P (G1|T7) = P (G8|T7), P (G2|T7) = P (G4|T7) = P (G5|T7) = P (G11|T7) = P (G12|T7) =

P (G15|T7) = P (G16|T7) = P (G17|T7) = P (G18|T7), P (G3|T7) = P (G6|T7) =P (G10|T7) =

P (G14|T7), and P (G9|T7) = P (G13|T7). Plugging the probabilities and ancient coales-
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cence costs given in Table 4.1 for the species tree T7, we have

Em(T7) =
18∑
i=1

m(Gi|T7)P (Gi|T7) =

=2P (G1|T7) + 9P (G2|T7) + 4P (G3|T7) + P (G7|T7) + 2P (G9|T7). (4.4)

Let Tcand be a species tree candidate different from T . We need to prove that

Em(T7) < Em(Tcand) for all possible other 17 candidates. Table 4.2 shows the differ-

ences of the expected values Em(T7)−Em(Tcand). It is straightforward to check that

all differences in this table are strictly less than 0 for all positive real values of the

interval lengths t2 and t3. Therefore, Em(T7) < Em(Tcand) for all other candidates

Tcand 6= T7. The MAC criterion is statistically consistent in this case.

Symmetric species trees

Table 1 of Degnan et al. (2012b) contains the probabilities of 18 ranked gene

trees given that the true species tree is T1 = ((A,B)3, (C,D)2)). The correspond-

ing probabilities for T2 = ((A,B)2, (C,D)3) are similar to those in Table 1, except

that the probabilities in the first two rows are swapped with each other, and the

probabilities in the seventh and eighth rows are swapped with the probabilities in

the last two rows. Tables 4.3 and 4.4 show the differences of the expected values

Em(T1) − Em(Tcand) and Em(T2) − Em(Tcand), respectively. It is straightforward to

check that differences of the expected values between these true trees and other sym-

metric candidate trees (the first six rows) in these two tables are strictly less than

0 for all positive real values of t2 and t3. However, for some possible values of t2

and t3, the differences of the expected values between these true trees and caterpillar

candidate trees (the last twelve rows) can be greater than 0. For example, in the

Table 4.3, the difference of the expected values

Em[((AB)3(CD)2)]−Em[(((BD)3A)2C)] = e−t2 +
2 · e−t2 · e−t3

3
+

5 · e−2·t2 · e−t3
9

−2

is positive for t2 = 0.01, t3 = 0.01 and negative for t2 = 0.01, t3 = 0.5. Therefore, the

MAC criterion is not statistically consistent in these two cases.
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For species trees with three leaves or for asymmetric species trees with four leaves,

we have shown that the MAC criterion is statistically consistent. However, it is not

statistically consistent for symmetric species trees with four leaves. The result is

somewhat interesting, since Than and Rosenberg (2011a) proved that the MDC

criterion is statistically consistent for species trees with three leaves or for symmetric

species trees with four leaves; and is not statistically consistent for asymmetric four-

leaf species trees.

Table 4.2: The differences of the expected values Em(T7)− Em(Tcand), where
T7 = (((AB)3C)2D) has a caterpillar shape.

species tree candidate Tcand Em(T7)− Em(Tcand)
((AB)3(CD)2) e−t2 − 2·e−t3

3
+ e−t2 ·e−t3

6
+ 5·e−3·t2 ·e−t3

18
− 1

((AB)2(CD)3) e−t2 + e−t2 ·e−t3
6

+ 11·e−3·t2 ·e−t3
18

− 2

((AC)3(BD)2) 2·e−t2
3

+ 4·e−t3
3

+ e−t2 ·e−t3
2

+ 5·e−3·t2 ·e−t3
18

− 3

((AC)2(BD)3) 2·e−t2
3

+ e−t3 + e−t2 ·e−t3
2

+ 11·e−3·t2 ·e−t3
18

− 3

((AD)3(BC)2) 2·e−t2
3

+ e−t3 + e−t2 ·e−t3
2

+ 11·e−3·t2 ·e−t3
18

− 3

((AD)2(BC)3) 2·e−t2
3

+ 4·e−t3
3

+ e−t2 ·e−t3
2

+ 5·e−3·t2 ·e−t3
18

− 3
(((AB)3C)2D) 0

(((AB)3D)2C) e−t2 − 2·e−t3
3

+ e−t2 ·e−t3
6

+ e−3·t2 ·e−t3
2

− 1
(((AC)3B)2D) e−t3 − 1

(((AC)3D)2B) 2·e−t2
3

+ 4·e−t3
3

+ e−t2 ·e−t3
2

+ e−3·t2 ·e−t3
2

− 3

(((AD)3B)2C) e−t2 + e−t2 ·e−t3
6

+ 5·e−3·t2 ·e−t3
6

− 2

(((AD)3C)2B) 2·e−t2
3

+ e−t3 + e−t2 ·e−t3
2

+ 5·e−3·t2 ·e−t3
6

− 3
(((BC)3A)2D) e−t3 − 1

(((BC)3D)2A) 2·e−t2
3

+ 4·e−t3
3

+ e−t2 ·e−t3
2

+ e−3·t2 ·e−t3
2

− 3

(((BD)3A)2C) e−t2 + e−t2 ·e−t3
6

+ 5·e−3·t2 ·e−t3
6

− 2

(((BD)3C)2A) 2·e−t2
3

+ e−t3 + e−t2 ·e−t3
2

+ 5·e−3·t2 ·e−t3
6

− 3

(((CD)3A)2B) 2·e−t2
3

+ e−t3 + e−t2 ·e−t3
2

+ 5·e−3·t2 ·e−t3
6

− 3

(((CD)3B)2A) 2·e−t2
3

+ e−t3 + e−t2 ·e−t3
2

+ 5·e−3·t2 ·e−t3
6

− 3

Simulation

We simulate 100 n = 5, 6, 7, 8-taxon species trees under the constant rate birth-death

model with speciation rate λ = 1 and extinction rate µ = 0. For each species tree,
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Table 4.3: The differences of the expected values Em(T1)− Em(Tcand), where
T1 = ((AB)3(CD)2) has a symmetric shape.

species tree candidate Tcand Em(T1)− Em(Tcand)
((AB)3(CD)2) 0
((AB)2(CD)3) e−t3 − 1

((AC)3(BD)2) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

((AC)2(BD)3) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

((AD)3(BC)2) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

((AD)2(BC)3) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

(((AB)3C)2D) e−t2 − e−t3
2

+ 2·e−t2 ·e−t3
3

+ e−2·t2 ·e−t3
18

− 1

(((AB)3D)2C) e−t2 − e−t3
2

+ 2·e−t2 ·e−t3
3

+ e−2·t2 ·e−t3
18

− 1

(((AC)3B)2D) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((AC)3D)2B) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((AD)3B)2C) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((AD)3C)2B) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((BC)3A)2D) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((BC)3D)2A) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((BD)3A)2C) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((BD)3C)2A) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((CD)3A)2B) 2·e−t2
3

+ 3·e−t3
2

+ e−t2 · e−t3 + e−2·t2 ·e−t3
18

− 3

(((CD)3B)2A) 2·e−t2
3

+ 3·e−t3
2

+ e−t2 · e−t3 + e−2·t2 ·e−t3
18

− 3

we generate 100, 500, and 1000 gene trees using hybrid-lambda (Zhu et al., 2015). To

estimate the MAC species tree, we used the hill-climbing approach described in the

following steps:

1. In the sample of ng gene trees, consider each gene tree as a species tree candi-

date and compute the MAC score for each of these gene trees. In particular, set

Tj toGj and then compute the MAC score for the candidate Tj as
∑ng

i m(Gi|Tj)

for each j.

2. Select nc = 10 candidate species trees with the lowest MAC score and remove

the branch lengths. Record the lowest value of the MAC score xmac.

3. Obtain all trees that are one nearest neighbor interchange (NNI) away from
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Table 4.4: The differences of the expected values Em(T2)− Em(Tcand), where
T2 = ((AB)2(CD)3) has a symmetric shape.

species tree candidate Tcand Em(T2)− Em(Tcand)
((AB)3(CD)2) e−t3 − 1
((AB)2(CD)3) 0

((AC)3(BD)2) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

((AC)2(BD)3) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

((AD)3(BC)2) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

((AD)2(BC)3) 2·e−t2
3

+ e−t3
2

+ 2·e−t2 ·e−t3
3

+ 7·e−2·t2 ·e−t3
6

− 3

(((AB)3C)2D) 2·e−t2
3

+ 3·e−t3
2

+ e−t2 · e−t3 + e−2·t2 ·e−t3
18

− 3

(((AB)3D)2C) 2·e−t2
3

+ 3·e−t3
2

+ e−t2 · e−t3 + e−2·t2 ·e−t3
18

− 3

(((AC)3B)2D) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((AC)3D)2B) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((AD)3B)2C) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((AD)3C)2B) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((BC)3A)2D) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((BC)3D)2A) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((BD)3A)2C) 2·e−t2
3

+ e−t3 + e−t2 · e−t3 + 5·e−2·t2 ·e−t3
9

− 3

(((BD)3C)2A) e−t2 + 2·e−t2 ·e−t3
3

+ 5·e−2·t2 ·e−t3
9

− 2

(((CD)3A)2B) e−t2 − e−t3
2

+ 2·e−t2 ·e−t3
3

+ e−2·t2 ·e−t3
18

− 1

(((CD)3B)2A) e−t2 − e−t3
2

+ 2·e−t2 ·e−t3
3

+ e−2·t2 ·e−t3
18

− 1

each of these nc trees. For each of these unranked trees, generate all possible

ranked trees.

4. Compute MAC scores for obtained ranked trees and extract nc = 10 trees with

the lowest MAC score.

5. If the lowest MAC score obtained in step 4 is smaller than the lowest MAC

score in step 2, update xmac and repeat steps 2-4 until xmac keeps improving

or until all trees within k (by default, k = 5) NNI steps are explored.

6. Save nc = 10 candidate trees with the lowest MAC scores in the file.

7. Calculate the Robinson-Foulds distance between nc candidates and the original

species tree from which gene trees were simulated. Record two RF values:
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one corresponds to the candidate with the lowest MAC score (ties resolved

randomly) and another RF value corresponds to the minimum of RF scores

among all nc = 10 final candidates.

It is clear that larger trees have more topologies and thus, it is harder to obtain

topologically close inferred tree to the actual species tree as the number of taxa

increases. The normalized Robinson-Foulds distance accounts for this scenario since

it is computed by dividing by the maximum 2n− 4. For example, if for 100 5-taxon

species trees there are 70 inferred trees with RF = 0, 20 trees with RF = 2, 8

trees with RF = 4, and 2 trees with RF = 6, then the normalized RF distance is

(2
6
· 20 + 4

6
· 8 + 6

6
· 10)/100 = 0.14. If for 100 8-taxon species trees there are only

56 inferred trees with RF = 0, and 20, 14, 8, 0, 0, 2 trees with RF = 2, 4, 6, 8, 10, 12,

respectively, then the normalized RF distance is ( 2
12
·20+ 4

12
·14+ 6

12
·8+ 12

12
·2)/100 =

0.14. The two normalized RF distances in the 5- and 8-taxon cases are the same but

the distribution of the RF distances are quite different.

Figure 4.2 shows the normalized Robinson-Foulds distances between the inferred

trees and true species trees. We consider two cases with one and five NNI moves,

respectively. In the case with five NNI moves, we also compute the RF score among

nc = 10 species tree candidates with lowest MAC scores. It is better to propose

several candidates because one of them can be topologically close to the true tree.

This makes sense especially if we use the list of candididates as starting trees for ML

methods. Moreover, the scores for different candidates might be not that different

from each other to strongly prefer one tree over the other.
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 MAC: Five NNIs one lowest Five NNIs ten lowest One NNI one lowest

Figure 4.2: The normalized Robinson-Foulds distances between the inferred trees by
MAC criterion and true species trees. The pure birth process with λ = 1 was used
to generate 100 species trees for each number of species n, where n = 5, 6, 7, and 8.
The number of NNI moves does not play significant role in improving tree estimate.
It is better to propose the list of nc candidates with the lowest MAC scores instead
of just one best tree in terms of MAC score.

4.2.3 Greedy consensus tree and Maximum clade frequency

consensus tree

One common way to estimate a phylogeny from a collection of gene trees is to

reconstruct the species tree from the most supported clades in gene trees. Both

majority rule and greedy consensus methods are often used to obtain a summary tree

from a sample of trees. It was shown that both are statistically inconsistent (Degnan

et al., 2009a). As noted before, clades are first ordered according to the number of

times they appear in the sample of gene trees, then the consensus tree is formed

combining clades which occurred in at least a certain percentage of the resampled
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trees. For example, the majority rule consensus tree consists only of those clades

that are present in at least 50% of the trees. In constructing a greedy consensus tree

the most frequent clade is picked and then the other clades are sequentially added to

the resulting tree that are compatible with the rest of the clades until the tree is fully

resolved (Bryant, 2003). Two clades C1 and C2 are compatible clades if C1 ⊂ C2, or

C2 ⊂ C1, or they are disjoint.

Let’s consider the following 7 trees in the Newick format:

(((((F,B),C),D),A),E);

(((((C,B),F),D),A),E);

(((((A,C),D),F),B),E);

(((((D,B),C),A),F),E);

(((((D,E),C),A),B),F);

(((((D,E),C),A),B),F);

(((((D,E),C),A),B),F);

the corresponding clades are ordered below according to their frequency (support)

in the sample:

A|B|C|D|E|F|: 7

A|B|C|D|F|: 4

A|B|C|D|E|: 3

A|C|D|E|: 3

C|D|E|: 3

D|E|: 3

B|C|D|F|: 2

B|C|F|: 2

A|B|C|D|: 1

A|C|D|F|: 1
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B|C|D|: 1

A|C|D|: 1

B|D|: 1

B|F|: 1

A|C|: 1

B|C|: 1

Here, for example, both clades (B,C) and (B,F ) occur once in the sample of 7 trees.

The clade combining these two, i.e. B|C|F , occurs twice. The greedy consensus tree

starts from the most supported clade A|B|C|D|F | after the clade that includes all

leaves (i.e. A|B|C|D|F |E). Then, the next two compatible clades with A|B|C|D|F |

in the ordered list are B|C|D|F | and B|C|F |. Then, the greedy consensus will

randomly decide which clade B|F | or B|C| to include in the tree since both of them

are compatible with the selected clades and both have same frequency. For example,

let’s pick B|C|. To get a fully resolved tree, the taxon E will be added as an outgroup.

Therefore, the resulting greedy consensus tree is (((((C,B), F ), D), A), E);.

We propose a modification to the greedy consensus method: maximum clade

frequency consensus (MCFC) method. MCFC outputs a tree with a maximal score,

where the score is constructed from the frequencies of compatible clades. The method

will include all most supported clades in the estimated tree and not only those

compatible with the most frequent clade. For example, in this the sample of 7 trees,

the greedy consensus tree (((((C,B), F ), D), A), E); has the score of 7 + 4 + 2 + 2 +

1 = 16. The MCFC will output (((((D,E), C), A), B), F ); tree with the score of

7 + 3 + 3 + 3 + 3 = 19. However, it will also output the usual greedy consensus tree

(((((C,B), F ), D), A), E);. Ties are resolved randomly.

To find the tree with the maximal score, the algorithm constructs the compatibil-

ity matrix of clades (Table 4.5) and recursively searches for the sequence of compat-

ible clades with the highest score. The current version of the MCFC is not that fast
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as the usual greedy consensus method. For example, consider a simulation process

where we have 50 species trees and for each of these trees we generate a sample of

100 gene trees and find the consensus tree. It approximately takes one minute to

estimate 50 greedy consensus trees and ten minutes to estimate 50 MCFC trees.

Table 4.5: The matrix of compatibility of the clades

clades C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

C1 = A|B|C|D|E|F | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C2 = A|B|C|D|F | 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
C3 = A|B|C|D|E| 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1
C4 = A|C|D|E| 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0
C5 = C|D|E| 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
C6 = D|E| 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1
C7 = B|C|D|F | 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1
C8 = B|C|F | 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1
C9 = A|B|C|D| 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1
C10 = A|C|D|F | 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0
C11 = B|C|D| 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1
C12 = A|C|D| 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0
C13 = B|D| 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0
C14 = B|F | 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0
C15 = A|C| 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1
C16 = B|C| 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1

By default, PRANC uses MCFC tree as a starting tree. If the score for the usual

greedy consensus tree is not maximal, PRANC will use both greedy and MCFC

trees as starting trees. Because PRANC can output the MCFC tree along with

usual greedy consensus tree implemented in PHYLIP, we expect that PRANC will

outperform the PHYLIP in the moderate-size simulation as shown in Figure 4.3.

4.3 Topological tree space

Using an exhaustive tree search, we can find the species tree topology which will

maximize the likelihood of the sample of gene trees. However, searching in whole
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Figure 4.3: The normalized Robinson-Foulds distances between the estimated trees
and true species trees. The greedy consensus and maximum clade frequency consen-
sus (MCFC) methods were used to estimate the species tree. The pure birth process
with λ = 1 was used to generate 1000 species trees for each number of species n,
where n = 5, 6, 7, and 8.

tree space is computationally expensive. Thus, the feasible approach is to consider

several trees that are topologically close to the starting species tree and compute the

likelihood for these trees. If the better tree topology is found, the algorithm now

uses this updated tree and considers several trees that are topologically close to it.

This process is repeated until a better tree cannot be found or until the maximum

number of iterations is reached.

Several methods exist that allow searching tree space through local pertubations

to the starting tree. We will use a branch swapping rearrangment technique called

Nearest neighbor interchange (NNI) (Felsenstein, 2004). For the n-taxon tree, one

NNI move generates 2n− 4 neighbor trees by swapping a subtree on one side of the
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branch with a subtree on the other side. Figure 4.4 displays six rooted 5-taxon trees

generated from the central tree with one step NNI.

A B C D E

α

γβ

D E C A B

α

C B A D E

β

A C B D E

β

A B ED C

α

A B DC E

γ

A B EC D

γ

Figure 4.4: Six rooted trees within one NNI move from the central tree with branches
α, β, and γ. To generate each tree within one NNI move, a certain branch in the
central tree was fixed and then the corresponding subtrees were swapped.

One downside in exploring the tree space using NNI technique is that we may see

the same tree more than once. For example, if one of the trees in Figure 4.4 is better

than the central tree, we will select that tree and will generate 6 one step NNI trees

from it. Of course, one of the trees will have the same topology as the central tree.

Another downside of such heuristic methods, not only NNI, is that such methods are

not guaranteed to find the optimal tree.

By default, PRANC explores species tree topologies within k = 5 NNI moves
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from the initial starting tree.

4.4 Branch optimization

It is hard to maximize the likelihood (minimize the negative log likelihood) given

in eq. (4.1) using derivatives as would be required using the standard optimization

algorithms for finding the optimum like Newton-Raphson. Therefore, to optimize

speciation inteval lengths in the tree we use Brent’s algorithm (Brent, 1973) that does

not use derivatives. However, Brent’s method is not suitable well for the function

minimization with respect to multiple variables because it can minimize the function

of the one variable. It is faster to determine the direction of the gradient when all set

of variables is used. We use a negative log-likelihood as a funtion to be minimized

f(x) and we assume that each speciation interval length ti ∈ [a, b] = [0.001, 6], i =

2, 3, . . . , n−1. We use a constant-rate birth-death model to generate the species trees.

As shown in Table 3.4 under the pure birth process the average interval lengths are

1
2λ
, 1

3λ
, 1

4λ
, ... coalescent units going forward in time from the root to the tips. For

example, the average lengths for the six intervals for the 8-taxon tree generated under

the Yule model with λ = 0.1 are vary between 1
2·0.1 = 5 for the first interval near the

root to 1
7·0.1 = 1.43 for the last interval above the most recent cherry.

4.4.1 Brent’s method

Brent’s method combines the bisection, secant, and inverse quadratic interpolation

methods. Brent’s method seeks a local minimum of a function f(x) in an interval

[a, b]. The method finds an approximation x to the point at which f attains its

minimum, and returns value of the function at x. The algorithm never evaluates

f at two points closer than abstol = ε · |x| + tol, where tol is not smaller than
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the machine precision and ε is usually not smaller than the square root of machine

precision. We use ε = 1e− 06 and tol = 1e− 06. The choice of [a, b] has the biggest

effect on PRANC ’s execution time using Brent’s method. By making both ε and tol

bigger we may further reduce the execution time because the negative log-likelihood

will be evaluated at smaller numbers of values.

At the beginning, PRANC takes the unranked ultrametric tree topology and

initializes all interval lengths to 1.0. PRANC then randomly picks interval orders

for optimization. After m rounds of such optimizations (by default, m is set to the

number of taxa), the final tree is reported. Because only the interval lengths have

an impact on the likelihood and not individual branch lengths, we can optimize the

interval lengths first. We then select the cherry with the largest rank in the tree and

set the length from the tips to their parent to 0.1 coalescent units. After this, all

individual branch lengths of the optimal tree can be calculated.

4.4.2 Limited memory algorithm for bound constrained op-

timization

A limited memory algorithm for bound constrained optimization (L-BFGS) intro-

duced in Byrd et al. (1995) is an optimization algorithm in the family of quasi-

Newton methods that approximates the Broyden-Fletcher-Goldfarb-Shanno algo-

rithm (BFGS) using a limited amount of computer memory. L-BFGS is based on

the gradient projection method and uses a limited memory BFGS matrix to approx-

imate the Hessian of the objective function. The method is a popular algorithm

for parameter estimation in machine learning. The algorithm does not require the

second derivative of the objective function. For each parameter the lower and upper

bounds must be given. In our case, the same range [0.001, 6] was given for the each

interval. We can compute the function derivative numerically as h approaches zero
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(h is set to 1e− 12) as shown in eq. (4.5):

f ′(x) ≈ f(x+ h)− f(x)

h
. (4.5)

We used the default stopping criteria defined in Byrd et al. (1995). Given that

f is a function that calculates the negative log likelihood, we can minimize it using

eq. (4.5) as the derivative. It should be noted that L-BFGS is better suited for

the negative log likelihood minimization than the Newton-Raphson-like algorithms

and Brent’s method, because L-BFGS can minimize across multiple variables at the

same time and the boundaries for the allowed values that parameters can take can

be defined in L-BFGS. In this way we ensure that the negative log likelihood will

not be computed at non-positive values.

4.5 Simulation

We simulate 100 5− 8-taxon species trees under the Yule model with speciation rate

λ = 0.5 and 1. We use TreeSim (Stadler, 2011) to generate species trees and hybrid-

lambda (Zhu et al., 2015) to simulate 100, 500, 1000 gene trees for each species tree.

We mainly compared PRANC ’s performance with ASTRAL (Mirarab et al., 2014)

and STELLS2 (Pei and Wu, 2017). ASTRAL, STELLS2, and PRANC estimate

species trees from a sample of unrooted, unranked, and ranked gene tree topologies,

respectively. PRANC computes maximum likelihood by using exact probabilities of

ranked gene trees. STELLS2 computes maximum likelihood by using approximate

probabilities of unranked gene trees. There is an earlier version of STELLS2, i.e.

STELLS, that uses exact probabilities of unranked gene trees. However, the author of

the both programs claims in Pei and Wu (2017) that STELLS2 performs comparably

with STELLS in terms of inference but runs much faster. ASTRAL estimates the

species tree by minimizing the quartet distance between unrooted gene tree topologies
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and the species tree. It is very fast and has low estimation error. Because ASTRAL

takes unrooted trees as an input, we first added an outgroup to the rooted species

trees which is 10 coalescent units away from the other species. We then used hybrid-

lambda to simulate gene trees. We ran ASTRAL on a set of unrooted trees. Then the

estimated unrooted species trees inferred by ASTRAL were rooted on the outgroup,

and the outgroup was dropped to get rooted trees without the outgroup.
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Figure 4.5: The normalized Robinson-Foulds distances between the inferred trees
by PRANC and true species trees. The pure birth process with λ = 1 was used to
generate 100 species trees for each number of species n, where n = 5, 6, 7, and 8.
Greedy consensus, tree with the lowest MAC score, and trees estimated by ASTRAL
and STELLS2 were used as starting trees for PRANC. Brent’s branch optimization
was used.

Figure 4.5 shows the normalized Robinson-Foulds distances between the inferred

trees by PRANC and true species trees. The greedy consensus tree, the tree with

the lowest MAC score, and trees estimated by ASTRAL and STELLS2 were used as

starting trees for PRANC. The interval lengths were optimized using Brent’s method.
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The pure birth process with λ = 1 was used to generate 100 species trees for each

number of species n, where n = 5, 6, 7, and 8. We can conclude that the greedy

consensus tree is a reasonable choice for the starting tree.
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Figure 4.6: The normalized Robinson-Foulds distances between the inferred trees by
ASTRAL, STELLS2, and PRANC and true species trees. The pure birth process
with λ = 1 was used to generate 100 species trees for each number of species n,
where n = 5, 6, 7, and 8. Greedy consensus and trees estimated by ASTRAL and
STELLS2 were used as starting trees for PRANC. Brent’s method was used to
optimize branch lengths with m = n rounds. We considered up to 2n rankings of
starting tree and up to 2n rankings of each unranked species tree candidate. Because
ASTRAL takes unrooted trees as an input, we first added an outgroup to the rooted
species trees which is 10 coalescent units away from the other species. We then used
hybrid-lambda to simulate gene trees. We ran ASTRAL on a set of unrooted trees.
Then the estimated unrooted species trees inferred by ASTRAL were rooted on the
outgroup, and the outgroup was dropped to get rooted trees without the outgroup.

Figures 4.6 and 4.7 show the normalized Robinson-Foulds distances between the

inferred trees by ASTRAL, STELLS2, PRANC and true species trees. Both greedy

consensus and maximum clade frequency consensus trees were used as starting trees
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Figure 4.7: The normalized Robinson-Foulds distances between the inferred trees by
ASTRAL, STELLS2, and PRANC and true species trees. The pure birth process
with λ = 0.5 was used to generate 100 species trees for each number of species n,
where n = 5, 6, 7, and 8. Greedy consensus and maximum clade frequency consensus
were used as starting trees for PRANC. L-BFGS method was used to optimize branch
lengths. We considered all rankings of starting tree and up to 2n rankings of each
unranked species tree candidate as described in Section 2 in the main text. Because
ASTRAL takes unrooted trees as an input, we first added an outgroup to the rooted
species trees which is 10 coalescent units away from the other species. We then used
hybrid-lambda to simulate gene trees. We ran ASTRAL on a set of unrooted trees.
Then the estimated unrooted species trees inferred by ASTRAL were rooted on the
outgroup, and the outgroup was dropped to get rooted trees without the outgroup.

for PRANC. The interval lengths were optimized either by Brent’s method or by

L-BFGS method. In general, PRANC runs faster when using L-BFGS method than

using Brent’s method for the branch lengths estimation. The pure birth processes

with λ = 0.5 and λ = 1 were used to generate 100 species trees for each number

of species n, where n = 5, 6, 7, and 8. In most cases, PRANC outperforms both

ASTRAL and STELLS2.
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Figure 4.8: The normalized Robinson-Foulds distances between the inferred trees by
MAC and PRANC and true species trees. The pure birth process with λ = 1 was
used to generate 100 species trees for each number of species n, where n = 5, 6, 7,
and 8. BEAST was used to estimate gene trees from sequences, and then both MAC
and PRANC were used to estimate the species tree. Brent’s branch optimization
was used.

Previously, we used simulated gene trees from the species tree. We decided to test

the performance of PRANC in cases where gene trees might be estimated first from

sequences. We simulated 100 species trees under the Yule process with λ = 1 for n =

5, 6, 7, and 8 taxa. For each species tree we generated 100, 500, and 1000 gene trees,

respectively. We used seqGen (Rambaut and Grass, 1997) to simulate sequences

for each gene tree under the Generalised time-reversible (GTR) substitution model

(Tavaré, 1986). GTR is the Markov model of DNA sequence evolution that assumes
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different rates of substitution for each pair of nucleotides. GTR also assumes different

frequencies of occurrence of nucleotides. BEAST (Suchard et al., 2018) was used to

estimate gene trees from the obtained sequences. Figure 4.8 shows the normalized

Robinson-Foulds distances between the inferred trees and true species trees obtained

by MAC and PRANC. The result is worse than the result depicted in Figure 4.5.

This happens because we do not estimate species trees from true gene trees here,

rather the species trees are estimated from the estimated gene trees. We do not

account for the uncertainty in the gene trees here.

4.5.1 Rank dissimilarity measure between ranked topologies

We studied PRANC ’s accuracy by computing the Robinson-Foulds distance of esti-

mated and true species trees. The Robinson-Foulds (RF) metric is a way to measure

the distance between unrooted or unranked trees. It cannot compare ranked trees.

An interesting question to ask is how often PRANC can infer the correct ranked

species tree topology?

A B CD E
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2

3
4

A B C D E

B

2
3
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A B C D E
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Figure 4.9: All possible rankings for the tree with unranked topology
(((A,B), C), (D,E)). The rank dissimilarity measures between pairs of trees in (A)-
(B), (A)-(C), (B)-(C) are 2, 6, and 2, respectively.

Given two n-taxon ranked trees with the same unranked topology, we define the

rank dissimilarity measure dR between trees as the square root of the sum of squares
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Table 4.6: Squared rank dissimilarity measures of 100 estimated species trees that
have the same unranked topologies as corresponding true species trees.

n Gnum 0 2 4 6 8 10 12

5
100 94 6
1000 98 2

6
100 65 27 4 3 0 1
1000 85 14 0 1

7
100 65 27 4 3 0 1
1000 75 23 1 1

8
100 41 36 9 10 3 0 1
1000 59 27 3 7 4

of the ranks of nodes that have the same set of descendant species (eq. (4.6)). The

rank measure of zero indicates that two trees have same ranked topology.

dR =

√√√√n−2∑
i=1

(Ui − Vi)2, (4.6)

where Ui and Vi are ranks of the nodes that have the same set of descendant species.

Note that the rank measure is defined for the trees with same unranked topology. In

cases, when trees have different unranked topologies, it is sufficient to only use RF

distance to compare unranked topologies.

For trees shown in Figure 4.9(A) and 4.9(B), the squared rank measure is

d2
R = (UAB−VAB)2+(UABC−VABC)2+(UDE−VDE)2 = (3−4)2+(2−2)2+(4−3)2 = 2,

the value of 2 is indicating that the ranks of two nodes are swapped in the cor-

responding trees. For trees shown in Figure 4.9(A) and 4.9(C), the squared rank

dissimilarity measure is

d2
R = (UAB−VAB)2+(UABC−VABC)2+(UDE−VDE)2 = (3−4)2+(2−3)2+(4−2)2 = 6.

In this particular case, all ranks of corresponding nodes are different. Table

4.6 shows squared rank dissimilarity measures of 100 estimated species trees that
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have the same unranked topologies as true species trees. PRANC can recover the

correct ranked species tree topology in most cases. It is harder to estimate the correct

ranked topology for larger number of species because the number of possible rankings

increases with the number of species. The results from Table 4.6 indicate that the

likelihood of the gene trees computed given the species tree with the correct unranked

but incorrect ranked topology may still be bigger than the likelihood obtained under

any incorrect unranked topology.

4.5.2 Accuracy of the interval lengths and internal branch

lengths estimation

As shown in the previous sections, PRANC is able to recover the correct unranked

topology of the species tree accurately. PRANC also does a good job in recovering

the correct ranked topology. Another question that may be asked is how well PRANC

estimates the interval or internal branch lengths corresponding to the evolutionary

times between speciation events.

Figure 4.10 shows estimated coalescent interval lengths of a particular 8-taxon

species tree generated under the Yule process with λ = 0.5. PRANC, STELLS2, and

ASTRAL were used to estimate interval lengths ti, i = 2, ..., 7. The interval lengths

must be inferred from the ultrametric trees. Because both STELLS2 and ASTRAL

report non-ultrametric trees, we make them ultrametric by extending all the external

branches of the inferred trees to match the external branch with the greatest total

time. For example, we can extend external branches in the tree in Figure 1.1(D) to

obtain an ultrametric tree displayed in 1.1(A).

PRANC primarly estimates interval lengths and then calculates internal branch

lengths from them. For convenience, the time of the most recent clade is set to 0.1

but could be set to any other value because it does not affect the probabilities. The
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t2

True

MSE

0.0176
0.5929
0.2508

0.2759

0.3132

1.5695

PRANC

0.0221

0.0016
0.6370
0.2312

0.4478

0.0010

1.6936

STELLS2

0.2140

0.0674
0.2179
0.3691

0.8400

0.1482

1.5622

ASTRAL

0.2238

0.2836
0.0319
0.2362

0.5723

0.1953

1.2799

Figure 4.10: Estimated coalescent interval lengths ti, i = 2, . . . , 7 of the 8-taxon
species tree. PRANC , STELLS2, and ASTRAL were used to estimate the species
tree from 1000 gene trees. The best estimated length for each interval is shown in
blue. PRANC gives the lowest mean squared error (MSE). Note that the correct
ranked topology of the species tree was given to PRANC.

times of the nodes are noninformative. For example, in Figure 4.10 the estimated

interval length between the parent of the clade (D,E) with rank 7 and parent of the

clade (F,G) with rank 6 is 0.001625. If we set the time of the most recent clade

(D,E) to 0.1 then the time of (F,G) will be calculated as 0.1+0.001625 = 0.101625,

and the external branch lengths of both species F and G will be set to 0.101625

coalescent units. However, the lengths of external branches do not affect the lengths

of the internal branches that are of main interest in phylogenetic inference. In this

example, the internal branch length for the clade (F,G) is calculated as the sum of

interval lengths t3, t4, t5, and t6 which PRANC aims to estimate either using L-BFGS

or Brent’s methods.

Figure 4.11 shows estimated branch lengths between true tree and estimated

trees by PRANC, STELLS2, and ASTRAL, respectively. Note that for caterpillar

trees the internal branch lengths and the lengths of the corresponding intervals are

the same. Figures 4.10 and 4.12 show estimated interval lengths and internal branch

lengths between true tree and estimated trees by three programs. Note that PRANC
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estimated the branch lengths for the correct ranked topology. PRANC gives lowest

mean squared error of the interval/branch lengths of this single tree. Figure 4.13

shows estimated branch lengths in the case when PRANC estimated the incorrect

ranked topology. In particular, ranks of the three nodes in the estimated tree are

different from that in the true species tree. Still PRANC gives the lowest mean

squared error.

A EB DC F G H

True length

MSE

0.0441

0.1520

0.2124

0.2817

0.8951

0.3361

PRANC

0.00011

0.0939

0.1300

0.2073

0.3002

0.8721

0.2930

STELLS2

0.03627

0.2649

0.3190

0.3735

0.5077

1.0313

0.5491

ASTRAL

0.00095

0.0482

0.1432

0.2055

0.2874

0.9165

0.3325

Figure 4.11: Estimated internal branch lengths of the 8-taxon caterpillar-shape
species tree. PRANC, STELLS2, and ASTRAL were used to estimate the species
tree from 1000 gene trees. On average, PRANC gives better branch lengths estimates
which is reflected in the lowest mean squared error.

On average, will PRANC estimate lengths more accurately than ASTRAL and

STELLS2 ? To answer this question, we consider 100 estimated species trees by

PRANC, STELLS2, and ASTRAL. Note that all 100 inferred trees have same un-

ranked topologies as their corresponding species trees. In particular, we generated

100 five- and eight-taxon trees under the Yule model with the birth rate λ = 0.5

and λ = 1. In each case, 100 or 1000 gene trees were generated from each species

tree and have been used to estimate the species tree internal branch lengths. For

each inferred tree, we calculated the mean squared error between true and estimated

internal branch lengths. We then report average, standard deviation, minimum, and

maximum of the mean squared errors averaged over the 100 species trees considered.
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PRANC
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STELLS2
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Figure 4.12: Estimated internal branch lengths α, β, γ, etc. of the 8-taxon species
tree. PRANC, STELLS2, and ASTRAL were used to estimate the species tree from
1000 gene trees. The best estimated length for the each internal branch is shown in
blue. Although PRANC gives the better estimates for the majority of intervals in
Figure 4.10, it does not give the most closest estimates for the majority of the branch
lengths. However, on average, PRANC gives better branch lengths estimates which
reflected in the lowest mean squared error (MSE).
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Figure 4.13: Estimated internal branch lengths α, β, γ, etc. of the 8-taxon species
tree. PRANC, STELLS2, and ASTRAL were used to estimate the species tree from
1000 gene trees. Note that PRANC estimated the incorrect ranked topology. In
particular, ranks of the three nodes ((A,B), C), (D,E), and (F,G) in the estimated
tree are different from that in the true species tree. Still PRANC gives the lowest
mean squared error.
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Table 4.7: Average of 100 mean squared errors of the internal branch lengths between
estimated and true trees. On average, among three software considered, STELLS2
gives worst estimates, both ASTRAL and PRANC give good estimates for the branch
lengths. Among three programs, PRANC gives best estimates.

λ Gnum n statistic PRANC STELLS2 ASTRAL

λ = 0.5

100

5
x̄ 0.08007 2.66780 0.12940
s 0.21642 18.944 0.41323

[min(x),max(x)] [0.00017,1.59254] [0.01874,187.785] [0.00057,3.55976]

8
x̄ 0.02968 0.37330 0.06491
s 0.06807 1.38995 0.14601

[min(x),max(x)] [0.00060,0.62408] [0.01352,10.7410] [0.00063,1.32526]

1000

5
x̄ 0.00702 0.07543 0.02759
s 0.01716 0.05037 0.13813

[min(x),max(x)] [0.00008,0.10929] [0.02791,0.37597] [0.00003,1.30013]

8
x̄ 0.00267 0.10178 0.00586
s 0.00495 0.35839 0.01346

[min(x),max(x)] [0.00004,0.02916] [0.02561,3.63738] [0.00017,0.11605]

λ = 1

100

5
x̄ 0.01552 0.06637 0.01944
s 0.02238 0.0353 0.02821

[min(x),max(x)] [0.00017,0.13902] [0.00924,0.18836] [0.00013,0.18083]

8
x̄ 0.00684 0.05539 0.01431
s 0.00698 0.02953 0.01362

[min(x),max(x)] [0.00069,0.04875] [0.01555, 0.17789] [0.00134, 0.08833]

1000

5
x̄ 0.00151 0.05390 0.00237
s 0.00347 0.01936 0.00414

[min(x),max(x)] [0.00002,0.02936] [0.02338,0.12207] [0.00002,0.02291]

8
x̄ 0.00077 0.04169 0.00154
s 0.00109 0.01684 0.00222

[min(x),max(x)] [0.00002,0.00794] [0.01578,0.10378] [0.00016,0.01788]

The results are shown in Table 4.7.

On average, PRANC estimates branch lengths more accurately than ASTRAL

and STELLS2. As expected, using 1000 gene trees instead of 100 trees results in

more accurate estimates for all three programs. It is interesting that, on average,

ASTRAL does a better job in lengths estimation than STELLS2 which preserves

more information about rooted trees.

Table 4.8 shows the average differences between corresponding interval lengths of

the inferred trees and the species trees when 1000 gene trees were used for estimation.

We observed that PRANC does not have difficulty in estimating certain interval

lengths when a sufficient number of gene trees is given. However, we note that

PRANC provides slightly better estimates for the interval lengths closest to the root
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Table 4.8: Average difference between corresponding interval lengths of the inferred
tree and species tree using 1000 gene trees.

n λ t2 t3 t4 t5 t6 t7

5
0.5 0.0501 0.0341 0.0366
1 0.0213 0.0210 0.0259

8
0.5 0.0425 0.0285 0.0237 0.0215 0.0230 0.0272
1 0.0168 0.0138 0.0137 0.0151 0.0172 0.0202

when λ = 1 than when λ = 0.5.

4.5.3 Discussion

One of the main issues during the phylogenetic inference is the noise in input data

that may come from the mutation and incomplete lineage sorting processes (Mad-

dison, 1997). It was observed by Huang et al. (2010) that using more information

contained in gene trees (e.g., topology and branch lengths as opposed to just topol-

ogy) may not improve accuracy. So far, most coalescent-based methods were using

either gene tree topologies alone or both topologies and coalescent times. The ap-

proach of using ranked gene trees may be viewed as an intermediate between these

other two approaches. The hope is to develop methods based on the ranked gene

trees that can handle the noise in gene trees.

We introduce PRANC software that has different options to work with the ranked

gene trees. PRANC can analytically compute the probabilities of ranked gene trees

given a species tree in Newick format, following eq. (1.7). The program has an option

to compute the probability of an unranked gene tree by summing the probabilities of

all ranked gene trees that share the corresponding unranked topology. We improved

the numerical results by adding the probabilities of the ranked histories in ascending

order, enabling the smallest-magnitude values to accumulate before interacting with
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larger-magnitude values.

PRANC can be used for inference as well. It performs a heuristic search from

the initial trees to find a maximum likelihood species tree. There is a trade-off be-

tween PRANC ’s estimation accuracy and its computational time. The speed of the

program mainly depends on the choice of initial tree and the number of rankings

considered for each unranked species tree candidate. We tested PRANC ’s perfor-

mance under different settings. In general, it is sufficient to consider 2n rankings for

each unranked n-taxon species tree candidate. More rankings can be considered to

improve accuracy at the expense of speed. Both greedy consensus and introduced

maximum clade frequency consensus can be used as starting trees (both implemented

in PRANC ). By default, PRANC searches for a better tree within 5 NNI moves from

the starting tree. L-BFGS is used to optimize branch lengths. On average, under

these settings, PRANC can estimate an 8-taxon species tree from 100 gene trees in

less than 5 minutes. It takes seconds, a few minutes, ten-fifteen minutes, and an hour

to estimate a 5, 6, 7- and 8-taxon species tree from 1000 gene trees, respectively.
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Empirical Studies

We apply the methods we propose to two real biological datasets. Anomalous gene

trees are sometimes serve as a potential explanation for conflicting relationships in

phylogenomic studies. An empirical anomaly zone has been reported in Scincidae

skinks study (Linkem et al., 2016) and in an empirical study of Palaeognathae flight-

less birds (Cloutier et al., 2019). We examined a 16-taxon Scincidae skink phylogeny

using heuristic methods proposed in Section 3.3. We evaluated the performance of

maximum likelihood inference based on ranked gene trees (PRANC ) by application

to a real biological dataset of gibbons (Carbone et al., 2014; Veeramah et al., 2015).

We compare the computational and accuracy performance of PRANC with that of

BPP (Yang, 2015), STELLS2 (Pei and Wu, 2017), and ASTRAL (Mirarab et al.,

2014). STELLS2 and ASTRAL infer a species tree from unranked and unrooted

gene tree topologies, respectively, whereas BPP infers a phylogenetic tree directly

from DNA sequences.
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5.1 The anomaly zone of skinks

Linkem et al. (2016) used the coalescence based MP-EST (Liu et al., 2010) method

to estimate a species tree from 429 estimated gene trees. They then used the inferred

species tree topology from MP-EST and estimated median branch lengths by sum-

marizing the posterior distribution from BPP (Yang, 2015). The estimated 16-taxon

skink phylogeny by Linkem et al. (2016) (see Table 3 in Linkem et al. (2016)) is

shown in Figure 5.1 and illustrated below in the Newick format:

(((((((Mesoscincus_manguae:2.704236,Scincus_scincus:2.704236):0.26527,

(Eurylepis_taeniolatus:2.945401,Chalcides_ocellatus:2.945401):0.024105):

0.10778,(Plestiodon_fasciatus:2.948328,Ophiomorus_raithmai:2.948328):

0.128958):0.14189,Brachymeles_bonitae:3.219176):0.79165,

(((Emoia_caeruleocauda:2.97096,Lygosoma_brevicaudis:2.97096):0.309054,

Mabuya_unimarginata:3.280014):0.701966,(((Sphenomorphus_variegatus:1,

Lobulia_elegans:1):0.49652,Tytthoscincus_parvus:1.49652):2.02657,

Sphenomorphus_tridigitus:3.52309):0.45889):0.028846):0.005778,

Typhlosaurus_sp:4.016604):0.781678,Xantusia_vigilis:4.798282);

We computed unranked probabilities of the 2n− 4 = 28 gene trees that are one

NNI step away from the species tree. We found that there are four anomalous gene

trees, and the probability of the unranked matching tree, 1.3987e− 06, is lower than

the probability of the most probable unraked nonmatching tree, 2.66115e−06, which

confirms that this species tree is in the unranked anomaly zone.

We also found that the probability of the unrooted matching tree 8.972783e− 06

is lower than the probability of the highest probability unrooted nonmatching tree

1.719202e−05, which confirms that this species tree is also in the unrooted anomaly

zone. Among 2n−6 = 26 one step NNI 16-taxon unrooted trees, four are anomalous.

However, computing probabilities of the 73, 920 16-taxon ranked gene trees that
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Figure 5.1: The estimated 16-taxon skink phylogeny by MP-EST. The tree topology
and estimated internal branch lengths (in coalescent units) is based on the results
from Linkem et al. (2016). We extended external branches to obtain an ultrametric
tree. The external branch lengths are noninformative.

share the same unranked topology as species tree did not indicate that the species

tree is in the ranked anomaly zone. The most probable ranked gene tree the has

same ranked topology as the species tree and this probability is 8.166337e− 09.

This result agrees with the simulation results in Section 3.5 that unranked and

unrooted anomaly zones are more closely related with each other than either one of

them with ranked anomaly zone.
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5.2 DNA sequences for five gibbons

We explore the performance of PRANC in inferring correct species tree for a genome-

scale dataset consisting of 5 species of gibbons: Hoolock leuconedys (B, HLE), Hylo-

bates moloch (Hm, HMO), Hylobates pileatus (Hp, HPL), Nomascus leucogenys (N,

NLE), and Symphalangus syndactylus (S, SSY). This dataset was generated by Car-

bone et al. (2014) and Veeramah et al. (2015) and consists of 12, 143 noncoding loci,

each of 1, 000 bp in length. Except for the human outgroup (O, hg19) representing

a human genome, multiple lineages were sampled for each species: 2 for HMO and

for HPL, and 4 for HLE, NLE, and SSY. The sample locus is shown below:

17 1000

HPL_Domino.A GGTCCATGCAACACTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HPL_Domino.B GGTCCATGCAACACTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HLE_Drew.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HLE_Drew.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

SSY_Monty.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HLE_Maung.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

SSY_Monty.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HLE_Maung.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

SSY_Karenina.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

SSY_Karenina.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HMO_Madena.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

NLE_Asteriks.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

hg19 GGTAAATGCAACATTGAGTGTGAAATTGATAAATAGTCCTCAA..

HMO_Madena.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

NLE_Asteriks.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

NLE_Vok.B GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

NLE_Vok.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..
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We selected one lineage per species for the further analysis: HPL Domino.A,

HLE Drew.A, SSY Karenina.A, HMO Madena.A, NLE Vok.A, and outgroup hg19.

The sequences of the selected subset of five species plus the outgroup are shown

below:

6 1000

HPL_Domino.A GGTCCATGCAACACTGAGTGTGAAATTGATAAGTAGTCCTCAA..

HLE_Drew.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

SSY_Karenina.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

hg19 GGTAAATGCAACATTGAGTGTGAAATTGATAAATAGTCCTCAA..

HMO_Madena.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

NLE_Vok.A GGTCCATGCAACATTGAGTGTGAAATTGATAAGTAGTCCTCAA..

We used ASTRAL (Mirarab et al., 2014), STELLS2 (Pei and Wu, 2017), and

PRANC to estimate species trees from a sample of unrooted, unranked, and ranked

gene tree topologies, respectively. The Bayesian method BPP (Yang, 2015) was

used to estimate species trees directly from such noncoding loci consisting of the

alignments of six species.

We used IQ-TREE (Nguyen et al., 2014) software to estimate 6-taxon unrooted

gene trees from DNA sequences under the general time reversible substitution model

(GTR) with unequal rates and unequal base frequency (Tavaré, 1986). These un-

rooted trees were used as an input for ASTRAL (Mirarab et al., 2014). Then the

estimated unrooted species tree by ASTRAL was rooted on the outgroup, and the

outgroup was dropped to get a rooted 5-taxon species tree estimate.

We rooted the obtained 6-taxon unrooted trees from IQ-TREE on the human

outgroup hg19, and then droped the outgroup to get 5-taxon rooted gene trees and

make them ultrametric.

We cannot assume that the molecular clock assumption is reasonable for any
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rooted tree so we need test for the validity of this assumption. Under the null

hypothesis, the branch lengths of the rooted tree are constrained such that all of

the tips can be drawn at a single time plane. Under the alternative hypothesis,

each branch is allowed to vary independently. The likelihood ratio test statistic

is −2 logL = 2(logL0 − logL1) ∼ χn−2, where n is the number of tips, and L0

and L1 are the likelihoods under the null and alternative hypotheses, respectively

(Felsenstein, 2004). To conduct the likelihood ratio test, we run DNA maximum

likelihood programs Dnaml and Dnamlk (Felsenstein, 2013). For each locus, we

obtain the unrooted tree topology from IQ-TREE. The outgroup is then dropped.

The sequences with the outgroup dropped are used to infer the tree again using both

Dnaml (not assuming a clock) and Dnamlk (assuming a clock). The tree searches

using Dnaml and Dnamlk use the tree topology found from IQ-TREE as a constraint,

so that branch lengths are optimized to maximize the likelihood with and without

a clock. This allows testing each gene tree for the molecular clock assumption using

the likelihood ratio test. If the p-value is greater than 0.05, we keep the tree with

the estimated topology by IQ-TREE and estimated branch lengths by Dnamlk for

further analysis. Using the likelihood ratio test, we obtained 10, 706 ultrametric trees

out of 12, 143 loci. We use STELLS2 and PRANC to estimate a species tree from

these rooted gene trees. The greedy consensus tree was used as the starting tree for

PRANC.

HLE SSY NLE HPL HMO

Figure 5.2: The species tree topology estimated from the gibbon data from all non-
coding loci using BPP by Shi and Yang (2018).
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Since it is a real dataset we do not know a true species tree. However, Shi and

Yang (2018) estimated the species tree from all loci using BPP displayed in Figure

5.2, therefore we refer to this tree as the correct tree and compare all our estimates

to it. Note that we run BPP on slightly different data since we sampled one lineage

per species, thus reducing the original dataset from 16 lineages to 5 plus human

outgroup.
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Figure 5.3: The proportion of correct species trees in a gibbon dataset obtained by
four different methods plotted against the number of gene trees. The gene trees
were considered as ranked for PRANC, unranked for STELLS2, and unrooted for
ASTRAL. The greedy consensus tree was used as a starting tree for PRANC. To
get an estimated rooted species tree from ASTRAL, we added an outgroup to the
5-taxon unranked gene trees. Then the estimated unrooted species tree by ASTRAL
was rooted on the outgroup, and the outgroup was dropped to get a rooted 5-taxon
tree. DNA sequences and no trees were used for BPP. The results for BPP were
computed using up to 750 gene trees.

Figure 5.3 shows the proportion of correct species trees in a gibbon dataset ob-

tained by four methods plotted against the number of gene trees. To select a subset

of k gene trees out of 10, 706 trees, we first randomly select k indicies ∈ [1, 10, 706].
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We then select sequences, unrooted trees, and rooted trees corresponding to these

indicies. This is done to run four different programs on the same subsets of gene

trees (sequences corresponding to these trees for BPP).

We observed that all methods converge as the number of genes increases to the

correct species tree topology. The results shown in figure 5.3 are intuitive. As

expected, for small number of genes, the Bayesian BPP that calculates the posterior

probabilities of different species trees from DNA sequences is able to recover more

correct species trees than other three programs. Unrooted, unranked, and ranked

trees preserve increasing amounts of information about the rooted trees with specified

branch lengths, respectively.

In terms of approximate computational time, BPP can estimate a 5-taxon species

tree from 100 loci in about 1 hour and 500 loci in about 3− 4 hours whereas it takes

seconds to estimate a 5-taxon species tree from 100 or 500 gene trees with ASTRAL,

STELLS2, and PRANC.

Table 5.1 shows PRANC, STELLS2, and ASTRAL estimates of the internal

branch lengths and the 95% confidence intervals of bootstrap estimates. We cal-

culated 1000 bootstrap estimates using a sample of 10, 706 gene trees. All PRANC

estimates do not agree with STELLS2 estimates. ASTRAL gives similar estimates

for the two branch lengths to PRANC estimates and one estimate that is close to

the STELLS2 estimate. Because true lengths are unknown, we can not judge which

estimates are closer to the true values.
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Table 5.1: Estimates of internal branch lengths in coalescent units of the species
tree topology in Figure 5.2. The 95% confidence intervals of internal branch lengths
are calculated by the bootstrap method. PRANC, STELLS2, and ASTRAL were
used to get 1000 bootstrap estimates. Due to high computational time BPP was not
used. Top row in this table represents clades for which internal branch lengths were
estimated.

method statistic (HLE,SSY) ((HLE,SSY),NLE) (HPL,HMO)

PRANC θ̂ 0.0382 0.0493 1.3930

(θ̂(0.025), θ̂(0.975)) (0.0271,0.0496) (0.0401,0.0576) (1.3617,1.4321)

STELLS2 θ̂ 0.2176 0.2251 1.7873

(θ̂(0.025), θ̂(0.975)) (0.2048,0.2260) (0.2167,0.2340) (1.7446,1.8320)

ASTRAL θ̂ 0.0377 0.0378 1.7954

(θ̂(0.025), θ̂(0.975)) (0.0252,0.0503) (0.0260,0.0490) (1.7498,1.8426)
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Conclusions and Future work

A probability distribution of gene trees defines a unique species tree under the multi-

species coalescent model. Many statistically consistent methods have been developed

to estimate a species tree from a collection of gene trees (Kubatko et al., 2009; Liu

et al., 2009b, 2010; Liu and Yu, 2011; Wu, 2012; Mirarab et al., 2014; Pei and Wu,

2017). Surprisingly, for certain species tree topologies and branch lengths, the most

likely gene tree can be different from the species tree. Such a tree is called an anoma-

lous gene tree (Degnan and Rosenberg, 2006). The existence of anomalous gene

trees gave insight for finding when other methods of species tree estimation could

be misleading in regions of branch length space resembling, but not identical to, the

anomaly zone (Kubatko and Degnan, 2007; Degnan et al., 2009b; Wang and Degnan,

2011; Than and Rosenberg, 2011b). Although likelihood-based methods, including

Bayesian methods (Liu and Pearl, 2007; Heled and Drummond, 2010; Flouri et al.,

2018), are not misled by anomalous gene trees, the recognition of the possibility of

such trees, and especially that they do not exist for three taxa on rooted trees or four

taxa on unrooted trees, motivated the development of numerous two-staged meth-

ods using rooted triples or quartets (e.g., Ewing et al., 2008; DeGiorgio and Degnan,

2010; Liu et al., 2010; Larget et al., 2010; Mirarab et al., 2014). The concept of the
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anomaly zone has also been useful for designing simulation studies to test species

tree inference methods in challenging regions of parameter space (Kubatko and Deg-

nan, 2007; Liu and Edwards, 2009; Liu et al., 2009c; DeGiorgio and Degnan, 2010;

Shekhar et al., 2018). Although the theoretical possibility of anomalous gene trees

has motivated many methods, the extent that they arise in practice is less clear. We

address this question by estimating how often anomalous gene trees occur under the

widely-used birth-death models of speciation. We consider three types of anomaly

zones, each corresponding to different types of gene trees: unrooted, unranked, and

ranked gene trees. The study of various types of anomaly zones can lead to the

discovery of the cases when such zones do not overlap with each other. Because the

number of possible tree topologies grows faster than exponentially with the number

of species, it is necessary to propose reasonable heuristic approaches to infer whether

larger species trees (i.e., more than eight taxa) are in anomaly zones.

The multispecies coalescent model has emerged as a powerful framework that

allows computing the likelihood of gene trees for a given species tree. Most of the

methods discussed above infer species trees from unrooted or unranked gene tree

topologies. To preserve some information about branch lengths in the gene trees,

one can use ranked gene trees. Instead of using branch lengths directly, a ranked

gene tree depicts the temporal order of the nodes of the gene tree together with

topological relationships among gene lineages. Thus, methods based on ranked gene

trees should provide more robust and informative estimates than methods based on

the topological relationships alone. Such methods might also be robust to errors in

estimating gene tree branch lengths. Moreover, the probabilities of unrooted and

unranked gene trees can be directly obtained from the probabilities of ranked gene

trees. Degnan et al. (2012b) and Stadler and Degnan (2012) derived the probability

distribution of ranked gene tree topologies and proposed several ways to calculate

the probabilities of ranked gene trees. Using these probabilities the likelihood of gene

trees for a given species tree can be determined. We introduce a software PRANC
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that estimates a maximum likelihood species tree from a sample of ranked gene tree

topologies. The algorithm searches in tree topology and branch length space for a

species tree with the highest likelihood.

6.1 Conclusions

In this section we summarize the main contributions of this dissertation, which are

fully discussed in the previous chapters.

6.1.1 Anomaly zones

We studied how the parameters of a species tree simulated under the birth-death

models of speciation can affect the probability that the species tree has different

types of anomalous gene trees. We found that with more than five species, it is

possible for species trees to be in the intersection of the unrooted, unranked, and

ranked anomaly zones. We found the cases when such zones do not overlap with

each other for certain species tree topologies and/or branch lengths, meaning that

methods based on one type of gene tree might provide more robust estimates than

methods that use other types of gene trees. We observed that the probability of being

in all types of anomaly zones increases with more taxa and with higher speciation

rates. For unranked trees, both results are intuitive: for increasing numbers of taxa,

there are more possible ways to have consecutive short branches or intervals in a

tree, a pattern typical of the unranked anomaly zone. Increasing λ reduces the

average branch length, making consecutive short branches more likely. We observed

a different effect of the turnover rate µ/λ on the probability of producing unranked

and unrooted versus ranked anomalous gene trees. The probability has a decreasing

trend for the unranked anomaly zones and an increasing trend for the ranked anomaly
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zone as turnover rate increases. On average, branch lengths become longer as µ

increases. In particular, a branch length near the root becomes longer, decreasing

the probabilities of anomalous unranked and unrooted gene trees but increasing the

probabilities of anomalous ranked gene trees. We found that the probabilities of

unranked and unrooted anomaly zones are higher and grow much faster than those

of ranked anomaly zones as the speciation rate increases. We also found that more

balanced trees tend to fall in the ranked anomaly zone and more imbalanced into the

unranked anomaly zone. We derived a lower bound of the probability of the species

tree having unranked anomalous gene trees for large speciation rates and proved that

it approaches 1 as both speciation rate and number of species approach to infinity.

6.1.2 Heuristic approaches for detecting anomaly zones

We introduced heuristic approaches to infer whether species trees have unranked or

unrooted anomalous gene trees when it is impractical to compute the entire distri-

bution of gene tree topologies. We found that the most frequent tree often is not

topologically far from the species tree. Thus, we only need to search in a nearby

space of the true tree to find whether it has anomalous gene trees. This heuristic

underestimates the probability that the species tree is in an anomaly zone due to

there being few false negatives but no false positives. We found that for biologically

plausible speciation rates, 0 < λ < 1, unranked and unrooted anomaly zones in-

tersect with each other more than with the ranked anomaly zone. Because at least

one of the most probable ranked gene tree topologies must have the same unranked

topology as the species tree, we propose to use only those ranked gene trees that

have unranked topologies that match the unranked species tree topology to check

for anomalousness. We also investigated the validity of the method of comparing

pairs of parent-child internodes in a phylogenetic tree for anomalousness by using

the limit of the unranked anomaly zone in larger trees. We observed that the false
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positive rate slowly increases with the number of taxa and speciation rate λ. Despite

the relatively high false positive rate, the test is still useful for checking that a tree

does not fall in an anomaly zone. We demonstrated the discussed heuristic methods

on the biological dataset of skinks.

6.1.3 Maximum likelihood species tree estimation

We developed an algorithm to get a maximum likelihood estimate of a species tree

from ranked gene trees. We introduce a software suite PRANC that takes a set of

ranked gene tree topologies and searches for the maximum likelihood species tree.

PRANC is the first method we are aware of that uses ranked gene trees to infer

species trees. To estimate the maximum likelihood species tree, PRANC picks the

tree with the highest likelihood from the set of initial trees and generates all trees

that are one nearest neighbor interchange move away from the initial tree. Then, for

each of these trees, the program generates all possible rankings and finds the branch

lengths that maximize the likelihood of the gene trees. The process is repeated until

the stopping criterion is met. Various numerical techniques were used to improve the

accuracy, robustness, and efficiency of the algorithm. We tested PRANC ’s perfor-

mance under different settings. There is a trade-off between the estimation accuracy

and the computational time. The speed of the program highly depends on the choice

of the initial tree, the number of nearest neighbor interchange moves considered, the

number of rankings for each unranked species tree candidate, and on the allowable

range of branch lengths. Mainly, PRANC ’s computational speed depends on the

number of rankings considered. For balanced topologies, far more rankings exist

than for less balanced topologies. Computing the likelihood of gene trees for every

possible ranked topology is not efficient for n > 7-taxon trees. We observed that

in most cases, the values of likelihoods for different rankings of the same unranked

species tree are close to each other. Therefore, we proposed to compute likelihoods
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of a randomly chosen small subset of rankings. If at least one of the obtained likeli-

hoods is larger than the threshold, PRANC will compute the likelihoods for a larger

subset of rankings. On average, under default settings, in simulation studies, it takes

seconds, a few minutes, ten-fifteen minutes, and an hour to estimate a 5, 6, 7- and

8-taxon species tree from 1000 gene trees, respectively. It takes less than 5 minutes

to estimate an 8-taxon species tree from 100 gene trees.

Because it is better to have an initial tree that is topologically close to the true

tree, we proposed two methods for picking a starting tree. The first method is a

hill-climbing algorithm that penalizes long branches of the species tree which has

multiple lineages persisting through multiple species divergence events. Although

this method can provide a list of good candidate trees for a species tree, we proved

that it is statistically inconsistent. Another method is based on the greedy consensus

method. The usual greedy consensus method considers the clades in order of the

frequency with which they have appeared, adding to the consensus tree any which

are compatible with it until the tree is fully resolved. We proposed a modification

to the greedy consensus method. Our method, called maximum clade frequency

consensus, outputs a tree with a maximal score, where the score is determined by

summing the frequencies of compatible clades. In such a way, the method will include

all most supported clades in the estimated tree and not only those compatible with

the most frequent clade.

We showed in simulation and the biological study of gibbons that PRANC had

better accuracy than competing methods.

6.2 Future work

The main shortcoming of likelihood-based methods is their computational complex-

ity, which rises exponentially with the number of species in a tree. In particular,
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since PRANC evaluates the probability of each ranked gene tree, it runs slower than

STELLS2 and ASTRAL. To speed up the computation, multiple jobs were run on

the supercomputer at the UNM Center for Advanced Research Computing. It is

possible to utilize parallelization in PRANC to scale it for larger species trees.

Because the maximum likelihood calculation of a species tree formed a major

computational bottleneck in the inference, introducing pseudo-likelihood methods

for ranked gene trees for species tree inference might significantly reduce the com-

putational time while providing good estimation accuracy. One of the main future

directions for PRANC is to estimate phylogenetic networks rather than trees. A

phylogenetic network is the usual species tree with horizontal edges that captures

the inheritance of genetic material through gene flow (Meng and Kubatko, 2009; Yu

et al., 2012b; Soĺıs-Lemus and Ané, 2016; Wen et al., 2018) (Figure 6.2). Since the

concept of the anomaly zone can even be extended to phylogenetic networks (Zhu

et al., 2016), it is interesting to study the regions of branch lengths and inheritance

probabilities that may produce anomalous ranked gene trees.

6.2.1 Parallelization

Certain functions of PRANC can be parallelized. For example, when searching in

tree space, each n-taxon species candidate can produce k = 2n − 4 unranked trees

that are one NNI move away from the original tree. Then each of the obtained k trees

produces 2n − 4 unranked trees, and so on. This process can be parallelized. For

each unranked tree all possible rankings are generated and then the branch lengths

of each of these ranked trees are optimized. It is costly to optimize branch lengths

for every possible ranking, especially for larger trees. For example, for an 8-taxon

tree the number of rankings can range from 1 to 80 whereas for a 12-taxon tree the

number of rankings can range from 1 to 211, 200. We can distribute probabilities

computations for a subset of species tree rankings across multiple processors. Finally,
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since probabilities of all gene trees in a sample are computed for a given species tree,

we can assign each thread or processor to work on a certain subset of gene trees.

6.2.2 A maximum pseudo-likelihood approach

The fact that any four-taxon species tree can produce anomalous unranked gene trees

but cannot produce anomalous ranked gene trees give us an opportunity to develop

methods based on ranked gene trees that are not affected by ranked anomaly zones.

An n-taxon species tree with internal branch lengths bi, i = 1, . . . , n−2 has
(
n
4

)
rooted

ranked quartets. For example, a five-taxon species tree in Figure 6.1A contains(
5
4

)
= 5 ranked quartets: (((A,B)3, C)2, D), (((A,B)3, C)2, E), ((A,B)2, (D,E)3),

((A,C)2, (D,E)3), and ((B,C)2, (D,E)3). For the last three quartets, we require

that (D,E) should have a highest rank since it has a highest rank in the original

five-taxon tree. Each quartet has two internal branch lengths that can be calculated

from the internal branch lengths of original species tree. For example, the quartet in

Figure 6.1D is one of the possible quartets for the species tree in Figure 6.1A that

has internal branch lengths q1 = b1 + b2 and q2 = b3 that can be calculated from the

corresponding lengths in the species tree.
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Figure 6.1: Five-taxon trees with different rankings and two representative quartets.
(A)-(B) Ranked five-taxon trees with internal branch lengths b1, b2, and b3. (C)
Caterpillar four-taxon tree. The tree is a ranked quartet for both trees in (A) and
(B). (D) Balanced four-taxon tree. The tree is a ranked quartet only for the tree in
(A).

There are 18 possible ranked topologies of any four-taxon tree. The probabilities
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of each 18 ranked gene trees given a species tree can be calculated under coalescent

model. The probability distributions of ranked gene trees given a caterpillar or

balanced species tree are given in Tables 1 and 2 in Degnan et al. (2012b). Let RQi

denote the rooted ranked quartet in the species tree with the internal branch lengths

q1 and q2. Let x1i, x2i, ..., x18i be the counts of 18 ranked quartets occuring in ranked

gene trees, then the counts x1i, x2i, ..., x18i have a multinomial distribution

p(x1i, x2i, ..., x18i|RQi) =

∑18
j=1 xji

x1i!x2i! · ... · x18i!
px1i1i p

x2i
2i · ... · p

x18i
18i , (6.1)

where pji, j = 1, 2, . . . , 18 are probabilities of the ranked rooted quartets in the gene

tree. For example, given RQi = (((A,B)3, C)2, D) in the species tree, the probability

p of ranked quartet ((A,B)2, (C,D)3) in some gene tree is e−t3e−3t2/18 using Table

2 in Degnan et al. (2012b) where t2 and t3 are the interval lengths which can be

converted into the branch lengths. Then the pseudo-likelihood of a species tree T

given a sample of N ranked gene trees G1,G2, . . . ,GN can be written as

L(T |G1,G2, . . . ,GN) =

(n4)∏
i=1

[ ∑18
j=1 xji

x1i!x2i! · ... · x18i!
px1i1i p

x2i
2i · ... · p

x18i
18i

]
. (6.2)

It is a pseudo-likelihood rather than likelihood since we approximate the joint prob-

ability distribution of ranked quartets in the species tree by the product of corre-

sponding marginal probabilities ignoring the covariance structure among the quar-

tets. Maximizing the pseudo-likelihood given in eq. (6.2) with respect to the species

tree topology and branch lengths will allow estimating larger species trees faster than

using the traditional full likelihood approach.

6.2.3 Phylogenetic networks

A phylogenetic tree, the classical representation of evolution of a set of organisms, is

unable to represent some biological processes such as hybridization, recombination,
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or horizontal gene transfer. A rooted phylogenetic network can be repsented as

a rooted directed graph (Figure 6.2). It is the usual species tree with horizontal

edges that captures the inheritance of genetic material through gene flow (Meng

and Kubatko, 2009; Yu et al., 2012b; Soĺıs-Lemus and Ané, 2016; Wen et al., 2018).

A phylogenetic network might be more suitable to model evolutionary history of

certain sets of organisms such as bacteria who transfer their DNA regions across

species boundaries.
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Figure 6.2: An example of rooted phylogenetic network with one hybridization event
and resulting species trees. (A) Four-taxon rooted phylogenetic network with one
hybridization event. (B) The underlying species tree obtained by assuming that
gene flow affected less than 50% of genes (γ < 0.5). (C) The underlying species tree
obtained by assuming that gene flow affected more than 50% of genes (γ > 0.5).

Under the hybridization event and the rooted network in Figure 6.2, each gene

from taxon C has probability γ to inherit the genetic material of D taxon’s parent

and probability 1−γ to inherit the genetic material of the (A,B) taxon’s parent and

be related more to (A,B) than to D. The probability of a gene tree given a species

network is computed by considering the coalescence process inside each branch of

the species network. For example, the probability of the gene tree ((A,C)2, (B,D)3)

under the network displayed in Figure 6.2 is

(1− γ)e−b2

(
3

2
e−b1 − 3

2
e−3b1 + e−3b1

)
1

9
+ γ

1

18
e−(b1+b2+b3).

Being able to reconstruct a phylogenetic network characterized by the topology,

branch lengths, and inheritance probabilities from a sample of ranked gene trees will

allow uncovering more complex relationships between species.
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Appendix A

A PRANC software

We originally developed PRANC in C++ to calculate the probability distribution

of ranked gene trees given a species tree. We later extended it to infer maximum

likelihood trees. However, PRANC has other useful options to work with phyloge-

netic trees presented in Table A1. All input files should be in the Newick format. All

trees are treated as rooted binary trees. A species tree should be ultrametric (leaves

of the tree are all equidistant from the root). The taxon names of gene trees should

match the taxon names of the corresponding species tree.

PRANC can compute the analytical probabilities of ranked gene trees given a

species tree in Newick format. The program has an option to compute the probability

of an unranked gene tree by summing the probabilities of all ranked gene trees that

share the corresponding unranked topology. It has an option to output symbolic

probabilities followed by ranked histories. User can run PRANC as shown below:

pranc -rprob <species-tree-file> <ranked-gene-tree-file>

pranc -uprob <species-tree-file> <unranked-gene-tree-file>

pranc -sym <species-tree-file> <ranked-gene-tree-file>

PRANC also can output the “democratic vote” ranked or unranked tree topology.
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Table A1: List of the main options available in PRANC

option description

-rprob calculates probabilities of ranked gene tree topologies
-uprop calculates probabilities of unranked gene tree topologies
-sym outputs symbolic probabilities of ranked gene tree topologies
-like nonni calculates ML interval lengths of a given species tree topology
-like nni brent estimates ML species tree given a starting tree.

Brent’s method is used for branch lengths optimization
-like nni estimates ML species tree given a starting tree.

L-BFGS method is used for branch lengths optimization
-rtopo outputs ranked tree topologies and frequencies of the topologies
-utopo outputs unranked tree topologies and frequencies of the topologies
-write outputs tree with ranks instead of branch lengths
-rank trees outputs all ranked topologies that share given unranked topology
-mac outputs species tree MAC score
-cons outputs greedy consensus tree without branch lengths
-mcfc outputs MCFC tree without branch lengths
-rank dist calculates rank dissimilarity measure between two trees
-coal ints calculates interval lengths
-br len calculates internal branch lengths

Using the following code, the program outputs two files: one with ranked or unranked

topologies for each tree, and another with unique topologies and their frequencies,

pranc -rtopo <input-file>

pranc -utopo <input-file>

To output the maximum clade frequency consensus (MCFC) tree and MAC score

of a species tree, one can run

pranc -mcfc <ranked-gene-tree-file>

pranc -mac <species-tree-file> <ranked-gene-tree-file>

To estimate a species tree from a sample of ranked gene trees, the user can run the

command below (the starting tree should be provided). The program processes the

initial species trees and picks the one with the highest likelihood T . Then it searches
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a space of unranked trees to find trees that are one nearest neighbor interchange

(NNI) away from T . After that, PRANC searches for the speciation interval lengths

that maximizes the likelihood of the ranked gene trees using L-BFGS (Byrd et al.,

1995) method. The process is repeated until convergence (-diff) or until all trees

within k NNI steps are explored (-nni). At the end, PRANC calculates the branch

lengths of the inferred tree.

pranc -like_nni <starting-species-tree-file> -rgt <ranked-gene-tree-file>

pranc -like_nni <starting-species-tree-file> -rgt <ranked-gene-tree-file>

-nni 5 -diff 0.1 -startsubset 3 -initsubset 2 -maxsubset 4 -lb 0.001

-ub 6 -tol 1e-10 -tiplen 0.1

Default settings:

1) the maximum number of NNI moves considered from the starting tree:

-nni 5

2) the difference between old and current negative log-likelihoods:

-diff 0.1

3) the number of rankings of the starting tree:

-startsubset All possible rankings

4) the number of initial rankings considered of each

unranked species tree candidate, if at least one of the negative

log-likelihoods corresponding to -initsubset rankings is smaller

than the threshold, the program will consider more rankings set

by -maxsubset option:

-initsubset Number of taxa

5) the number of maximum rankings considered of each

unranked species tree candidate:

-maxsubset 2*Number of taxa

6) allowed lower bound of the speciation interval lengths:

-lb 0.001

7) allowed upper bound of the speciation interval lengths:
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-ub 6

8) tolerance of the L-BFGS method:

-tol 1e-10

9) the time of the most recent clade is set to 0.1:

-tiplen 0.1

The user may fix a topology of the species tree and only estimate the branch

lengths. The program calculates maximum likelihood branch lengths using L-BFGS

(Byrd et al., 1995) optimization technique for a given species tree topology. PRANC

changes all lengths at the same time. It allows the lengths to be in the interval

[0.001, 6] (-lb, -ub) coalescent units. Note that PRANC first computes maximum

likelihood speciation intervals, and then translates them to the branch lengths by

setting the time of the most recent internal node to 0.1 (-tiplen) coalescent unit.

The tolerance is controlled by the -tol option.

pranc -like_nonni <species-tree-file> -rgt <ranked-gene-tree-file>

pranc -like_nonni <species-tree-file> -rgt <ranked-gene-tree-file>

-lb 0.001 -ub 6 -tol 1e-10 -tiplen 0.1

Default settings:

-lb 0.001

-ub 6

-tol 1e-10

-tiplen 0.1

For detailed examples with file examples and shown output visit

https://github.com/anastasiiakim/PRANC.
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Here we provide a few representative scripts that were used for simulations at var-

ious stages of research. We selected less trivial scripts to show. More scripts will

be uploaded to https://github.com/anastasiiakim/PRANC. We ran most of the

simulations on the supercomputer at the UNM Center for Advanced Research Com-

puting. A job pbs file may look like this:

## University of New Mexico Center for Advanced Research Computing

#PBS -l nodes=1:ppn=8

#PBS -l walltime=48:00:00

#PBS -N some_job_name

#PBS -S /bin/bash

#PBS -n ${taxa}_${lambda}_${mu}_${iter}

# Load modules for R, python, other software installed in this module

module load r-3.4.1-gcc-4.8.5-python2-gzeg24m

cd wheeler-scratch # $PBS_O_WORKDIR output dir for this machine

/users/anakim/unranked/some_script $taxa $lambda $mu $iter

We can run this script from the wheeler-scratch directory:

qsub -v taxa=8,lambda=1,mu=0,iter=500 some_sample.pbs
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B Bash Scripts

B.1 Anomaly zone detection

The bash script below represents how anomalous gene trees can be detected:

#!/bin/bash

OUTPUT=/dev/null

# Inputs for this run:

NumTaxa=$1

BDlambda=$2

BDmu=$3

NumIter=$4

echo "Starting run on $(date), Job number: $PBS_JOBID on host $(hostname)"

echo "NumTaxa=$NumTaxa"

echo "BDlambda=$BDlambda"

echo "BDmu=$BDmu"

echo "NumIter=$NumIter"

EXE_DIR="/users/anakim/bin"

PRANC_DIR="users/anakim/module/BIN"

RSCRIPTS_DIR="/users/anakim/rankedtrees"

ST_DIR="/users/anakim/nni/SThightaxa"

SCRATCHDIR=${NumTaxa}_${BDlambda}_${BDmu}_${NumIter}_$(echo $PBS_JOBID | cut -d"." -f1)

mkdir ./$SCRATCHDIR
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# copy all R_scripts to the scratch folder to write output files in that place

cp $RSCRIPTS_DIR/R_sort.r $SCRATCHDIR

cp $RSCRIPTS_DIR/R_rf_dist.r $SCRATCHDIR

cp $RSCRIPTS_DIR/gtuniqtrees.txt $SCRATCHDIR

cp $RSCRIPTS_DIR/gtuniqtops.txt $SCRATCHDIR

cp $ST_DIR/ST_${NumTaxa}_${BDlambda}_${BDmu}.txt $SCRATCHDIR

cd $SCRATCHDIR

filename="ST_${NumTaxa}_${BDlambda}_${BDmu}.txt"

zero=0;

while read line;

do

echo "$line" > ST.txt

rm -f anomalous_trees.txt

#gtuniqtops.txt is optional file that represents topologies of gene trees

$PRANC_DIR/pranc -rprob ST.txt gtuniqtrees.txt gtuniqtops.txt

# R_sort.r R script will print a number that indicates

# whether we have anomalous ranked gene trees

varname=‘Rscript R_sort.r‘

echo "$varname"

if [[ $varname -eq $zero ]]; then

cp ST.txt intree

#run PHYLIP treedist function, PHYLIP is interactive program

$EXE_DIR/treedist << EOF >> $OUTPUT

D

R
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1

2

L

S

Y

EOF

rm -f intree

rm -f intree2

# treedist produces output file: outfile

# the RF distance can be extracted using R

Rscript R_rf_dist.r >> $OUTPUT

rm -f outfile

fi

done < $filename

# Collect results, do not remove $SCRATCHDIR if unsure that the results are saved

RESULTDIR=${NumTaxa}_${BDlambda}_${BDmu}_${NumIter}-some_results

mkdir ../$RESULTDIR

cp some_file_1.txt some_file_2.txt some_file_3.txt ../$RESULTDIR

cd ../

rm -r $SCRATCHDIR

exit 0
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B.2 Selecting trees with the lowest MAC score

The script corresponding to the described simulation process in Section 4.2.

#!/bin/bash

OUTPUT=/dev/null

# Inputs for this run:

NumTaxa=$1

BDlambda=$2

BDmu=$3

NumGTs=$4

Lb=$5

Ub=$6

EXE_DIR="/users/anakim/bin"

RSCRIPTS_DIR="/users/anakim/likelihood"

ST_DIR="/users/anakim/likelihood/SpeciesTrees"

BIN_DIR="/users/anakim/module/BIN"

SCRATCHDIR=mac_nni-${NumTaxa}_${BDlambda}_${BDmu}_${NumGTs}_${Lb}_${Ub}

mkdir ./$SCRATCHDIR

cp $RSCRIPTS_DIR/R_check_scores.r $SCRATCHDIR

cp $RSCRIPTS_DIR/R_check_scores_again.r $SCRATCHDIR

cp $ST_DIR/ST_${NumTaxa}_${BDlambda}_${BDmu}.txt $SCRATCHDIR

cd $SCRATCHDIR

sed -n -e ${Lb},${Ub}p ST_${NumTaxa}_${BDlambda}_${BDmu}.txt > ST_part.txt

filename="ST_part.txt"
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while read line;

do

echo "$line" > ST.txt

$EXE_DIR/hybrid-Lambda -spcu ST.txt -num ${NumGTs} -seed 2802 -o sim_gts.txt

sed "s/_1//g" sim_gts.txt_coal_unit > sim_gts.txt

rm -f count_min_ac.txt

gt_file="sim_gts.txt"

while read line;

do

echo "$line" > ST_candidate.txt

var_count=‘$BIN_DIR/pranc -mac ST_candidate.txt sim_gts.txt‘

echo "$var_count" >> count_min_ac.txt

done < $gt_file

rm -f candidates.txt

Rscript R_check_scores.r

COUNTER=0

while [ ! -e temp_rf.txt ] && [ $COUNTER -lt 5 ];

do

let COUNTER=COUNTER+1

rm -f ranked_cands.txt

file_st_cands_equal_cost="candidates.txt"

while read line;

do

echo "$line" > cand.txt

$BIN_DIR/pranc -rank_trees cand.txt

# uncomment if want to select only 5 random rankings
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#shuf -n 5 res.txt >> ranked_cands.txt

cat res.txt >> ranked_cands.txt

rm -f res.txt

done < $file_st_cands_equal_cost

rm -f fin_count.txt

gt_file="ranked_cands.txt"

while read line;

do

echo "$line" > ST_candidate.txt

var_count=‘$BIN_DIR/pranc -mac ST_candidate.txt sim_gts.txt‘

echo "$var_count" >> fin_count.txt

done < $gt_file

Rscript R_check_scores_again.r

echo $COUNTER

done

cat temp_rf.txt >> rf_lowestscore.txt

rm -f temp_rf.txt

rm -f scores.txt

rm -f fin_trees.txt

done < $filename

exit 0
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B.3 Maximum likelihood estimation

The script corresponding to the described simulation process in Section 4.1.

#!/bin/bash

OUTPUT=/dev/null

# Inputs for this run:

NumTaxa=$1

BDlambda=$2

BDmu=$3

NumIter=$4

Lb=$5

Ub=$6

EXE_DIR="/users/anakim/bin"

RSCRIPTS_DIR="/users/anakim/likelihood"

ST_DIR="/users/anakim/likelihood/SpeciesTrees"

BIN_DIR="/users/anakim/module/BIN"

SCRATCHDIR=maxlike_nni-${NumTaxa}_${BDlambda}_${BDmu}_${NumIter}_${Lb}_${Ub}

mkdir ./$SCRATCHDIR

cp $RSCRIPTS_DIR/R_remove_branches_pick_btw_cons.r $SCRATCHDIR

cp $RSCRIPTS_DIR/RF_calcnorm.r $SCRATCHDIR

cp $ST_DIR/ST_${NumTaxa}_${BDlambda}_${BDmu}.txt $SCRATCHDIR

cd $SCRATCHDIR

sed -n -e ${Lb},${Ub}p ST_${NumTaxa}_${BDlambda}_${BDmu}.txt > ST_part.txt

filename="ST_part.txt"
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NOW=$(date +"%T") # measure execution time

echo "Job started at $NOW"

while read line;

do

echo "$line" > ST.txt

# simulate gene trees from a species tree

$EXE_DIR/hybrid-Lambda -spcu ST.txt -num ${NumIter} -seed 2802

sed "s/_1//g" OUT_coal_unit > sim_gts.txt

cp sim_gts.txt intree

# get a greedy consensus tree from PHYLIP

$EXE_DIR/consense << EOF >> $OUTPUT

R

Y

EOF

# get MCFC tree

$BIN_DIR/pranc -cons sim_gts.txt

cat outGreedyCons.txt >> pranc_greedy_cons.txt

Rscript $RSCRIPTS_DIR/R_remove_branches_pick_btw_cons.r

rm -f intree

rm -f outfile

rm -f outtree

# estimate ML tree

$BIN_DIR/pranc -like_nni unranked_tree.txt -rgt sim_gts.txt

rm -f unranked_tree.txt
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done < $filename

# report rank diss. measure between trees

$BIN_DIR/pranc -rank_dist ST_part.txt outWithNniMLTopo.txt

Rscript RF_calcnorm.r

NOW=$(date +"%T")

echo "Job ended at $NOW"

exit 0
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B.4 Gibbons dataset

The control file for BPP and bash script corresponding to the results of chapter 5.

The control file A01.bpp.ctl:

seed = -1

seqfile = bpp_seqs_sample.txt

Imapfile = gibbons.Imap.txt

outfile = out.txt

mcmcfile = mcmc.txt

speciesdelimitation = 0 * fixed species tree

speciestree = 1 * speciestree pSlider ExpandRatio ShrinkRatio

speciesmodelprior = 1 * 0: uniform LH; 1:uniform rooted trees;

* 2: uniformSLH; 3: uniformSRooted

species&tree = 5 B S N P M

1 1 1 1 1

(((B, S),N), (P, M));

diploid = 1 1 1 1 1

usedata = 1 * 0: no data (prior); 1:seq like

cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?

thetaprior = 3 0.002 # invgamma(a, b) for theta

tauprior = 3 0.004 # invgamma(a, b) for root tau &

# Dirichlet(a) for other tau’s
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* heredity = 1 4 4

* locusrate = 1 5

finetune = 1: 5 0.001 0.001 0.001 0.3 0.33 1.0 # finetune for GBtj, GBspr,

# theta, tau, mix, locusrate, seqerr

print = 1 0 0 0 * MCMC samples, locusrate, heredityscalars, Genetrees

burnin = 2000

sampfreq = 2

nsample = 20000

The script:

#!/bin/bash

OUTPUT=/dev/null

# Inputs for this run:

NumIter=$1

NumCount=$2

EXE_DIR="/users/anakim/bin"

GIBBONS_DIR="/users/anakim/gibbons"

BIN_DIR="/users/anakim/module/BIN"

STELLS_DIR="/users/anakim/STELLS2"

ASTRAL_DIR="/users/anakim/ASTRAL/Astral"

BPP_DIR="/users/anakim/bpp/src"

SCRATCHDIR=gibbons_pranc_stell_astral_bpp

mkdir ./$SCRATCHDIR

cp $GIBBONS_DIR/R_pick_btw_two_cons.r $SCRATCHDIR
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cp $GIBBONS_DIR/R_subsample_bpp.r $SCRATCHDIR

cp $GIBBONS_DIR/R_astral.r $SCRATCHDIR

cp $GIBBONS_DIR/RF_pranc_stells_astral_bpp.r $SCRATCHDIR

cp $GIBBONS_DIR/bpp_sequences.txt $SCRATCHDIR

cp $GIBBONS_DIR/A01.bpp.ctl $SCRATCHDIR

cp $GIBBONS_DIR/gibbons.Imap.txt $SCRATCHDIR

cp $GIBBONS_DIR/gibbons_gene_trees.txt $SCRATCHDIR

cp $GIBBONS_DIR/gibbons_topo.txt $SCRATCHDIR

cd $SCRATCHDIR

COUNTER=0

while [ $COUNTER -lt ${NumCount} ];

do

let COUNTER=COUNTER+1

Rscript R_subsample_bpp.r ${NumIter}

$BPP_DIR/bpp --cfile A01.bpp.ctl > o.txt

tail -n 1 o.txt > o1.txt

sed ’s/;.*/;/’ o1.txt > o.txt

sed ’s/#//g’ o.txt > o1.txt

sed ’s/ //g’ o1.txt >> bpp_inferred_trees.txt

cp gene_trees_sample.txt intree

$EXE_DIR/consense << EOF >> $OUTPUT

R

Y

EOF
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$BIN_DIR/ppranc -cons gene_trees_sample.txt

Rscript R_pick_btw_two_cons.r

rm -f intree

rm -f outfile

rm -f outtree

$BIN_DIR/ppranc -like_nni unranked_tree.txt -rgt gene_trees_sample.txt

rm -f unranked_tree.txt

Rscript R_astral.r

java -jar $ASTRAL_DIR/astral.5.6.3.jar -i gibbons_unrooted_trees.txt -o out.tre

cat out.tre >> astral_res_top.txt

rm -f gibbons_unrooted_trees.txt

$STELLS_DIR/stells-v2-1-0-linux64 -g gene_trees_sample.txt > output_temp.txt

tail -2 output_temp.txt > temp.txt

head -n 1 temp.txt > output.txt

sed -n -e ’s/^.*tree: //p’ output.txt >> stells_inferred_trees.txt

rm -f gene_trees_sample.txt

done

Rscript RF_pranc_stells_astral_bpp.r

exit 0
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